201
|
Williamson JD, Sadofsky LR, Hart SP. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Exp Lung Res 2014; 41:57-73. [PMID: 25514507 DOI: 10.3109/01902148.2014.979516] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.
Collapse
Affiliation(s)
- James D Williamson
- Hull York Medical School, Centre for Cardiovascular and Metabolic Research, Academic Respiratory Medicine , Castle Hill Hospital, Hull , United Kingdom
| | | | | |
Collapse
|
202
|
Yu Z, Han M, Cowan JA. Toward the Design of a Catalytic Metallodrug: Selective Cleavage of G-Quadruplex Telomeric DNA by an Anticancer Copper-Acridine-ATCUN Complex. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
203
|
Yu Z, Han M, Cowan JA. Toward the design of a catalytic metallodrug: selective cleavage of G-quadruplex telomeric DNA by an anticancer copper-acridine-ATCUN complex. Angew Chem Int Ed Engl 2014; 54:1901-5. [PMID: 25504651 DOI: 10.1002/anie.201410434] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 11/11/2022]
Abstract
Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper-acridine-ATCUN complex (CuGGHK-Acr) has been designed that targets G-quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK-Acr catalyst to selectively bind and cleave the G-quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) experiments. CuGGHK-Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210 (USA)
| | | | | |
Collapse
|
204
|
An integrating strategy of AMBER force field parameters for the photoinduced copper nucleases. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1603-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
205
|
Ravichandran J, Gurumoorthy P, Imran Musthafa MA, Kalilur Rahiman A. Antioxidant, DNA binding and nuclease activities of heteroleptic copper(II) complexes derived from 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols and diimines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 133:785-793. [PMID: 24998685 DOI: 10.1016/j.saa.2014.06.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
A series of heteroleptic copper(II) complexes of the type [CuL(1-4)(diimine)](ClO4)2 (1-8) [L(1-4)=2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, and diimine=2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen)], have been synthesized and characterized by spectroscopic methods. The IR spectra of complexes indicate the presence of uncoordinated perchlorate anions and the electronic spectra revealed the square pyramidal geometry with N4O coordination environment around copper(II) nuclei. Electrochemical studies of the mononuclear complexes evidenced one-electron irreversible reduction wave in the cathodic region. The EPR spectra of complexes with g|| (2.206-2.214) and A|| (154-172×10(-)(4)cm(-)(1)) values support the square-based CuN3O coordination chromophore and the presence of unpaired electron localized in [Formula: see text] ground state. Antioxidant studies against DPPH revealed effective radical scavenging properties of the synthesized complexes. Binding studies suggest that the heteroleptic copper(II) complexes interact with calf thymus DNA (CT-DNA) through minor-groove and electrostatic interaction, and all the complexes display pronounced nuclease activity against supercoiled pBR322 DNA.
Collapse
Affiliation(s)
- J Ravichandran
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India; Research and Development Department, Amrutanjan Healthcare Limited, Mylapore, Chennai 600 004, India
| | - P Gurumoorthy
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India
| | - M A Imran Musthafa
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India
| | - A Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, India.
| |
Collapse
|
206
|
Ghosh K, Tyagi N, Kumar Dhara A, Singh UP. Spontaneous Reduction of Mononuclear High-Spin Iron(III) Complexes to Mononuclear Low-Spin Iron(II) Complexes in Aqueous Media and Nuclease Activity via Self-Activation. Chem Asian J 2014; 10:350-61. [DOI: 10.1002/asia.201402954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 11/08/2022]
|
207
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol 2014; 91:140-55. [PMID: 25327445 DOI: 10.1111/php.12368] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
This review article focuses on a critical survey of the main available information on the UVB and UVA oxidative reactions to cellular DNA as the result of direct interactions of UV photons, photosensitized pathways and biochemical responses including inflammation and bystander effects. UVA radiation appears to be much more efficient than UVB in inducing oxidatively generated damage to the bases and 2-deoxyribose moieties of DNA in isolated cells and skin. The UVA-induced generation of 8-oxo-7,8-dihydroguanine is mostly rationalized in terms of selective guanine oxidation by singlet oxygen generated through type II photosensitization mechanism. In addition, hydroxyl radical whose formation may be accounted for by metal-catalyzed Haber-Weiss reactions subsequent to the initial generation of superoxide anion radical contributes in a minor way to the DNA degradation. This leads to the formation of both oxidized purine and pyrimidine bases together with DNA single-strand breaks at the exclusion, however, of direct double-strand breaks. No evidence has been provided so far for the implication of delayed oxidative degradation pathways of cellular DNA. In that respect putative characteristic UVA-induced DNA damage could include single and more complex lesions arising from one-electron oxidation of the guanine base together with aldehyde adducts to amino-substituted nucleobases.
Collapse
Affiliation(s)
- Jean Cadet
- University Grenoble Alpes, INAC, Grenoble, France; CEA, INAC, Grenoble, France; Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
208
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
209
|
Ingle S, Azad RN, Jain SS, Tullius TD. Chemical probing of RNA with the hydroxyl radical at single-atom resolution. Nucleic Acids Res 2014; 42:12758-67. [PMID: 25313156 PMCID: PMC4227780 DOI: 10.1093/nar/gku934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/17/2014] [Accepted: 09/24/2014] [Indexed: 12/02/2022] Open
Abstract
While hydroxyl radical cleavage is widely used to map RNA tertiary structure, lack of mechanistic understanding of strand break formation limits the degree of structural insight that can be obtained from this experiment. Here, we determine how individual ribose hydrogens of sarcin/ricin loop RNA participate in strand cleavage. We find that substituting deuterium for hydrogen at a ribose 5'-carbon produces a kinetic isotope effect on cleavage; the major cleavage product is an RNA strand terminated by a 5'-aldehyde. We conclude that hydroxyl radical abstracts a 5'-hydrogen atom, leading to RNA strand cleavage. We used this approach to obtain structural information for a GUA base triple, a common tertiary structural feature of RNA. Cleavage at U exhibits a large 5' deuterium kinetic isotope effect, a potential signature of a base triple. Others had noted a ribose-phosphate hydrogen bond involving the G 2'-OH and the U phosphate of the GUA triple, and suggested that this hydrogen bond contributes to backbone rigidity. Substituting deoxyguanosine for G, to eliminate this hydrogen bond, results in a substantial decrease in cleavage at G and U of the triple. We conclude that this hydrogen bond is a linchpin of backbone structure around the triple.
Collapse
Affiliation(s)
- Shakti Ingle
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Robert N Azad
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Swapan S Jain
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Thomas D Tullius
- Department of Chemistry, Boston University, Boston, MA 02215, USA Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
210
|
Raman N, Mahalakshmi R, Mitu L. Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: synthesis, structural elucidation and dna binding properties of metal(II) complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 131:355-364. [PMID: 24835939 DOI: 10.1016/j.saa.2014.04.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/11/2014] [Accepted: 04/22/2014] [Indexed: 06/03/2023]
Abstract
Present work reports the DNA binding and cleavage characteristics of a series of mixed-ligand complexes having the composition [M(L)(phen)2]Cl2 (where M=Cu(II), Ni(II), Co(II) and Zn(II) and phen as co-ligand) in detail. Their structural features and other properties have been deduced from their elemental analyses, magnetic susceptibility and molar conductivity as well as from IR, UV-Vis, (1)H NMR and EPR spectral studies. The UV-Vis, magnetic susceptibility and EPR spectral data of metal complexes suggest an octahedral geometry. The binding properties of these complexes with calf thymus DNA (CT-DNA) have been explored using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and differential pulse voltammetry. The DNA-binding constants for Cu(II), Ni(II), Co(II), and Zn(II) complexes are 6.14×10(5)M(-1), 1.8×10(5)M(-1), 6.7×10(4)M(-1) and 2.5×10(4)M(-1) respectively. Detailed analysis reveals that these complexes interact with DNA through intercalation binding. Nuclease activity has also been investigated by gel electrophoresis. Moreover, the synthesized Schiff base and its mixed-ligand complexes have been screened for antibacterial and antifungal activities. The data reveal that the complexes exhibit higher activity than the parent ligand.
Collapse
Affiliation(s)
- Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar 626 001, India.
| | | | - Liviu Mitu
- Department of Chemistry, University of Pitesti, Pitesti 110040, Romania
| |
Collapse
|
211
|
Hsieh HS, Wu R, Jafvert CT. Light-independent reactive oxygen species (ROS) formation through electron transfer from carboxylated single-walled carbon nanotubes in water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11330-11336. [PMID: 25171301 DOI: 10.1021/es503163w] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Promising developments in application of carbon nanotubes (CNTs) have raised concern regarding potential biological and environmental effects upon their inevitable release to the environment. Although some CNTs have been reported to generate reactive oxygen species (ROS) under light, limited information exists on ROS generation by these materials in the dark. In this study, generation of ROS was examined, initiated by electron transfer from biological electron donors through carboxylated single-walled carbon nanotubes (C-SWCNT) to molecular oxygen in water in the dark. In the presence of C-SWCNT, the oxidation of NADH (β-nicotinamide adenine dinucleotide, reduced form) and DTTre (DL-dithiothreitol, reduced form) was confirmed by light absorbance shifts (340 nm to 260 nm during oxidation of NADH to NAD(+), and increased light absorbance at 280 nm during oxidation of DTTre). Production of superoxide anion (O2(•-)) was detected by its selective reaction with a tetrazolium salt (NBT(2+)), forming a formazan product that is visible at 530 nm. A modified acid-quenched N,N-diethyl-p-phenylenediamine (DPD) assay was used to measure the accumulation of H2O2 in C-SWCNT suspensions containing O2 and NADH. In the same suspensions (i.e., containing C-SWCNT, NADH, and O2), pBR322 DNA plasmid was cleaved, although •OH was not detected when using •OH scavenging molecular probes. These results indicate that the oxidation of electron donors by C-SWCNT can be a light-independent source of ROS in water, and that electron shuttling through CNTs to molecular oxygen may be a potential mechanism for DNA damage by this specific CNT and potentially other carbon-based nanomaterials.
Collapse
Affiliation(s)
- Hsin-Se Hsieh
- Purdue University , Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering, West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|
212
|
Ushaiah B, leela DS, Ravi M, Anupama B, Perugu S, Kumari CG. Synthesis, characterization, antibacterial, DNA binding and cleavage studies of mixed ligand Cu(II), Co(II) complexes. J Fluoresc 2014; 24:1687-99. [PMID: 25238802 DOI: 10.1007/s10895-014-1456-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Mixed-ligand Cu(II), Co(II) complexes of formulae [Co(NSALT)(A.A)(H2O)](1), [Co(OHAPT)(A.A)H2O](2), and [Cu(ESALT)(ABPH)H2O] (3) were obtained by refluxing methanol solutions of copper, cobalt chlorides with the appropriate ligands. The complexes were characterized by the ESI-MASS, vibrational spectroscopy (Fourier transform-IR), (1)H-NMR spectroscopy, UV-vis spectroscopy, TGA, ESR, SEM and powder XRD. The preliminary DNA-binding activity of the complexes was studied by recording electronic absorption spectra of the complexes in presence of CT-DNA. The binding constants of three complexes towards calf thymus DNA (CT-DNA) [1.2 × 10(4) M(-1) for 1, 2.5 × 10(4) M(-1) for 2, and 3.0 × 10(4) M(-1) for 3] indicate strong interaction of 3. Changes in the fluorescence of ethidium bromide in the presence of DNA suggest intercalation into or electrostatic interactions with CT DNA. The quenching constants, KSV towards-DNA calculated through fluorescence spectra are 2.9 × 10(4) M(-1)for 1, 1.8 × 10(4) M(-1) for 2, and 3.2 × 10(4) M(-1) for 3. Docking studies on DNA complexes confirm the binding of 1 and 2 in the major groove of CT-DNA (CTP-1 Endonuclease). Moreover, the antibacterial effect of 1-3 against the five bacterial species was evaluated. The metal complexes have cleavage affinity towards PBR322 plasmid. Furthermore, the antioxidant activities of the complexes were determined by DPPH scavenging activity method.
Collapse
Affiliation(s)
- B Ushaiah
- Department of Chemistry, Osmania University, Hyderabad, 500007, India
| | | | | | | | | | | |
Collapse
|
213
|
Lu J, Li JL, Sun Q, Jiang L, Gu W, Liu X, Tian JL, Yan SP. Synthesis, characterization, and biological activities of two Cu(II) and Zn(II) complexes with one polyquinoline ligand. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 130:390-396. [PMID: 24810024 DOI: 10.1016/j.saa.2014.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/24/2014] [Accepted: 04/03/2014] [Indexed: 06/03/2023]
Abstract
Two new complexes, [CuLCl]ClO4 (1) and [Zn2L2SO4(H2O)2](ClO4)2 (2) [L=N,N-bis(quinolin-2-ylmethyl)quinolin-8-amine], have been synthesized and structurally characterized. The interactions of two complexes with CT-DNA have been investigated by UV absorption, fluorescence spectroscopy, viscosity measurements and gel electrophoresis under physiological conditions. Results show that the complexes bind to CT-DNA with a moderate intercalative mode and exhibit efficient DNA cleavage activity on UV-A light of 365 nm. Furthermore, two complexes could quench the intrinsic fluorescence of BSA in a static quenching process based on BSA binding experiments. Notably, in vitro cytotoxicity study of two complexes on four human tumor cells lines (7404, HeLa, MCF-7, and HepG-2) indicate that both of them have the potential to act as effective anticancer drugs with low IC50 values.
Collapse
Affiliation(s)
- Jing Lu
- Department of Chemistry, Nankai University, Tianjin 300071, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China; State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China
| | - Jun-Ling Li
- Department of Chemistry, Nankai University, Tianjin 300071, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China; State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China
| | - Qian Sun
- Department of Chemistry, Nankai University, Tianjin 300071, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China; State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China
| | - Lin Jiang
- Department of Chemistry, Nankai University, Tianjin 300071, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China; State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China
| | - Wen Gu
- Department of Chemistry, Nankai University, Tianjin 300071, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China; State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China
| | - Xin Liu
- Department of Chemistry, Nankai University, Tianjin 300071, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China; State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China.
| | - Jin-Lei Tian
- Department of Chemistry, Nankai University, Tianjin 300071, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China; State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China.
| | - Shi-Ping Yan
- Department of Chemistry, Nankai University, Tianjin 300071, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China; State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
214
|
Strande NT, Carvajal-Garcia J, Hallett RA, Waters CA, Roberts SA, Strom C, Kuhlman B, Ramsden DA. Requirements for 5'dRP/AP lyase activity in Ku. Nucleic Acids Res 2014; 42:11136-43. [PMID: 25200085 PMCID: PMC4176175 DOI: 10.1093/nar/gku796] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The non-homologous end joining (NHEJ) pathway is used in diverse species to repair chromosome breaks, and is defined in part by a requirement for Ku. We previously demonstrated mammalian Ku has intrinsic 5′ deoxyribosephosphate (5′dRP) and apurinic/apyrimidinic (AP) lyase activity, and showed this activity is important for excising abasic site damage from ends. Here we employ systematic mutagenesis to clarify the protein requirements for this activity. We identify lysine 31 in the 70 kD subunit (Ku70 K31) as the primary candidate nucleophile required for catalysis, but additional mutation of Ku70 K160 and six other lysines within Ku80 were required to eliminate all activity. Ku from Saccharomyces cerevisiae also possesses 5′dRP/AP lyase activity, and robust activity was also reliant on lysines in Ku70 analogous to K31 and K160. By comparison, these lysines are not conserved in Xenopus laevis Ku, and Ku from this species has negligible activity. A role for residues flanking Ku70 K31 in expanding the range of abasic site contexts that can be used as substrate was also identified. Our results suggest an active site well located to provide the substrate specificity required for its biological role.
Collapse
Affiliation(s)
- Natasha T Strande
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Juan Carvajal-Garcia
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Ryan A Hallett
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Crystal A Waters
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven A Roberts
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Christina Strom
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Brian Kuhlman
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27514, USA Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
215
|
Zhang P, Qiao Y, Wang C, Ma L, Su M. Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles. NANOSCALE 2014; 6:10095-9. [PMID: 25032891 PMCID: PMC4169007 DOI: 10.1039/c4nr01564a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A challenge of X-ray radiation therapy is that high dose X-ray under therapeutic conditions damages normal cells. This paper describes a nanoparticle-based method to enhance X-ray radiation therapy by delivering radio-sensitizing gold nanoparticles into cancer cells. The nanoparticles have been modified with cationic polyelectrolytes to allow internalization. Upon X-ray irradiation of nanoparticles, more photoelectrons and Auger electrons are generated to cause water ionization, leading to formation of free radicals that damage DNA of cancer cells. The X-ray dose required for DNA damage and cell killing is reduced by delivering gold nanoparticles inside cancer cells.
Collapse
Affiliation(s)
| | | | | | - Liyuan Ma
- Corresponding Author: For nanoparticle enhanced radiation: . For HaloChip assay:
| | - Ming Su
- Corresponding Author: For nanoparticle enhanced radiation: . For HaloChip assay:
| |
Collapse
|
216
|
Li MJ, Lan TY, Cao XH, Yang HH, Shi Y, Yi C, Chen GN. Synthesis, characterization, DNA binding, cleavage activity and cytotoxicity of copper(II) complexes. Dalton Trans 2014; 43:2789-98. [PMID: 24336842 DOI: 10.1039/c3dt52978a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Three new mononuclear copper(II) complexes, [Cu(L2)](2+) (1), [Cu(acac)(L)](+) (2), and [Cu(acac-Cl)(L)](+) (3) (L = 2-(4-pyridine)oxazo[4,5-f]1,10-phenanthroline (4-PDOP); acac = acetylacetone; acac-Cl = 3-chloroacetylacetone), have been synthesized and characterized by elemental analysis, high resolution mass spectrometry (Q-TOF), and IR spectroscopy. Two of the complexes were structurally characterized by single-crystal X-ray diffraction techniques. Their interactions with DNA were studied by UV-vis absorption and emission spectra, viscosity, thermal melting, DNA unwinding assay and CD spectroscopy. The nucleolytic cleavage activity of the compounds was carried out on double stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment in the presence and absence of an oxidant (H2O2). Active oxygen intermediates such as hydroxyl radicals and hydrogen peroxide generated in the presence of L and complexes 1-3 may act as active species for the DNA scission. The cytotoxicity of the complexes against HepG2 cancer cells was also studied.
Collapse
Affiliation(s)
- Mei-Jin Li
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
217
|
Beerman TA, Gawron LS, Shen B, Kennedy DR. The radiomimetic enediyne, 20'-deschloro-C-1027 induces inter-strand DNA crosslinks in hypoxic cells and overcomes cytotoxic radioresistance. DNA Repair (Amst) 2014; 21:165-70. [PMID: 24986640 PMCID: PMC4126566 DOI: 10.1016/j.dnarep.2014.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022]
Abstract
The ability of the radiomimetic anti-tumor enediyne C-1027 to induce DNA inter-strand crosslinks (ICLs), in addition to the expected DNA strand breaks, is unique among traditional DNA targeted cancer therapies. Importantly, radiation therapy and most radiomimetic drugs have diminished effect in hypoxic environments due to decreased induction of DNA strand breaks, which is an oxygen requiring process. However, C-1027's induction of ICLs is enhanced under hypoxia and it is actually more potent against hypoxic cells, overcoming this common tumor resistance mechanism. In this study, an analog of C-1027, 20'-deschloro-C-1027 was examined for its ability to induce DNA ICLs under hypoxic conditions. Deschloro-induced ICLs were detected under hypoxic cell-free conditions, with a concomitant reduction in the induction of DNA strand breaks. In cells deschloro behaved similarly, inducing cellular ICLs under hypoxic conditions with a reduction in DNA breaks. The cytotoxicity of deschloro treatment was similar in normoxic and hypoxic cells, suggesting that the ICL induction allows deschloro to retain its cytotoxic activity under hypoxia. It appears that rational engineering of the C-1027 family of radiomimetics holds promise toward overcoming the radioresistance associated with the hypoxic environment associated with solid tumors.
Collapse
Affiliation(s)
- Terry A Beerman
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Loretta S Gawron
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, United States; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, United States; Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, FL, United States
| | - Daniel R Kennedy
- Department of Pharmaceutical Sciences, Western New England University, Springfield, MA, United States.
| |
Collapse
|
218
|
Golon Ł, Chomicz L, Rak J. Electron-induced single strand break in the nucleotide of 5- and 6-bromouridine. A DFT study. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
219
|
Misra SK, Kus J, Kim S, Pan D. Nanoscopic poly-DNA-cleaver for breast cancer regression with induced oxidative damage. Mol Pharm 2014; 11:4218-27. [PMID: 25140389 DOI: 10.1021/mp500444c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel strategy for efficient "nanodelivery" of DNA-cleaving molecules for breast cancer regression is presented here. The synthetic methodology can be tweaked for controlled delivery and better bioavailability of effective doses of these DNA-cleaving agents through a defined self-assembled polymeric nanoarchitecture. In vitro studies in ER+ and ER- breast cancer human cell lines confirmed an efficient "nano"-delivery of DNA-cleaving molecules and indicated their capability to mediate oxidative damage to nucleobases and/or to the 2-deoxyribose moiety. Prepared E-poly-DNA-cleaver and C-poly-DNA-cleaver were found to be interacting with plasmid DNA pBR322 (pDNA) and active to cause oxidative cleavage of pDNA in the presence of ascorbic acid and H2O2. They were found to be significantly active as DNA cleaving agents in vitro and showed highly improved cancer regression in MCF-7 and MD-MB231 cancer cells compared to small molecule DNA cleaver. Surface conjugated nanoparticles were found to be more effective than noncovalent encapsulation and the small molecule agent, whereas in all the cases RCM was significantly inactive toward DNA cleavage. Blood contact complement activation properties were evaluated to gauge their likelihood to promote acute toxicity following systemic administration. The complement activation analyses together with the blood smear study confirm the feasibility of using these poly-DNA-cleavers without risk of induced immune response.
Collapse
Affiliation(s)
- Santosh K Misra
- Department of Bioengineering and ‡Beckman Institute of Advanced Science and Technology, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
220
|
|
221
|
Achrainer F, Emel'yanenko VN, Tantawy W, Verevkin SP, Zipse H. Transfer hydrogenation as a redox process in nucleotides. J Phys Chem B 2014; 118:10426-9. [PMID: 25111787 DOI: 10.1021/jp507855k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a combined theoretical and experimental strategy, the heats of hydrogenation of the nucleotide bases uracil, thymine, cytosine, adenine, and guanine have been determined. The most easily hydrogenated base is uracil, followed by thymine and cytosine. Comparison of these hydrogenation enthalpies with those of ketones and aldehydes derived from sugar models indicates the possibility of near-thermoneutral hydrogen transfer between uracil and the sugar phosphate backbone in oligonucleotides.
Collapse
Affiliation(s)
- Florian Achrainer
- Department of Chemistry, LMU München , Butenandtstrasse 5-13, D-81377 München, Germany
| | | | | | | | | |
Collapse
|
222
|
Muniyandi V, Pravin N, Raman N. Impact of metallonucleases on DNA interactions: Structural validation and in-vitro antibiogram assay. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
223
|
Lu J, Sun Q, Li JL, Jiang L, Gu W, Liu X, Tian JL, Yan SP. Two water-soluble copper(II) complexes: Synthesis, characterization, DNA cleavage, protein binding activities and in vitro anticancer activity studies. J Inorg Biochem 2014; 137:46-56. [DOI: 10.1016/j.jinorgbio.2014.03.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/30/2022]
|
224
|
Osipov AN, Smetanina NM, Pustovalova MV, Arkhangelskaya E, Klokov D. The formation of DNA single-strand breaks and alkali-labile sites in human blood lymphocytes exposed to 365-nm UVA radiation. Free Radic Biol Med 2014; 73:34-40. [PMID: 24816295 DOI: 10.1016/j.freeradbiomed.2014.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
The potency of UVA radiation, representing 90% of solar UV light reaching the earth's surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1J/cm(2) was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5M Na(+), implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures.
Collapse
Affiliation(s)
- Andreyan N Osipov
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nadezhda M Smetanina
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia
| | - Margarita V Pustovalova
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia
| | - Ekaterina Arkhangelskaya
- Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow 123182, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry Klokov
- Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, ON K0J1P0, Canada.
| |
Collapse
|
225
|
Wang M, Zhang H, Zhang W, Zhao Y, Yasmeen A, Zhou L, Yu X, Tang Z. In vitro selection of DNA-cleaving deoxyribozyme with site-specific thymidine excision activity. Nucleic Acids Res 2014; 42:9262-9. [PMID: 25030901 PMCID: PMC4132718 DOI: 10.1093/nar/gku592] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Single-nucleotide polymorphisms, either inherited or due to spontaneous DNA damage, are associated with numerous diseases. Developing tools for site-specific nucleotide modification may one day provide a way to alter disease polymorphisms. Here, we describe the in vitro selection and characterization of a new deoxyribozyme called F-8, which catalyzes nucleotide excision specifically at thymidine. Cleavage by F-8 generates 3'- and 5'-phosphate ends recognized by DNA modifying enzymes, which repair the targeted deoxyribonucleotide while maintaining the integrity of the rest of the sequence. These results illustrate the potential of DNAzymes as tools for DNA manipulation.
Collapse
Affiliation(s)
- Mingqi Wang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China Department of Chemistry, Key Laboratory of Green Chemistry and Technology (Ministry of Education), Sichuan University, Chengdu 610064, P.R. China
| | - Huafan Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Wei Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Yongyun Zhao
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Afshan Yasmeen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Li Zhou
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Xiaoqi Yu
- Department of Chemistry, Key Laboratory of Green Chemistry and Technology (Ministry of Education), Sichuan University, Chengdu 610064, P.R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| |
Collapse
|
226
|
You Y, Nam W. Designing photoluminescent molecular probes for singlet oxygen, hydroxyl radical, and iron–oxygen species. Chem Sci 2014. [DOI: 10.1039/c4sc01637h] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
227
|
Nakamura J, Mutlu E, Sharma V, Collins L, Bodnar W, Yu R, Lai Y, Moeller B, Lu K, Swenberg J. The endogenous exposome. DNA Repair (Amst) 2014; 19:3-13. [PMID: 24767943 PMCID: PMC4097170 DOI: 10.1016/j.dnarep.2014.03.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The concept of the Exposome is a compilation of diseases and one's lifetime exposure to chemicals, whether the exposure comes from environmental, dietary, or occupational exposures; or endogenous chemicals that are formed from normal metabolism, inflammation, oxidative stress, lipid peroxidation, infections, and other natural metabolic processes such as alteration of the gut microbiome. In this review, we have focused on the endogenous exposome, the DNA damage that arises from the production of endogenous electrophilic molecules in our cells. It provides quantitative data on endogenous DNA damage and its relationship to mutagenesis, with emphasis on when exogenous chemical exposures that produce identical DNA adducts to those arising from normal metabolism cause significant increases in total identical DNA adducts. We have utilized stable isotope labeled chemical exposures of animals and cells, so that accurate relationships between endogenous and exogenous exposures can be determined. Advances in mass spectrometry have vastly increased both the sensitivity and accuracy of such studies. Furthermore, we have clear evidence of which sources of exposure drive low dose biology that results in mutations and disease. These data provide much needed information to impact quantitative risk assessments, in the hope of moving towards the use of science, rather than default assumptions.
Collapse
Affiliation(s)
- Jun Nakamura
- University of North Carolina, Chapel Hill, NC, United States
| | - Esra Mutlu
- University of North Carolina, Chapel Hill, NC, United States
| | - Vyom Sharma
- University of North Carolina, Chapel Hill, NC, United States
| | - Leonard Collins
- University of North Carolina, Chapel Hill, NC, United States
| | - Wanda Bodnar
- University of North Carolina, Chapel Hill, NC, United States
| | - Rui Yu
- University of North Carolina, Chapel Hill, NC, United States
| | - Yongquan Lai
- University of North Carolina, Chapel Hill, NC, United States
| | - Benjamin Moeller
- University of North Carolina, Chapel Hill, NC, United States; Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Kun Lu
- University of North Carolina, Chapel Hill, NC, United States
| | - James Swenberg
- University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
228
|
Sanyal R, Dash SK, Das S, Chattopadhyay S, Roy S, Das D. Catecholase activity, DNA cleavage and cytotoxicity of six Zn(II) complexes synthesized from designed Mannich ligands: higher reactivity of mononuclear over dinuclear. J Biol Inorg Chem 2014; 19:1099-111. [DOI: 10.1007/s00775-014-1148-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
|
229
|
Bradford SS, Ross MJ, Fidai I, Cowan JA. Insight into the recognition, binding, and reactivity of catalytic metallodrugs targeting stem loop IIb of hepatitis C IRES RNA. ChemMedChem 2014; 9:1275-85. [PMID: 24756921 PMCID: PMC4163017 DOI: 10.1002/cmdc.201400070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 01/20/2023]
Abstract
The complex Cu-GGHYrFK-amide (1-Cu) was previously reported as a novel metallotherapeutic that catalytically inactivates stem loop IIb (SLIIb) of the hepatitis C virus (HCV) internal ribosomal entry site (IRES) RNA and demonstrates significant antiviral activity in a cellular HCV replicon assay. Herein we describe additional studies focused on understanding the cleavage mechanism as well as the relationship of catalyst configuration to structural recognition and site-selective cleavage of the structured RNA motif. These are advanced by use of a combination of MALDI-TOF mass spectrometry, melting temperature determinations, and computational analysis to develop a structural model for binding and reactivity toward SLIIb of the IRES RNA. In addition, the binding, reactivity, and structural chemistry of the all-D-amino acid form of this metallopeptide, complex 2-Cu, are reported and compared with those of complex 1-Cu. In vitro RNA binding and cleavage assays for complex 2-Cu show a KD value of 76 ± 3 nM, and Michaelis-Menten parameters of kcat =0.14 ± 0.01 min(-1) and KM =7.9 ± 1.2 μM, with a turnover number exceeding 40. In a luciferase-based cellular replicon assay Cu-GGhyrfk-amide shows activity similar to that of the 1-Cu parent peptide, with an IC50 value of 1.9 ± 0.4 μM and cytotoxicity exceeding 100 μM. RT-PCR experiments confirm a significant decrease in HCV RNA levels in replicon assays for up to nine days when treated with complex 1-Cu in three-day dosing increments. This study shows the influence that the α-carbon stereocenter has for this new class of compounds, while detailed mass spectrometry and computational analyses provide new insight into the mechanisms of recognition, binding, and reactivity.
Collapse
Affiliation(s)
- Seth S. Bradford
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Martin James Ross
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Insiya Fidai
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - J. A. Cowan
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
- MetalloPharm LLC, 1790 Riverstone Drive, Delaware, OH 43015
| |
Collapse
|
230
|
Massoud SS, Perkins RS, Louka FR, Xu W, Le Roux A, Dutercq Q, Fischer RC, Mautner FA, Handa M, Hiraoka Y, Kreft GL, Bortolotto T, Terenzi H. Efficient hydrolytic cleavage of plasmid DNA by chloro-cobalt(II) complexes based on sterically hindered pyridyl tripod tetraamine ligands: synthesis, crystal structure and DNA cleavage. Dalton Trans 2014; 43:10086-103. [PMID: 24872210 DOI: 10.1039/c4dt00615a] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four new cobalt(ii) complexes [Co(6-MeTPA)Cl]ClO4/PF6 (2/2a), [Co(6-Me2TPA)Cl]ClO4/PF6 (3/3a), [Co(BPQA)Cl]ClO4/PF6 (4/4a) and [Co(BQPA)Cl]ClO4/PF6 (5/5a) as well as [Co(TPA)Cl]ClO4 (1) where TPA = tris(2-pyridylmethyl)amine, 6-MeTPA = ((6-methyl-2-pyridyl)methyl)bis(2-pyridylmethyl)amine, 6-Me2TPA = bis(6-methyl-2-pyridyl)methyl)-(2-pyridylmethyl)amine, BPQA = bis(2-pyridylmethyl)-(2-quinolylmethyl)-amine and BQPA = bis(2-quinolylmethyl)-(2-pyridylmethyl)amine were synthesized and structurally characterized. Single crystal X-ray crystallography confirmed the distorted trigonal bipyramidal geometries of complexes 2a-5a. Spectrophotometric titrations and conductivity measurements of the complexes in the CH3CN-H2O mixture showed that the chloro complexes exist in equilibrium with the corresponding hydrolyzed aqua species, [Co(L)(H2O)](2+). The pKa values of the coordinated H2O in aqua complexes vary from 8.4 to 8.7 (37 °C). The interactions of the complexes (1-5) with DNA have been investigated at pH = 7.0 and 9.0 (10 mM Tris-HCl buffer) and 37 °C where very high catalytic cleavage was observed. Under pseudo Michaelis-Menten kinetic conditions, the catalytic rate constants, kcat, decrease in the order 4>2>5>1>3. At pH 7.0 (10 mM Tris-HCl buffer) and 37 °C, the kcat value for complex 4 (6.02 h(-1)), where [Co(BPQA)(H2O)](2+) is the major species, corresponds to 170 million rate enhancement over the non-catalyzed DNA. Electrophoretic experiments conducted in the presence and absence of radical scavengers (DMSO, KI, NaN3) ruled out the oxidative mechanistic pathway of the reaction and suggested that the hydrolytic mechanism is the preferred one. This finding was in agreement with the observed increase in the kcat values at pH 9.0 compared to the corresponding values at pH 7.0 as a result of the increased concentration of the reactive hydroxo species, [Co(L)(OH)](+). The reactivity of the synthesized complexes in catalyzing the DNA cleavage is discussed in relation to the steric effect imposed by the coordinated pyridyl ligand around the central cobalt(ii) center.
Collapse
Affiliation(s)
- Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370 Lafayette, LA 70504, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Wu H, Zhang Y, Wang H, Bai Y, Shi F, Wang X, Yang Z. Manganese(II) and silver(Ι) complexes based on the V-shaped ligand, bis(2-benzimidazolylmethyl)amine: synthesis, crystal structures, DNA-binding properties, and antioxidant activities. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.917632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Huilu Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Yanhui Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Hua Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Yuchen Bai
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Furong Shi
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Xiaoli Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Zaihui Yang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| |
Collapse
|
232
|
Cadet J, Wagner JR. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: similarities and differences. Arch Biochem Biophys 2014; 557:47-54. [PMID: 24820329 DOI: 10.1016/j.abb.2014.05.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 01/05/2023]
Abstract
Hydroxyl radical (OH) and one-electron oxidants that may be endogenously formed through oxidative metabolism, phagocytosis, inflammation and pathological conditions constitute the main sources of oxidatively generated damage to cellular DNA. It is worth mentioning that exposure of cells to exogenous physical agents (UV light, high intensity UV laser, ionizing radiation) and chemicals may also induce oxidatively generated damage to DNA. Emphasis is placed in this short review article on the mechanistic aspects of OH and one-electron oxidant-mediated formation of single and more complex damage (tandem lesions, intra- and interstrand cross-links, DNA-protein cross-links) in cellular DNA arising from one radical hit. This concerns DNA modifications that have been accurately measured using suitable analytical methods such as high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Evidence is provided that OH and one-electron oxidants after generating neutral radicals and base radical cations respectively may partly induce common degradation pathways. In addition, selective oxidative reactions giving rise to specific degradation products of OH and one-electron oxidation reactions that can be used as representative biomarkers of these oxidants have been identified.
Collapse
Affiliation(s)
- Jean Cadet
- Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France; Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
233
|
Erdogan DA, Özalp-Yaman Ş. Novel Pt(II) complexes containing pyrrole oxime; synthesis, characterization and DNA binding studies. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
234
|
Raman N, Sakthivel A, Raja JD, Rajasekaran K. Designing, Structural Elucidation and Comparison of the Cleavage Ability of Metal Complexes Containing Tetradentate Schiff Bases 1. RUSS J INORG CHEM+ 2014. [DOI: 10.1134/s0036023608020113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
235
|
Muftuoglu M, Mori MP, de Souza-Pinto NC. Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion 2014; 17:164-81. [PMID: 24704805 DOI: 10.1016/j.mito.2014.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022]
Abstract
The mitochondrial DNA (mtDNA) encodes for only 13 polypeptides, components of 4 of the 5 oxidative phosphorylation complexes. But despite this apparently small numeric contribution, all 13 subunits are essential for the proper functioning of the oxidative phosphorylation circuit. Thus, accumulation of lesions, mutations and deletions/insertions in the mtDNA could have severe functional consequences, including mitochondrial diseases, aging and age-related diseases. The DNA is a chemically unstable molecule, which can be easily oxidized, alkylated, deaminated and suffer other types of chemical modifications, throughout evolution the organisms that survived were those who developed efficient DNA repair processes. In the last two decades, it has become clear that mitochondria have DNA repair pathways, which operate, at least for some types of lesions, as efficiently as the nuclear DNA repair pathways. The mtDNA is localized in a particularly oxidizing environment, making it prone to accumulate oxidatively generated DNA modifications (ODMs). In this article, we: i) review the major types of ODMs formed in mtDNA and the known repair pathways that remove them; ii) discuss the possible involvement of other repair pathways, just recently characterized in mitochondria, in the repair of these modifications; and iii) address the role of DNA repair in mitochondrial function and a possible cross-talk with other pathways that may potentially participate in mitochondrial genomic stability, such as mitochondrial dynamics and nuclear-mitochondrial signaling. Oxidative stress and ODMs have been increasingly implicated in disease and aging, and thus we discuss how variations in DNA repair efficiency may contribute to the etiology of such conditions or even modulate their clinical outcomes.
Collapse
Affiliation(s)
- Meltem Muftuoglu
- Department of Molecular Biology and Genetics, Acibadem University, Atasehir, 34752 Istanbul, Turkey
| | - Mateus P Mori
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000 Brazil
| | - Nadja C de Souza-Pinto
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000 Brazil.
| |
Collapse
|
236
|
Dizdaroglu M. Clemens von Sonntag and the early history of radiation-induced sugar damage in DNA. Int J Radiat Biol 2014; 90:446-58. [DOI: 10.3109/09553002.2014.894652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
237
|
Kim HJ, Sung G, Kim G, Park J, Jin B, Kim SK. Effect of various intercalators on the fenton-type oxidative cleavage of double-stranded DNA. Chem Asian J 2014; 9:1341-8. [PMID: 24665066 DOI: 10.1002/asia.201400099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Indexed: 11/10/2022]
Abstract
The intensity of the linear dichroism (LD) in the absorption region of DNA (about 260 nm) decreased with time in the presence of [Fe(EDTA)](2+) (EDTA = ethylenediaminetetraacetic acid), H2O2, and ascorbate. The decrease in the LD signal indicated either an increase in flexibility, a shortening of the DNA stem, or both, owing to oxidative cleavage, and was best described by the difference between the two single-exponential-decay curves, thereby suggesting the involvement of two sequential first-order reactions. The fast reaction was assigned to cleavage of one of two DNA strands, which increased the flexibility of the DNA. The slow reaction corresponded to cleavage at or near the first cleavage site, thereby shortening the DNA stem. The presence of an intercalator, including ethidium, propidium, 9-aminoacridine, and proflavine, inhibited the first step of the cleavage reaction. One of the possible reasons for the observed inhibition might be a change in the DNA conformation near the intercalation site. Intercalation caused an unwinding and elongation of the DNA and resulted in changes in the location of the H atoms of the sugar moiety, which is known to be the main site at which hydroxyl radicals react.
Collapse
Affiliation(s)
- Hyeon Jeong Kim
- Department of Chemistry, Yeungnam University, Dae-dong, Gyeongsan City, Gyeong-buk, 712-749 (Republic of Korea), Fax: (+82) 53-815-5412
| | | | | | | | | | | |
Collapse
|
238
|
Hussein MA, Guan TS, Haque RA, Ahamed MBK, Majid AMA. Structures, DNA binding, DNA cleavage, and antitumor investigations of a series of molybdenum(VI) complexes with some N(4) methyl and ethyl thiosemicarbazone ligands. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.893430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Teoh S. Guan
- School of Chemical Science, Universiti Sains Malaysia, Minden, Malaysia
| | - Rosenani A. Haque
- School of Chemical Science, Universiti Sains Malaysia, Minden, Malaysia
| | - Mohamed B. Khadeer Ahamed
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Amin M.S. Abdul Majid
- EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| |
Collapse
|
239
|
Wu H, Wang X, Zhang Y, Shi F, Bai Y, Wang H, Pan G. Synthesis, structure, and DNA-binding properties of manganese(II) and nickel(II) complexes with tris(N-ethylbenzimidazol-2-ylmethyl)amine ligand. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.895823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Huilu Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Xiaoli Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Yanhui Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Furong Shi
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Yuchen Bai
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Hua Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| | - Guolong Pan
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, PR China
| |
Collapse
|
240
|
Kropachev K, Ding S, Terzidis MA, Masi A, Liu Z, Cai Y, Kolbanovskiy M, Chatgilialoglu C, Broyde S, Geacintov NE, Shafirovich V. Structural basis for the recognition of diastereomeric 5',8-cyclo-2'-deoxypurine lesions by the human nucleotide excision repair system. Nucleic Acids Res 2014; 42:5020-32. [PMID: 24615810 PMCID: PMC4041128 DOI: 10.1093/nar/gku162] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The hydroxyl radical is a powerful oxidant that generates DNA lesions including the
stereoisomeric R and S
5′,8-cyclo-2′-deoxyadenosine (cdA) and
5′,8-cyclo-2′-deoxyguanosine (cdG) pairs that have been detected in cellular
DNA. Unlike some other oxidatively generated DNA lesions, cdG and cdA are repaired by the
human nucleotide excision repair (NER) apparatus. The relative NER efficiencies of all
four cyclopurines were measured and compared in identical human HeLa cell extracts for the
first time under identical conditions, using identical sequence contexts. The cdA and cdG
lesions were excised with similar efficiencies, but the efficiencies for both
5′R cyclopurines were greater by a factor of ∼2 than for the
5′S lesions. Molecular modeling and dynamics simulations have
revealed structural and energetic origins of this difference in NER-incision efficiencies.
These lesions cause greater DNA backbone distortions and dynamics relative to unmodified
DNA in 5′R than in 5′S stereoisomers,
producing greater impairment in van der Waals stacking interaction energies in the
5′R cases. The locally impaired stacking interaction energies
correlate with relative NER incision efficiencies, and explain these results on a
structural basis in terms of differences in dynamic perturbations of the DNA backbone
imposed by the R and S covalent 5′,8 bonds.
Collapse
Affiliation(s)
- Konstantin Kropachev
- Department of Chemistry New York University, 100 Washington Square East, New York, NY 10003, USA, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA and Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Ghosh K, Tyagi N, Kumar P, Singh UP. Synthesis, structure, redox properties and DNA interaction studies on mononuclear iron(III) complexes with amidate ligand. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
242
|
Amato NJ, Wang Y. Epimeric 2-deoxyribose lesions: Products from the improper chemical repair of 2-deoxyribose radicals. Chem Res Toxicol 2014; 27:470-9. [PMID: 24517165 PMCID: PMC4002128 DOI: 10.1021/tx400430g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Genomic
integrity is constantly challenged by DNA damaging agents
such as reactive oxygen species (ROS). Consequently, DNA damage can
compromise the fidelity and efficiency of essential DNA metabolic
processes, including replication and transcription, which may contribute
significantly to the etiology of many human diseases. Here, we review
one family of DNA lesions, the epimeric 2-deoxyribose lesions, which
arise from the improper chemical repair of the 2-deoxyribose radicals.
Unlike most other DNA lesions, the epimeric 2-deoxyribose lesions
are indistinguishable from their corresponding unmodified nucleosides
in both molecular mass and chemical reactivity. We placed our emphasis
of discussion on the formation of these lesions, their impact on the
structure and stability of duplex DNA, their biological consequences,
their potential therapeutic relevance, and future research directions
about these modified nucleosides.
Collapse
Affiliation(s)
- Nicholas J Amato
- Department of Chemistry, University of California , 900 University Avenue, Riverside, California 92521, United States
| | | |
Collapse
|
243
|
Comparison of nuclease activities of redox active and inactive binuclear mixed-polypyridyl complexes: zinc(II)/H2O2 and cadmium(II)/H2O2 systems display efficient nuclease activities. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-014-9803-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
244
|
Tabassum S, Yadav S, Ahmad I. Heterobimetallic o-vanillin functionalized complexes: In vitro DNA binding validation, cleavage activity and molecular docking studies of CuII–Sn2IV analogs. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
245
|
DNA cleavage induced by [Cu(L)x(NO3)2] (L=2,2′-dipyridylamine, 2,2′-bipyridine, dipicolylamine, x=1 or 2): Effect of the ligand structure. J Inorg Biochem 2014; 131:79-86. [DOI: 10.1016/j.jinorgbio.2013.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/25/2013] [Accepted: 10/28/2013] [Indexed: 02/08/2023]
|
246
|
Sudhamani CN, Bhojya Naik HS, Girija D, Sangeetha Gowda KR, Giridhar M, Arvinda T. Novel complexes of Co(III) and Ni(II) containing peptide ligands: synthesis, DNA binding and photonuclease activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:271-278. [PMID: 24055675 DOI: 10.1016/j.saa.2013.08.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/10/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
The new cobalt(III) and nickel(II) complexes of the type [M(L)2(H2O)2](n)(+) (where M = Co(III) or Ni(II) ion, n = 3 for Co and 2 for Ni, L = peptides Fmoc. Ala-val-OH (F-AVOH), Fmoc-Phe-Leu-Ome (F-PLOMe) and Z-Ala-Phe-CONH2 (Z-APCONH2)) were synthesized and structurally characterized by FTIR, (1)H NMR, elemental analysis and electronic spectral data. An octahedral geometry has been proposed for all the synthesized Co(III) and Ni(II) metal complexes. The binding property of the complexes with CT-DNA was studied by absorption spectral analysis, followed by viscosity measurement and thermal denaturation studies. Detailed analysis revealed that the metal complexes intercalates into the DNA base stack as intercalator. The photo induced cleavage studies shows that the complexes possess photonuclease property against pUC19 DNA under UV-Visible irradiation.
Collapse
Affiliation(s)
- C N Sudhamani
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta 577 451, India
| | | | | | | | | | | |
Collapse
|
247
|
Roginskaya M, Mohseni R, Moore TJ, Bernhard WA, Razskazovskiy Y. Identification of the C4′-Oxidized Abasic Site as the Most Abundant 2-Deoxyribose Lesion in Radiation-Damaged DNA Using a Novel HPLC-Based Approach. Radiat Res 2014; 181:131-7. [DOI: 10.1667/rr12993.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Marina Roginskaya
- Department of Chemistry, East Tennessee State University, Johnson City, Tennessee
| | - Reza Mohseni
- Department of Chemistry, East Tennessee State University, Johnson City, Tennessee
| | - Terence J. Moore
- Department of Chemistry, East Tennessee State University, Johnson City, Tennessee
| | - William A. Bernhard
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York
| | - Yuriy Razskazovskiy
- Department of Physics and Astronomy, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
248
|
Liu L, Zhang GM, Zhu RG, Liu YH, Yao HM, Han ZB. Dinuclear Cd(ii), Mn(ii) and Cu(ii) complexes derived from (anthraquinone-1-diyl) benzoate: DNA binding and cleavage studies. RSC Adv 2014. [DOI: 10.1039/c4ra07997c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three dinuclear Cd(ii), Mn(ii) and Cu(ii) complexes have been successfully synthesized under solvothermal conditions. Among them, only the Cu(ii) complex has the activity for DNA cleavage.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry
- Liaoning University
- Shenyang 110036, P. R. China
| | - Gong-Ming Zhang
- College of Chemistry
- Liaoning University
- Shenyang 110036, P. R. China
| | - Ru-Gang Zhu
- College of Light Industry
- Liaoning University
- Shenyang 110036, P. R. China
| | - Yong-Hui Liu
- College of Light Industry
- Liaoning University
- Shenyang 110036, P. R. China
| | - Hui-Meng Yao
- College of Chemistry
- Liaoning University
- Shenyang 110036, P. R. China
| | - Zheng-Bo Han
- College of Chemistry
- Liaoning University
- Shenyang 110036, P. R. China
| |
Collapse
|
249
|
Acharyya N, Chattopadhyay S, Maiti S. Chemoprevention against arsenic-induced mutagenic DNA breakage and apoptotic liver damage in rat via antioxidant and SOD1 upregulation by green tea (Camellia sinensis) which recovers broken DNA resulted from arsenic-H2O2 related in vitro oxidant stress. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2014; 32:338-361. [PMID: 25436473 DOI: 10.1080/10590501.2014.967061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Green tea (Camellia sinensis; CS) strongly reverses/prevents arsenic-induced apoptotic hepatic degeneration/micronecrosis and mutagenic DNA damage in in vitro oxidant stress model and in rat as shown by comet assay and histoarchitecture (HE and PAS staining) results. Earlier, we demonstrated a link between carcinogenesis and impaired antioxidant system-associated mutagenic DNA damage in arsenic-exposed human. In this study, arsenic-induced (0.6 ppm/100 g body weight/day for 28 days) impairment of cytosolic superoxide-dismutase (SOD1), catalase, xanthine-oxidase, thiol, and urate activities/levels led to increase in tissue levels of damaging malondialdehyde, conjugated dienes, serum necrotic-marker lactate-dehydrogenase, and metabolic inflammatory-marker c-reactive protein suggesting dysregulation at the transcriptional/signal-transduction level. These are decisively restrained by CS-extract (≥10 mg/ml aqueous) with a restoration of DNA/tissue structure. The structural/functional impairment of dialyzed and centrifugally concentrated (6-8 kd cutoff) hepatic SOD1 via its important Cys modifications by H2O2/arsenite redox-stress and that protection by CS/2-mercaptoethanol are shown in in vitro/in situ studies paralleling the present Swiss-Model-generated rSOD1 structural data. Here, arsenite(3+) incubation (≥10(-8) μM + 10 mM H2O2, 2 hr) is shown for the first time with this low-concentration to initiate breakage in rat hepatic-DNA in vitro whereas, arsenite/H2O2/UV-radiation does not affect DNA separately. Arsenic initiates Fe and Cu ion-associated free-radical reaction cascade in vivo. Here, 10 μM of Cu(2+)/Fe(3+)/As(3+) +H2O2-induced in vitro DNA fragmentation is prevented by CS (≥1 mg/ml), greater than the prevention of ascorbate or tocopherol or DMSO or their combination. Moreover, CS incubation for various time with differentially and already degraded DNA resulted from pre-incubation in 10 μM As(3+)-H2O2 system markedly recovers broken DNA. Present results decisively suggest for the first time that CS and its mixed polyphenols have potent SOD1 protecting, diverse radical-scavenging and antimutagenic activities furthering to DNA protection/therapy in arsenic-induced tissue necrosis/apoptosis.
Collapse
Affiliation(s)
- Nirmallya Acharyya
- a Post Graduate Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory , Oriental Institute of Science and Technology, Vidyasagar University , Midnapore , West Bengal , India
| | | | | |
Collapse
|
250
|
μ-Oxamido binuclear copper (II) complexes: Synthesis, crystal structure, DNA interaction and antibacterial studies. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|