201
|
Abstract
Lower vertebrates such as newt and zebrafish are able to reactivate high levels of cardiomyocyte cell cycle activity in response to experimental injury resulting in apparent regeneration. In contrast, damaged myocardium is replaced by fibrotic scar tissue in higher vertebrates. This process compromises the contractile function of the surviving myocardium, ultimately leading to heart failure. Various strategies are being pursued to augment myocyte number in the diseased hearts. One approach entails the reactivation of cell cycle in surviving cardiomyocytes. Here, we provide a summary of methods to monitor cell cycle activity, and interventions demonstrating positive cell cycle effects in cardiomyocytes as well as discuss the potential utility of cell cycle regulation to augment myocyte number in diseased hearts.
Collapse
Affiliation(s)
- Joshua D Dowell
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202-5225, USA
| | | | | |
Collapse
|
202
|
Avila G, Lee EH, Perez CF, Allen PD, Dirksen RT. FKBP12 binding to RyR1 modulates excitation-contraction coupling in mouse skeletal myotubes. J Biol Chem 2003; 278:22600-8. [PMID: 12704193 DOI: 10.1074/jbc.m205866200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel or ryanodine receptor (RyR1) binds four molecules of FKBP12, and the interaction of FKBP12 with RyR1 regulates both unitary and coupled gating of the channel. We have characterized the physiologic effects of previously identified mutations in RyR1 that disrupt FKBP12 binding (V2461G and V2461I) on excitation-contraction (EC) coupling and intracellular Ca2+ homeostasis following their expression in skeletal myotubes derived from RyR1-knockout (dyspedic) mice. Wild-type RyR1-, V246I-, and V2461G-expressing myotubes exhibited similar resting Ca2+ levels and maximal responses to caffeine (10 mm) and cyclopiazonic acid (30 microm). However, maximal voltage-gated Ca2+ release in V2461G-expressing myotubes was reduced by approximately 50% compared with that attributable to wild-type RyR1 (deltaF/Fmax = 1.6 +/- 0.2 and 3.1 +/- 0.4, respectively). Dyspedic myotubes expressing the V2461I mutant protein, that binds FKBP12.6 but not FKBP12, exhibited a comparable reduction in voltage-gated SR Ca2+ release (deltaF/Fmax = 1.0 +/- 0.1). However, voltage-gated Ca2+ release in V2461I-expressing myotubes was restored to a normal level (deltaF/Fmax = 2.9 +/- 0.6) following co-expression of FKBP12.6. None of the mutations that disrupted FKBP binding to RyR1 significantly affected RyR1-mediated enhancement of L-type Ca2+ channel activity (retrograde coupling). These data demonstrate that FKBP12 binding to RyR1 enhances the gain of skeletal muscle EC coupling.
Collapse
Affiliation(s)
- Guillermo Avila
- Department of Biochemistry, Cinvestav-IPN, AP 14-740, Mexico City, DF 07000, Mexico
| | | | | | | | | |
Collapse
|
203
|
Sasse-Klaassen S, Gerull B, Oechslin E, Jenni R, Thierfelder L. Isolated noncompaction of the left ventricular myocardium in the adult is an autosomal dominant disorder in the majority of patients. Am J Med Genet A 2003; 119A:162-7. [PMID: 12749056 DOI: 10.1002/ajmg.a.20075] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Isolated noncompaction of the ventricular myocardium (INVM, MIM 300183 and 604169) is a congenital unclassified cardiomyopathy with numerous prominent trabeculations and deep intertrabecular recesses in a hypertrophied and hypokinetic myocardium. Mutations in the G4.5 gene result in a wide spectrum of severe infantile X-linked cardiomyopathic phenotypes including Barth syndrome with dilated cardiomyopathy and INVM. Molecular genetic analysis of INVM has only been performed in pediatric patients. Although adult INVM patients show similar cardiac abnormalities, the influence of genetic factors, especially of mutations in G4.5, is unknown. We analyzed 25 adult INVM patients for the presence of mutations in the G4.5 gene and performed a pedigree analysis of probands. Mutations were not found in the coding sequence or splice sites of G4.5. Systematic analysis of relatives from seven of nine probands showed multiple affected members consistent with an autosomal dominant pattern of inheritance in the majority of cases. We conclude that INVM in the adult is an autosomal dominant disorder rarely caused by mutations in G4.5 and therefore genetically distinct from infantile X-linked cases.
Collapse
|
204
|
Mason MRJ, Lieberman AR, Latchman DS, Anderson PN. FKBP12 mRNA expression is upregulated by intrinsic CNS neurons regenerating axons into peripheral nerve grafts in the brain. Exp Neurol 2003; 181:181-9. [PMID: 12781991 DOI: 10.1016/s0014-4886(03)00038-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have examined the expression of the immunophilin FKBP12 in adult rat intrinsic CNS neurons stimulated to regenerate axons by the implantation of segments of autologous tibial nerve into the thalamus or cerebellum. After survival times of 3 days to 6 weeks, the brains were fresh-frozen. In some animals the regenerating neurons were retrogradely labelled with cholera toxin subunit B 1 day before they were killed. Sections through the thalamus or cerebellum were used for in situ hybridization with digoxygenin-labelled riboprobes for FKBP12 or immunohistochemistry to detect cholera toxin subunit B-labelled neurons. FKBP12 was constitutively expressed by many neurons, and was very strongly expressed in the hippocampus and by Purkinje cells. Regenerating neurons were found in the thalamic reticular nucleus and deep cerebellar nuclei of animals that received living grafts. Neurons in these nuclei upregulated FKBP12 mRNA; such neurons were most numerous at 3 days post grafting but were most strongly labelled at 2 weeks post grafting. Regenerating neurons identified by retrograde labelling were found to have upregulated FKBP12 mRNA. No upregulation was seen in neurons in animals that received freeze-killed grafts, which do not support axonal regeneration. We conclude that FKBP12 is a regeneration-associated gene in intrinsic CNS neurons.
Collapse
Affiliation(s)
- M R J Mason
- Department of Anatomy and Developmental Biology, University College London, Gower Street, UK.
| | | | | | | |
Collapse
|
205
|
Bommireddy R, Saxena V, Ormsby I, Yin M, Boivin GP, Babcock GF, Singh RR, Doetschman T. TGF-beta 1 regulates lymphocyte homeostasis by preventing activation and subsequent apoptosis of peripheral lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4612-22. [PMID: 12707339 DOI: 10.4049/jimmunol.170.9.4612] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-beta1 plays an important role in the maintenance of immune homeostasis and self-tolerance. To determine the mechanism by which TGF-beta1 prevents autoimmunity we have analyzed T cell activation in splenic lymphocytes from TGF-beta1-deficient mice. Here we demonstrate that unlike wild-type splenic lymphocytes, those from Tgfb1(-/-) mice are hyporesponsive to receptor-mediated mitogenic stimulation, as evidenced by diminished proliferation and reduced IL-2 production. However, they have elevated levels of IFN-gamma and eventually undergo apoptosis. Receptor-independent stimulation of Tgfb1(-/-) T cells by PMA plus ionomycin induces IL-2 production and mitogenic response, and it rescues them from anergy. Tgfb1(-/-) T cells display decreased CD3 expression; increased expression of the activation markers LFA-1, CD69, and CD122; and increased cell size, all of which indicate prior activation. Consistently, mutant CD4(+) T cells have elevated intracellular Ca(2+) levels. However, upon subsequent stimulation in vitro, increases in Ca(2+) levels are less than those in wild-type cells. This is also consistent with the anergic phenotype. Together, these results demonstrate that the ex vivo proliferative hyporesponsiveness of Tgfb1(-/-) splenic lymphocytes is due to prior in vivo activation of T cells resulting from deregulated intracellular Ca(2+) levels.
Collapse
Affiliation(s)
- Ramireddy Bommireddy
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Bommireddy R, Ormsby I, Yin M, Boivin GP, Babcock GF, Doetschman T. TGF beta 1 inhibits Ca2+-calcineurin-mediated activation in thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3645-52. [PMID: 12646629 PMCID: PMC2804068 DOI: 10.4049/jimmunol.170.7.3645] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGFbeta1 is a polypeptide growth modulatory and differentiation factor involved in many biological processes including immune homeostasis and self-tolerance. Tgfb1 knockout mice die around weaning age due to severe inflammation in most major organ systems, but the mechanism underlying this disease is not understood. In this study we demonstrate that Tgfb1(-/-) CD4(+)CD8(+) and CD4(+)CD8(-) thymocytes are hyperresponsive to receptor-mediated and receptor-independent mitogenic stimulation. A suboptimal concentration of ionomycin in the presence of PMA fully activates Tgfb1(-/-) thymocytes, whereas the inhibitors of Ca(2+) influx and calcineurin, EGTA and FK506, eliminate the hyperresponsiveness. Hence, the hypersensitivity of Tgfb1(-/-) thymocytes is due to a lowered threshold for Ca(2+)-dependent activation. Further, we demonstrate that the hypersensitivity of thymocytes results from the absence of TGFbeta1 and not from the inflammatory environment because the thymocytes are hyperresponsive in preinflammatory-stage Tgfb1(-/-) mice. Our results suggest for the first time that TGFbeta1 functions to inhibit aberrant T cell expansion by maintaining intracellular calcium concentration levels low enough to prevent a mitogenic response by Ca(2+)-independent stimulatory pathways alone. Consequently, TGFbeta1 prevents autoimmune disease through a Ca(2+) regulatory pathway that maintains the activation threshold above that inducible by self-MHC-TCR interactions.
Collapse
Affiliation(s)
- Ramireddy Bommireddy
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Ilona Ormsby
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Moying Yin
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Gregory P. Boivin
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - George F. Babcock
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Shriners Hospital for Children, Cincinnati, OH 45229
| | - Thomas Doetschman
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Address correspondence and reprint requests to Dr. Thomas Doetschman, Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524.
| |
Collapse
|
207
|
Reiken S, Lacampagne A, Zhou H, Kherani A, Lehnart SE, Ward C, Huang F, Gaburjakova M, Gaburjakova J, Rosemblit N, Warren MS, He KL, Yi GH, Wang J, Burkhoff D, Vassort G, Marks AR. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol 2003; 160:919-28. [PMID: 12629052 PMCID: PMC2173774 DOI: 10.1083/jcb.200211012] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The type 1 ryanodine receptor (RyR1) on the sarcoplasmic reticulum (SR) is the major calcium (Ca2+) release channel required for skeletal muscle excitation-contraction (EC) coupling. RyR1 function is modulated by proteins that bind to its large cytoplasmic scaffold domain, including the FK506 binding protein (FKBP12) and PKA. PKA is activated during sympathetic nervous system (SNS) stimulation. We show that PKA phosphorylation of RyR1 at Ser2843 activates the channel by releasing FKBP12. When FKB12 is bound to RyR1, it inhibits the channel by stabilizing its closed state. RyR1 in skeletal muscle from animals with heart failure (HF), a chronic hyperadrenergic state, were PKA hyperphosphorylated, depleted of FKBP12, and exhibited increased activity, suggesting that the channels are "leaky." RyR1 PKA hyperphosphorylation correlated with impaired SR Ca2+ release and early fatigue in HF skeletal muscle. These findings identify a novel mechanism that regulates RyR1 function via PKA phosphorylation in response to SNS stimulation. PKA hyperphosphorylation of RyR1 may contribute to impaired skeletal muscle function in HF, suggesting that a generalized EC coupling myopathy may play a role in HF.
Collapse
Affiliation(s)
- Steven Reiken
- Center for Molecular Cardiology, Box 65, Columbia University College of Physicians and Surgeons, Room 9-401, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
George CH, Sorathia R, Bertrand BMA, Lai FA. In situ modulation of the human cardiac ryanodine receptor (hRyR2) by FKBP12.6. Biochem J 2003; 370:579-89. [PMID: 12443530 PMCID: PMC1223191 DOI: 10.1042/bj20021433] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Revised: 11/06/2002] [Accepted: 11/21/2002] [Indexed: 11/17/2022]
Abstract
The ryanodine receptor complex (RyR), a large oligomeric assembly that functions as a Ca(2+)-release channel in the sarcoplasmic reticulum (SR)/endoplasmic reticulum (ER), comprises four RyR subunits and four FK506-binding proteins (FKBP). The precise mode of interaction and modulation of the cardiac RyR (RyR2) channel by FKBP12/FKBP12.6 remains to be fully defined. We have generated a series of Chinese-hamster ovary (CHO) cell lines stably expressing discrete levels of recombinant human RyR2 (hRyR2) (CHO(hRyR2)). Confocal microscopy of CHO(hRyR2) cells co-expressing either FKBP12 or FKBP12.6 demonstrated that FKBP12.6 was sequestered from the cytoplasm to ER membranes as the cellular levels of hRyR2 increased. There was negligible hRyR2-induced subcellular redistribution of FKBP12. The magnitude of Ca(2+) release in CHO(hRyR2) cells in response to stimulation by 4-chloro- m -cresol was in direct proportion to the expression levels of hRyR2. However, in CHO(hRyR2) cells co-expressing FKBP12.6, Ca(2+) release triggered by the addition of 4-chloro- m -cresol was markedly decreased. In contrast, co-expression of FKBP12 did not affect agonist-induced Ca(2+) release in CHO(hRyR2) cells. Resting cytoplasmic [Ca(2+)] in CHO(hRyR2) remained unaltered after co-expression of FKBP12 or FKBP12.6, but estimation of the ER Ca(2+) load status showed that co-expression of FKBP12.6, but not FKBP12, promoted superfilling of the ER Ca(2+) store which could not be released by RyR2 after agonist activation. The effects of FKBP12.6 on hRyR2-mediated intracellular Ca(2+) handling could be antagonized using rapamycin (5 microM). These results suggest that FKBP12.6 associates with hRyR2 in situ to modulate precisely the functionality of hRyR2 Ca(2+)-release channel.
Collapse
Affiliation(s)
- Christopher H George
- Department of Cardiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | |
Collapse
|
209
|
Masumiya H, Wang R, Zhang J, Xiao B, Chen SRW. Localization of the 12.6-kDa FK506-binding protein (FKBP12.6) binding site to the NH2-terminal domain of the cardiac Ca2+ release channel (ryanodine receptor). J Biol Chem 2003; 278:3786-92. [PMID: 12446682 DOI: 10.1074/jbc.m210962200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 12.6-kDa FK506-binding protein (FKBP12.6) interacts with the cardiac ryanodine receptor (RyR2) and modulates its channel function. However, the molecular basis of FKBP12.6-RyR2 interaction is poorly understood. To investigate the significance of the isoleucine-proline (residues 2427-2428) dipeptide epitope, which is thought to form an essential part of the FKBP12.6 binding site in RyR2, we generated single and double mutants, P2428Q, I2427E/P2428A, and P2428A/L2429E, expressed them in HEK293 cells, and assessed their ability to bind GST-FKBP12.6. None of these mutations abolished GST-FKBP12.6 binding, indicating that this isoleucine-proline motif is unlikely to form the core of the FKBP12.6 binding site in RyR2. To systematically define the molecular determinants of FKBP12.6 binding, we constructed a series of internal and NH(2)- and COOH-terminal deletion mutants of RyR2 and examined the effect of these deletions on GST-FKBP12.6 binding. These deletion analyses revealed that the first 305 NH(2)-terminal residues and COOH-terminal residues 1937-4967 are not essential for GST-FKBP12.6 binding, whereas multiple sequences within a large region between residues 305 and 1937 are required for GST-FKBP12.6 interaction. Furthermore, an NH(2)-terminal fragment containing the first 1937 residues is sufficient for GST-FKBP12.6 binding. Co-expression of overlapping NH(2) and COOH-terminal fragments covering the entire sequence of RyR2 produced functional channels but did not restore GST-FKBP12.6 binding. These data suggest that FKBP12.6 binding is likely to be conformationdependent. Binding of FKBP12.6 to the NH(2)-terminal domain may play a role in stabilizing the conformation of this region.
Collapse
Affiliation(s)
- Haruko Masumiya
- Cardiovascular Research Group, Department of Physiology & Biophysics, University of Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
210
|
Rigopoulos A, Rizos IK, Aggeli C, Kloufetos P, Papacharalampous X, Stefanadis C, Toutouzas P. Isolated left ventricular noncompaction: an unclassified cardiomyopathy with severe prognosis in adults. Cardiology 2003; 98:25-32. [PMID: 12373044 DOI: 10.1159/000064677] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Noncompaction of the ventricular myocardium is a rare congenital cardiomyopathy, which appears to represent an arrest in intrauterine endomyocardial morphogenesis. It is diagnosed both in children and adults. Its common presentation involves heart failure symptoms, ventricular tachyarrhythmias and thromboembolic events, but the age of onset varies widely. The diagnosis is made by the combined appearance of numerous, excessively prominent trabeculations and multiple deep intertrabecular recesses perfused from the ventricular cavity, commonly involving the apical and midventricular segments of the left ventricle. Although the peculiar echocardiographic picture may possibly lead to the correct diagnosis, this condition may be often misdiagnosed or unrecognized since it is not widely known.
Collapse
|
211
|
Reiken S, Gaburjakova M, Guatimosim S, Gomez AM, D'Armiento J, Burkhoff D, Wang J, Vassort G, Lederer WJ, Marks AR. Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J Biol Chem 2003; 278:444-53. [PMID: 12401811 DOI: 10.1074/jbc.m207028200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac ryanodine receptor/calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) comprises a macromolecular complex that includes a kinase and two phosphatases that are bound to the channel via targeting proteins. We previously found that the RyR2 is protein kinase A (PKA)-hyperphosphorylated in end-stage human heart failure. Because heart failure is a progressive disease that often evolves from hypertrophy, we analyzed the RyR2 macromolecular complex in several animal models of cardiomyopathy that lead to heart failure, including hypertrophy, and at different stages of disease progression. We now show that RyR2 is PKA-hyperphosphorylated in diverse models of heart failure and that the degree of RyR2 PKA phosphorylation correlates with the degree of cardiac dysfunction. Interestingly, we show that RyR2 PKA hyperphosphorylation can be lost during perfusion of isolated hearts due to the activity of the endogenous phosphatases in the RyR2 macromolecular complex. Moreover, infusion of isoproterenol resulted in PKA phosphorylation of RyR2 in rat, indicating that systemic catecholamines can activate phosphorylation of RyR2 in vivo. These studies extend our previous analyses of the RyR2 macromolecular complex, show that both the kinase and phosphatase activities in the macromolecular complex are regulated physiologically in vivo, and suggest that RyR2 PKA hyperphosphorylation is likely a general feature of heart failure.
Collapse
Affiliation(s)
- Steven Reiken
- Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Yazawa S, Obata K, Iio A, Koide M, Yokota M, Sasaki SI, Kagami H, Ono T. Heart-selective expression of the chicken FK506-binding protein (FKBP) 12.6 gene during embryonic development. Dev Dyn 2003; 226:33-41. [PMID: 12508222 DOI: 10.1002/dvdy.10213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
FKBP12.6, a member of the family of FK506-binding proteins, selectively associates with the cardiac isoform of the ryanodine receptor and thereby stabilizes this Ca(2+) release channel. A chicken FKBP12.6 (chFKBP12.6) cDNA was cloned and shown to encode a protein of 108 amino acids. The deduced amino acid sequence of chFKBP12.6 is 91-92% identical to those of mammalian FKBP12.6 proteins. Northern blot analysis revealed that chFKBP12.6 mRNA is largely restricted to the heart during embryonic development and that the abundance of this mRNA in the heart decreases, and it becomes restricted to the atrium during cardiogenesis. In situ hybridization revealed that chFKBP12.6 mRNA is localized to the precardiac mesoderm before formation of the primitive heart tube. Expression of the chFKBP12.6 gene was initially apparent throughout the developing multichambered heart but became restricted to the atria before hatching. Reverse transcription and polymerase chain reaction analysis demonstrated that chFKBP12.6 mRNA is present in the embryo from early gastrulation and is most abundant immediately after the onset of the heartbeat. These observations suggest that the chFKBP12.6 gene is expressed before heart morphogenesis to play a role in excitation-contraction coupling in cardiomyocytes and that the function of the encoded protein becomes increasingly restricted to the atrium during embryonic development.
Collapse
Affiliation(s)
- Shigenobu Yazawa
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Modulation of Calcium Homeostasis by the Endoplasmic Reticulum in Health and Disease. CALRETICULIN 2003. [DOI: 10.1007/978-1-4419-9258-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
214
|
Chen R, Tsuji T, Ichida F, Bowles KR, Yu X, Watanabe S, Hirono K, Tsubata S, Hamamichi Y, Ohta J, Imai Y, Bowles NE, Miyawaki T, Towbin JA. Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol Genet Metab 2002; 77:319-25. [PMID: 12468278 DOI: 10.1016/s1096-7192(02)00195-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutations in the gene G4.5, originally associated with Barth syndrome, have been reported to result in a wide spectrum of severe infantile X-linked cardiomyopathies. The purpose of this study was to investigate patients with isolated left ventricular noncompaction (LVNC) for disease-causing mutations in G4.5. In 27 patients including 10 families with isolated LVNC, mutation analysis of G4.5 was performed using single-strand DNA conformation polymorphism (SSCP) analysis and DNA sequencing. A novel splice acceptor site mutation of intron 8 of G4.5 was identified in a family with severe infantile X-linked LVNC without the usual findings of Barth syndrome. This mutation results in deletion of exon 9 from the mRNA, and is predicted to significantly disrupt the protein product. Genotype-phenotype correlation of G4.5 mutations in all 38 cases reported in the literature to date revealed that there was no correlation between location or type of mutation and either cardiac phenotype or disease severity. We suggest that males presenting with cardiomyopathy, particularly during infancy, even in the absence of the typical signs of Barth syndrome, should be evaluated for mutations in G4.5.
Collapse
Affiliation(s)
- Rui Chen
- Department of Pediatrics, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Abstract
Members of the TGF-beta superfamily, which includes TGF-betas, growth differentiation factors, bone morphogenetic proteins, activins, inhibins, and glial cell line-derived neurotrophic factor, are synthesized as prepropeptide precursors and then processed and secreted as homodimers or heterodimers. Most ligands of the family signal through transmembrane serine/threonine kinase receptors and SMAD proteins to regulate cellular functions. Many studies have reported the characterization of knockout and knock-in transgenic mice as well as humans or other mammals with naturally occurring genetic mutations in superfamily members or their regulatory proteins. These investigations have revealed that TGF-beta superfamily ligands, receptors, SMADs, and upstream and downstream regulators function in diverse developmental and physiological pathways. This review attempts to collate and integrate the extensive body of in vivo mammalian studies produced over the last decade.
Collapse
Affiliation(s)
- Hua Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
216
|
Gupta R, Mould RM, He Z, Luan S. A chloroplast FKBP interacts with and affects the accumulation of Rieske subunit of cytochrome bf complex. Proc Natl Acad Sci U S A 2002; 99:15806-11. [PMID: 12424338 PMCID: PMC137797 DOI: 10.1073/pnas.222550399] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunophilins are intracellular receptors of the immunosuppressants cyclosporin A, FK506, and rapamycin. Although all immunophilins possess peptidyl-prolyl isomerase activity and are identified from a wide range of organisms, little is known about their cellular functions. We report the characterization and functional analysis of an FK506 and rapamycin-binding protein (AtFKBP13) from Arabidopsis. The AtFKBP13 protein is synthesized as a precursor that is imported into chloroplasts and processed to the mature form located in the thylakoid lumen, as shown by chloroplast import assays and Western blot analysis. Experiments show that AtFKBP13 is translocated across the thylakoid membrane by the DeltapH-dependent pathway. Yeast two-hybrid screening identified Rieske FeS protein, a subunit of the cytochrome bf complex in the photosynthetic electron transport chain, as an interacting partner for AtFKBP13. Both yeast two-hybrid and in vitro protein-protein interaction assays showed that the precursor, but not the mature form, of AtFKBP13 interacted with Rieske protein, suggesting that interaction between the two proteins occurs along the import pathway. When AtFKBP13 expression was suppressed by RNA interference method, the level of Rieske protein was significantly increased in the transgenic plants.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
217
|
Nadif Kasri N, Bultynck G, Sienaert I, Callewaert G, Erneux C, Missiaen L, Parys JB, De Smedt H. The role of calmodulin for inositol 1,4,5-trisphosphate receptor function. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:19-31. [PMID: 12445455 DOI: 10.1016/s1570-9639(02)00440-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intracellular calcium release is a fundamental signaling mechanism in all eukaryotic cells. The ryanodine receptor (RyR) and inositol 1,4,5-trisphosphate receptor (IP(3)R) are intracellular calcium release channels. Both channels can be regulated by calcium and calmodulin (CaM). In this review we will first discuss the role of calcium as an activator and inactivator of the IP(3)R, concluding that calcium is the most important regulator of the IP(3)R. In the second part we will further focus on the role of CaM as modulator of the IP(3)R, using results of the voltage-dependent Ca(2+) channels and the RyR as reference material. Here we conclude that despite the fact that different CaM-binding sites have been characterized, their function for the IP(3)R remains elusive. In the third part we will discuss the possible functional role of CaM in IP(3)-induced Ca(2+) release (IICR) by direct and indirect mechanisms. Special attention will be given to the Ca(2+)-binding proteins (CaBPs) that were shown to activate the IP(3)R in the absence of IP(3).
Collapse
Affiliation(s)
- Nael Nadif Kasri
- Laboratorium voor Fysiologie, K.U.Leuven Campus Gasthuisberg O/N, Herestraat 49, B-3000, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Kamphausen T, Fanghänel J, Neumann D, Schulz B, Rahfeld JU. Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:263-276. [PMID: 12410806 DOI: 10.1046/j.1365-313x.2002.01420.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The twisted dwarf1 (twd1) mutant from Arabidopsis thaliana was identified in a screen for plant architecture mutants. The TWD1 gene encodes a 42 kDa FK506-binding protein (AtFKBP42) that possesses similarity to multidomain PPIases such as mammalian FKBP51 and FKBP52, which are known to be components of mammalian steroid hormone receptor complexes. We report here for the first time the stoichiometry and dissociation constant of a protein complex from Arabidopsis that consists of AtHsp90 and AtFKBP42. Recombinant AtFKBP42 prevents aggregation of citrate synthase in almost equimolar concentrations, and can be cross-linked to calmodulin. In comparison to one active and one inactive FKBP domain in FKBP52, AtFKBP42 lacks the PPIase active FKBP domain. While FKBP52 is found in the cytosol and translocates to the nucleus, AtFKBP42 was predicted to be membrane-localized, as shown by electron microscopy.
Collapse
Affiliation(s)
- Thilo Kamphausen
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, Germany
| | | | | | | | | |
Collapse
|
219
|
Abstract
The family of ryanodine receptor (RyR) genes encodes three highly related Ca(2+)-release channels: RyR1, RyR2 and RyR3. RyRs are known as the Ca(2+)-release channels that participate to the mechanism of excitation-contraction coupling in striated muscles, but they are also expressed in many other cell types. Actually, in several cells two or three RyR isoforms can be co-expressed and interactive feedbacks among them may be important for generation of intracellular Ca(2+) signals and regulation of specific cellular functions. Important developments have been obtained in understanding the biochemical complexity underlying the process of Ca(2+) release through RyRs. The 3-D structure of these large molecules has been obtained and some regulatory regions have been mapped within these 3-D reconstructions. Recent studies have clarified the role of protein kinases and phosphatases that, by physically interacting with RyRs, appear to play a role in the regulation of these Ca(2+)-release channels. These and other recent advancements in understanding RyR biology will be the object of this review.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Neuroscience, University of Siena, via Aldo Moro 5, Siena, Italy
| | | |
Collapse
|
220
|
Abstract
The ryanodine receptors (RyRs) are a family of Ca2+ release channels found on intracellular Ca2+ storage/release organelles. The RyR channels are ubiquitously expressed in many types of cells and participate in a variety of important Ca2+ signaling phenomena (neurotransmission, secretion, etc.). In striated muscle, the RyR channels represent the primary pathway for Ca2+ release during the excitation-contraction coupling process. In general, the signals that activate the RyR channels are known (e.g., sarcolemmal Ca2+ influx or depolarization), but the specific mechanisms involved are still being debated. The signals that modulate and/or turn off the RyR channels remain ambiguous and the mechanisms involved unclear. Over the last decade, studies of RyR-mediated Ca2+ release have taken many forms and have steadily advanced our knowledge. This robust field, however, is not without controversial ideas and contradictory results. Controversies surrounding the complex Ca2+ regulation of single RyR channels receive particular attention here. In addition, a large body of information is synthesized into a focused perspective of single RyR channel function. The present status of the single RyR channel field and its likely future directions are also discussed.
Collapse
Affiliation(s)
- Michael Fill
- Department of Physiology, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
221
|
Affiliation(s)
- F X Schmid
- Biochemisches Laboratorium, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
222
|
Breiman A, Camus I. The involvement of mammalian and plant FK506-binding proteins (FKBPs) in development. Transgenic Res 2002; 11:321-35. [PMID: 12212836 DOI: 10.1023/a:1016331814412] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The FK506-binding proteins (FKBPs) are peptidyl prolyl cis/trans isomerases and the information gathered in the last 10 years reveals their involvement in diverse biological systems affecting the function and structure of target proteins. Members of the FKBP family were shown to be growth-regulated and participate in signal transduction. In this review we have chosen to focus on a few examples of the mammalian and plant systems in which members of the FKBP family have been demonstrated to affect the function of proteins or development. The technologies that enable production of knockout mice, Arabidopsis mutants and overexpression in transgenic organisms have revealed the contribution of FKBP to development in higher eukaryotes. It appears that members of the FKBP family have conserved some of their basic functions in the animal and plant kingdom, whereas other functions became unique. Studies that will take advantage of the full genome sequence available for Arabidopsis and the human genome, DNA chip technologies and the use of transgenic complementation system will contribute to the elucidation of the molecular mechanism and biological function of FKBPs.
Collapse
Affiliation(s)
- Adina Breiman
- Department of Plant Science, Tel Aviv University, Israel.
| | | |
Collapse
|
223
|
Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A 2002; 99:9213-8. [PMID: 12084817 PMCID: PMC123120 DOI: 10.1073/pnas.142166599] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nerve activity controls fiber size and fiber type in skeletal muscle, but the underlying molecular mechanisms remain largely unknown. We have previously shown that Ras-mitogen-activated protein kinase and calcineurin control fiber type but not fiber size in regenerating rat skeletal muscle. Here we report that constitutively active protein kinase B (PKB), also known as Akt, increases fiber size and prevents denervation atrophy in regenerating and adult rat muscles but does not affect fiber type profile. The coexistence of hypertrophic muscle fibers overexpressing activated PKB with normal-size untransfected fibers within the same muscle points to a cell-autonomous control of muscle growth by PKB. The physiological role of this pathway is confirmed by the finding that PKB kinase activity and phosphorylation status are significantly increased in innervated compared with denervated regenerating muscles in parallel with muscle growth. Muscle fiber hypertrophy induced by activated PKB and by a Ras double mutant (RasV12C40) that activates selectively the phosphoinositide 3-kinase-PKB pathway is completely blocked by rapamycin, showing that the mammalian target of rapamycin kinase is the major downstream effector of this pathway in the control of muscle fiber size. On the other hand, nerve activity-dependent growth of regenerating muscle is only partially inhibited by dominant negative PKB and rapamycin, suggesting that other nerve-dependent signaling pathways are involved in muscle growth. The present results support the notion that fiber size and fiber type are regulated by nerve activity through different mechanisms.
Collapse
Affiliation(s)
- Giorgia Pallafacchina
- Department of Biomedical Sciences, Consiglio Nazionale delle Ricerche Center of Muscle Biology and Physiopathology, University of Padova, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
224
|
Fujiyama S, Yanagida M, Hayano T, Miura Y, Isobe T, Fujimori F, Uchida T, Takahashi N. Isolation and proteomic characterization of human Parvulin-associating preribosomal ribonucleoprotein complexes. J Biol Chem 2002; 277:23773-80. [PMID: 11960984 DOI: 10.1074/jbc.m201181200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human parvulin (hParvulin; Par14/EPVH) belongs to the third family of peptidylprolyl cis-trans isomerases that exhibit an enzymatic activity of interconverting the cis-trans conformation of the prolyl peptide bond, and shows sequence similarity to the regulator enzyme for cell cycle transitions, human Pin1. However, the cellular function of hParvulin is entirely unknown. Here, we demonstrate that hParvulin associates with the preribosomal ribonucleoprotein (pre-rRNP) complexes, which contain preribosomal RNAs, at least 26 ribosomal proteins, and 26 trans-acting factors involved in rRNA processing and assembly at an early stage of ribosome biogenesis. Since an amino-terminal domain of hParvulin, which is proposed to be a putative DNA-binding domain, was alone sufficient to associate in principle with the pre-rRNP complexes, the association is probably through protein-RNA interaction. In addition, hParvulin co-precipitated at least 10 proteins not previously known to be involved in ribosome biogenesis. Coincidentally, most of these proteins are implicated in regulation of microtubule assembly or nucleolar reformation during the mitotic phase of the cell. Thus, these results, coupled with the preferential nuclear localization of hParvulin, suggest that hParvulin may be involved in ribosome biogenesis and/or nucleolar re-assembly of mammalian cells.
Collapse
Affiliation(s)
- Sally Fujiyama
- Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Xu X, Su B, Barndt RJ, Chen H, Xin H, Yan G, Chen L, Cheng D, Heitman J, Zhuang Y, Fleischer S, Shou W. FKBP12 is the only FK506 binding protein mediating T-cell inhibition by the immunosuppressant FK506. Transplantation 2002; 73:1835-8. [PMID: 12085010 DOI: 10.1097/00007890-200206150-00023] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND FK506-binding proteins (FKBP) are immunophilins that interact with the immunosuppressive drugs FK506 and rapamycin. Several FKBP family members such as FKBP12, FKBP12.6, and FKBP51 are expressed in T cells. It has been speculated that these FKBPs are possibly redundant in the immunosuppressant-induced T-cell inactivation. To determine the pharmacological relevance of multiple FKBP members in the immunosuppressant-induced T-cell inactivation, we have investigated the physiological responses of FKBP12-deficient and FKBP12.6-deficient mutant T cells to the immunosuppressive agent FK506. METHODS FKBP12-deficient and FKBP12.6-deficient T cells were isolated from genetically engineered FKBP12-deficient and FKBP12.6-deficient mice, respectively. T-cell growth inhibitory assay was used to assess their responses to immunosuppressant FK506 treatments. RESULTS We found that growth inhibition induced by FK506 is abolished in FKBP12-deficient cells but not in FKBP12.6-deficient cells. CONCLUSIONS FKBP12 is the only FKBP family member that plays a key role in immunosuppressant-mediated immunosuppression.
Collapse
Affiliation(s)
- Xuehong Xu
- Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
OBATA K, KOIDE M, NAGATA K, IIO A, YAZAWA S, ONO T, SASAKI SI, YAMADA Y, TUAN RS, YOKOTA M. Effects of FK506 and rapamycin on formation of the neural tube in chick embryos. Anim Sci J 2002. [DOI: 10.1046/j.1344-3941.2002.00032.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
227
|
Abstract
Although rapid progress is being made in many areas of molecular cardiology, issues pertaining to the origins of heart-forming cells, the mechanisms responsible for cardiogenic induction, and the pathways that regulate cardiomyocyte proliferation during embryonic and adult life remain unanswered. In the present study, we review approaches and studies that have shed some light on cardiomyocyte cell cycle regulation. For reference, an initial description of cardiomyogenic induction and morphogenesis is provided, which is followed by a summary of published cell cycle analyses during these stages of cardiac ontology. A review of studies examining cardiomyocyte cell cycle analysis and de novo cardiomyogenic induction in the adult heart is then presented. Finally, studies in which cardiomyocyte cell cycle activity was experimentally manipulated in vitro and in vivo are reviewed. It is hoped that this compilation will serve to stimulate thought and experimentation in this intriguing area of cardiomyocyte cell biology.
Collapse
Affiliation(s)
- Kishore B S Pasumarthi
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
228
|
Johnson JA, Waller J. Transforming growth factor beta-1 attenuates endothelin-1-induced functions in neonatal cardiac myocytes. Life Sci 2002; 71:99-113. [PMID: 12020752 DOI: 10.1016/s0024-3205(02)01624-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the present study we characterized a "crosstalk" mechanism between transforming growth factor beta-1 (TGF beta-1) and endothelin-1 (ET1) signaling pathways in neonatal cardiac myocytes. A 5 minute pretreatment with 1 ng/ml concentrations of TGF beta-1 attenuated ET1-induced negative chronotropic effects and translocation of the alpha, delta and varepsilonPKC isozymes to the particulate cell fraction. We found no effect of TGF beta-1 on responses induced by the P(2) purinergic agonist ATP or phorbol ester. Treatment of cardiac myocytes with acidic fibroblast growth factor (aFGF) did not alter ET1- or ATP-mediated effects on contraction rate or translocation of PKC isozymes to the particulate fraction. Our studies suggest that TGF beta-1 may act as a negative modulator of ET1- but not ATP- or phorbol ester-induced PKC isozyme signaling events in neonatal cardiac myocytes. A better understanding of the complex ET1 and TGF beta-1 signaling mechanisms in neonatal heart cells should enhance our knowledge regarding the interplay between these pathways.
Collapse
Affiliation(s)
- John A Johnson
- The Department of Pharmacology and Toxicology, School of Medicine, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2300, USA.
| | | |
Collapse
|
229
|
Tsushima RG, Kelly JE, Wasserstrom JA. Subconductance activity induced by quinidine and quinidinium in purified cardiac sarcoplasmic reticulum calcium release channels. J Pharmacol Exp Ther 2002; 301:729-37. [PMID: 11961079 DOI: 10.1124/jpet.301.2.729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the effects of quinidine, quinine, and the quaternary quinidine derivative, quinidinium, on the conductance and activity of purified cardiac sarcoplasmic reticulum calcium release channels/ryanodine receptors (RyR) incorporated into planar lipid bilayers. Quinidine (50-500 microM) reduced the single-channel open probability in a voltage- and concentration-dependent manner. Reduction of channel activity was evident only at positive holding potentials where current flow is from the cytoplasmic to luminal side of the channel and when the drug was present only on the cytoplasmic face of the channel. A more pronounced effect was the appearance of a subconductance state at positive potentials. Single channel recordings and dose-response experiments revealed that at least two quinidine molecules were involved in reduction of the RyR activity. The permanently charged quinidinium compound produced nearly identical effects as quinidine when present only on cytoplasmic side of the channel, suggesting the positive-charged form of quinidine is responsible for the effects on the channel. There was no stereospecificity in the effects of quinidine because the levoisomer, 100 microM quinine, produced a similar subconductance activity of the channel. Ryanodine modification of the channel prevented subconductance activity. These findings suggest that the quinidine-induced subconductance activity may be the result of a partial occlusion of the channel pore interfering with ion conduction. Modification of the channel by ryanodine alters quinidine binding to the channel through a conformational change in protein structure.
Collapse
Affiliation(s)
- Robert G Tsushima
- Department of Medicine (Cardiology) and Feinberg Cardiovascular Research Institute, Northwestern University Medical School, Chicago, Illinois, USA.
| | | | | |
Collapse
|
230
|
Oba T, Murayama T, Ogawa Y. Redox states of type 1 ryanodine receptor alter Ca(2+) release channel response to modulators. Am J Physiol Cell Physiol 2002; 282:C684-92. [PMID: 11880257 DOI: 10.1152/ajpcell.01273.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type 1 ryanodine receptor (RyR1) from rabbit skeletal muscle displayed two distinct degrees of response to cytoplasmic Ca(2+) [high- and low-open probability (P(o)) channels]. Here, we examined the effects of adenine nucleotides and caffeine on these channels and their modulations by sulfhydryl reagents. High-P(o) channels showed biphasic Ca(2+) dependence and were activated by adenine nucleotides and caffeine. Unexpectedly, low-P(o) channels did not respond to either modulator. The addition of a reducing reagent, dithiothreitol, to the cis side converted the high-P(o) channel to a state similar to that of the low-P(o) channel. Treatment with p-chloromercuriphenylsulfonic acid (pCMPS) transformed low-P(o) channels to a high-P(o) channel-like state with stimulation by beta,gamma-methylene-ATP and caffeine. In experiments under redox control using glutathione buffers, shift of the cis potential toward the oxidative state activated the low-P(o) channel, similar to that of the high-P(o) or the pCMPS-treated channel, whereas reductive changes inactivated the high-P(o) channel. Changes in trans redox potential, in contrast, did not affect channel activity of either channel. In all experiments, channels with higher P(o) were stimulated to a great extent by modulators, but ones with lower P(o) were unresponsive. These results suggest that redox states of critical sulfhydryls located on the cytoplasmic side of the RyR1 may alter both gating properties of the channel and responsiveness to channel modulators.
Collapse
Affiliation(s)
- Toshiharu Oba
- Department of Physiology, Nagoya City University Medical School, Mizuho-ku, Nagoya 467-8601, Japan.
| | | | | |
Collapse
|
231
|
Lindner M, Brandt MC, Sauer H, Hescheler J, Böhle T, Beuckelmann DJ. Calcium sparks in human ventricular cardiomyocytes from patients with terminal heart failure. Cell Calcium 2002; 31:175-82. [PMID: 12027382 DOI: 10.1054/ceca.2002.0272] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiomyocytes from terminally failing hearts display significant abnormalities in e-c-coupling, contractility and intracellular Ca(2+) handling. This study is the first to demonstrate the influence of end-stage heart failure on specific properties of Ca(2+) sparks in human ventricular cardiomyocytes. We investigated the frequency and characteristics of spontaneously arising Ca(2+) sparks in single isolated human myocytes from terminally failing (HF) and non-failing (NF) control myocardium by using the Ca(2+) indicator Fluo-3. The Ca(2+) sparks were recorded by line-scan images along the longitudinal axis of the myocytes at a frequency of 250Hz. After loading the sarcoplasmic reticulum (SR) with Ca(2+) by repetitive field stimulation (10 pulses at 1Hz) the frequency of the Ca(2+) sparks immediately after stimulation (t = 0s) was reduced significantly in HF compared to NF (4.15 +/- 0.42 for NF vs. 2.81 +/- 0.20 for HF sparks s(-1), P = 0.05). This difference was present constantly in line-scan recordings up to 15s duration (t = 15s: 2.75 +/- 0.65 for NF vs. 1.36 +/- 0.34 for HF sparks s(-1), P = 0.05). The relative amplitude (F/F(0)) of Ca(2+) sparks was also significantly lower in HF cardiomyocytes (1.33 +/- 0.015 NF vs. 1.19 +/- 0.003 HF, t = 0s) and during subsequent recordings of 15s. Significant differences between HF and NF were also present in calculations of specific spark properties. The time to peak was estimated at 25.75 +/-0.88ms in HF and 18.68 +/- 0.45ms in NF cardiomyocytes (P = 0.05). Half-time of decay was 66.48 +/- 1.89ms (HF) vs. 44.15 +/- 1.65ms (NF, P < 0.05), and the full width at half-maximum (FWHM) was 3.99 +/- 0.06 microm (HF) vs. 3.5 +/- 0.07 microm (NF, P < 0.05). These data support the hypothesis that even in the absence of cardiac disease, Ca(2+) sparks from human cardiomyocytes differ from previous results of animal studies with respect to the time-to-peak, half-time of decay and FWHM. The role of elevated external Ca(2+) in HF was studied by recording Ca(2+) sparks in HF cardiomyocytes with 10mmol external Ca(2+) concentration. Under these conditions, the average spark amplitude was increased from 1.19 +/- 0.003 (F/F(0), 2mmol Ca(2+)) to 1.26 +/- 0.01 (F/F(0), 10mmol Ca(2+)). We conclude that human heart failure causes distinct changes in Ca(2+) spark frequency and characteristics comparable to results established in animal models of heart failure. A reduced Ca(2+) load of the SR alone is unlikely to account for the observed differences between HF and NF and additional alterations in intracellular Ca(2+) release mechanisms must be postulated.
Collapse
Affiliation(s)
- M Lindner
- Department of Medicine III, University of Cologne, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
232
|
|
233
|
Xin HB, Senbonmatsu T, Cheng DS, Wang YX, Copello JA, Ji GJ, Collier ML, Deng KY, Jeyakumar LH, Magnuson MA, Inagami T, Kotlikoff MI, Fleischer S. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature 2002; 416:334-8. [PMID: 11907581 DOI: 10.1038/416334a] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
FK506 binding proteins 12 and 12.6 (FKBP12 and FKBP12.6) are intracellular receptors for the immunosuppressant drug FK506 (ref. 1). The skeletal muscle ryanodine receptor (RyR1) is isolated as a hetero-oligomer with FKBP12 (ref. 2), whereas the cardiac ryanodine receptor (RyR2) more selectively associates with FKBP12.6 (refs 3, 4, 5). FKBP12 modulates Ca2+ release from the sarcoplasmic reticulum in skeletal muscle and developmental cardiac defects have been reported in FKBP12-deficient mice, but the role of FKBP12.6 in cardiac excitation-contraction coupling remains unclear. Here we show that disruption of the FKBP12.6 gene in mice results in cardiac hypertrophy in male mice, but not in females. Female hearts are normal, despite the fact that male and female knockout mice display similar dysregulation of Ca2+ release, seen as increases in the amplitude and duration of Ca2+ sparks and calcium-induced calcium release gain. Female FKBP12.6-null mice treated with tamoxifen, an oestrogen receptor antagonist, develop cardiac hypertrophy similar to that of male mice. We conclude that FKBP12.6 modulates cardiac excitation-contraction coupling and that oestrogen plays a protective role in the hypertrophic response of the heart to Ca2+ dysregulation.
Collapse
Affiliation(s)
- Hong-Bo Xin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Genetic forms of human dilated cardiomyopathy (DCM) are briefly discussed, and a variety of animal models of genetic DCM are presented, some of which are caused by the gene mutations that also cause DCM in humans. The forms of DCM related to mutations or deletion of genes coding for extrasarcomeric or intrasarcomeric proteins, as well as to overexpression or knockout of genes in the beta-adrenergic signaling pathway, are included. Finally, novel approaches to treatment in experimental animal models are discussed, including double transgenesis and newer recombination methods, as well as in vivo somatic gene transfer which, based on initial experiments in animals, seems likely to find eventual application in human cardiac failure.
Collapse
Affiliation(s)
- John Ross
- Department of Medicine, Institute of Molecular Medicine, University of California, San Diego 92093-0613, USA.
| |
Collapse
|
235
|
Bueno OF, van Rooij E, Molkentin JD, Doevendans PA, De Windt LJ. Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Cardiovasc Res 2002; 53:806-21. [PMID: 11922891 DOI: 10.1016/s0008-6363(01)00493-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the past 2 years, an emerging body of research has focused on a novel transcriptional pathway involved in the cardiac hypertrophic response. Ever since its introduction, the significance of the calcineurin-NFAT module has been subject of controversy. The aim of this review is to provide both an update on the current status of knowledge and discuss the remaining issues regarding the involvement of calcineurin in hypertrophic heart disease. To this end, the molecular biology of calcineurin and its direct downstream transcriptional effector NFAT are discussed in the context of the genetic studies that established the existence of this signaling paradigm in the heart. The pharmacological mode-of-action and specificity of the calcineurin inhibitors cyclosporine A (CsA) and FK506 is discussed, as well as their inherent limitations to study the biology of calcineurin. A critical interpretation is given on studies aimed at analyzing the role of calcineurin in cardiac hypertrophy using systemic immunosuppression. To eliminate the controversy surrounding CsA/FK506 usage, recent studies employed genetic inhibitory strategies for calcineurin, which confirm the pivotal role for this signal transduction pathway in the ventricular hypertrophy response. Finally, unresolved issues concerning the role of calcineurin in cardiac pathobiology are discussed based upon the information available, including its controversial role in cardiomyocyte viability, the reciprocal relationship between myocyte Ca(2+) homeostasis and calcineurin activity and the relative importance of calcineurin in relation to other hypertrophic signaling cascades.
Collapse
Affiliation(s)
- Orlando F Bueno
- Division of Molecular Cardiovascular Biology, Department of Pediatrics, Children's Hospital Medical Center, Cincinnati OH, USA
| | | | | | | | | |
Collapse
|
236
|
Abstract
Cardiomyopathies are disorders affecting heart muscle that usually result in inadequate pumping of the heart. They are the most common cause of heart failure and each year kill more than 10,000 people in the United States. In recent years, there have been breakthroughs in understanding the molecular mechanisms involved in this group of conditions, with knowledge of the genetic basis for cardiomyopathies perhaps seeing the largest advance, enabling clinicians to devise improved diagnostic strategies and preparing the stage for new therapies.
Collapse
Affiliation(s)
- J A Towbin
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
237
|
O'Reilly FM, Robert M, Jona I, Szegedi C, Albrieux M, Geib S, De Waard M, Villaz M, Ronjat M. FKBP12 modulation of the binding of the skeletal ryanodine receptor onto the II-III loop of the dihydropyridine receptor. Biophys J 2002; 82:145-55. [PMID: 11751303 PMCID: PMC1302456 DOI: 10.1016/s0006-3495(02)75381-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In skeletal muscle, excitation-contraction coupling involves a functional interaction between the ryanodine receptor (RyR) and the dihydropyridine receptor (DHPR). The domain corresponding to Thr(671)-Leu(690) of the II-III loop of the skeletal DHPR alpha(1)-subunit is able to regulate RyR properties and calcium release from sarcoplasmic reticulum, whereas the domain corresponding to Glu(724)-Pro(760) antagonizes this effect. Two peptides, covering these sequences (peptide A(Sk) and C(Sk), respectively) were immobilized on polystyrene beads. We demonstrate that peptide A(Sk) binds to the skeletal isoform of RyR (RyR1) whereas peptide C(Sk) does not. Using surface plasmon resonance detection, we show that 1) domain Thr(671)-Leu(690) is the only sequence of the II-III loop binding with RyR1 and 2) the interaction of peptide A(Sk) with RyR1 is not modulated by Ca(2+) (pCa 9-2) nor by Mg(2+) (up to 10 mM). In contrast, this interaction is strongly potentiated by the immunophilin FKBP12 (EC(50) = 10 nM) and inhibited by both rapamycin (IC(50) = 5 nM) and FK506. Peptide A(Sk) induces a 300% increase of the opening probability of the RyR1 incorporated in lipid bilayer. Removal of FKBP12 from RyR1 completely abolishes this effect of domain A(Sk) on RyR1 channel behavior. These results demonstrate a direct interaction of the RyR1 with the discrete domain of skeletal DHPR alpha(1)-subunit corresponding to Thr(671)-Leu(690) and show that the association of FKBP12 with RyR1 specifically modulates this interaction.
Collapse
Affiliation(s)
- Fiona M O'Reilly
- Laboratoire Canaux Ioniques et Signalisation, Département de Biologie Moléculaire et Structurale, CEA-Grenoble, F-38054 Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Guo X, Dawson VL, Dawson TM. Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. Eur J Neurosci 2001; 13:1683-93. [PMID: 11359520 DOI: 10.1046/j.0953-816x.2001.01542.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunosuppressant drugs, like FK506, and nonimmunosuppressant compounds like, GPI1046 and L685818, are immunophilin ligands that specifically bind to immunophilins, like FK506 binding protein 12 (FKBP12). Several lines of evidence show that these ligands exert neurotrophic properties in neural injury models and in PC12 cells. However, the mechanism of the neurotrophic function of the immunophilin ligands is poorly known. In the present study, we use MPP+ and 6-OHDA toxicity models to examine both neuroprotective and neuroregenerative effects of immunophilin ligands on primary cultures of midbrain dopaminergic neurons. We find that FK506, GPI1046 and L685818 at concentrations from 0.01 to 1 microM partially, but significantly, protect dopaminergic neurons against both MPP+ and 6-OHDA toxicity. By Western blot analysis, we also find that all three compounds prevent tyrosine hydroxylase (TH) loss induced by MPP+ and 6-OHDA treatments. Morphologic analysis of dopaminergic neurons, by immunocytochemistry, shows that MPP+ and 6-OHDA cause the retraction and loss of neuronal processes, while FK506, GPI1046 and L685818 promote regeneration of these processes as indicated by increases in process number and length. To examine if FKBP12 is required for neurotrophic effects of immunophilin ligands, we cultured dopaminergic neurons from FKBP12 knockout mice and find that FK506 still protects dopaminergic neurons against MPP+ toxicity. These results suggest that FKBP12 is not essential for the neurotrophic properties of immunophilin ligands, and immunophilin ligands are a new class of neuroprotective and neuroregenerative agents that may have therapeutic potential in a variety of neurological disorders.
Collapse
Affiliation(s)
- X Guo
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Carnegie 2-214, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
239
|
Bultynck G, Rossi D, Callewaert G, Missiaen L, Sorrentino V, Parys JB, De Smedt H. The conserved sites for the FK506-binding proteins in ryanodine receptors and inositol 1,4,5-trisphosphate receptors are structurally and functionally different. J Biol Chem 2001; 276:47715-24. [PMID: 11598113 DOI: 10.1074/jbc.m106573200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We compared the interaction of the FK506-binding protein (FKBP) with the type 3 ryanodine receptor (RyR3) and with the type 1 and type 3 inositol 1,4,5-trisphosphate receptor (IP(3)R1 and IP(3)R3), using a quantitative GST-FKBP12 and GST-FKBP12.6 affinity assay. We first characterized and mapped the interaction of the FKBPs with the RyR3. GST-FKBP12 as well as GST-FKBP12.6 were able to bind approximately 30% of the solubilized RyR3. The interaction was completely abolished by FK506, strengthened by the addition of Mg(2+), and weakened in the absence of Ca(2+) but was not affected by the addition of cyclic ADP-ribose. By using proteolytic mapping and site-directed mutagenesis, we pinpointed Val(2322), located in the central modulatory domain of the RyR3, as a critical residue for the interaction of RyR3 with FKBPs. Substitution of Val(2322) for leucine (as in IP(3)R1) or isoleucine (as in RyR2) decreased the binding efficiency and shifted the selectivity to FKBP12.6; substitution of Val(2322) for aspartate completely abolished the FKBP interaction. Importantly, the occurrence of the valylprolyl residue as alpha-helix breaker was an important determinant of FKBP binding. This secondary structure is conserved among the different RyR isoforms but not in the IP(3)R isoforms. A chimeric RyR3/IP(3)R1, containing the core of the FKBP12-binding site of IP(3)R1 in the RyR3 context, retained this secondary structure and was able to interact with FKBPs. In contrast, IP(3)Rs did not interact with the FKBP isoforms. This indicates that the primary sequence in combination with the local structural environment plays an important role in targeting the FKBPs to the intracellular Ca(2+)-release channels. Structural differences in the FKBP-binding site of RyRs and IP(3)Rs may contribute to the occurrence of a stable interaction between RyR isoforms and FKBPs and to the absence of such interaction with IP(3)Rs.
Collapse
Affiliation(s)
- G Bultynck
- Laboratorium voor Fysiologie, K.U.Leuven Campus Gasthuisberg O/N, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
240
|
Milting H, Janssen PM, Wangemann T, Kögler H, Domeier E, Seidler T, Hakim K, Grapow M, Zeitz O, Prestle J, Zerkowski HR. FK506 does not affect cardiac contractility and adrenergic response in vitro. Eur J Pharmacol 2001; 430:299-304. [PMID: 11711047 DOI: 10.1016/s0014-2999(01)01387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
FK506 (tacrolimus) is a new immunosuppressant being used in cardiac allograft transplantation. While cyclosporine A has been shown to exert an acute negative inotropic effect on isolated heart muscle preparations, little is known of the inotropic influence of FK506. The Ca(2+) release channel of human skeletal muscle and cardiac muscle is associated with FK506 binding proteins (FKBP), FKBP12 and FKBP12.6, respectively. FKBPs can be dissociated by treatment with FK506. As a consequence of FK506 exposure, isolated skeletal muscle and cardiac muscle ryanodine receptors show altered gating characteristics. Therefore, we analyzed the direct inotropic effect of FK506 exposure to isolated, intact heart muscle preparations from the human and rabbits. Experiments were performed on isolated, electrically stimulated right atrial auricular muscle strips obtained from human myocardium during elective open heart surgery and on intact right ventricular trabeculae from rabbit hearts. The human preparations were exposed to concentrations of 8 x 10(-9), 8 x 10(-8) and 8 x 10(-6) M FK506 followed by a cumulative dose-response curve with isoprenaline as a non-selective beta-adrenoceptor agonist. Our data suggest that FK506 does not exert any positive or negative inotropic effect in either human or rabbit myocardium.
Collapse
Affiliation(s)
- H Milting
- Martin-Luther-Universität Halle-Wittenberg, Clinic for Cardiothoracic Surgery, Research Laboratory, Ernst Grube Str. 40, D-06120, Halle an der Saale, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Carmody M, Mackrill JJ, Sorrentino V, O'Neill C. FKBP12 associates tightly with the skeletal muscle type 1 ryanodine receptor, but not with other intracellular calcium release channels. FEBS Lett 2001; 505:97-102. [PMID: 11557049 DOI: 10.1016/s0014-5793(01)02787-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study compared the relative levels of ryanodine receptor (RyR) isoforms, inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms, and calcineurin, plus their association with FKBP12 in brain, skeletal and cardiac tissue. FKBP12 demonstrated a very tight, high affinity association with skeletal muscle microsomes, which was displaced by FK506. In contrast, FKBP12 was not tightly associated with brain or cardiac microsomes and did not require FK506 for removal from these organelles. Furthermore, of the proteins solubilised from skeletal muscle, cardiac muscle and brain microsomes, only skeletal muscle RyR1 bound to an FKBP12-glutathione-S-transferase fusion protein, in a high affinity FK506 displaceable manner. These results suggest that RyR1 has distinctive FKBP12 binding properties when compared to RyR2, RyR3, all IP(3)R isoforms and calcineurin.
Collapse
Affiliation(s)
- M Carmody
- Department of Biochemistry, University College Cork, Lee Maltings, Ireland
| | | | | | | |
Collapse
|
242
|
Abstract
A recent FASEB meeting was held in Tucson, Arizona that encompassed TGFbeta superfamily signaling pathways and their roles in development. This review focuses on the developmental biology presented at the meeting.
Collapse
Affiliation(s)
- R W Padgett
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
243
|
Mesaeli N, Nakamura K, Opas M, Michalak M. Endoplasmic reticulum in the heart, a forgotten organelle? Mol Cell Biochem 2001; 225:1-6. [PMID: 11716351 DOI: 10.1023/a:1012209923231] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Our hypothesis is that sarcoplasmic and endoplasmic reticulum Ca2+ stores may be functionally distinct compartments in cardiomyocytes. Sarcoplasmic reticulum Ca2+ store is responsible for control of excitation-contraction coupling whereas endoplasmic reticulum compartment may provide Ca2+ for housekeeping and transcriptional functions.
Collapse
Affiliation(s)
- N Mesaeli
- Canadian Institutes of Health Research Group in Molecular Biology of Membrane Proteins and the Department of Biochemistry, University of Alberta, Edmonton
| | | | | | | |
Collapse
|
244
|
Harrar Y, Bellini C, Faure JD. FKBPs: at the crossroads of folding and transduction. TRENDS IN PLANT SCIENCE 2001; 6:426-431. [PMID: 11544132 DOI: 10.1016/s1360-1385(01)02044-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
FK506-binding proteins (FKBPs) belong to the large family of peptidyl-prolyl cis-trans isomerases, which are known to be involved in many cellular processes, such as cell signalling, protein trafficking and transcription. FKBPs associate into protein complexes, although the involvement and precise role of their foldase activity remain to be elucidated. FKBPs represent a large gene family in plants that is involved in growth and development. Disruption of genes encoding FKBPs in plants and animals has underlined the importance of this family of proteins in the regulation of cell division and differentiation.
Collapse
Affiliation(s)
- Y Harrar
- Laboratoire de Biologie Cellulaire, INRA Versailles, 78026 Versailles Cedex, France
| | | | | |
Collapse
|
245
|
Vogel KW, Briesewitz R, Wandless TJ, Crabtree GR. Calcineurin inhibitors and the generalization of the presenting protein strategy. ADVANCES IN PROTEIN CHEMISTRY 2001; 56:253-91. [PMID: 11329856 DOI: 10.1016/s0065-3233(01)56008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- K W Vogel
- Department of Pathology, Stanford University Medical School, USA
| | | | | | | |
Collapse
|
246
|
Villar AJ, Carlson EJ, Gillespie AM, Ursell PC, Epstein CJ. Cardiomyopathy in mice with paternal uniparental disomy for chromosome 12. Genesis 2001; 30:274-9. [PMID: 11536434 DOI: 10.1002/gene.1074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mice inheriting both copies of MMU12 either maternally or paternally demonstrate imprinting effects. Whereas maternal uniparental disomy 12 (matUPD12) fetuses are growth retarded and die perinatally, paternal UPD12 (patUPD12) fetuses die during late gestation and exhibit placentomegaly and skeletal muscle maturation defects. To examine further the developmental consequences of UPD12, we intercrossed mouse stocks heterozygous for Robertsonian translocation chromosomes (8.12) and (10.12). We report that at 13.5-14.5 dg patUPD12 hearts exhibit increased ventricular diameter, thinner, less compact myocardium, and deep intertrabecular recesses when compared to controls. These data provide evidence for cardiac failure, a lethal condition, and suggest a role for an imprinted gene(s) in normal heart development.
Collapse
Affiliation(s)
- A J Villar
- Department of Pediatrics, University of California, San Francisco, California 94143-0748, USA.
| | | | | | | | | |
Collapse
|
247
|
Weisman R, Finkelstein S, Choder M. Rapamycin blocks sexual development in fission yeast through inhibition of the cellular function of an FKBP12 homolog. J Biol Chem 2001; 276:24736-42. [PMID: 11335722 DOI: 10.1074/jbc.m102090200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FKBP12 is a ubiquitous and a highly conserved prolyl isomerase that binds the immunosuppressive drugs FK506 and rapamycin. Members of the FKBP12 family have been implicated in many processes that include intracellular protein folding, transport, and assembly. In the budding yeast Saccharomyces cerevisiae and in human T cells, rapamycin forms a complex with FKBP12 that inhibits cell cycle progression by inhibition of the TOR kinases. We reported previously that rapamycin does not inhibit the vegetative growth of the fission yeast Schizosaccharomyces pombe; however, it specifically inhibits its sexual development. Here we show that disruption of the S. pombe FKBP12 homolog, fkh1(+), at its chromosomal locus results in a mating-deficient phenotype that is highly similar to that obtained by treatment of wild type cells with rapamycin. A screen for fkh1 mutants that can confer rapamycin resistance identified five amino acids in Fkh1 that are critical for the effect of rapamycin in S. pombe. All five amino acids are located in the putative rapamycin binding pocket. Together, our findings indicate that Fkh1 has an important role in sexual development and serves as the target for rapamycin action in S. pombe.
Collapse
Affiliation(s)
- R Weisman
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | | | |
Collapse
|
248
|
Guo X, Dillman JF, Dawson VL, Dawson TM. Neuroimmunophilins: novel neuroprotective and neuroregenerative targets. Ann Neurol 2001; 50:6-16. [PMID: 11456311 DOI: 10.1002/ana.1030] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclosporin A (CsA) and FK506 (tacrolimus) are immunosuppresants that are widely used in organ transplantation. CsA is an 11-member cyclic peptide, whereas FK506 is a macrolide antibiotic. Recently, these powerful and useful compounds have become of great interest to neuroscientists for their unique neuroprotective and neuroregenerative effects. These drugs and nonimmunosuppressive analogs protect neurons from the effects of glutamate excitotoxicity, focal ischemia, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic cell death. They also stimulate functional recovery of neurons in a variety of neurologic injury paradigms. These drugs exert their effects via immunophilins, the protein receptors for these agents. The immunophilin ligands show particular promise as a novel class of neuroprotective and neuroregenerative agents that have the potential to treat a variety of neurologic disorders.
Collapse
Affiliation(s)
- X Guo
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
249
|
Abstract
The transforming growth factor beta (TGF-beta) superfamily has profound effects on many aspects of animal development. In the last decade, our laboratory and others have performed in vivo functional studies on multiple components of the TGF-beta superfamily signal transduction pathway, including upstream ligands, transmembrane receptors, receptor-associated proteins and downstream Smad proteins. We have taken gene knockout approaches to generate null alleles of the genes of interest, as well as a gene knockin approach to replace the mature region of one TGF-beta superfamily ligand with another. We found that activin betaB, expressed in the spatiotemporal pattern of activin betaA, can function as a hypomorphic allele of activin betaA and rescue the craniofacial defects and neonatal lethal phenotype of activin betaA-deficient mice. With the knockout approach, we have shown that the expression pattern of a component in the TGF-beta superfamily signal transduction cascade does not necessarily predict its in vivo function. Two liver-specific activins, activin betaC and activin betaE are dispensable for liver development, regeneration and function, whereas ubiquitously expressed Smad5 has specific roles in the development of multiple embryonic and extraembryonic tissues.
Collapse
Affiliation(s)
- H Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, 77030, Houston, TX, USA
| | | | | |
Collapse
|
250
|
Wurthner JU, Frank DB, Felici A, Green HM, Cao Z, Schneider MD, McNally JG, Lechleider RJ, Roberts AB. Transforming growth factor-beta receptor-associated protein 1 is a Smad4 chaperone. J Biol Chem 2001; 276:19495-502. [PMID: 11278302 DOI: 10.1074/jbc.m006473200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily signal through unique cell membrane receptor serine-threonine kinases to activate downstream targets. TRAP1 is a previously described 96-kDa cytoplasmic protein shown to bind to TGF-beta receptors and suggested to play a role in TGF-beta signaling. We now fully characterize the binding properties of TRAP1, and show that it associates strongly with inactive heteromeric TGF-beta and activin receptor complexes and is released upon activation of signaling. Moreover, we demonstrate that TRAP1 plays a role in the Smad-mediated signal transduction pathway, interacting with the common mediator, Smad4, in a ligand-dependent fashion. While TRAP1 has only a small stimulatory effect on TGF-beta signaling in functional assays, deletion constructs of TRAP1 inhibit TGF-beta signaling and diminish the interaction of Smad4 with Smad2. These are the first data to identify a specific molecular chaperone for Smad4, suggesting a model in which TRAP1 brings Smad4 into the vicinity of the receptor complex and facilitates its transfer to the receptor-activated Smad proteins.
Collapse
Affiliation(s)
- J U Wurthner
- Laboratory of Cell Regulation and Carcinogenesis and Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|