201
|
Krench M, Cho RW, Littleton JT. A Drosophila model of Huntington disease-like 2 exhibits nuclear toxicity and distinct pathogenic mechanisms from Huntington disease. Hum Mol Genet 2016; 25:3164-3177. [PMID: 27288455 DOI: 10.1093/hmg/ddw166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/22/2016] [Accepted: 05/20/2016] [Indexed: 12/23/2022] Open
Abstract
Huntington disease-like 2 (HDL2) and Huntington disease (HD) are adult-onset neurodegenerative diseases characterized by movement disorders, psychiatric disturbances and cognitive decline. Brain tissue from HD and HDL2 patients shows degeneration of the striatum and ubiquitinated inclusions immunoreactive for polyglutamine (polyQ) antibodies. Despite these similarities, the diseases result from different genetic mutations. HD is caused by a CAG repeat expansion in the huntingtin (HTT) gene, while HDL2 results from an expansion at the junctophilin 3 (JPH3) locus. Recent evidence indicates that the HDL2 expansion may give rise to a toxic polyQ protein translated from an antisense mRNA derived from the JPH3 locus. To investigate this hypothesis, we generated and characterized a Drosophila HDL2 model and compared it with a previously established HD model. We find that neuronal expression of HDL2-Q15 is not toxic, while the expression of an expanded HDL2-Q138 protein is lethal. HDL2-Q138 forms large nuclear aggregates, with only smaller puncta observed in the cytoplasm. This is in contrast to what is observed in a Drosophila model of HD, where polyQ aggregates localize exclusively to the cytoplasm. Altering localization of HLD2 with the addition of a nuclear localization or nuclear export sequence demonstrates that nuclear accumulation is required for toxicity in the Drosophila HDL2 model. Directing HDL2-Q138 to the nucleus exacerbates toxicity in multiple tissue types, while confining HDL2-Q138 to the cytoplasm restores viability to control levels. We conclude that while HD and HDL2 have similar clinical profiles, distinct pathogenic mechanisms are likely to drive toxicity in Drosophila models of these disorders.
Collapse
Affiliation(s)
- Megan Krench
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences
| | - Richard W Cho
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
202
|
Butchbach MER, Lumpkin CJ, Harris AW, Saieva L, Edwards JD, Workman E, Simard LR, Pellizzoni L, Burghes AHM. Protective effects of butyrate-based compounds on a mouse model for spinal muscular atrophy. Exp Neurol 2016; 279:13-26. [PMID: 26892876 PMCID: PMC4834225 DOI: 10.1016/j.expneurol.2016.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 11/17/2022]
Abstract
Proximal spinal muscular atrophy (SMA) is a childhood-onset degenerative disease resulting from the selective loss of motor neurons in the spinal cord. SMA is caused by the loss of SMN1 (survival motor neuron 1) but retention of SMN2. The number of copies of SMN2 modifies disease severity in SMA patients as well as in mouse models, making SMN2 a target for therapeutics development. Sodium butyrate (BA) and its analog (4PBA) have been shown to increase SMN2 expression in SMA cultured cells. In this study, we examined the effects of BA, 4PBA as well as two BA prodrugs-glyceryl tributyrate (BA3G) and VX563-on the phenotype of SMNΔ7 SMA mice. Treatment with 4PBA, BA3G and VX563 but not BA beginning at PND04 significantly improved the lifespan and delayed disease end stage, with administration of VX563 also improving the growth rate of these mice. 4PBA and VX563 improved the motor phenotype of SMNΔ7 SMA mice and prevented spinal motor neuron loss. Interestingly, neither 4PBA nor VX563 had an effect on SMN expression in the spinal cords of treated SMNΔ7 SMA mice; however, they inhibited histone deacetylase (HDAC) activity and restored the normal phosphorylation states of Akt and glycogen synthase kinase 3β, both of which are altered by SMN deficiency in vivo. These observations show that BA-based compounds with favorable pharmacokinetics ameliorate SMA pathology possibly by modulating HDAC and Akt signaling.
Collapse
Affiliation(s)
- Matthew E R Butchbach
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| | - Casey J Lumpkin
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Luciano Saieva
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jonathan D Edwards
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eileen Workman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Louise R Simard
- Department of Biochemistry and Medical Genetics, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
203
|
Specific promoter deacetylation of histone H3 is conserved across mouse models of Huntington's disease in the absence of bulk changes. Neurobiol Dis 2016; 89:190-201. [DOI: 10.1016/j.nbd.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/05/2015] [Accepted: 02/02/2016] [Indexed: 12/12/2022] Open
|
204
|
Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites. Proc Natl Acad Sci U S A 2016; 113:5435-40. [PMID: 27114543 DOI: 10.1073/pnas.1604453113] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.
Collapse
|
205
|
Kassis H, Shehadah A, Li C, Zhang Y, Cui Y, Roberts C, Sadry N, Liu X, Chopp M, Zhang ZG. Class IIa histone deacetylases affect neuronal remodeling and functional outcome after stroke. Neurochem Int 2016; 96:24-31. [PMID: 27103167 DOI: 10.1016/j.neuint.2016.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/11/2016] [Accepted: 04/16/2016] [Indexed: 01/09/2023]
Abstract
We have previously demonstrated that stroke induces nuclear shuttling of class IIa histone deacetylase 4 (HDAC4). Stroke-induced nuclear shuttling of HDAC4 is positively and significantly correlated with improved indices of neuronal remodeling in the peri-infarct cortex. In this study, using a rat model for middle cerebral artery occlusion (MCAO), we tested the effects of selective inhibition of class IIa HDACs on functional recovery and neuronal remodeling when administered 24hr after stroke. Adult male Wistar rats (n = 15-17/group) were subjected to 2 h MCAO and orally gavaged with MC1568 (a selective class IIa HDAC inhibitor), SAHA (a non-selective HDAC inhibitor), or vehicle-control for 7 days starting 24 h after MCAO. A battery of behavioral tests was performed. Lesion volume measurement and immunohistochemistry were performed 28 days after MCAO. We found that stroke increased total HDAC activity in the ipsilateral hemisphere compared to the contralateral hemisphere. Stroke-increased HDAC activity was significantly decreased by the administration of SAHA as well as by MC1568. However, SAHA significantly improved functional outcome compared to vehicle control, whereas selective class IIa inhibition with MC1568 increased mortality and lesion volume and did not improve functional outcome. In addition, MC1568 decreased microtubule associated protein 2 (MAP2, dendrites), phosphorylated neurofilament heavy chain (pNFH, axons) and myelin basic protein (MBP, myelination) immunoreactivity in the peri-infarct cortex. Quantitative RT-PCR of cortical neurons isolated by laser capture microdissection revealed that MC1568, but not SAHA, downregulated CREB and c-fos expression. Additionally, MC1568 decreased the expression of phosphorylated CREB (active) in neurons. Taken together, these findings demonstrate that selective inhibition of class IIa HDACs impairs neuronal remodeling and neurological outcome. Inactivation of CREB and c-fos by MC1568 likely contributes to this detrimental effect.
Collapse
Affiliation(s)
- Haifa Kassis
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Amjad Shehadah
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Chao Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Yisheng Cui
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Cynthia Roberts
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Neema Sadry
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Xianshuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
206
|
Lei LF, Yang GP, Wang JL, Chuang DM, Song WH, Tang BS, Jiang H. Safety and efficacy of valproic acid treatment in SCA3/MJD patients. Parkinsonism Relat Disord 2016; 26:55-61. [PMID: 26997655 DOI: 10.1016/j.parkreldis.2016.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is one of 10 known polyglutamine (polyQ) diseases. In Drosophila and rat models of polyQ diseases, histone deacetylation (HDAC) inhibitors improved locomotor function and survival time by increasing histone acetylation levels and modulating gene expression. Valproic acid (VPA) is a pan-HDAC inhibitor used clinically to treat bipolar and seizure disorders. We evaluated the clinical safety and efficacy of VPA treatment for SCA3/MJD patients. METHODS First, a randomized, open-label, dose-escalation method was used to evaluate tolerance to single-dose VPA administration in 12 SCA3/MJD patients. Patients were randomly assigned to three groups of four subjects, each with an oral dosage of 400 mg, 600 mg, or 800 mg (twice daily (bid) for one day). VPA was well-tolerated for one-dose by all patient groups. Second, a randomized, double-blind, placebo-controlled, dose-controlled study evaluated the safety and efficacy of multi-dose VPA (oral administration, twice daily (bid) for 12 weeks) in 36 SCA3/MJD patients. Patients received either low-dose VPA (800 mg/day), high-dose VPA (1200 mg/day), or placebo (n = 12 subjects per group). Symptoms were evaluated using the Scale for Assessment and Rating of Ataxia (SARA). RESULTS Multi-dose VPA treatment improved SARA measures of locomotor function. Major adverse effects included dizziness and loss of appetite. CONCLUSIONS VPA is a potentially beneficial agent for the treatment of SCA3/MJD. These results also provide insight into possible future therapeutics for polyQ diseases.
Collapse
Affiliation(s)
- Li-Fang Lei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China; Department of Neurology, Xiangya 3rd Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Guo-Ping Yang
- Clinical Pharmacology Center, Xiangya 3rd Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1363, USA
| | - Wei-Hong Song
- Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, People's Republic of China; State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, People's Republic of China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, People's Republic of China; State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, People's Republic of China.
| |
Collapse
|
207
|
Henry RA, Singh T, Kuo YM, Biester A, O'Keefe A, Lee S, Andrews AJ, O'Reilly AM. Quantitative Measurement of Histone Tail Acetylation Reveals Stage-Specific Regulation and Response to Environmental Changes during Drosophila Development. Biochemistry 2016; 55:1663-72. [PMID: 26836402 DOI: 10.1021/acs.biochem.5b01070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone modification plays a major role in regulating gene transcription and ensuring the healthy development of an organism. Numerous studies have suggested that histones are dynamically modified during developmental events to control gene expression levels in a temporal and spatial manner. However, the study of histone acetylation dynamics using currently available techniques is hindered by the difficulty of simultaneously measuring acetylation of the numerous potential sites of modification present in histones. Here, we present a methodology that allows us to combine mass spectrometry-based histone analysis with Drosophila developmental genetics. Using this system, we characterized histone acetylation patterns during multiple developmental stages of the fly. Additionally, we utilized this analysis to characterize how treatments with pharmacological agents or environmental changes such as γ-irradiation altered histone acetylation patterns. Strikingly, γ-irradiation dramatically increased the level of acetylation at H3K18, a site linked to DNA repair via nonhomologous end joining. In mutant fly strains deficient in DNA repair proteins, however, this increase in the level of H3K18 acetylation was lost. These results demonstrate the efficacy of our combined mass spectrometry system with a Drosophila model system and provide interesting insight into the changes in histone acetylation during development, as well as the effects of both pharmacological and environmental agents on global histone acetylation.
Collapse
Affiliation(s)
- Ryan A Henry
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Tanu Singh
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States.,Department of Biochemistry and Molecular Biology, Drexel College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Yin-Ming Kuo
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Alison Biester
- Immersion Science Program, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Abigail O'Keefe
- Immersion Science Program, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Sandy Lee
- Immersion Science Program, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Andrew J Andrews
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Alana M O'Reilly
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| |
Collapse
|
208
|
SIRT1 Activity Is Linked to Its Brain Region-Specific Phosphorylation and Is Impaired in Huntington's Disease Mice. PLoS One 2016; 11:e0145425. [PMID: 26815359 PMCID: PMC4731418 DOI: 10.1371/journal.pone.0145425] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder for which there are no disease-modifying treatments. SIRT1 is a NAD+-dependent protein deacetylase that is implicated in maintaining neuronal health during development, differentiation and ageing. Previous studies suggested that the modulation of SIRT1 activity is neuroprotective in HD mouse models, however, the mechanisms controlling SIRT1 activity are unknown. We have identified a striatum-specific phosphorylation-dependent regulatory mechanism of SIRT1 induction under normal physiological conditions, which is impaired in HD. We demonstrate that SIRT1 activity is down-regulated in the brains of two complementary HD mouse models, which correlated with altered SIRT1 phosphorylation levels. This SIRT1 impairment could not be rescued by the ablation of DBC1, a negative regulator of SIRT1, but was linked to changes in the sub-cellular distribution of AMPK-α1, a positive regulator of SIRT1 function. This work provides insights into the regulation of SIRT1 activity with the potential for the development of novel therapeutic strategies.
Collapse
|
209
|
Curcumin modulates cell death and is protective in Huntington's disease model. Sci Rep 2016; 6:18736. [PMID: 26728250 PMCID: PMC4700531 DOI: 10.1038/srep18736] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/25/2015] [Indexed: 12/19/2022] Open
Abstract
Huntington’s disease (HD) is a progressive, dominantly inherited neurological disorder caused by an abnormal expansion of polyglutamine (polyQ) repeat within the Huntingtin (Htt) protein with no disease modifying treatments. In a Drosophila model of HD, expression of mutant Huntingtin (Htt) protein with expanded polyQ leads to formation of inclusion bodies (IBs), increase in cellular toxicity, progression of motor disabilities and reduced viability. Multiple cellular events such as oxidative stress, mitochondrial dysfunction, inflammation and transcriptional dysregulation are reported to contribute to pathology, however, till date there are no disease-modifying treatments with least side effects. Therefore, we investigated effect of the phytochemical curcumin on HD pathogenesis. Curcumin, a phytochemical and commonly used ingredient in Asian food has a wide spectrum of anti-oxidant, anti-inflammatory and anti-fibrilogenic properties. In this study, we provide evidence that curcumin significantly ameliorates disease symptoms in a Drosophila model of HD by suppressing cell death and can be a key to halting the progression of Huntington’s disease with least side effects.
Collapse
|
210
|
Merienne K, Boutillier AL. [Epigenetic regulations and cerebral plasticity: towards new therapeutic options in neurodegenerative diseases?]. Biol Aujourdhui 2016; 210:297-309. [PMID: 28327286 DOI: 10.1051/jbio/2017002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 11/15/2022]
Abstract
Although revealed in the 1950's, epigenetics is still a fast-growing field. Its delineations continuously evolve and become clarified. In particular, "neuroepigenetics", a notion that encompasses epigenetic regulations associated with neuronal processes, appears very promising. Indeed, the challenge to be undertaken in this sub-field is double. On the one hand, it should bring molecular comprehension of specific neuronal processes, some of them falling within the long term regulations, such as learning and memory. On the other hand, it could bring therapeutic options for brain diseases, e.g. neurodegenerative diseases such as Alzheimer's or Huntington's diseases.
Collapse
|
211
|
Young D. Gene Therapy-Based Modeling of Neurodegenerative Disorders: Huntington's Disease. Methods Mol Biol 2016; 1382:383-95. [PMID: 26611601 DOI: 10.1007/978-1-4939-3271-9_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Huntington's disease is a fatal neurodegenerative disease characterized by impairments in motor control, and cognitive and psychiatric disturbances. In this chapter, viral vector-mediated approaches used in modeling the key neuropathological features of the disease including the production of abnormal intracellular protein aggregates, neuronal dysfunction and degeneration and motor impairments in rodents are described.
Collapse
Affiliation(s)
- Deborah Young
- Department of Pharmacology & Clinical Pharmacology & Centre for Brain Research, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
212
|
Fan HC, Chi CS, Cheng SN, Lee HF, Tsai JD, Lin SZ, Harn HJ. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases. Int J Mol Sci 2015; 17:E26. [PMID: 26712747 PMCID: PMC4730273 DOI: 10.3390/ijms17010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Ching-Shiang Chi
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Shin-Nan Cheng
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Jeng-Dau Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Shinn-Zong Lin
- Graduate Institute of Immunology, China Medical University, Taichung 404, Taiwan.
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung 404, Taiwan.
- Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan.
| | - Horng-Jyh Harn
- Department of Pathology, China Medical University and Hospital, Taichung 404, Taiwan.
| |
Collapse
|
213
|
Dong X, Tsuji J, Labadorf A, Roussos P, Chen JF, Myers RH, Akbarian S, Weng Z. The Role of H3K4me3 in Transcriptional Regulation Is Altered in Huntington's Disease. PLoS One 2015; 10:e0144398. [PMID: 26636336 PMCID: PMC4670094 DOI: 10.1371/journal.pone.0144398] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder resulting from expansion of CAG repeats in the Huntingtin (HTT) gene. Previous studies have shown mutant HTT can alter expression of genes associated with dysregulated epigenetic modifications. One of the most widely studied chromatin modifications is trimethylated lysine 4 of histone 3 (H3K4me3). Here, we conducted the first comprehensive study of H3K4me3 ChIP-sequencing in neuronal chromatin from the prefrontal cortex of six HD cases and six non-neurologic controls, and its association with gene expression measured by RNA-sequencing. We detected 2,830 differentially enriched H3K4me3 peaks between HD and controls, with 55% of them down-regulated in HD. Although H3K4me3 signals are expected to be associated with mRNA levels, we found an unexpected discordance between altered H3K4me3 peaks and mRNA levels. Gene ontology (GO) term enrichment analysis of the genes with differential H3K4me3 peaks, revealed statistically significantly enriched GO terms only in the genes with down-regulated signals in HD. The most frequently implicated biological process terms are organ morphogenesis and positive regulation of gene expression. More than 9,000 H3K4me3 peaks were located not near any recognized transcription start sites and approximately 36% of these "distal" peaks co-localized to known enhancer sites. Six transcription factors and chromatin remodelers are differentially enriched in HD H3K4me3 distal peaks, including EZH2 and SUZ12, two core subunits of the polycomb repressive complex 2 (PRC2). Moreover, PRC2 repressive state was significantly depleted in HD-enriched peaks, suggesting the epigenetic role of PRC2 inhibition associated with up-regulated H3K4me3 in Huntington's disease. In summary, our study provides new insights into transcriptional dysregulation of Huntington's disease by analyzing the differentiation of H3K4me3 enrichment.
Collapse
Affiliation(s)
- Xianjun Dong
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Junko Tsuji
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Adam Labadorf
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States of America
- Bioinformatics Program, Boston University, Boston, MA, United States of America
| | - Panos Roussos
- Friedman Brain Institute, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, United States of America
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, United States of America
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States of America
| | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States of America
- Bioinformatics Program, Boston University, Boston, MA, United States of America
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - Schahram Akbarian
- Friedman Brain Institute, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States of America
| |
Collapse
|
214
|
Xie X, Song X, Yuan S, Cai H, Chen Y, Chang X, Liang B, Huang D. Histone acetylation regulates orphan nuclear receptor NR4A1 expression in hypercholesterolaemia. Clin Sci (Lond) 2015; 129:1151-61. [PMID: 26396259 DOI: 10.1042/cs20150346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/21/2015] [Indexed: 02/04/2023]
Abstract
Hypercholesterolaemia and inflammation are correlated with atherogenesis. Orphan nuclear receptor NR4A1, as a key regulator of inflammation, is closely associated with lipid levels in vivo. However, the mechanism by which lipids regulate NR4A1 expression remains unknown. We aimed to elucidate the underlying mechanism of NR4A1 expression in monocytes during hypercholesterolaemia, and reveal the potential role of NR4A1 in hypercholesterolaemia-induced circulating inflammation. Circulating leucocytes were collected from blood samples of 139 patients with hypercholesterolaemia and 139 sex- and age-matched healthy subjects. We found that there was a low-grade inflammatory state and higher expression of NR4A1 in patients. Both total cholesterol and low-density lipoprotein cholesterol levels in plasma were positively correlated with NR4A1 mRNA level. ChIP revealed that acetylation of histone H3 was enriched in the NR4A1 promoter region in patients. Human mononuclear cell lines THP-1 and U937 were treated with cholesterol. Supporting our clinical observations, cholesterol enhanced p300 acetyltransferase and decreased HDAC7 (histone deacetylase 7) recruitment to the NR4A1 promoter region, resulting in histone H3 hyperacetylation and further contributing to NR4A1 up-regulation in monocytes. Moreover, cytosporone B, an NR4A1 agonist, completely reversed cholesterol-induced IL-6 (interleukin 6) and MCP-1 (monocyte chemoattractant protein 1) expression to below basal levels, and knockdown of NR4A1 expression by siRNA not only mimicked, but also exaggerated the effects of cholesterol on inflammatory biomarker up-regulation. Thus we conclude that histone acetylation contributes to the regulation of NR4A1 expression in hypercholesterolaemia, and that NR4A1 expression reduces hypercholesterolaemia-induced inflammation.
Collapse
MESH Headings
- Acetylation
- Adult
- Aged
- Binding Sites
- Case-Control Studies
- Chemokine CCL2/metabolism
- Cholesterol/metabolism
- Female
- Gene Expression Regulation
- Histone Deacetylases/metabolism
- Histones/metabolism
- Humans
- Hypercholesterolemia/blood
- Hypercholesterolemia/genetics
- Hypercholesterolemia/metabolism
- Inflammation/blood
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/prevention & control
- Inflammation Mediators/blood
- Inflammation Mediators/metabolism
- Interleukin-6/metabolism
- Male
- Middle Aged
- Monocytes/drug effects
- Monocytes/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/agonists
- Nuclear Receptor Subfamily 4, Group A, Member 1/blood
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phenylacetates/pharmacology
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- RNA Interference
- RNA, Messenger/metabolism
- Transfection
- U937 Cells
- p300-CBP Transcription Factors/metabolism
Collapse
Affiliation(s)
- Xina Xie
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
| | - Song Yuan
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
| | - Haitao Cai
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
| | - Yequn Chen
- Department of Community Surveillance, The First Affiliated Hospital of Shantou, University Medical College, Shantou, 515041, China
| | - Xiaolan Chang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
| | - Bin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
215
|
Gonzales ED, Tanenhaus AK, Zhang J, Chaffee RP, Yin JCP. Early-onset sleep defects in Drosophila models of Huntington's disease reflect alterations of PKA/CREB signaling. Hum Mol Genet 2015; 25:837-52. [PMID: 26604145 DOI: 10.1093/hmg/ddv482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurological disorder whose non-motor symptoms include sleep disturbances. Whether sleep and activity abnormalities are primary molecular disruptions of mutant Huntingtin (mutHtt) expression or result from neurodegeneration is unclear. Here, we report Drosophila models of HD exhibit sleep and activity disruptions very early in adulthood, as soon as sleep patterns have developed. Pan-neuronal expression of full-length or N-terminally truncated mutHtt recapitulates sleep phenotypes of HD patients: impaired sleep initiation, fragmented and diminished sleep, and nighttime hyperactivity. Sleep deprivation of HD model flies results in exacerbated sleep deficits, indicating that homeostatic regulation of sleep is impaired. Elevated PKA/CREB activity in healthy flies produces patterns of sleep and activity similar to those in our HD models. We were curious whether aberrations in PKA/CREB signaling were responsible for our early-onset sleep/activity phenotypes. Decreasing signaling through the cAMP/PKA pathway suppresses mutHtt-induced developmental lethality. Genetically reducing PKA abolishes sleep/activity deficits in HD model flies, restores the homeostatic response and extends median lifespan. In vivo reporters, however, show dCREB2 activity is unchanged, or decreased when sleep/activity patterns are abnormal, suggesting dissociation of PKA and dCREB2 occurs early in pathogenesis. Collectively, our data suggest that sleep defects may reflect a primary pathological process in HD, and that measurements of sleep and cAMP/PKA could be prodromal indicators of disease, and serve as therapeutic targets for intervention.
Collapse
Affiliation(s)
| | | | | | - Ryan P Chaffee
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53706, USA and
| | - Jerry C P Yin
- Department of Medical Genetics, Department of Neurology, University of Wisconsin-Madison, 1685 Highland Ave., Madison, WI 53705-2281, USA
| |
Collapse
|
216
|
Bidirectional Regulation of Amyloid Precursor Protein-Induced Memory Defects by Nebula/DSCR1: A Protein Upregulated in Alzheimer's Disease and Down Syndrome. J Neurosci 2015; 35:11374-83. [PMID: 26269644 DOI: 10.1523/jneurosci.1163-15.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Aging individuals with Down syndrome (DS) have an increased risk of developing Alzheimer's disease (AD), a neurodegenerative disorder characterized by impaired memory. Memory problems in both DS and AD individuals usually develop slowly and progressively get worse with age, but the cause of this age-dependent memory impairment is not well understood. This study examines the functional interactions between Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. Using Drosophila as a model, we find that overexpression of nebula (fly homolog of DSCR1) initially protects against APP-induced memory defects by correcting calcineurin and cAMP signaling pathways but accelerates the rate of memory loss and exacerbates mitochondrial dysfunction in older animals. We report that transient upregulation of Nebula/DSCR1 or acute pharmacological inhibition of calcineurin in aged flies protected against APP-induced memory loss. Our data suggest that calcineurin dyshomeostasis underlies age-dependent memory impairments and further imply that chronic Nebula/DSCR1 upregulation may contribute to age-dependent memory impairments in AD in DS. SIGNIFICANCE STATEMENT Most Down syndrome (DS) individuals eventually develop Alzheimer's disease (AD)-like dementia, but mechanisms underlying this age-dependent memory impairment remain poorly understood. This study examines Nebula/Down syndrome critical region 1 (DSCR1) and amyloid-precursor protein (APP), proteins upregulated in both DS and AD, in regulating memory. We uncover a previously unidentified role for Nebula/DSCR1 in modulating APP-induced memory defects during aging. We show that upregulation of Nebula/DSCR1, an inhibitor of calcineurin, rescues APP-induced memory defects in young flies but enhances memory loss of older flies. Excitingly, transient Nebula/DSCR1 overexpression or calcineurin inhibition in aged flies ameliorates APP-mediated memory problems. These results suggest that chronic Nebula/DSCR1 upregulation may contribute to age-dependent memory loss in DS and AD and points to correcting calcineurin signaling as a means to improve memory during aging.
Collapse
|
217
|
Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease. PLoS One 2015; 10:e0141610. [PMID: 26505994 PMCID: PMC4624233 DOI: 10.1371/journal.pone.0141610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023] Open
Abstract
Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeutics.
Collapse
|
218
|
Smalley JL, Breda C, Mason RP, Kooner G, Luthi-Carter R, Gant TW, Giorgini F. Connectivity mapping uncovers small molecules that modulate neurodegeneration in Huntington's disease models. J Mol Med (Berl) 2015; 94:235-45. [PMID: 26428929 PMCID: PMC4762922 DOI: 10.1007/s00109-015-1344-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/24/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Huntington's disease (HD) is a genetic disease caused by a CAG trinucleotide repeat expansion encoding a polyglutamine tract in the huntingtin (HTT) protein, ultimately leading to neuronal loss and consequent cognitive decline and death. As no treatments for HD currently exist, several chemical screens have been performed using cell-based models of mutant HTT toxicity. These screens measured single disease-related endpoints, such as cell death, but had low 'hit rates' and limited dimensionality for therapeutic detection. Here, we have employed gene expression microarray analysis of HD samples--a snapshot of the expression of 25,000 genes--to define a gene expression signature for HD from publically available data. We used this information to mine a database for chemicals positively and negatively correlated to the HD gene expression signature using the Connectivity Map, a tool for comparing large sets of gene expression patterns. Chemicals with negatively correlated expression profiles were highly enriched for protective characteristics against mutant HTT fragment toxicity in in vitro and in vivo models. This study demonstrates the potential of using gene expression to mine chemical activity, guide chemical screening, and detect potential novel therapeutic compounds. KEY MESSAGES Single-endpoint chemical screens have low therapeutic discovery hit-rates. In the context of HD, we guided a chemical screen using gene expression data. The resulting chemicals were highly enriched for suppressors of mutant HTT fragment toxicity. This study provides a proof of concept for wider usage in all chemical screening.
Collapse
Affiliation(s)
- Joshua L Smalley
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK.,MRC Toxicology Unit, University of Leicester, Leicester, LE1 7HB, UK
| | - Carlo Breda
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Robert P Mason
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Gurdeep Kooner
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Ruth Luthi-Carter
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 7RH, UK
| | - Timothy W Gant
- MRC Toxicology Unit, University of Leicester, Leicester, LE1 7HB, UK.,Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Oxfordshire, OX11 0RQ, UK
| | - Flaviano Giorgini
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
219
|
Naia L, Rego AC. Sirtuins: double players in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2183-94. [DOI: 10.1016/j.bbadis.2015.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 11/16/2022]
|
220
|
McGurk L, Berson A, Bonini NM. Drosophila as an In Vivo Model for Human Neurodegenerative Disease. Genetics 2015; 201:377-402. [PMID: 26447127 PMCID: PMC4596656 DOI: 10.1534/genetics.115.179457] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022] Open
Abstract
With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
221
|
Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proc Natl Acad Sci U S A 2015; 112:E5427-33. [PMID: 26351672 DOI: 10.1073/pnas.1516217112] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A key feature of many neurodegenerative diseases is the accumulation and subsequent aggregation of misfolded proteins. Recent studies have highlighted the transcellular propagation of protein aggregates in several major neurodegenerative diseases, although the precise mechanisms underlying this spreading and how it relates to disease pathology remain unclear. Here we use a polyglutamine-expanded form of human huntingtin (Htt) with a fluorescent tag to monitor the spreading of aggregates in the Drosophila brain in a model of Huntington's disease. Upon expression of this construct in a defined subset of neurons, we demonstrate that protein aggregates accumulate at synaptic terminals and progressively spread throughout the brain. These aggregates are internalized and accumulate within other neurons. We show that Htt aggregates cause non-cell-autonomous pathology, including loss of vulnerable neurons that can be prevented by inhibiting endocytosis in these neurons. Finally we show that the release of aggregates requires N-ethylmalemide-sensitive fusion protein 1, demonstrating that active release and uptake of Htt aggregates are important elements of spreading and disease progression.
Collapse
|
222
|
Lu XH, Mattis VB, Wang N, Al-Ramahi I, van den Berg N, Fratantoni SA, Waldvogel H, Greiner E, Osmand A, Elzein K, Xiao J, Dijkstra S, de Pril R, Vinters HV, Faull R, Signer E, Kwak S, Marugan JJ, Botas J, Fischer DF, Svendsen CN, Munoz-Sanjuan I, Yang XW. Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington's disease. Sci Transl Med 2015; 6:268ra178. [PMID: 25540325 DOI: 10.1126/scitranslmed.3010523] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Age-related neurodegenerative disorders including Alzheimer's disease and Huntington's disease (HD) consistently show elevated DNA damage, but the relevant molecular pathways in disease pathogenesis remain unclear. One attractive gene is that encoding the ataxia-telangiectasia mutated (ATM) protein, a kinase involved in the DNA damage response, apoptosis, and cellular homeostasis. Loss-of-function mutations in both alleles of ATM cause ataxia-telangiectasia in children, but heterozygous mutation carriers are disease-free. Persistently elevated ATM signaling has been demonstrated in Alzheimer's disease and in mouse models of other neurodegenerative diseases. We show that ATM signaling was consistently elevated in cells derived from HD mice and in brain tissue from HD mice and patients. ATM knockdown protected from toxicities induced by mutant Huntingtin (mHTT) fragments in mammalian cells and in transgenic Drosophila models. By crossing the murine Atm heterozygous null allele onto BACHD mice expressing full-length human mHTT, we show that genetic reduction of Atm gene dosage by one copy ameliorated multiple behavioral deficits and partially improved neuropathology. Small-molecule ATM inhibitors reduced mHTT-induced death of rat striatal neurons and induced pluripotent stem cells derived from HD patients. Our study provides converging genetic and pharmacological evidence that reduction of ATM signaling could ameliorate mHTT toxicity in cellular and animal models of HD, suggesting that ATM may be a useful therapeutic target for HD.
Collapse
Affiliation(s)
- Xiao-Hong Lu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. UCLA Brain Research Institute, Los Angeles, CA 90095, USA
| | - Virginia B Mattis
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nan Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. UCLA Brain Research Institute, Los Angeles, CA 90095, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | | | - Henry Waldvogel
- Department of Anatomy with Radiology, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Erin Greiner
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. UCLA Brain Research Institute, Los Angeles, CA 90095, USA
| | - Alex Osmand
- Department of Biochemistry and Cellular and Molecular Biology, Knoxville, TN 37996, USA
| | - Karla Elzein
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jingbo Xiao
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, Rockville, MD 20892, USA
| | - Sipke Dijkstra
- BioFocus, a Charles River company, Leiden 233CR, the Netherlands
| | | | - Harry V Vinters
- Department of Pathology and Laboratory Medicine (Neurology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Richard Faull
- Department of Anatomy with Radiology, Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Ethan Signer
- CHDI Foundation/CHDI Management Inc., Los Angeles, CA 90045, USA
| | - Seung Kwak
- CHDI Foundation/CHDI Management Inc., Los Angeles, CA 90045, USA
| | - Juan J Marugan
- NIH Chemical Genomic Center, National Center for Advancing Translation Sciences, National Institutes of Health, Rockville, MD 20892, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - David F Fischer
- BioFocus, a Charles River company, Leiden 233CR, the Netherlands
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA. UCLA Brain Research Institute, Los Angeles, CA 90095, USA.
| |
Collapse
|
223
|
PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington's Disease. PLoS One 2015; 10:e0134482. [PMID: 26252217 PMCID: PMC4529170 DOI: 10.1371/journal.pone.0134482] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington’s disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD.
Collapse
|
224
|
Sharma S, Taliyan R. Transcriptional dysregulation in Huntington's disease: The role of histone deacetylases. Pharmacol Res 2015; 100:157-69. [PMID: 26254871 DOI: 10.1016/j.phrs.2015.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Huntington's disease (HD) is a progressive neurological disorder for which there are no disease-modifying treatments. Although, the exact underlying mechanism(s) leading to the neural cell death in HD still remains elusive, the transcriptional dysregulation is a major molecular feature. Recently, the transcriptional activation and repression regulated by chromatin acetylation has been found to be impaired in HD pathology. The acetylation and deacetylation of histone proteins is carried out by opposing actions of histone acetyl-transferases and histone deacetylases (HDACs), respectively. Studies carried out in cell culture, yeast, Drosophila and rodent model(s) have indicated that HDAC inhibitors (HDACIs) might provide useful class of therapeutic agents for HD. Clinical trials have also reported the beneficial effects of HDACIs in patients suffering from HD. Therefore, the development of HDACIs as therapeutics for HD has been vigorously pursued. In this review, we highlight and summarize the putative role of HDACs in HD like pathology and further discuss the potential of HDACIs as new therapeutic avenues for the treatment of HD.
Collapse
Affiliation(s)
- Sorabh Sharma
- Neuropharmacology Division, Department of Pharmacy Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Rajeev Taliyan
- Neuropharmacology Division, Department of Pharmacy Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
225
|
Xu Z, Tito AJ, Rui YN, Zhang S. Studying polyglutamine diseases in Drosophila. Exp Neurol 2015; 274:25-41. [PMID: 26257024 DOI: 10.1016/j.expneurol.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Polyglutamine (polyQ) diseases are a family of dominantly transmitted neurodegenerative disorders caused by an abnormal expansion of CAG trinucleotide repeats in the protein-coding regions of the respective disease-causing genes. Despite their simple genetic basis, the etiology of these diseases is far from clear. Over the past two decades, Drosophila has proven to be successful in modeling this family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. Additionally, it has been valuable in probing the pathogenic mechanisms, in identifying and evaluating disease modifiers, and in helping elucidate the normal functions of disease-causing genes. Knowledge learned from this simple invertebrate organism has had a large impact on our understanding of these devastating brain diseases.
Collapse
Affiliation(s)
- Zhen Xu
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Antonio Joel Tito
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; Programs in Human and Molecular Genetics and Neuroscience, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Graduate School of Biomedical Sciences, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Yan-Ning Rui
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; Department of Neurobiology and Anatomy, 1825 Pressler Street, Houston, TX 77030, United States; Programs in Human and Molecular Genetics and Neuroscience, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Graduate School of Biomedical Sciences, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States.
| |
Collapse
|
226
|
Varadarajan S, Breda C, Smalley JL, Butterworth M, Farrow SN, Giorgini F, Cohen GM. The transrepression arm of glucocorticoid receptor signaling is protective in mutant huntingtin-mediated neurodegeneration. Cell Death Differ 2015; 22:1388-96. [PMID: 25656655 PMCID: PMC4495362 DOI: 10.1038/cdd.2015.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/15/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) occurs following the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and orchestrates an intricate balance between its prosurvival and apoptotic arms to restore cellular homeostasis and integrity. However, in certain neurodegenerative diseases, the apoptotic arm of the UPR is enhanced, resulting in excessive neuronal cell death and disease progression, both of which can be overcome by modulating the UPR. Here, we describe a novel crosstalk between glucocorticoid receptor signaling and the apoptotic arm of the UPR, thus highlighting the potential of glucocorticoid therapy in treating neurodegenerative diseases. Several glucocorticoids, but not mineralocorticoids, selectively antagonize ER stress-induced apoptosis in a manner that is downstream of and/or independent of the conventional UPR pathways. Using GRT10, a novel selective pharmacological modulator of glucocorticoid signaling, we describe the importance of the transrepression arm of the glucocorticoid signaling pathway in protection against ER stress-induced apoptosis. Furthermore, we also observe the protective effects of glucocorticoids in vivo in a Drosophila model of Huntington's disease (HD), wherein treatment with different glucocorticoids diminished rhabdomere loss and conferred neuroprotection. Finally, we find that growth differentiation factor 15 has an important role downstream of glucocorticoid signaling in antagonizing ER stress-induced apoptosis in cells, as well as in preventing HD-mediated neurodegeneration in flies. Thus, our studies demonstrate that this novel crosstalk has the potential to be effectively exploited in alleviating several neurodegenerative disorders.
Collapse
Affiliation(s)
- S Varadarajan
- Department of Molecular and Clinical Cancer Medicine and Pharmacology, University of Liverpool, Liverpool, UK
| | - C Breda
- Department of Genetics, University of Leicester, Leicester, UK
| | - J L Smalley
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| | - M Butterworth
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| | - S N Farrow
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, UK
| | - F Giorgini
- Department of Genetics, University of Leicester, Leicester, UK
| | - G M Cohen
- Department of Molecular and Clinical Cancer Medicine and Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
227
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
228
|
Lewis EA, Smith GA. Using Drosophila models of Huntington's disease as a translatable tool. J Neurosci Methods 2015; 265:89-98. [PMID: 26241927 DOI: 10.1016/j.jneumeth.2015.07.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 11/17/2022]
Abstract
The Huntingtin (Htt) protein is essential for a wealth of intracellular signaling cascades and when mutated, causes multifactorial dysregulation of basic cellular processes. Understanding the contribution to each of these intracellular pathways is essential for the elucidation of mechanisms that drive pathophysiology. Using appropriate models of Huntington's disease (HD) is key to finding the molecular mechanisms that contribute to neurodegeneration. While mouse models and cell lines expressing mutant Htt have been instrumental to HD research, there has been a significant contribution to our understating of the disease from studies utilizing Drosophila melanogaster. Flies have an Htt protein, so the endogenous pathways with which it interacts are likely conserved. Transgenic flies engineered to overexpress the human mutant HTT gene display protein aggregation, neurodegeneration, behavioral deficits and a reduced lifespan. The short life span of flies, low cost of maintaining stocks and genetic tools available for in vivo manipulation make them ideal for the discovery of new genes that are involved in HD pathology. It is possible to do rapid genome wide screens for enhancers or suppressors of the mutant Htt-mediated phenotype, expressed in specific tissues or neuronal subtypes. However, there likely remain many yet unknown genes that modify disease progression, which could be found through additional screening approaches using the fly. Importantly, there have been instances where genes discovered in Drosophila have been translated to HD mouse models.
Collapse
Affiliation(s)
- Elizabeth A Lewis
- Neurobiology Department, Aaron Lazare Research Building, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gaynor A Smith
- Neurobiology Department, Aaron Lazare Research Building, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
229
|
Bustamante MB, Ansaloni A, Pedersen JF, Azzollini L, Cariulo C, Wang ZM, Petricca L, Verani M, Puglisi F, Park H, Lashuel H, Caricasole A. Detection of huntingtin exon 1 phosphorylation by Phos-Tag SDS-PAGE: Predominant phosphorylation on threonine 3 and regulation by IKKβ. Biochem Biophys Res Commun 2015; 463:1317-22. [DOI: 10.1016/j.bbrc.2015.06.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
230
|
Metabolism and epigenetics in the nervous system: Creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases. Brain Res 2015; 1628:273-287. [PMID: 26232572 DOI: 10.1016/j.brainres.2015.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/11/2015] [Accepted: 07/21/2015] [Indexed: 12/30/2022]
Abstract
Modern definitions of epigenetics incorporate models for transient but biologically important changes in gene expression that are unrelated to DNA code but responsive to environmental changes such as injury-induced stress. In this scheme, changes in oxygen levels (hypoxia) and/or metabolic co-factors (iron deficiency or diminished 2-oxoglutarate levels) are transduced into broad genetic programs that return the cell and the organism to a homeostatic set point. Over the past two decades, exciting studies have identified a superfamily of iron-, oxygen-, and 2-oxoglutarate-dependent dioxygenases that sit in the nucleus as modulators of transcription factor stability, co-activator function, histone demethylases, and DNA demethylases. These studies have provided a concrete molecular scheme for how changes in metabolism observed in a host of neurological conditions, including stroke, traumatic brain injury, and Alzheimer's disease, could be transduced into adaptive gene expression to protect the nervous system. We will discuss these enzymes in this short review, focusing primarily on the ten eleven translocation (TET) DNA demethylases, the jumonji (JmJc) histone demethylases, and the oxygen-sensing prolyl hydroxylase domain enzymes (HIF PHDs). This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
|
231
|
Huntington's disease: Neural dysfunction linked to inositol polyphosphate multikinase. Proc Natl Acad Sci U S A 2015. [PMID: 26195796 DOI: 10.1073/pnas.1511810112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease caused by a glutamine repeat expansion in mutant huntingtin (mHtt). Despite the known genetic cause of HD, the pathophysiology of this disease remains to be elucidated. Inositol polyphosphate multikinase (IPMK) is an enzyme that displays soluble inositol phosphate kinase activity, lipid kinase activity, and various noncatalytic interactions. We report a severe loss of IPMK in the striatum of HD patients and in several cellular and animal models of the disease. This depletion reflects mHtt-induced impairment of COUP-TF-interacting protein 2 (Ctip2), a striatal-enriched transcription factor for IPMK, as well as alterations in IPMK protein stability. IPMK overexpression reverses the metabolic activity deficit in a cell model of HD. IPMK depletion appears to mediate neural dysfunction, because intrastriatal delivery of IPMK abates the progression of motor abnormalities and rescues striatal pathology in transgenic murine models of HD.
Collapse
|
232
|
Aβ43 is neurotoxic and primes aggregation of Aβ40 in vivo. Acta Neuropathol 2015; 130:35-47. [PMID: 25862636 PMCID: PMC4469414 DOI: 10.1007/s00401-015-1419-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/22/2015] [Indexed: 10/26/2022]
Abstract
The involvement of Amyloid-β (Aβ) in the pathogenesis of Alzheimer's disease (AD) is well established. However, it is becoming clear that the amyloid load in AD brains consists of a heterogeneous mixture of Aβ peptides, implying that a thorough understanding of their respective role and toxicity is crucial for the development of efficient treatments. Besides the well-studied Aβ40 and Aβ42 species, recent data have raised the possibility that Aβ43 peptides might be instrumental in AD pathogenesis, because they are frequently observed in both dense and diffuse amyloid plaques from human AD brains and are highly amyloidogenic in vitro. However, whether Aβ43 is toxic in vivo is currently unclear. Using Drosophila transgenic models of amyloid pathology, we show that Aβ43 peptides are mainly insoluble and highly toxic in vivo, leading to the progressive loss of photoreceptor neurons, altered locomotion and decreased lifespan when expressed in the adult fly nervous system. In addition, we demonstrate that Aβ43 species are able to trigger the aggregation of the typically soluble and non-toxic Aβ40, leading to synergistic toxic effects on fly lifespan and climbing ability, further suggesting that Aβ43 peptides could act as a nucleating factor in AD brains. Altogether, our study demonstrates high pathogenicity of Aβ43 species in vivo and supports the idea that Aβ43 contributes to the pathological events leading to neurodegeneration in AD.
Collapse
|
233
|
Ott S, Dziadulewicz N, Crowther DC. Iron is a specific cofactor for distinct oxidation- and aggregation-dependent Aβ toxicity mechanisms in a Drosophila model. Dis Model Mech 2015; 8:657-67. [PMID: 26035384 PMCID: PMC4486857 DOI: 10.1242/dmm.019042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/19/2015] [Indexed: 12/12/2022] Open
Abstract
Metals, including iron, are present at high concentrations in amyloid plaques in individuals with Alzheimer's disease, where they are also thought to be cofactors in generating oxidative stress and modulating amyloid formation. In this study, we present data from several Drosophila models of neurodegenerative proteinopathies indicating that the interaction between iron and amyloid beta peptide (Aβ) is specific and is not seen for other aggregation-prone polypeptides. The interaction with iron is likely to be important in the dimerisation of Aβ and is mediated by three N-terminal histidines. Transgenic fly lines systematically expressing all combinations of His>Ala substitutions in Aβ were generated and used to study the pathological role of these residues. Developmental eye phenotypes, longevity and histological examinations indicate that the N-terminal histidines have distinct position-dependent and -independent mechanisms. The former mediate the toxic effects of metals and Aβ aggregation under non-oxidising conditions and the latter are relevant under oxidising conditions. Understanding how Aβ mediates neurotoxic effects in vivo will help to better target pathological pathways using aggregation blockers and metal-modifying agents.
Collapse
Affiliation(s)
- Stanislav Ott
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Nikolas Dziadulewicz
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Damian C Crowther
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK MedImmune Limited, Aaron Klug Building, Granta Park, Cambridge CB21 6GH, UK
| |
Collapse
|
234
|
Zwergel C, Valente S, Jacob C, Mai A. Emerging approaches for histone deacetylase inhibitor drug discovery. Expert Opin Drug Discov 2015; 10:599-613. [DOI: 10.1517/17460441.2015.1038236] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
235
|
Chang R, Liu X, Li S, Li XJ. Transgenic animal models for study of the pathogenesis of Huntington's disease and therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2179-88. [PMID: 25931812 PMCID: PMC4404937 DOI: 10.2147/dddt.s58470] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Huntington’s disease (HD) is caused by a genetic mutation that results in polyglutamine expansion in the N-terminal regions of huntingtin. As a result, this polyQ expansion leads to the misfolding and aggregation of mutant huntingtin as well as age-dependent neurodegeneration. The genetic mutation in HD allows for generating a variety of animal models that express different forms of mutant huntingtin and show differential pathology. Studies of these animal models have provided an important insight into the pathogenesis of HD. Mouse models of HD include transgenic mice, which express N-terminal or full-length mutant huntingtin ubiquitously or selectively in different cell types, and knock-in mice that express full-length mutant Htt at the endogenous level. Large animals, such as pig, sheep, and monkeys, have also been used to generate animal HD models. This review focuses on the different features of commonly used transgenic HD mouse models as well as transgenic large animal models of HD, and also discusses how to use them to identify potential therapeutics. Since HD shares many pathological features with other neurodegenerative diseases, identification of therapies for HD would also help to develop effective treatment for different neurodegenerative diseases that are also caused by protein misfolding and occur in an age-dependent manner.
Collapse
Affiliation(s)
- Renbao Chang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xudong Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiao-Jiang Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China ; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
236
|
Achour M, Le Gras S, Keime C, Parmentier F, Lejeune FX, Boutillier AL, Neri C, Davidson I, Merienne K. Neuronal identity genes regulated by super-enhancers are preferentially down-regulated in the striatum of Huntington's disease mice. Hum Mol Genet 2015; 24:3481-96. [DOI: 10.1093/hmg/ddv099] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/13/2015] [Indexed: 12/20/2022] Open
|
237
|
Besson MT, Alegría K, Garrido-Gerter P, Barros LF, Liévens JC. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model. PLoS One 2015; 10:e0118765. [PMID: 25761110 PMCID: PMC4356621 DOI: 10.1371/journal.pone.0118765] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
Huntington’s disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3 protective effects, whereas, in addition, the PPP provides increased protection to oxidative stress.
Collapse
Affiliation(s)
- Marie Thérèse Besson
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| | - Karin Alegría
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile
| | - Pamela Garrido-Gerter
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - Jean-Charles Liévens
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| |
Collapse
|
238
|
Wei JY, Lu QN, Li WM, He W. Intracellular translocation of histone deacetylase 5 regulates neuronal cell apoptosis. Brain Res 2015; 1604:15-24. [PMID: 25661252 DOI: 10.1016/j.brainres.2015.01.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 01/07/2023]
Abstract
Histone deacetylase 5 (HDAC5) undergoes signal-dependent shuttling between the nucleus and cytoplasm, which is regulated in part by calcium/calmodulin-dependent kinase (CaMK)-mediated phosphorylation. Here, we report that HDAC5 regulates the survival of cortical neurons in pathological conditions. HDAC5 was evenly localized to the nucleus and cytoplasm in cultured cortical neurons. However, in response to 50μM NMDA conditions that induced neuronal cell apoptosis, nuclear-distributed HDAC5 was rapidly phosphorylated and translocated into cytoplasm of the cultured cortical neurons. Treatment with a CaMKII inhibitor KN93 suppressed HDAC5 phosphorylation and nuclear translocation induced by NMDA, whereas constitutively active CaMKIIα (T286D) stimulated HDAC5 nuclear export. Importantly, we showed that ectopic expression of nuclear-localized HDAC5 in cortical neurons suppressed NMDA-induced apoptosis. Finally, inactivation of HDAC5 by treatment with the class II-specific HDAC inhibitor trichostatin A (TSA) promoted NMDA-induced neuronal cell apoptosis. Altogether, these data identify HDAC5 and its intracellular translocation as key effectors of multiple pathways that regulate neuronal cell apoptosis.
Collapse
Affiliation(s)
- Jia-Yi Wei
- Department of Developmental Biology, Key Lab of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 92 Beier Road, Heping District, Shenyang 110001, China
| | - Qiu-Nan Lu
- Department of Developmental Biology, Key Lab of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 92 Beier Road, Heping District, Shenyang 110001, China
| | - Wan-Ming Li
- Department of Developmental Biology, Key Lab of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 92 Beier Road, Heping District, Shenyang 110001, China
| | - Wei He
- Department of Developmental Biology, Key Lab of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 92 Beier Road, Heping District, Shenyang 110001, China.
| |
Collapse
|
239
|
Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ, Hautbergue GM. Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 2015; 41:109-34. [PMID: 25319671 PMCID: PMC4329338 DOI: 10.1111/nan.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins - and how these lead to neurodegeneration - remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.
Collapse
Affiliation(s)
- M J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J E Dodd
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - M J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - S R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - G M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
240
|
Rawat V, Goux W, Piechaczyk M, D Mello SR. c-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity. Mol Neurobiol 2015; 53:1165-1180. [PMID: 25592718 DOI: 10.1007/s12035-014-9058-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022]
Abstract
Proteins belonging to the AP-1 family of transcription factors are known to be involved in the regulation of neuronal viability. While strides have been made to elucidate the mechanisms of how individual members regulate cell death, much remains unknown. We find that the expression of one AP-1 member, c-Fos, is reduced in cerebellar granule neurons (CGNs) induced to die by low potassium (LK) treatment. Restoration and increase of this expression protect CGNs against LK-induced death, whereas knockdown induces death of otherwise healthy neurons. Furthermore, forced expression can protect cortical neurons against homocysteic acid (HCA)-induced toxicity. Taken together, this suggests that c-Fos is necessary for neuronal survival and that elevating c-Fos expression has a neuroprotective effect. Consistent with this idea is the finding that c-Fos expression is reduced selectively in the striatum in two separate mouse models of Huntington's disease and forced expression protects against neuronal death resulting from mutant huntingtin (mut-Htt) expression. Interestingly, neuroprotection by c-Fos does not require its DNA-binding, transcriptional, or heteromerization domains. However, this protective activity can be inhibited by pharmacological inhibition of c-Abl, CK-I, and MEK-ERK signaling. Additionally, expression of point mutant forms of this protein has identified that mutation of a tyrosine residue, Tyr345, can convert c-Fos from neuroprotective to neurotoxic. We show that c-Fos interacts with histone deacetylase-3 (HDAC3), a protein that contributes to mut-Htt neurotoxicity and whose overexpression is sufficient to promote neuronal death. When co-expressed, c-Fos can protect against HDAC3 neurotoxicity. Finally, our study identifies a 21-amino acid region at the C-terminus of c-Fos that is sufficient to protect neurons against death induced by LK, HCA treatment, or mut-Htt expression when expressed via a plasmid transfection or as a cell-permeable peptide. This cell-permeable peptide, designated as Fos-CTF, could have potential as a therapeutic agent for neurodegenerative diseases.
Collapse
Affiliation(s)
- Varun Rawat
- Department of Biological Sciences, Southern Methodist University, Dedman Life Sciences Building, 6501 Airline Road, Dallas, TX, 75275, USA
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Warren Goux
- Department of Chemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Santosh R D Mello
- Department of Biological Sciences, Southern Methodist University, Dedman Life Sciences Building, 6501 Airline Road, Dallas, TX, 75275, USA.
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
241
|
Tang BL. Class II HDACs and neuronal regeneration. J Cell Biochem 2015; 115:1225-33. [PMID: 24604703 DOI: 10.1002/jcb.24802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/16/2014] [Indexed: 02/03/2023]
Abstract
The vastly more superior regenerative capacity of the axons of peripheral nerves over central nervous system (CNS) neurons has been partly attributed to the former's intrinsic capacity to initiate and sustain the functionality of a new growth cone. Growth cone generation involves a myriad of processes that centers around the organization of microtubule bundles. Histone deacetylases (HDACs) modulate a wide range of key neuronal processes such as neural progenitor differentiation, learning and memory, neuronal death, and degeneration. HDAC inhibitors have been shown to be beneficial in attenuating neuronal death and promoting neurite outgrowth and axonal regeneration. Recent advances have provided insights on how manipulating HDAC activities, particularly the type II HDACs 5 and 6, which deacetylate tubulin, may benefit axonal regeneration. These advances are discussed herein.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore, 117597, Singapore
| |
Collapse
|
242
|
Ajjuri RR, Hall M, Reiter LT, O’Donnell JM. Drosophila. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
243
|
Mason RP, Breda C, Kooner GS, Mallucci GR, Kyriacou CP, Giorgini F. Modeling Huntington Disease in Yeast and Invertebrates. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
244
|
Feligioni M, Marcelli S, Knock E, Nadeem U, Arancio O, E. Fraser P. SUMO modulation of protein aggregation and degradation. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.4.382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
245
|
Shiraishi R, Tamura T, Sone M, Okazawa H. Systematic analysis of fly models with multiple drivers reveals different effects of ataxin-1 and huntingtin in neuron subtype-specific expression. PLoS One 2014; 9:e116567. [PMID: 25551764 PMCID: PMC4281079 DOI: 10.1371/journal.pone.0116567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, is a commonly used model organism for neurodegenerative diseases. Its major advantages include a short lifespan and its susceptibility to manipulation using sophisticated genetic techniques. Here, we report the systematic comparison of fly models of two polyglutamine (polyQ) diseases. We induced expression of the normal and mutant forms of full-length Ataxin-1 and Huntingtin exon 1 in cholinergic, dopaminergic, and motor neurons, and glial cells using cell type-specific drivers. We systematically analyzed their effects based on multiple phenotypes: eclosion rate, lifespan, motor performance, and circadian rhythms of spontaneous activity. This systematic assay system enabled us to quantitatively evaluate and compare the functional disabilities of different genotypes. The results suggest different effects of Ataxin-1 and Huntingtin on specific types of neural cells during development and in adulthood. In addition, we confirmed the therapeutic effects of LiCl and butyrate using representative models. These results support the usefulness of this assay system for screening candidate chemical compounds that modify the pathologies of polyQ diseases.
Collapse
Affiliation(s)
- Risa Shiraishi
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama, Funabashi, Chiba, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
246
|
Zielonka D, Mielcarek M, Landwehrmeyer GB. Update on Huntington's disease: advances in care and emerging therapeutic options. Parkinsonism Relat Disord 2014; 21:169-78. [PMID: 25572500 DOI: 10.1016/j.parkreldis.2014.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Huntington's disease (HD) is the most common hereditary neurodegenerative disorder. Despite the fact that both the gene and the mutation causing this monogenetic disorder were identified more than 20 years ago, disease-modifying therapies for HD have not yet been established. REVIEW While intense preclinical research and large cohort studies in HD have laid foundations for tangible improvements in understanding HD and caring for HD patients, identifying targets for therapeutic interventions and developing novel therapeutic modalities (new chemical entities and advanced therapies using DNA and RNA molecules as therapeutic agents) continues to be an ongoing process. The authors review recent achievements in HD research and focus on approaches towards disease-modifying therapies, ranging from huntingtin-lowering strategies to improving huntingtin clearance that may be promoted by posttranslational HTT modifications. CONCLUSION The nature and number of upcoming clinical studies/trials in HD is a reason for hope for HD patients and their families.
Collapse
Affiliation(s)
- Daniel Zielonka
- Department of Social Medicine, Poznan University of Medical Sciences, Poland.
| | - Michal Mielcarek
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | | |
Collapse
|
247
|
Inhibition of transglutaminase exacerbates polyglutamine-induced neurotoxicity by increasing the aggregation of mutant ataxin-3 in an SCA3 Drosophila model. Neurotox Res 2014; 27:259-67. [PMID: 25501875 DOI: 10.1007/s12640-014-9506-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 01/24/2023]
Abstract
Transglutaminases (TGs) comprise a family of Ca(2+)-dependent enzymes that catalyze protein cross-linking, which include nine family members in humans but only a single homolog in Drosophila with three conserved domains. Drosophila Tg plays important roles in cuticle morphogenesis, hemolymph clotting, and innate immunity. Mammalian tissue TG (TG2) is involved in polyglutamine diseases (polyQ diseases), and TG6 has been identified as a causative gene of a novel spinocerebellar ataxia, SCA35. Using a well-established SCA3 fly model, we found that RNA interference-mediated suppression of Tg aggravated polyQ-induced neurodegenerative phenotypes. The administration of cystamine, a known effective Tg inhibitor, enhanced ommatidial degeneration in SCA3 flies. We also demonstrated that the aggregates of pathogenic ataxin-3 increased greatly, when the Tg activity was repressed. These findings indicate that Tg is crucial for polyQ-induced neurotoxicity because Tg ablation resulted in more severe neurodegeneration due to the elevated accumulation of insoluble ataxin-3 complexes in the SCA3 Drosophila model.
Collapse
|
248
|
Bai G, Cheung I, Shulha HP, Coelho JE, Li P, Dong X, Jakovcevski M, Wang Y, Grigorenko A, Jiang Y, Hoss A, Patel K, Zheng M, Rogaev E, Myers RH, Weng Z, Akbarian S, Chen JF. Epigenetic dysregulation of hairy and enhancer of split 4 (HES4) is associated with striatal degeneration in postmortem Huntington brains. Hum Mol Genet 2014; 24:1441-56. [PMID: 25480889 DOI: 10.1093/hmg/ddu561] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To investigate epigenetic contributions to Huntington's disease (HD) pathogenesis, we carried out genome-wide mapping of the transcriptional mark, trimethyl-histone H3-lysine 4 (H3K4me3) in neuronal nuclei extracted from prefrontal cortex of HD cases and controls using chromatin immunoprecipitation followed by deep-sequencing. Neuron-specific mapping of the genome-wide distribution of H3K4me3 revealed 136 differentially enriched loci associated with genes implicated in neuronal development and neurodegeneration, including GPR3, TMEM106B, PDIA6 and the Notch signaling genes hairy and enhancer of split 4 (HES4) and JAGGED2, supporting the view that the neuronal epigenome is affected in HD. Importantly, loss of H3K4me3 at CpG-rich sequences on the HES4 promoter was associated with excessive DNA methylation, reduced binding of nuclear proteins to the methylated region and altered expression of HES4 and HES4 targeted genes MASH1 and P21 involved in striatal development. Moreover, hypermethylation of HES4 promoter sequences was strikingly correlated with measures of striatal degeneration and age-of-onset in a cohort of 25 HD brains (r = 0.56, P = 0.006). Lastly, shRNA knockdown of HES4 in human neuroblastoma cells altered MASH1 and P21 mRNA expression and markedly increased mutated HTT-induced aggregates and cell death. These findings, taken together, suggest that epigenetic dysregulation of HES4 could play a critical role in modifying HD disease pathogenesis and severity.
Collapse
Affiliation(s)
- Guang Bai
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Iris Cheung
- Brudnick Neuropsychiatric Research Institute
| | - Hennady P Shulha
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Joana E Coelho
- Department of Neurology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Ping Li
- Department of Neurology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Xianjun Dong
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | | | - Yumei Wang
- Department of Neurology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | - Yan Jiang
- Friedman Brain Institute, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Andrew Hoss
- Department of Neurology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Krupal Patel
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Ming Zheng
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD 21201, USA
| | | | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA, Genome Science Institute, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, Friedman Brain Institute, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA,
| |
Collapse
|
249
|
Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol 2014; 2:79-101. [PMID: 25642438 PMCID: PMC4301678 DOI: 10.1002/acn3.147] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) represent emerging therapeutic targets in the context of neurodegeneration. Indeed, pharmacologic inhibition of HDACs activity in the nervous system has shown beneficial effects in several preclinical models of neurological disorders. However, the translation of such therapeutic approach to clinics has been only marginally successful, mainly due to our still limited knowledge about HDACs physiological role particularly in neurons. Here, we review the potential benefits along with the risks of targeting HDACs in light of what we currently know about HDAC activity in the brain.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology, University of California San Francisco San Francisco, California, 94158
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611 ; Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611
| |
Collapse
|
250
|
McLendon PM, Ferguson BS, Osinska H, Bhuiyan MS, James J, McKinsey TA, Robbins J. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci U S A 2014; 111:E5178-86. [PMID: 25404307 PMCID: PMC4260547 DOI: 10.1073/pnas.1415589111] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proteinopathy causes cardiac disease, remodeling, and heart failure but the pathological mechanisms remain obscure. Mutated αB-crystallin (CryAB(R120G)), when expressed only in cardiomyocytes in transgenic (TG) mice, causes desmin-related cardiomyopathy, a protein conformational disorder. The disease is characterized by the accumulation of toxic misfolded protein species that present as perinuclear aggregates known as aggresomes. Previously, we have used the CryAB(R120G) model to determine the underlying processes that result in these pathologic accumulations and to explore potential therapeutic windows that might be used to decrease proteotoxicity. We noted that total ventricular protein is hypoacetylated while hyperacetylation of α-tubulin, a substrate of histone deacetylase 6 (HDAC6) occurs. HDAC6 has critical roles in protein trafficking and autophagy, but its function in the heart is obscure. Here, we test the hypothesis that tubulin acetylation is an adaptive process in cardiomyocytes. By modulating HDAC6 levels and/or activity genetically and pharmacologically, we determined the effects of tubulin acetylation on aggregate formation in CryAB(R120G) cardiomyocytes. Increasing HDAC6 accelerated aggregate formation, whereas siRNA-mediated knockdown or pharmacological inhibition ameliorated the process. HDAC inhibition in vivo induced tubulin hyperacetylation in CryAB(R120G) TG hearts, which prevented aggregate formation and significantly improved cardiac function. HDAC6 inhibition also increased autophagic flux in cardiomyocytes, and increased autophagy in the diseased heart correlated with increased tubulin acetylation, suggesting that autophagy induction might underlie the observed cardioprotection. Taken together, our data suggest a mechanistic link between tubulin hyperacetylation and autophagy induction and points to HDAC6 as a viable therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Patrick M McLendon
- The Heart Institute, Department of Pediatrics, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Bradley S Ferguson
- Department of Medicine, Division of Cardiology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045
| | - Hanna Osinska
- The Heart Institute, Department of Pediatrics, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Md Shenuarin Bhuiyan
- The Heart Institute, Department of Pediatrics, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Jeanne James
- The Heart Institute, Department of Pediatrics, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045
| | - Jeffrey Robbins
- The Heart Institute, Department of Pediatrics, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| |
Collapse
|