201
|
Miyamoto S, Tokuda H. Diverse effects of phospholipids on lipoprotein sorting and ATP hydrolysis by the ABC transporter LolCDE complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1848-54. [PMID: 17498646 DOI: 10.1016/j.bbamem.2007.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/29/2007] [Accepted: 04/05/2007] [Indexed: 11/19/2022]
Abstract
The LolCDE complex of Escherichia coli releases outer membrane-specific lipoproteins from the inner membrane. Lipoproteins with Asp at +2 remain in the inner membrane since this residue functions as a LolCDE avoidance signal depending on phosphatidylethanolamine. We examined the effects of other phospholipids on lipoprotein sorting in proteoliposomes reconstituted with LolCDE and various synthetic phospholipids. The lipoprotein release and ATP hydrolysis were both low at 2 mM Mg(2+) but very high at 10 mM Mg(2+) in proteoliposomes containing cardiolipin alone. However, the Lol avoidance function was abolished at 10 mM Mg(2+), and the release of lipoproteins with Asp at +2 was as efficient as that of outer membrane-specific lipoproteins. The addition of phosphatidylethanolamine to cardiolipin stimulated the ATP hydrolysis and increased the Lol avoidance function of Asp at +2 at 2 mM Mg(2+). The addition of phosphatidylglycerol to cardiolipin nearly completely inhibited the release of lipoproteins with Asp at +2 even at 10 mM Mg(2+), while that of outer membrane-specific lipoproteins was not. Taken together, these results indicate that three major phospholipids of E. coli differently affect lipoprotein sorting and the activity of LolCDE.
Collapse
Affiliation(s)
- Shigehiko Miyamoto
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | | |
Collapse
|
202
|
Vidal-Ingigliardi D, Lewenza S, Buddelmeijer N. Identification of essential residues in apolipoprotein N-acyl transferase, a member of the CN hydrolase family. J Bacteriol 2007; 189:4456-64. [PMID: 17416655 PMCID: PMC1913372 DOI: 10.1128/jb.00099-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein N-acyl transferase (Lnt) is an essential membrane-bound protein involved in lipid modification of all lipoproteins in gram-negative bacteria. Essential residues in Lnt of Escherichia coli were identified by using site-directed mutagenesis and an in vivo complementation assay. Based on sequence conservation and known protein structures, we predict a model for Lnt, which is a member of the CN hydrolase family. Besides the potential catalytic triad E267-K335-C387, four residues that directly affect the modification of Braun's lipoprotein Lpp are absolutely required for Lnt function. Residues Y388 and E389 are part of the hydrophobic pocket that constitutes the active site. Residues W237 and E343 are located on two flexible arms that face away from the active site and are expected to open and close upon the binding and release of phospholipid and/or apolipoprotein. Substitutions causing temperature-dependent effects were located at different positions in the structural model. These mutants were not affected in protein stability. Lnt proteins from other proteobacteria, but not from actinomycetes, were functional in vivo, and the essential residues identified in Lnt of E. coli are conserved in these proteins.
Collapse
Affiliation(s)
- Dominique Vidal-Ingigliardi
- Molecular Genetics Unit and CNRS URA2172, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
203
|
Hasebe A, Mu HH, Washburn LR, Chan FV, Pennock ND, Taylor ML, Cole BC. Inflammatory lipoproteins purified from a toxigenic and arthritogenic strain of Mycoplasma arthritidis are dependent on Toll-like receptor 2 and CD14. Infect Immun 2007; 75:1820-6. [PMID: 17283106 PMCID: PMC1865712 DOI: 10.1128/iai.00516-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma arthritidis is a naturally occurring murine pathogen, and the disease model has been used extensively to understand inflammatory mechanisms. Recently, Triton X-114 extracts of a virulent strain of M. arthritidis were found to be more potent in activating macrophages than were those from an avirulent strain, suggesting a role in disease. Here, octyl glucoside extraction of cells was used to identify four distinct bioactive moieties, with molecular masses of approximately 41, 37, 34, and 17 kDa. Their bioactivities were resistant to proteinase K but were destroyed by alkaline hydrolysis and oxidation. As for MALP-2, all were dependent upon Toll-like receptor 2, but unlike MALP-2, they were also dependent upon CD14. The M. arthritidis lipoproteins exhibited infrared absorbances at 2,900 cm(-1) and 1,662 cm(-1), similar to those seen in Pam(3)-Cys-Ser-(Lys)(4). Edman degradation failed to reveal N-terminal sequences, suggesting that they were blocked and therefore might be triacylated. However, mass spectrometry of fragments revealed that the 41-kDa moiety, which binds to serum apolipoprotein A-1, had similarity with the recently described MlpD lipoprotein of M. arthritidis.
Collapse
Affiliation(s)
- Akira Hasebe
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
204
|
Matsuba T, Suzuki Y, Tanaka Y. Association of the Rv0679c protein with lipids and carbohydrates in Mycobacterium tuberculosis/Mycobacterium bovis BCG. Arch Microbiol 2007; 187:297-311. [PMID: 17252234 DOI: 10.1007/s00203-006-0195-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 11/06/2006] [Indexed: 11/29/2022]
Abstract
The Rv0679c gene in Mycobacterium tuberculosis H37Rv encodes a protein with a predicted molecular mass of 16,586 Da consisting of 165 amino acids which contains a putative N-terminal signal sequence and a consensus lipoprotein-processing motif. Globomycin treatment, Triton X-114 separation and mass spectrometry analyses clarified a property of the Rv0679c protein as a lipoprotein. In addition, trifluoromethanesulphonic acid treatment of the lysate revealed an association of the recombinant Rv0679c protein with carbohydrates. The Rv0679c protein homolog of Mycobacterium bovis BCG was also expressed as the protein associated with lipids and carbohydrates. In Western blot analysis, each of the protein homolog and Lipoarabinomannan (LAM) was detected as a similar pattern by anti-Rv0679c and anti-LAM antibodies, respectively. Interestingly, the Rv0679c protein was detected in commercially available LAM purified from M. tuberculosis. Inhibition assay of LAM synthesis in M. bovis BCG by ethambutol showed an altered migration pattern of the Rv0679c protein to low molecular mass similar to that of LAM. The results suggest that the Rv0679c protein exists as a tight complex with LAM in M. tuberculosis/M. bovis BCG.
Collapse
Affiliation(s)
- Takashi Matsuba
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | | | | |
Collapse
|
205
|
Hutchings MI, Hong HJ, Leibovitz E, Sutcliffe IC, Buttner MJ. The sigma(E) cell envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein, CseA. J Bacteriol 2006; 188:7222-9. [PMID: 17015661 PMCID: PMC1636229 DOI: 10.1128/jb.00818-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have investigated the role of CseA in the sigma(E) cell envelope stress response of the gram-positive bacterium Streptomyces coelicolor. sigma(E) is an extracytoplasmic function RNA polymerase sigma factor required for normal cell envelope integrity in S. coelicolor. sigma(E) is encoded within a four-gene operon that also encodes CseA, a protein of unknown function, CseB, a response regulator and CseC, a transmembrane sensor histidine kinase (Cse represents control of sigma E). Previous work has shown that transcription of the sigE gene is completely dependent on the CseBC two-component system and that the CseBC-sigma(E) signal transduction system is induced by a wide variety of cell-wall-damaging agents. Here we address the role of CseA, a protein with no homologues outside the streptomycetes. We show that CseA is a novel lipoprotein localized to the extracytoplasmic face of the cell membrane and that loss of CseA results in upregulation of the sigE promoter.
Collapse
Affiliation(s)
- Matthew I Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom.
| | | | | | | | | |
Collapse
|
206
|
Geukens N, De Buck E, Meyen E, Maes L, Vranckx L, Van Mellaert L, Anné J, Lammertyn E. The type II signal peptidase of Legionella pneumophila. Res Microbiol 2006; 157:836-41. [PMID: 17005379 DOI: 10.1016/j.resmic.2006.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/15/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Legionella pneumophila is a facultative intracellular Gram-negative bacterium that has become an important cause of community-acquired and nosocomial pneumonia. Recent studies concerning the unravelling of bacterial virulence have suggested the involvement of protein secretion systems in bacterial pathogenicity. In this respect, the type II signal peptidase (LspA), which is specifically required for the maturation of lipoproteins, is of particular interest. This paper reports the cloning and functional characterization of the L. pneumophila lspA gene encoding the type II signal peptidase (SPase II). Activity of the L. pneumophila LspA was demonstrated using a globomycin sensitivity assay in Escherichia coli. In L. pneumophila, the lspA gene is flanked by the isoleucyl-tRNA synthetase (ileS) gene and the gene encoding a 2-hydroxy-3-deoxy-phosphogluconate aldolase. Although there is no apparent physiological connection, transcriptional analysis demonstrated that, as in some other Gram-negative bacteria, lspA is cotranscribed with ileS in L. pneumophila. Finally, in silico analysis revealed that several proteins known to be crucial for virulence and intracellular growth of L. pneumophila are predicted to be lipoproteins. These include, in particular, proteins involved in protein secretion and motility. Results obtained strongly suggest an important role for LspA in the pathogenicity of L. pneumophila, making it a promising new target for therapeutic intervention.
Collapse
Affiliation(s)
- Nick Geukens
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Sibbald MJJB, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJM, Raangs GC, Stokroos I, Arends JP, Dubois JYF, van Dijl JM. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev 2006; 70:755-88. [PMID: 16959968 PMCID: PMC1594592 DOI: 10.1128/mmbr.00008-06] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gram-positive bacterium Staphylococcus aureus is a frequent component of the human microbial flora that can turn into a dangerous pathogen. As such, this organism is capable of infecting almost every tissue and organ system in the human body. It does so by actively exporting a variety of virulence factors to the cell surface and extracellular milieu. Upon reaching their respective destinations, these virulence factors have pivotal roles in the colonization and subversion of the human host. It is therefore of major importance to obtain a clear understanding of the protein transport pathways that are active in S. aureus. The present review aims to provide a state-of-the-art roadmap of staphylococcal secretomes, which include both protein transport pathways and the extracytoplasmic proteins of these organisms. Specifically, an overview is presented of the exported virulence factors, pathways for protein transport, signals for cellular protein retention or secretion, and the exoproteomes of different S. aureus isolates. The focus is on S. aureus, but comparisons with Staphylococcus epidermidis and other gram-positive bacteria, such as Bacillus subtilis, are included where appropriate. Importantly, the results of genomic and proteomic studies on S. aureus secretomes are integrated through a comparative "secretomics" approach, resulting in the first definition of the core and variant secretomes of this bacterium. While the core secretome seems to be largely employed for general housekeeping functions which are necessary to thrive in particular niches provided by the human host, the variant secretome seems to contain the "gadgets" that S. aureus needs to conquer these well-protected niches.
Collapse
Affiliation(s)
- M J J B Sibbald
- Department of Medical Microbiology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Marczak M, Mazur A, Król JE, Gruszecki WI, Skorupska A. Lipoprotein PssN of Rhizobium leguminosarum bv. trifolii: subcellular localization and possible involvement in exopolysaccharide export. J Bacteriol 2006; 188:6943-52. [PMID: 16980497 PMCID: PMC1595502 DOI: 10.1128/jb.00651-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface expression of exopolysaccharides (EPS) in gram-negative bacteria depends on the activity of proteins found in the cytoplasmic membrane, the periplasmic space, and the outer membrane. pssTNOP genes identified in Rhizobium leguminosarum bv. trifolii strain TA1 encode proteins that might be components of the EPS polymerization and secretion system. In this study, we have characterized PssN protein. Employing pssN-phoA and pssN-lacZ gene fusions and in vivo acylation with [3H]palmitate, we demonstrated that PssN is a 43-kDa lipoprotein directed to the periplasm by an N-terminal signal sequence. Membrane detergent fractionation followed by sucrose gradient centrifugation showed that PssN is an outer membrane-associated protein. Indirect immunofluorescence with anti-PssN and fluorescein isothiocyanate-conjugated antibodies and protease digestion of spheroplasts and intact cells of TA1 provided evidence that PssN is oriented towards the periplasmic space. Chemical cross-linking of TA1 and E. coli cells overproducing PssN-His6 protein showed that PssN might exist as a homo-oligomer of at least two monomers. Investigation of the secondary structure of purified PssN-His6 protein by Fourier transform infrared spectroscopy revealed the predominant presence of beta-structure; however, alpha-helices were also detected. Influence of an increased amount of PssN protein on the TA1 phenotype was assessed and correlated with a moderate enhancement of EPS production.
Collapse
Affiliation(s)
- Małgorzata Marczak
- Department of General Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | | | | | | |
Collapse
|
209
|
Ito Y, Kanamaru K, Taniguchi N, Miyamoto S, Tokuda H. A novel ligand bound ABC transporter, LolCDE, provides insights into the molecular mechanisms underlying membrane detachment of bacterial lipoproteins. Mol Microbiol 2006; 62:1064-75. [PMID: 17038124 DOI: 10.1111/j.1365-2958.2006.05378.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The LolCDE complex of Escherichia coli belongs to the ABC transporter superfamily and initiates the lipoprotein sorting to the outer membrane by catalysing their release from the inner membrane. LolC and/or LolE, membrane subunits, recognize lipoproteins anchored to the outer surface of the inner membrane, while LolD hydrolyses ATP on its inner surface. We report here that ligand-bound LolCDE can be purified from the inner membrane in the absence of ATP. Liganded LolCDE represents an intermediate of the release reaction and exhibits higher affinity for ATP than the unliganded form. ATP binding to LolD weakens the interaction between LolCDE and lipoproteins and causes their dissociation in a detergent solution, while lipoprotein release from membranes requires ATP hydrolysis. Liganded LolCDE thus reveals molecular events brought about through ATP binding and hydrolysis. LolCDE is the first example of an ABC transporter purified with tightly bound native substrates. A single molecule of lipoprotein is found to bind per molecule of the LolCDE complex.
Collapse
Affiliation(s)
- Yasuko Ito
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
210
|
Baumgärtner M, Kärst U, Gerstel B, Loessner M, Wehland J, Jänsch L. Inactivation of Lgt allows systematic characterization of lipoproteins from Listeria monocytogenes. J Bacteriol 2006; 189:313-24. [PMID: 17041050 PMCID: PMC1797373 DOI: 10.1128/jb.00976-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein anchoring in bacteria is mediated by the prolipoprotein diacylglyceryl transferase (Lgt), which catalyzes the transfer of a diacylglyceryl moiety to the prospective N-terminal cysteine of the mature lipoprotein. Deletion of the lgt gene in the gram-positive pathogen Listeria monocytogenes (i) impairs intracellular growth of the bacterium in different eukaryotic cell lines and (ii) leads to increased release of lipoproteins into the culture supernatant. Comparative extracellular proteome analyses of the EGDe wild-type strain and the Delta lgt mutant provided systematic insight into the relative expression of lipoproteins. Twenty-six of the 68 predicted lipoproteins were specifically released into the extracellular proteome of the Delta lgt strain, and this proved that deletion of lgt is an excellent approach for experimental verification of listerial lipoproteins. Consequently, we generated Delta lgt Delta prfA double mutants to detect lipoproteins belonging to the main virulence regulon that is controlled by PrfA. Overall, we identified three lipoproteins whose extracellular levels are regulated and one lipoprotein that is posttranslationally modified depending on PrfA. It is noteworthy that in contrast to previous studies of Escherichia coli, we unambiguously demonstrated that lipidation by Lgt is not a prerequisite for activity of the lipoprotein-specific signal peptidase II (Lsp) in Listeria.
Collapse
Affiliation(s)
- Maja Baumgärtner
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), D-38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
211
|
Pecora ND, Gehring AJ, Canaday DH, Boom WH, Harding CV. Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. THE JOURNAL OF IMMUNOLOGY 2006; 177:422-9. [PMID: 16785538 DOI: 10.4049/jimmunol.177.1.422] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLR2 recognizes components of Mycobacterium tuberculosis (Mtb) and initiates responses by APCs that influence both innate and adaptive immunity. Mtb lipoproteins are an important class of TLR2 ligand, but only two, LpqH and LprG, have been characterized to date. In this study, we characterize a third Mtb lipoprotein, LprA, and determine its effects on host macrophages and dendritic cells. LprA is a cell wall-associated lipoprotein with no homologs outside the slow-growing mycobacteria. Using Mycobacterium smegmatis as an expression host, we purified 6x His-tagged LprA both with and without its acyl modifications. Acylated LprA had agonist activity for both human and murine TLR2 and induced expression of TNF-alpha, IL-10, and IL-12. LprA also induced dendritic cell maturation as shown by increased expression of CD40, CD80, and class II MHC (MHC-II). In macrophages, prolonged (24 h) incubation with LprA decreased IFN-gamma-induced MHC-II Ag processing and presentation, consistent with an observed decrease in MHC-II expression (macrophage viability was not affected and apoptosis was not induced by LprA). Reduced MHC-II Ag presentation may represent a negative feedback mechanism for control of inflammation that may be subverted by Mtb for immune evasion. Thus, Mtb LprA is a TLR2 agonist that induces cytokine responses and regulates APC function.
Collapse
Affiliation(s)
- Nicole D Pecora
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106-7288, USA
| | | | | | | | | |
Collapse
|
212
|
Castanié-Cornet MP, Cam K, Jacq A. RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J Bacteriol 2006; 188:4264-70. [PMID: 16740933 PMCID: PMC1482940 DOI: 10.1128/jb.00004-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RcsCDB signal transduction system is an atypical His-Asp phosphorelay conserved in gamma-proteobacteria. Besides the three proteins directly involved in the phosphorelay, two proteins modulate the activity of the system. One is RcsA, which can stimulate the activity of the response regulator RcsB independently of the phosphorelay to regulate a subset of RcsB targets. The other is RcsF, a putative outer membrane lipoprotein mediating the signaling to the sensor RcsC. How RcsF transduces the signal to RcsC is unknown. Although the molecular and physiological signals remain to be identified, the common feature among the reported Rcs-activating conditions is perturbation of the envelope. As an initial step to explore the RcsF-RcsC functional relationship, we demonstrate that RcsF is an outer membrane lipoprotein oriented towards the periplasm. We also report that a null mutation in surA, a gene required for correct folding of periplasmic proteins, activates the Rcs pathway through RcsF. In contrast, activation of this pathway by overproduction of the membrane chaperone-like protein DjlA does not require RcsF. Conversely, activation of the pathway by RcsF overproduction does not require DjlA either, indicating the existence of two independent signaling pathways toward RcsC.
Collapse
Affiliation(s)
- Marie-Pierre Castanié-Cornet
- Institut de Génétique et de Microbiologie, UMR 8621, Centre National de la Recherche Scientifique and Université Paris-Sud, Bâtiment 400, 91 405 Orsay cedex, France
| | | | | |
Collapse
|
213
|
Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, Sankaran K. A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 2006; 188:2761-73. [PMID: 16585737 PMCID: PMC1446993 DOI: 10.1128/jb.188.8.2761-2773.2006] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid modification of the N-terminal Cys residue (N-acyl-S-diacylglyceryl-Cys) has been found to be an essential, ubiquitous, and unique bacterial posttranslational modification. Such a modification allows anchoring of even highly hydrophilic proteins to the membrane which carry out a variety of functions important for bacteria, including pathogenesis. Hence, being able to identify such proteins is of great value. To this end, we have created a comprehensive database of bacterial lipoproteins, called DOLOP, which contains information and links to molecular details for about 278 distinct lipoproteins and predicted lipoproteins from 234 completely sequenced bacterial genomes. The website also features a tool that applies a predictive algorithm to identify the presence or absence of the lipoprotein signal sequence in a user-given sequence. The experimentally verified lipoproteins have been classified into different functional classes and more importantly functional domain assignments using hidden Markov models from the SUPERFAMILY database that have been provided for the predicted lipoproteins. Other features include the following: primary sequence analysis, signal sequence analysis, and search facility and information exchange facility to allow researchers to exchange results on newly characterized lipoproteins. The website, along with additional information on the biosynthetic pathway, statistics on predicted lipoproteins, and related figures, is available at http://www.mrc-lmb.cam.ac.uk/genomes/dolop/.
Collapse
Affiliation(s)
- M Madan Babu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | | | |
Collapse
|
214
|
Zheng M, Ginalski K, Rychlewski L, Grishin NV. Protein domain of unknown function DUF1023 is an alpha/beta hydrolase. Proteins 2006; 59:1-6. [PMID: 15688435 DOI: 10.1002/prot.20388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pfam family DUF1023 consists entirely of uncharacterized proteins generated by sequencing the genomes of Actinobacteria (Bateman A., et al., Nucleic Acids Res. 2004;32 Database issue:D138-141.) Utilizing sequence similarity detection methods, we infer homology between DUF1023 and alpha/beta hydrolases. DUF1023 proteins conserve the core secondary structures in alpha/beta hydrolase fold, and share similar catalytic machinery as that of alpha/beta hydrolases. We predict DUF1023 spatial structure and deduce that they function as hydrolases utilizing catalytic Ser-His-Asp triad with the serine as a nucleophile.
Collapse
Affiliation(s)
- Mingzhu Zheng
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, Texas 75390-9038, USA
| | | | | | | |
Collapse
|
215
|
Watanabe S, Matsuyama SI, Tokuda H. Roles of the Hydrophobic Cavity and Lid of LolA in the Lipoprotein Transfer Reaction in Escherichia coli. J Biol Chem 2006; 281:3335-42. [PMID: 16354671 DOI: 10.1074/jbc.m509596200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LolA, a periplasmic chaperone, binds to outer membrane-specific lipoproteins released from the inner membrane through the action of an ATP-binding cassette transporter, LolCDE and then transfers them to the outer membrane receptor LolB, thereby mediating the inner to outer membrane transport of lipoproteins. The crystal structure of free LolA revealed that it has an internal hydrophobic cavity, which is surrounded by hydrophobic residues and closed by a lid comprising alpha-helices. The hydrophobic cavity most likely represents the binding site for the lipid moiety of a lipoprotein. It is speculated that the lid undergoes opening and closing upon the binding and transfer of lipoproteins, respectively. To determine the functions of the hydrophobic cavity and lid in detail, 14 residues involved in the formation of these structures were subjected to random mutagenesis. Among the obtained 21 LolA derivatives that did not support growth, 14 were active as to the binding of lipoproteins but defective in the transfer of lipoproteins to LolB, causing the periplasmic accumulation of a lipoprotein as a complex with a LolA derivative. A LolA derivative, I93G, bound lipoproteins faster than wild-type LolA did, whereas it did not transfer associated lipoproteins to LolB. When I93G and wild type LolA co-existed, lipoproteins were bound only to I93G; which therefore exhibited a dominant negative property. Another derivative, L59R, was also defective in the transfer of lipoproteins to LolB but did not exhibit a dominant negative property. Taken together, these results indicate that both the hydrophobic cavity and the lid are critically important for not only the binding of lipoproteins but also their transfer.
Collapse
Affiliation(s)
- Shoji Watanabe
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
216
|
Glenz K, Bouchon B, Stehle T, Wallich R, Simon MM, Warzecha H. Production of a recombinant bacterial lipoprotein in higher plant chloroplasts. Nat Biotechnol 2006; 24:76-7. [PMID: 16327810 DOI: 10.1038/nbt1170] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 10/20/2005] [Indexed: 12/19/2022]
Abstract
Little is known about the potential of plastids to accomplish post-translational modifications of foreign proteins. In the present study we generated transplastomic tobacco plants that accumulate the outer surface lipoprotein A (OspA)-the basic constituent of the first generation monovalent human vaccine against Lyme disease. The recombinant OspA exhibits a lipid modification typical for bacteria and induced protective antibodies in mice, demonstrating that functionally active bacterial lipoproteins can be processed in plants.
Collapse
Affiliation(s)
- Karin Glenz
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximilians Universität Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
217
|
Kim K, Oh J, Han D, Kim EE, Lee B, Kim Y. Crystal structure of PilF: functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa. Biochem Biophys Res Commun 2005; 340:1028-38. [PMID: 16403447 DOI: 10.1016/j.bbrc.2005.12.108] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 12/15/2005] [Indexed: 11/23/2022]
Abstract
PilF is a requisite protein involved in the type 4 pilus biogenesis system from the Gram-negative human pathogenic bacteria, Pseudomonas aeruginosa. We determined the PilF structure at a 2.2A resolution; this includes six tandem tetratrico peptide repeat (TPR) units forming right-handed superhelix. PilF structure was similar to the heat shock protein organizing protein, which interacts with the C-terminal peptide of Hsp90 and Hsp70 via a concave Asn ladder in the inner groove of TPR superhelix. After simulated screening, the C-terminal pentapeptides of PilG, PilU, PilY, and PilZ proved to be a likely candidate binding to PilF, which are ones of 25 necessary components involved in the type 4 pilus biogenesis system. We proposed that PilF would be critical as a bridgehead in protein-protein interaction and thereby, PilF may bind a necessary molecule in type 4 pilus biogenesis system such as PilG, PilU, PilY, and PilZ.
Collapse
Affiliation(s)
- Kyunggon Kim
- Division of Molecular Genomic Medicine, College of Medicine, Seoul National University, Yongon-Dong, Seoul 110-799, Republic of Korea
| | | | | | | | | | | |
Collapse
|
218
|
Narita SI, Tokuda H. An ABC transporter mediating the membrane detachment of bacterial lipoproteins depending on their sorting signals. FEBS Lett 2005; 580:1164-70. [PMID: 16288742 DOI: 10.1016/j.febslet.2005.10.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 10/14/2005] [Accepted: 10/19/2005] [Indexed: 11/17/2022]
Abstract
Bacterial lipoproteins are anchored to membranes through a lipid moiety attached to the N-terminal Cys. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane and others in the inner membrane. Sorting of lipoproteins to the outer membrane requires the Lol system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the lipoprotein sorting by mediating the detachment of outer membrane-specific lipoproteins from the inner membrane. LolCDE does not recognize lipoproteins possessing Asp at position 2, which therefore remain anchored to the inner membrane. We will discuss the mechanism of LolCDE based on data obtained through in vitro experiments.
Collapse
Affiliation(s)
- Shin-ichiro Narita
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | | |
Collapse
|
219
|
Dupont C, Thompson K, Heuer C, Gicquel B, Murray A. Identification and characterization of an immunogenic 22 kDa exported protein of Mycobacterium avium subspecies paratuberculosis. J Med Microbiol 2005; 54:1083-1092. [PMID: 16192441 DOI: 10.1099/jmm.0.46163-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An exported 22 kDa putative lipoprotein was identified in an alkaline phosphatase gene fusion library ofMycobacterium aviumsubsp.paratuberculosisand expressed inMycobacterium smegmatis. The full nucleic acid sequence of the gene encoding P22 was determined and the ORF was cloned into a mycobacterial expression vector, enabling full-length P22 to be produced as a C-terminal polyhistidine-tagged protein inM. smegmatis. N-terminal sequencing of the recombinant protein confirmed cleavage of a signal sequence. Native P22 was detected in culture supernatants and cell sonicates ofM. aviumsubsp.paratuberculosisstrain 316F using rabbit antibody raised to recombinant P22. Investigation of the presence of similar genes in other mycobacterial species revealed that the gene was present inMycobacterium aviumsubsp.aviumand similar genes existed inMycobacterium intracellulareandMycobacterium scrofulaceum. Database searches showed that P22 belonged to the LppX/LprAFG family of mycobacterial lipoproteins also found inMycobacterium lepraeand in members of theMycobacterium tuberculosiscomplex. P22 shared less than 75 % identity to these proteins. Recombinant P22 was able to elicit interferon-gamma secretion in blood from eight of a group of nine sheep vaccinated with a live attenuated strain ofM. aviumsubsp.paratuberculosis(strain 316F) compared to none from a group of five unvaccinated sheep. Antibody to P22 was detected by Western blot analysis in 10 out of 11 vaccinated sheep, in two out of two clinically affected cows and in 11 out of 13 subclinically infected cows.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Antigens, Bacterial/isolation & purification
- Bacterial Proteins/chemistry
- Bacterial Proteins/immunology
- Bacterial Proteins/isolation & purification
- Blotting, Western
- Cattle
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Interferon-gamma/blood
- Lipoproteins/chemistry
- Lipoproteins/immunology
- Lipoproteins/isolation & purification
- Models, Animal
- Molecular Sequence Data
- Molecular Weight
- Mycobacterium avium/genetics
- Mycobacterium avium Complex/genetics
- Mycobacterium avium subsp. paratuberculosis/genetics
- Mycobacterium avium subsp. paratuberculosis/immunology
- Mycobacterium leprae/genetics
- Mycobacterium scrofulaceum/genetics
- Mycobacterium smegmatis/genetics
- Mycobacterium tuberculosis/genetics
- Open Reading Frames
- Protein Sorting Signals
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Sheep
Collapse
Affiliation(s)
- Chris Dupont
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, Private Bag 11 222, New Zealand 2Unite de Genetique Mycobacterienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Keith Thompson
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, Private Bag 11 222, New Zealand 2Unite de Genetique Mycobacterienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Cord Heuer
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, Private Bag 11 222, New Zealand 2Unite de Genetique Mycobacterienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Brigitte Gicquel
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, Private Bag 11 222, New Zealand 2Unite de Genetique Mycobacterienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Alan Murray
- Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, Private Bag 11 222, New Zealand 2Unite de Genetique Mycobacterienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
220
|
Turner S, Moir J, Griffiths L, Overton T, Smith H, Cole J. Mutational and biochemical analysis of cytochrome c', a nitric oxide-binding lipoprotein important for adaptation of Neisseria gonorrhoeae to oxygen-limited growth. Biochem J 2005; 388:545-53. [PMID: 15689189 PMCID: PMC1138962 DOI: 10.1042/bj20041766] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neisseria gonorrhoeae is a prolific source of c-type cytochromes. Five of the constitutively expressed cytochromes are predicted, based on in silico analysis of the N. gonorrhoeae genome, to be components of the cytochrome bc1 complex, cytochrome c oxidase cbb3 or periplasmic cytochromes involved in electron transfer reactions typical of a bacterium with a microaerobic physiology. Cytochrome c peroxidase was previously shown to be a lipoprotein expressed only during oxygen-limited growth. The final c-type cytochrome, cytochrome c', similar to cytochrome c peroxidase, includes a lipobox required for targeting to the outer membrane. Maturation of cytochrome c' was partially inhibited by globomycin, an antibiotic that specifically inhibits signal peptidase II, resulting in the accumulation of the prolipoprotein in the cytoplasmic membrane. Disruption of the gonococcal cycP gene resulted in an extended lag phase during microaerobic growth in the presence but not in the absence of nitrite, suggesting that cytochrome c' protects the bacteria from NO generated by nitrite reduction during adaptation to oxygen-limited growth. The cytochrome c' gene was overexpressed in Escherichia coli and recombinant cytochrome c' was shown to be targeted to the outer membrane. Spectroscopic evidence is presented showing that gonococcal cytochrome c' is similar to previously characterized cytochrome c' proteins and that it binds NO in vitro. The demonstration that two of the seven gonococcal c-type cytochromes fulfil specialized functions and are outer membrane lipoproteins suggests that the localization of these lipoproteins close to the bacterial surface provides effective protection against external assaults from reactive oxygen and reactive nitrogen species.
Collapse
Affiliation(s)
- Susan M. Turner
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - James W. B. Moir
- †Department of Biology, University of York, Heslington, York YO10 5YW, U.K
| | - Lesley Griffiths
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Timothy W. Overton
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Harry Smith
- ‡Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jeff A. Cole
- *School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
221
|
Taniguchi N, Matsuyama SI, Tokuda H. Mechanisms Underlying Energy-independent Transfer of Lipoproteins from LolA to LolB, Which Have Similar Unclosed β-Barrel Structures. J Biol Chem 2005; 280:34481-8. [PMID: 16091355 DOI: 10.1074/jbc.m507388200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Lol system, comprising five Lol proteins, transfers lipoproteins from the inner to the outer membrane of Escherichia coli. Periplasmic LolA accepts lipoproteins from LolCDE in the inner membrane and immediately transfers them to LolB, a receptor anchored to the outer membrane. The unclosed beta-barrel structures of LolA and LolB are very similar to each other and form hydrophobic cavities for lipoproteins. The lipoprotein transfer between these similar structures is unidirectional and very efficient, but requires no energy input. To reveal the mechanisms underlying this lipoprotein transfer, Arg and Phe at positions 43 and 47, respectively, of LolA were systematically mutagenized. The two residues were previously found to affect abilities to accept and transfer lipoproteins. Substitution of Phe-47 with polar residues inhibited the ability to accept lipoproteins from the inner membrane. No derivatives caused periplasmic accumulation of lipoproteins. In contrast, many Arg-43 derivatives caused unusual periplasmic accumulation of lipoproteins to various extents. However, all derivatives, except one having Leu instead of Arg, supported the growth of cells. All Arg-43 derivatives retained the ability to accept lipoproteins from the inner membrane, whereas their abilities to transfer associated lipoproteins to LolB were variously reduced. Assessment of the intensity of the hydrophobic interaction between lipoproteins and Arg-43 derivatives revealed that the LolA-lipoprotein interaction should be weak, otherwise lipoprotein transfer to LolB is inhibited, causing accumulation of lipoproteins in the periplasm.
Collapse
Affiliation(s)
- Naohiro Taniguchi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032
| | | | | |
Collapse
|
222
|
Kolomytseva MP, Solyanikova IP, Golovlev EL, Golovleva LA. Heterogeneity of Rhodococcus opacus 1CP as a Response to Stress Induced by Chlorophenols. APPL BIOCHEM MICRO+ 2005. [DOI: 10.1007/s10438-005-0085-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
223
|
Abstract
One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| | | |
Collapse
|
224
|
Omueti KO, Beyer JM, Johnson CM, Lyle EA, Tapping RI. Domain exchange between human toll-like receptors 1 and 6 reveals a region required for lipopeptide discrimination. J Biol Chem 2005; 280:36616-25. [PMID: 16129684 DOI: 10.1074/jbc.m504320200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the 10 human Toll-like receptors (TLRs), TLR2 appears to be unique in its requirement for cooperation with other TLRs, namely TLR1 and TLR6, to mediate cell signaling. Through reconstitution experiments, we have defined more precisely the function of these human TLRs. Human colonic epithelial cells cotransfected with TLR1 and -2 preferentially respond to a synthetic tripalmitoylated bacterial lipopeptide analogue (Pam(3)CSK(4)). However, examination of a wide variety of lipopeptide derivatives indicates that recognition by human TLR1 and -2 does not strictly correlate with the number or position of the acyl chains on the modified cysteine residue. Conversely, human TLR2 and -6 exclusively respond to lipopeptides possessing a diacylglycerol group. Most surprisingly, we have found that an R stereoisomer of diacylated macrophage-activating lipopeptide 2 (MALP-2) exclusively activates epithelial cells through TLR6 and -2 but not through TLR1 and -2. These results suggest that the chirality of the central carbon of the diacylglycerol group of these agonists is a structural determinant for human TLR recognition. Examination of chimeric receptors, generated by domain exchange between TLR1 and -6, has revealed that leucine-rich repeats 9-12 of the extracellular domain enable these receptors to discriminate between structurally similar lipopeptides. However, additional chimeric constructs reveal that this region alone is not sufficient to generate receptors that can functionally cooperate with TLR2. Our results support the idea that TLR1 and TLR6 diverged during evolution to differentially recognize natural lipoprotein structures and that this function has been conserved with respect to the human receptors.
Collapse
Affiliation(s)
- Katherine O Omueti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
225
|
Onufryk C, Crouch ML, Fang FC, Gross CA. Characterization of six lipoproteins in the sigmaE regulon. J Bacteriol 2005; 187:4552-61. [PMID: 15968066 PMCID: PMC1151791 DOI: 10.1128/jb.187.13.4552-4561.2005] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, sigma(E) regulon functions are required for envelope homeostasis during stress and are essential for viability under all growth conditions. The E. coli genome encodes approximately 100 lipoproteins, and 6 of these are regulated by sigma(E). Phenotypes associated with deletion of each of these lipoproteins are the subject of this report. One lipoprotein, YfiO, is essential for cellular viability. However, overexpression of this protein is not sufficient to alleviate the requirement of sigma(E) for viability, suggesting that the sigma(E) regulon provides more than one essential function. The remaining five lipoproteins in the sigma(E) regulon are nonessential; cells are viable even when all five are removed simultaneously. Deletion of three nonessential lipoprotein genes (nlpB, yraP, ygfL) results in the exhibition of phenotypes that suggest they are important for maintenance of the integrity of the cell envelope. deltanlpB cells are selectively sensitive to rifampin; deltayraP cells are selectively sensitive to sodium dodecyl sulfate. Such selective sensitivity has not been previously reported. Both deltayraP and deltanlpB are synthetically lethal with surA::Cm, which encodes a periplasmic chaperone and PPIase, suggesting that NlpB and YraP play roles in a periplasmic folding pathway that functions in parallel with that of SurA. Finally, the deltayfgL mutant exhibits a broad range of envelope defects, including sensitivity to several membrane-impermeable agents, an altered outer membrane protein profile, synthetic lethality with both surA::Cm and deltafkpA::Cm strains, and sensitivity to a bactericidal permeability-increasing peptide. We suggest that this lipoprotein performs a very important but as-yet-unknown function in maintaining the integrity of the cell envelope.
Collapse
Affiliation(s)
- Christina Onufryk
- Department of Biochemistry & Biophysics, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
226
|
Urick T, I-Chang C, Arena E, Xu W, Bessman MJ, Ruffolo CG. The pnhA gene of Pasteurella multocida encodes a dinucleoside oligophosphate pyrophosphatase member of the Nudix hydrolase superfamily. J Bacteriol 2005; 187:5809-17. [PMID: 16077129 PMCID: PMC1196092 DOI: 10.1128/jb.187.16.5809-5817.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 03/31/2005] [Indexed: 11/20/2022] Open
Abstract
The pnhA gene of Pasteurella multocida encodes PnhA, which is a member of the Nudix hydrolase subfamily of dinucleoside oligophosphate pyrophosphatases. PnhA hydrolyzes diadenosine tetra-, penta-, and hexaphosphates with a preference for diadenosine pentaphosphate, from which it forms ATP and ADP. PnhA requires a divalent metal cation, Mg(2+) or Mn(2+), and prefers an alkaline pH of 8 for optimal activity. A P. multocida strain that lacked a functional pnhA gene, ACP13, was constructed to further characterize the function of PnhA. The cellular size of ACP13 was found to be 60% less than that of wild-type P. multocida, but the growth rate of ACP13 and its sensitivity to heat shock conditions were similar to those of the wild type, and the wild-type cell size was restored in the presence of a functional pnhA gene. Wild-type and ACP13 strains were tested for virulence by using the chicken embryo lethality model, and ACP13 was found to be up to 1,000-fold less virulent than the wild-type strain. This is the first study to use an animal model in assessing the virulence of a bacterial strain that lacked a dinucleoside oligophosphate pyrophosphatase and suggests that the pyrophosphatase PnhA, catalyzing the hydrolysis of diadenosine pentaphosphates, may also play a role in facilitating P. multocida pathogenicity in the host.
Collapse
Affiliation(s)
- Tonia Urick
- Department of Biological Sciences, University of Wisconsin-Parkside, P.O. Box 2000, Kenosha, WI 53144, USA
| | | | | | | | | | | |
Collapse
|
227
|
Stoll H, Dengjel J, Nerz C, Götz F. Staphylococcus aureus deficient in lipidation of prelipoproteins is attenuated in growth and immune activation. Infect Immun 2005; 73:2411-23. [PMID: 15784587 PMCID: PMC1087423 DOI: 10.1128/iai.73.4.2411-2423.2005] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A lipoprotein diacylglyceryl transferase (lgt) deletion mutant of Staphylococcus aureus SA113 was constructed. The lipoprotein and prelipoprotein expression, the growth behavior, and the ability of the mutant to elicit an immune response in various host cells were studied. In the wild type, the majority of [14C]palmitate-labeled lipoproteins were located in the membrane fraction, although some lipoproteins were also present on the cell surface and in the culture supernatant. The lgt mutant completely lacked palmitate-labeled lipoproteins and released high amounts of some unmodified prelipoproteins, e.g., the oligopeptide-binding protein OppA, the peptidyl-prolyl cis-trans isomerase PrsA, and the staphylococcal iron transporter SitC, into the culture supernatant. The growth of the lgt mutant was hardly affected in rich medium but was retarded under nutrient limitation. The lgt mutant and its crude lysate induced much fewer proinflammatory cytokines and chemokines in human monocytic (MonoMac6), epithelial (pulmonary A549), and endothelial (human umbilical vein endothelial) cells than the wild type. However, in whole blood samples, the culture supernatant of the lgt mutant was equal or even superior to the wild-type supernatant in tumor necrosis factor alpha induction. Lipoprotein fractionation experiments provided evidence that a small proportion of the mature lipoproteins are released by the S. aureus wild type despite the lipid anchor and are trapped in part by the cell wall, thereby exposing the immune-activating lipid structure on the cell surface. Bacterial lipoproteins appear to be essential for a complete immune stimulation by gram-positive bacteria.
Collapse
Affiliation(s)
- Hartmut Stoll
- Mikrobielle Genetik, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
228
|
Harvat EM, Zhang YM, Tran CV, Zhang Z, Frank MW, Rock CO, Saier MH. Lysophospholipid Flipping across the Escherichia coli Inner Membrane Catalyzed by a Transporter (LplT) Belonging to the Major Facilitator Superfamily. J Biol Chem 2005; 280:12028-34. [PMID: 15661733 DOI: 10.1074/jbc.m414368200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transfer of phospholipids across membrane bilayers is protein-mediated, and most of the established transporters catalyze the energy-dependent efflux of phospholipids from cells. This work identifies and characterizes a lysophospholipid transporter gene (lplT, formally ygeD) in Escherichia coli that is an integral component in the 2-acylglycerophosphoethanolamine (2-acyl-GPE) metabolic cycle for membrane protein acylation. The lplT gene is adjacent to and in the same operon as the aas gene, which encodes the bifunctional enzyme 2-acyl-GPE acyltransferase/acyl-acyl carrier protein synthetase. In some bacteria, acyltransferase/acyl-ACP synthetase (Aas) and LplT homologues are fused in a single polypeptide chain. 2-Acyl-GPE transport to the inside of the cell was assessed by measuring the Aas-dependent formation of phosphatidylethanolamine. The Aas-dependent incorporation of [3H]palmitate into phosphatidylethanolamine was significantly diminished in deltalplT mutants, and the LplT-Aas transport/acylation activity was independent of the proton motive force. The deltalplT mutants accumulated acyl-GPE in vivo and had a diminished capacity to transport exogenous 2-acylglycerophosphocholine into the cell. Spheroplasts prepared from wild-type E. coli transported and acylated fluorescent 2-acyl-GPE with an apparent K(d) of 7.5 microM, whereas this high-affinity process was absent in deltalplT mutants. Thus, LplT catalyzes the transbilayer movement of lysophospholipids and is the first example of a phospholipid flippase that belongs to the major facilitator superfamily.
Collapse
Affiliation(s)
- Edgar M Harvat
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Sun KH, Sun GH, Tsai CY, Wang HH, Chung-I C, Lin G, Lin WW, Tang SJ. Expression, purification, refolding, and characterization of recombinant human soluble-Fas ligand from Escherichia coli. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
230
|
Unbalanced phospholipid composition of Escherichia coli membranes affects PPHO promoter activity. Mol Biol 2005. [DOI: 10.1007/s11008-005-0037-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
231
|
Protein secretion through autotransporter and two-partner pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:235-57. [PMID: 15546669 DOI: 10.1016/j.bbamcr.2004.03.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 03/18/2004] [Accepted: 03/26/2004] [Indexed: 01/19/2023]
Abstract
Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.
Collapse
|
232
|
Tefsen B, Geurtsen J, Beckers F, Tommassen J, de Cock H. Lipopolysaccharide Transport to the Bacterial Outer Membrane in Spheroplasts. J Biol Chem 2005; 280:4504-9. [PMID: 15576375 DOI: 10.1074/jbc.m409259200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of lipopolysaccharide (LPS) transport in Gram-negative bacteria from the inner membrane to the outer membrane is largely unknown. Here, we investigated the possibility that LPS transport proceeds via a soluble intermediate associated with a periplasmic chaperone analogous to the Lol-dependent transport mechanism of lipoproteins. Whereas newly synthesized lipoproteins could be released from spheroplasts of Escherichia coli upon addition of a periplasmic extract containing LolA, de novo synthesized LPS was not released. We demonstrate that LPS synthesized de novo in spheroplasts co-fractionated with the outer membranes and that this co-fractionation was dependent on the presence in the spheroplasts of a functional MsbA protein, the protein responsible for the flip-flop of LPS across the inner membrane. The outer membrane localization of the LPS was confirmed by its modification by the outer membrane enzyme CrcA (PagP). We conclude that a substantial amount of LPS was translocated to the outer membrane in spheroplasts, suggesting that transport proceeds via contact sites between the two membranes. In contrast to LPS, de novo synthesized phospholipids were not transported to the outer membrane in spheroplasts. Apparently, LPS and phospholipids have different requirements for their transport to the outer membrane.
Collapse
Affiliation(s)
- Boris Tefsen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
233
|
Crepin VF, Prasannan S, Shaw RK, Wilson RK, Creasey E, Abe CM, Knutton S, Frankel G, Matthews S. Structural and functional studies of the enteropathogenicEscherichia colitype III needle complex protein EscJ. Mol Microbiol 2005; 55:1658-70. [PMID: 15752191 DOI: 10.1111/j.1365-2958.2005.04508.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The type III secretion system (TTSS) is a macromolecular structure that spans the cell wall of Gram-negative bacterial pathogens, enabling delivery of virulence effector proteins directly to the membranes and cytosol of host eukaryotic cells. TTSS consists of a conserved needle complex (NC) that is composed of sets of inner and outer membranes rings connected by a periplasmic rod. Enteropathogenic Escherichia coli (EPEC) is an extracellular diarrhoeagenic pathogen that uses TTSS to induce actin polymerization and colonizes the intestinal epithelium. In EPEC, EscJ is predicted to be targeted to the periplasm, in a sec-dependent manner, and to bridge the TTSS membrane-associated rings. In this study we determined the global fold of EscJ using Nuclear Magnetic Resonance spectroscopy. We show that EscJ comprises two subdomains (D1 - amino acid residues 1-55 in the mature protein, and D2 - amino acid residues 90-170), each comprising a three-stranded beta-sheet flanked by two alpha-helices. A flexible region (residues 60-85) couples the structured regions D1 and D2. Periplasmic overexpression of EscJ(D1) and EscJ(D2) in a single escJ mutant bacterium failed to restore protein secretion activity, suggesting that the flexible linker is essential for the rod function. In contrast, periplasmic overexpression of EscJ(D1) and EscJ(D2) in the same wild-type bacterium had a dominant-negative phenotype suggesting defective assembly of the TTSS and protein translocation.
Collapse
Affiliation(s)
- Valérie F Crepin
- Centres for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Yamashita Y, Maeda Y, Takeshita F, Brennan PJ, Makino M. Role of the polypeptide region of a 33kDa mycobacterial lipoprotein for efficient IL-12 production. Cell Immunol 2004; 229:13-20. [PMID: 15331324 DOI: 10.1016/j.cellimm.2004.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 06/02/2004] [Indexed: 11/21/2022]
Abstract
Mycobacterium leprae lipoprotein, LpK, induced IL-12 production from human monocytes. To determine the components essential for cytokine production and the relative role of lipidation in the activation process, we produced lipidated and non-lipidated truncated forms of LpK. While 0.5nM of lipidated LpK-a having N-terminal 60 amino acids of LpK produced more than 700pg/ml IL-12 p40, the non-lipidated LpK-b having the same amino acids as that of LpK-a required more than 20nM of the protein to produce an equivalent dose of cytokine. Truncated protein having the C-terminal 192 amino acids of LpK did not induce any cytokine production. Fifty nanomolar of the synthetic lipopeptide of LpK produced only about 200pg/ml IL-12. Among the truncated LpK, only LpK-a and lipopeptide stimulated NF-kB-dependent reporter activity in TLR-2 transfectant. However, when monocytes were stimulated with lipopeptide in the presence of non-lipidated protein, they produced IL-12 synergistically. Therefore, both peptide regions of LpK and lipid residues are necessary for efficient IL-12 production.
Collapse
Affiliation(s)
- Yasuko Yamashita
- Department of Microbiology, Leprosy Research Center,National Institute of Infectious Diseases, 4-2-1 Aobacho,Higashimurayama, Tokyo 189-0002, Japan
| | | | | | | | | |
Collapse
|
235
|
Shiba Y, Yokoyama Y, Aono Y, Kiuchi T, Kusaka J, Matsumoto K, Hara H. Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin. J Bacteriol 2004; 186:6526-35. [PMID: 15375134 PMCID: PMC516613 DOI: 10.1128/jb.186.19.6526-6535.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lethal effect of an Escherichia coli pgsA null mutation, which causes a complete lack of the major acidic phospholipids, phosphatidylglycerol and cardiolipin, is alleviated by a lack of the major outer membrane lipoprotein encoded by the lpp gene, but an lpp pgsA strain shows a thermosensitive growth defect. Using transposon mutagenesis, we found that this thermosensitivity was suppressed by disruption of the rcsC, rcsF, and yojN genes, which code for a sensor kinase, accessory positive factor, and phosphotransmitter, respectively, of the Rcs phosphorelay signal transduction system initially identified as regulating the capsular polysaccharide synthesis (cps) genes. Disruption of the rcsB gene coding for the response regulator of the system also suppressed the thermosensitivity, whereas disruption of cpsE did not. By monitoring the expression of a cpsB'-lac fusion, we showed that the Rcs system is activated in the pgsA mutant and is reverted to a wild-type level by the rcs mutations. These results indicate that envelope stress due to an acidic phospholipid deficiency activates the Rcs phosphorelay system and thereby causes the thermosensitive growth defect independent of the activation of capsule synthesis.
Collapse
Affiliation(s)
- Yasuhiro Shiba
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
236
|
Wada R, Matsuyama SI, Tokuda H. Targeted mutagenesis of five conserved tryptophan residues of LolB involved in membrane localization of Escherichia coli lipoproteins. Biochem Biophys Res Commun 2004; 323:1069-74. [PMID: 15381108 DOI: 10.1016/j.bbrc.2004.08.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Indexed: 10/26/2022]
Abstract
LolB, catalyzing the last step of lipoprotein transfer from the inner to the outer membrane of Escherichia coli, is itself a lipoprotein anchored to the outer membrane. Five Trp residues of LolB are conserved among LolB homologs in Gram-negative bacteria. These Trp residues were mutagenized to obtain defective LolB mutants. Mutation of Trp at position 52 to Pro impaired the receptor activity and caused accumulation of the LolA-lipoprotein complex in the periplasm. Similar mutants were obtained for Trp at position 117. A mutant with Gly instead of Trp at position 148 retained the receptor activity but inhibited growth upon its overproduction. The outer membrane sorting of this mutant seemed to be defective, lipoprotein transfer thereby being perturbed when it was overproduced. Despite the strong conservation, no defective mutant for Trp at position 183 was obtained, and only weak mutants were isolated for Trp at position 18. Based on the crystal structure of LolB, the phenotypes of these mutants are discussed.
Collapse
Affiliation(s)
- Rieko Wada
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
237
|
Miyadai H, Tanaka-Masuda K, Matsuyama SI, Tokuda H. Effects of Lipoprotein Overproduction on the Induction of DegP (HtrA) Involved in Quality Control in the Escherichia coli Periplasm. J Biol Chem 2004; 279:39807-13. [PMID: 15252048 DOI: 10.1074/jbc.m406390200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent biochemical examination has revealed the presence of at least 90 different lipoproteins in Escherichia coli. Among previously identified lipoproteins, only an outer membrane lipoprotein, NlpE, is known to induce expression of the degP gene upon its overproduction. The degP gene encodes a periplasmic protease, which is thought to be involved in the digestion of unfolded proteins, and is essential for growth at high temperatures. However, it is not completely clear why NlpE overproduction causes degP expression. Moreover, among newly confirmed lipoproteins, there may be others that also induce degP expression. Therefore, we overproduced each of the 90 lipoproteins and examined the level of degP expression as beta-galactosidase activity by using a degP promoter-lacZ fusion. The extent of degP expression caused by NlpE overproduction was dependent on the mode of degP-lacZ fusion. On the other hand, new inner membrane lipoprotein YafY strongly induced degP expression irrespective of the mode of fusion even though the level of overproduced YafY was lower than that of NlpE. The induction of degP expression by YafY overproduction was dependent on the Cpx two-component system. Alteration of the lipoprotein-sorting signals of NlpE and YafY did not abolish the degP induction. However, a YafY derivative possessing the outer membrane signal remained on inner membranes. The non-lipidated derivative of NlpE did not induce degP expression, indicating that membrane anchoring is essential for degP induction. The amino acid sequences of YafY and YfjS, another inner membrane lipoprotein, are highly identical, but overproduction of the latter did not induce degP expression. Construction of various YafY-YfjS chimeric lipoproteins revealed that only a few residues located in the N- and C-terminal regions were important for the induction of DegP.
Collapse
Affiliation(s)
- Hidenori Miyadai
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
238
|
Fahnert B, Veijola J, Roël G, Kärkkäinen MK, Railo A, Destrée O, Vainio S, Neubauer P. Murine Wnt-1 with an internal c-myc tag recombinantly produced in Escherichia coli can induce intracellular signaling of the canonical Wnt pathway in eukaryotic cells. J Biol Chem 2004; 279:47520-7. [PMID: 15337757 DOI: 10.1074/jbc.m403207200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt-1 belongs to the Wnt family of secreted glycoproteins inducing an intracellular signaling pathway involved in cell proliferation, differentiation, and pattern formation. The canonical branch is one of three known branches. This is also valid in vitro, and Wnts can be considered beneficial for culturing primary cells from organs, provided Wnts are available and applicable even with cells of different species. It was shown here that internally c-myc-tagged murine Wnt-1 produced in the heterologous host Escherichia coli was appropriate for inducing intracellular signaling of the canonical Wnt pathway in eukaryotic cells via stabilization of cytosolic beta-catenin. The pioneering injection of the protein into the blastocoels of Xenopus laevis embryos led to axis duplication and suppression of head formation. Applying the recombinant murine Wnt-1 to metanephric mesenchyme activated the tubulogenic program. The signal-inducing activity of the recombinant protein was also positively demonstrated in the TOP-flash reporter assay. Although Wnts were purified recently from the growth media of stably transfected eukaryotic cell lines, the production of active Wnt proteins in pro- or eukaryotic microorganisms reportedly has never been successful. Here soluble production in E. coli and translocation into the oxidizing environment of the periplasm were achieved. The protein was purified using the internal c-myc tag. The effect on the eukaryotic cells implies that activity was retained. Thus, this approach could make recombinant murine Wnt-1 available as a good starting point for other Wnts needed, for example, for maintaining and differentiating stem cells, organ restoration therapy, and tissue engineering.
Collapse
Affiliation(s)
- Beatrix Fahnert
- Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, P. O. Box 4300, FIN-90014 Oulu, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Shoji M, Naito M, Yukitake H, Sato K, Sakai E, Ohara N, Nakayama K. The major structural components of two cell surface filaments of Porphyromonas gingivalis are matured through lipoprotein precursors. Mol Microbiol 2004; 52:1513-25. [PMID: 15165251 DOI: 10.1111/j.1365-2958.2004.04105.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial cell surface filaments play significant roles in adherence to and invasion of host cells. They are generated by the chaperone/usher pathway system (class I fimbriae), the type II secretion system (type IV pili) and the nucleation-dependent polymerization system (Curli filaments) that are categorized by their modes of expression and assembly. In this study, we found that the periodontal pathogen Porphyromonas gingivalis expressed the major structural components of two cell surface filaments (fimbrilin and the 75 kDa protein) that had extremely long prosequences in their primary gene products. N-terminal amino acid sequencing of the prosequences, treatment of P. gingivalis cells with globomycin, an inhibitor for lipoprotein-specific signal peptidase, amino acid substitution of the cysteine residue of the prosequence of fimbrilin and [(3)H]-palmitic acid labelling implied that fimbrilin and the 75 kDa protein were matured through their lipoprotein precursor forms. Accumulation of precursor forms of fimbrilin and the 75 kDa protein on the cell surface of the gingipain-null mutant revealed that Arg-gingipain processed these precursors on the surface to yield their mature forms, which subsequently assembled into the filamentous structures, suggesting that the transport and assembly of the major component proteins appear to be novel.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
240
|
Tokuda H, Matsuyama SI. Sorting of lipoproteins to the outer membrane in E. coli. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:5-13. [PMID: 15276320 DOI: 10.1016/j.bbamcr.2004.02.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 02/10/2004] [Accepted: 02/11/2004] [Indexed: 10/26/2022]
Abstract
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.
Collapse
Affiliation(s)
- Hajime Tokuda
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan.
| | | |
Collapse
|
241
|
Narita SI, Matsuyama SI, Tokuda H. Lipoprotein trafficking in Escherichia coli. Arch Microbiol 2004; 182:1-6. [PMID: 15221203 DOI: 10.1007/s00203-004-0682-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 04/19/2004] [Accepted: 04/27/2004] [Indexed: 10/26/2022]
Abstract
Bacterial lipoproteins comprise a subset of membrane proteins that are covalently modified with lipids at the amino-terminal Cys. Lipoproteins are involved in a wide variety of functions in bacterial envelopes. Escherichia coli has more than 90 species of lipoproteins, most of which are located on the periplasmic surface of the outer membrane, while others are located on that of the inner membrane. In order to elucidate the mechanisms by which outer-membrane-specific lipoproteins are sorted to the outer membrane, biochemical, molecular biological and crystallographic approaches have been taken. Localization of lipoproteins on the outer membrane was found to require a lipoprotein-specific sorting machinery, the Lol system, which is composed of five proteins (LolABCDE). The crystal structures of LolA and LolB, the periplasmic chaperone and outer-membrane receptor for lipoproteins, respectively, were determined. On the basis of the data, we discuss here the mechanism underlying lipoprotein transfer from the inner to the outer membrane through Lol proteins. We also discuss why inner membrane-specific lipoproteins remain on the inner membrane.
Collapse
Affiliation(s)
- Shin-Ichiro Narita
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-0032, Tokyo, Japan
| | | | | |
Collapse
|
242
|
Fröderberg L, Houben ENG, Baars L, Luirink J, de Gier JW. Targeting and translocation of two lipoproteins in Escherichia coli via the SRP/Sec/YidC pathway. J Biol Chem 2004; 279:31026-32. [PMID: 15140892 DOI: 10.1074/jbc.m403229200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, two main protein targeting pathways to the inner membrane exist: the SecB pathway for the essentially posttranslational targeting of secretory proteins and the SRP pathway for cotranslational targeting of inner membrane proteins (IMPs). At the inner membrane both pathways converge at the Sec translocase, which is capable of both linear transport into the periplasm and lateral transport into the lipid bilayer. The Sec-associated YidC appears to assist the lateral transport of IMPs from the Sec translocase into the lipid bilayer. It should be noted that targeting and translocation of only a handful of secretory proteins and IMPs have been studied. These model proteins do not include lipoproteins. Here, we have studied the targeting and translocation of two secretory lipoproteins, the murein lipoprotein and the bacteriocin release protein, using a combined in vivo and in vitro approach. The data indicate that both murein lipoprotein and bacteriocin release protein require the SRP pathway for efficient targeting to the Sec translocase. Furthermore, we show that YidC plays an important role in the targeting/translocation of both lipoproteins.
Collapse
Affiliation(s)
- Linda Fröderberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
243
|
van Ulsen P, van Alphen L, ten Hove J, Fransen F, van der Ley P, Tommassen J. A Neisserial autotransporter NalP modulating the processing of other autotransporters. Mol Microbiol 2004; 50:1017-30. [PMID: 14617158 DOI: 10.1046/j.1365-2958.2003.03773.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Autotransporters constitute a relatively simple secretion system in Gram-negative bacteria, depending for their translocation across the outer membrane only on a C-terminal translocator domain. We have studied a novel autotransporter serine protease, designated NalP, from Neisseria meningitidis strain H44/76, featuring a lipoprotein motif at the signal sequence cleavage site. Indeed, lipidation of NalP could be demonstrated, but the secreted 70 kDa domain of NalP lacked the lipid-moiety as a result of additional N-terminal processing. A nalP mutant showed a drastically altered profile of secreted proteins. Mass-spectrometric analysis of tryptic fragments identified the autotransporters IgA protease and App, a homologue of the adhesin Hap of Haemophilus influenzae, as the major secreted proteins. Two forms of both of these proteins were found in the culture supernatant of the wild-type strain, whereas only the lower molecular-weight forms predominated in the culture supernatant of the nalP mutant. The serine-protease active site of NalP was required for the modulation of the processing of these autotransporters. We propose that, apart from the autoproteolytic processing, NalP can process App and IgA protease and hypothesize that this function of NalP could contribute to the virulence of the organism.
Collapse
Affiliation(s)
- Peter van Ulsen
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
244
|
Réglier-Poupet H, Frehel C, Dubail I, Beretti JL, Berche P, Charbit A, Raynaud C. Maturation of lipoproteins by type II signal peptidase is required for phagosomal escape of Listeria monocytogenes. J Biol Chem 2003; 278:49469-77. [PMID: 12975369 DOI: 10.1074/jbc.m307953200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoproteins of Gram-positive bacteria are involved in a broad range of functions such as substrate binding and transport, antibiotic resistance, cell signaling, or protein export and folding. Lipoproteins are also known to initiate both innate and adaptative immune responses. However, their role in the pathogenicity of intracellular microorganisms is yet poorly understood. In Listeria monocytogenes, a Gram-positive facultative intracellular human pathogen, surface proteins have important roles in the interactions of the microorganism with the host cells. Among the putative surface proteins of L. monocytogenes, lipoproteins constitute the largest family. Here, we addressed the role of the signal peptidase (SPase II), responsible for the maturation of lipoproteins in listerial pathogenesis. We identified a gene, lsp, encoding a SPase II in the genome of L. monocytogenes and constructed a deltalsp chromosomal deletion mutant. The mutant strain fails to process several lipoproteins demonstrating that lsp encodes a genuine SPase II. This defect is accompanied by a reduced efficiency of phagosomal escape during infection of eucaryotic cells, and leads to an attenuated virulence. We show that lsp gene expression is strongly induced when bacteria are still entrapped inside phagosomes of infected macrophages. The data presented establish, thus, that maturation of lipoproteins is critical for efficient phagosomal escape of L. monocytogenes, a process temporally controlled by the regulation of Lsp production in infected cells.
Collapse
Affiliation(s)
- Hélène Réglier-Poupet
- INSERM U570, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
245
|
Hara T, Matsuyama SI, Tokuda H. Mechanism underlying the inner membrane retention of Escherichia coli lipoproteins caused by Lol avoidance signals. J Biol Chem 2003; 278:40408-14. [PMID: 12896969 DOI: 10.1074/jbc.m307836200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli lipoproteins are localized to either the inner or outer membrane depending on the residue at position 2. The inner membrane retention signal, Asp at position 2 in combination with certain residues at position 3, functions as a Lol avoidance signal, i.e. the signal inhibits the recognition of lipoproteins by LolCDE that releases lipoproteins from the inner membrane. To understand the role of the residue at position 2, outer membrane-specific lipoproteins with Cys at position 2 were subjected to chemical modification followed by the release reaction in reconstituted proteoliposomes. Sulfhydryl-specific introduction of nonprotein molecules or a negative charge to Cys did not inhibit the LolCDE-dependent release. In contrast, oxidation of Cys to cysteic acid resulted in generation of the Lol avoidance signal, indicating that the Lol avoidance signal requires a critical length of negative charge at the second residue. Furthermore, not only modification of the carboxylic acid of Asp at position 2 but also that of the amine of phosphatidylethanolamine abolished the Lol avoidance function. Based on these results, the Lol avoidance mechanism is discussed.
Collapse
Affiliation(s)
- Takashi Hara
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
246
|
Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 2003; 12:1652-62. [PMID: 12876315 PMCID: PMC2323952 DOI: 10.1110/ps.0303703] [Citation(s) in RCA: 889] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Revised: 05/15/2003] [Accepted: 05/19/2003] [Indexed: 10/26/2022]
Abstract
A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/.
Collapse
Affiliation(s)
- Agnieszka S Juncker
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby 2800, Denmark
| | | | | | | | | | | |
Collapse
|
247
|
Coutte L, Willery E, Antoine R, Drobecq H, Locht C, Jacob-Dubuisson F. Surface anchoring of bacterial subtilisin important for maturation function. Mol Microbiol 2003; 49:529-39. [PMID: 12828647 DOI: 10.1046/j.1365-2958.2003.03573.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many extracytoplasmic proteins undergo proteolytic processing during secretion, which is essential to their maturation. These post-translational modifications are carried out by specific enzymes whose subcellular localization is important for function. We have described a maturation subtilisin in Gram-negative Bordetella pertussis, the autotransporter SphB1. SphB1 catalyses the maturation of the precursor of the adhesin filamentous haemagglutinin (FHA) at the bacterial surface, in addition to the processing of its own precursor. Here, we show that the outer membrane anchor of SphB1 is crucial to its function, as evidenced by the lack of FHA maturation in a strain releasing a variant of SphB1 into the milieu. In contrast, surface association is not required for automaturation of SphB1. The surface retention of mature SphB1 is mediated by lipidation of the protein. The tethered protease appears to be stabilized by unusual Gly- and Pro-rich motifs at the N-terminus of the protein. This represents a new mode of localization for a protease involved in protein secretion.
Collapse
Affiliation(s)
- Loic Coutte
- INSERM U44, Institut de Biologie de Lille, Institut Pasteur de Lille, 1 rue Calmette, 59019 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
248
|
Narita SI, Kanamaru K, Matsuyama SI, Tokuda H. A mutation in the membrane subunit of an ABC transporter LolCDE complex causing outer membrane localization of lipoproteins against their inner membrane-specific signals. Mol Microbiol 2003; 49:167-77. [PMID: 12823819 DOI: 10.1046/j.1365-2958.2003.03569.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lipoproteins in Gram-negative bacteria are anchored to the inner or outer membrane via fatty acids attached to the N-terminal cysteine. The residue at position 2 determines the membrane specificity. An ATP binding cassette transporter LolCDE complex releases lipoproteins with residues other than aspartate at position 2 from the inner membrane, whereas those with aspartate at position 2 are rejected by LolCDE and therefore remain in the inner membrane. For further understanding of this rejection mechanism, a novel strategy was developed to select mutants in which lipoproteins with aspartate at position 2 are released. The isolated mutants carried an alanine to proline mutation at position 40 of LolC, a membrane subunit of the LolCDE complex. A significant portion of an inner membrane lipoprotein, L10P(DQ), was localized to the outer membrane when the LolC mutant was expressed. Periplasmic chaperone LolA formed a complex with the released L10P(DQ), which was subsequently incorporated into the outer membrane in a LolB-dependent manner, indicating that neither LolA nor LolB rejects lipoproteins with aspartate at position 2. The amount of the LolC mutant co-purified with LolD and LolE after membrane solubilization was reduced significantly. Taken together, these results indicate that the mutation causes destabilization of the LolCDE complex and concomitantly prevents the accurate recognition of lipoprotein-sorting signals.
Collapse
Affiliation(s)
- Shin-ichiro Narita
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
249
|
de Greeff A, Hamilton A, Sutcliffe IC, Buys H, van Alphen L, Smith HE. Lipoprotein signal peptidase of Streptococcus suis serotype 2. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1399-1407. [PMID: 12777481 DOI: 10.1099/mic.0.26329-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper reports the complete coding sequence for a proliprotein signal peptidase (SP-ase) of Streptococcus suis, Lsp. This is believed to be the first SP-ase described for S. suis. SP-ase II is involved in the removal of the signal peptide from glyceride-modified prolipoproteins. By using in vitro transcription/translation systems, it was shown that the lsp gene was transcribed in vitro. Functionality of Lsp in Escherichia coli was demonstrated by using an in vitro globomycin resistance assay, to show that expression of Lsp in E. coli increased the globomycin resistance. An isogenic mutant of S. suis serotype 2 unable to produce Lsp was constructed and shown to process lipoproteins incorrectly, including an S. suis homologue of the pneumococcal PsaA lipoprotein. Five piglets were inoculated with a mixture of both strains in an experimental infection, to determine the virulence of the mutant strain relative to that of the wild-type strain in a competitive challenge experiment. The data showed that both strains were equally virulent, indicating that the knockout mutant of lsp is not attenuated in vivo.
Collapse
Affiliation(s)
- Astrid de Greeff
- Department of Medical Microbiology, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
- Division of Infectious Diseases and Food Chain Quality, Cluster of Endemic Diseases, Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands
| | - Andrea Hamilton
- Institute of Pharmacy, Chemistry and Biomedical Sciences, University of Sunderland, UK
| | - Iain C Sutcliffe
- Institute of Pharmacy, Chemistry and Biomedical Sciences, University of Sunderland, UK
| | - Herma Buys
- Division of Infectious Diseases and Food Chain Quality, Cluster of Endemic Diseases, Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands
| | - Loek van Alphen
- Laboratory for Vaccine Research, RIVM, National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Department of Medical Microbiology, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
| | - Hilde E Smith
- Division of Infectious Diseases and Food Chain Quality, Cluster of Endemic Diseases, Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands
| |
Collapse
|
250
|
Venema R, Tjalsma H, van Dijl JM, de Jong A, Leenhouts K, Buist G, Venema G. Active lipoprotein precursors in the Gram-positive eubacterium Lactococcus lactis. J Biol Chem 2003; 278:14739-46. [PMID: 12584195 DOI: 10.1074/jbc.m209857200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid-modified proteins play important roles at the interface between eubacterial cells and their environment. The importance of lipoprotein processing by signal peptidase II (SPase II) is underscored by the fact that this enzyme is essential for viability of the Gram-negative eubacterium Escherichia coli. In contrast, SPase II is not essential for growth and viability of the Gram-positive eubacterium Bacillus subtilis. This could be due to alternative amino-terminal lipoprotein processing, which was shown previously to occur in SPase II mutants of B. subtilis. Alternatively, uncleaved lipoprotein precursors might be functional. To explore further the importance of lipoprotein processing in Gram-positive eubacteria, an SPase II mutant strain of Lactococcus lactis was constructed. Although some of the 39 (predicted) lactococcal lipoproteins, such as PrtM and OppA, are essential for growth in milk, the growth of SPase II mutant L. lactis cells in this medium was not affected. Furthermore, the activity of the strictly PrtM-dependent extracellular protease PrtP, which is required for casein degradation, was not impaired in the absence of SPase II. Importantly, no alternative processing of pre-PrtM and pre-OppA was observed in cells lacking SPase II. Taken together, these findings show for the first time that authentic lipoprotein precursors retain biological activity.
Collapse
Affiliation(s)
- Roelke Venema
- Department of Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|