201
|
Kasai H, Hatakeyama H, Ohno M, Takahashi N. Exocytosis in islet beta-cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:305-38. [PMID: 20217504 DOI: 10.1007/978-90-481-3271-3_14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of technologies that allow for live optical imaging of exocytosis from beta-cells has greatly improved our understanding of insulin secretion. Two-photon imaging, in particular, has enabled researchers to visualize the exocytosis of large dense-core vesicles (LDCVs) containing insulin from beta-cells in intact islets of Langerhans. These studies have revealed that high glucose levels induce two phases of insulin secretion and that this release is dependent upon cytosolic Ca(2+) and cAMP. This technology has also made it possible to examine the spatial profile of insulin exocytosis in these tissues and compare that profile with those of other secretory glands. Such studies have led to the discovery of the massive exocytosis of synaptic-like microvesicles (SLMVs) in beta-cells. These imaging studies have also helped clarify facets of insulin exocytosis that cannot be properly addressed using the currently available electrophysiological techniques. This chapter provides a concise introduction to the field of optical imaging for those researchers who wish to characterize exocytosis from beta-cells in the islets of Langerhans.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
202
|
Wong FK, Stanley EF. Rab3a interacting molecule (RIM) and the tethering of pre-synaptic transmitter release site-associated CaV2.2 calcium channels. J Neurochem 2010; 112:463-73. [DOI: 10.1111/j.1471-4159.2009.06466.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
203
|
Jiang L, Baehr W. GCAP1 mutations associated with autosomal dominant cone dystrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:273-82. [PMID: 20238026 DOI: 10.1007/978-1-4419-1399-9_31] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We discuss the heterogeneity of autosomal dominant cone and cone-rod dystrophies (adCD, and adCORD, respectively). As one of the best characterized adCD genes, we focus on the GUCA1A gene encoding guanylate cyclase activating protein 1 (GCAP1), a protein carrying three high affinity Ca(2+) binding motifs (EF hands). GCAP1 senses changes in cytoplasmic free [Ca(2+)] and communicates these changes to GC1, by either inhibiting it (at high free [Ca(2+)]), or stimulating it (at low free [Ca(2+)]). A number of missense mutations altering the structure and Ca(2+) affinity of EF hands have been discovered. These mutations are associated with a gain of function, producing dominant cone and cone rod dystrophy phenotypes. In this article we review these mutations and describe the consequences of specific mutations on GCAP1 structure and GC stimulation.We discuss the heterogeneity of autosomal dominant cone and cone-rod dystrophies (adCD, and adCORD, respectively). As one of the best characterized adCD genes, we focus on the GUCA1A gene encoding guanylate cyclase activating protein 1 (GCAP1), a protein carrying three high affinity Ca(2+) binding motifs (EF hands). GCAP1 senses changes in cytoplasmic free [Ca(2+)] and communicates these changes to GC1, by either inhibiting it (at high free [Ca(2+)]), or stimulating it (at low free [Ca(2+)]). A number of missense mutations altering the structure and Ca(2+) affinity of EF hands have been discovered. These mutations are associated with a gain of function, producing dominant cone and cone rod dystrophy phenotypes. In this article we review these mutations and describe the consequences of specific mutations on GCAP1 structure and GC stimulation.
Collapse
Affiliation(s)
- Li Jiang
- Department of Biology, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
204
|
Calcium-sensing beyond neurotransmitters: functions of synaptotagmins in neuroendocrine and endocrine secretion. Biosci Rep 2009; 29:245-59. [PMID: 19500075 DOI: 10.1042/bsr20090031] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neurotransmitters, neuropeptides and hormones are released through the regulated exocytosis of SVs (synaptic vesicles) and LDCVs (large dense-core vesicles), a process that is controlled by calcium. Synaptotagmins are a family of type 1 membrane proteins that share a common domain structure. Most synaptotagmins are located in brain and endocrine cells, and some of these synaptotagmins bind to phospholipids and calcium at levels that trigger regulated exocytosis of SVs and LDCVs. This led to the proposed synaptotagmin-calcium-sensor paradigm, that is, members of the synaptotagmin family function as calcium sensors for the regulated exocytosis of neurotransmitters, neuropeptides and hormones. Here, we provide an overview of the synaptotagmin family, and review the recent mouse genetic studies aimed at understanding the functions of synaptotagmins in neurotransmission and endocrine-hormone secretion. Also, we discuss potential roles of synaptotagmins in non-traditional endocrine systems.
Collapse
|
205
|
Katsumata O, Ohara N, Tamaki H, Niimura T, Naganuma H, Watanabe M, Sakagami H. IQ-ArfGEF/BRAG1 is associated with synaptic ribbons in the mouse retina. Eur J Neurosci 2009; 30:1509-16. [PMID: 19811534 DOI: 10.1111/j.1460-9568.2009.06943.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
IQ-ArfGEF/BRAG1 is a guanine nucleotide exchange factor for ADP ribosylation factors (Arfs), which are implicated in membrane trafficking and actin cytoskeleton dynamics. In this study, we examined the immunohistochemical localization of IQ-ArfGEF/BRAG1 in the adult mouse retina using light and electron microscopy. IQ-ArfGEF/BRAG1 was distributed in a punctate manner and colocalized well with RIBEYE in both the outer and inner plexiform layers. Immunoelectron microscopic analysis showed that IQ-ArfGEF/BRAG1 was localized at the synaptic ribbons of photoreceptors. When heterologously expressed in HeLa cells, IQ-ArfGEF/BRAG1 was recruited to RIBEYE-containing clusters and formed an immunoprecipitable complex with RIBEYE. Furthermore, immunoprecipitation analysis showed that anti-IQ-ArfGEF/BRAG1 antibody efficiently pulled down RIBEYE from retinal lysates. These findings indicate that IQ-ArfGEF/BRAG1 is a novel component of retinal synaptic ribbons and forms a protein complex with RIBEYE.
Collapse
Affiliation(s)
- Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
206
|
Ibi D, Nitta A, Ishige K, Cen X, Ohtakara T, Nabeshima T, Ito Y. Piccolo knockdown-induced impairments of spatial learning and long-term potentiation in the hippocampal CA1 region. Neurochem Int 2009; 56:77-83. [PMID: 19766155 DOI: 10.1016/j.neuint.2009.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Neurotransmitter release is regulated at a specific site in nerve terminals called the "active zone", which is composed of various cytomatrix proteins such as Piccolo (also known as Aczonin) and Bassoon. These proteins share regions of high sequence similarity and have very high molecular weights (>400 kDa). Since Piccolo knockout mice have not yet been established, the role of Piccolo in the neuronal system remains unclear. In this study, we investigated the effects of Piccolo antisense oligonucleotide injected into the ventricle on hippocampal long-term potentiation (LTP) and learning and memory assessed with the novel object recognition test and the Morris water maze test. There was no significant difference in cognitive memory between Piccolo antisense-treated and vehicle- or sense-treated mice; however, spatial learning in Piccolo antisense-treated mice was impaired but not in sense- or vehicle-treated mice. Next, we investigated LTP formation in these groups in area CA1 and dentate gyrus of the same hippocampal slices. The magnitude of LTP in Piccolo antisense-treated mice was significantly lower than in sense- or vehicle-treated mice, with no change in basal level. Moreover, the level of high K(+)-induced glutamate release in the antisense-treated mice was significantly lower than in sense-treated mice. Taken together, these results indicate that Piccolo plays a pivotal role in synaptic plasticity in area CA1 and in hippocampus-dependent learning in mice, and that the extracellular levels of glutamate in the hippocampus under stimulated conditions are controlled by Piccolo.
Collapse
Affiliation(s)
- Daisuke Ibi
- Research Unit of Pharmacology, College of Pharmacy, Nihon University, Funabashi-shi, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
207
|
Whitaker CM, Cooper NGF. The novel distribution of phosphodiesterase-4 subtypes within the rat retina. Neuroscience 2009; 163:1277-91. [PMID: 19638302 DOI: 10.1016/j.neuroscience.2009.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 01/01/2023]
Abstract
Phosphodiesterases (PDEs) are important regulators of signal transduction processes. While much is known about the function of cyclic GMP-specific PDEs in the retina, much less is known about the closely related, cyclic AMP-specific PDEs. The purpose of the present study is to characterize and localize PDE4 within the adult rat retina. We have used Western blotting, RT-PCR, and immunohistochemistry together with retrograde labeling to determine the presence and location of each PDE4 subtype. Western blot analysis revealed that multiple isoforms of PDE4A, B, and D subtypes are present within the retina, whereas the PDE4C subtype was absent. These data were confirmed by RT-PCR. Using immunohistochemistry we show that all three PDE4s are abundantly expressed within the retina where they all colocalize with retrograde-labeled retinal ganglion cells, as well as bipolar cells, horizontal cells, and cholinergic amacrine cells, whereas Müller cells lack PDE4 expression. Uniquely, PDE4B was expressed by the inner and outer segments of rod photoreceptors as well as their terminals within the outer plexiform layer. Collectively, our results demonstrate that PDE4s are abundantly expressed throughout the rodent retina and this study provides the framework for further functional studies.
Collapse
Affiliation(s)
- C M Whitaker
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
208
|
Branham MT, Bustos MA, De Blas GA, Rehmann H, Zarelli VEP, Treviño CL, Darszon A, Mayorga LS, Tomes CN. Epac activates the small G proteins Rap1 and Rab3A to achieve exocytosis. J Biol Chem 2009; 284:24825-39. [PMID: 19546222 DOI: 10.1074/jbc.m109.015362] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2'-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.
Collapse
Affiliation(s)
- María T Branham
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, CC 56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Rab3a-mediated vesicle recruitment regulates short-term plasticity at the mouse diaphragm synapse. Mol Cell Neurosci 2009; 41:286-96. [DOI: 10.1016/j.mcn.2009.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 03/04/2009] [Accepted: 03/24/2009] [Indexed: 11/24/2022] Open
|
210
|
Shanmugam C, Katkoori VR, Jhala NC, Grizzle WE, Manne U. Immunohistochemical expression of rabphilin-3A-like (Noc2) in normal and tumor tissues of human endocrine pancreas. Biotech Histochem 2009; 84:39-45. [PMID: 19212825 DOI: 10.1080/10520290902738878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Involvement of rabphilin-3A-like (RPH3AL), or Noc2, the potential effector of Ras-associated binding proteins Rab3A and Rab27A in the regulation of exocytotic processes in the endocrine pancreas has been demonstrated in experimental models. Noc2 expression together with other regulatory molecules of the exocytotic machinery in human tissues, however, has not been studied. We evaluated immunohistochemical expression of the key molecules of the exocytotic machinery, Noc2, Rab3A, Rab27A, and RIM2, together with the characteristic islet cell hormones, insulin and glucagon in normal and endocrine tumor tissues of human pancreas. Normal pancreatic islets were stained for all of these proteins and showed strong cytoplasmic localization. A similar pattern of strong cytoplasmic expression of these proteins was observed in the majority of endocrine tumors. By contrast, the exocrine portions of normal appearing pancreas completely lacked Rab27A staining and showed decreased expression of the proteins, Noc2, Rab3A, and RIM2. The staining pattern of Noc2 and Rab27A was similar to the staining pattern of glucagon-producing cells within the islets. The concomitant expression of Noc2 with these molecules suggests that Noc2 may serve as an effector for Rab3A and Rab27A and that it is involved in the regulation of exocytosis of the endocrine pancreas in humans.
Collapse
Affiliation(s)
- C Shanmugam
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-7331, USA
| | | | | | | | | |
Collapse
|
211
|
Owen JB, Di Domenico F, Sultana R, Perluigi M, Cini C, Pierce WM, Butterfield DA. Proteomics-determined differences in the concanavalin-A-fractionated proteome of hippocampus and inferior parietal lobule in subjects with Alzheimer's disease and mild cognitive impairment: implications for progression of AD. J Proteome Res 2009; 8:471-82. [PMID: 19072283 DOI: 10.1021/pr800667a] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia, comprising 60-80% of all reported cases, and currently affects 5.2 million Americans. AD is characterized pathologically by the accumulation of senile plaques (SPs), neurofibrillary tangles (NFTs), and synapse loss. The early stages of memory loss associated with AD have been studied in a condition known as amnestic mild cognitive impairment (MCI), arguably the earliest form of AD. In spite of extensive research across a variety of disciplines, the cause of AD remains elusive. Proteomics techniques have helped to advance knowledge about AD by identifying irregularities in protein expression and post-translational modifications (PTMs) in AD brain. Glycosylation is a less studied PTM with regards to AD and MCI. This PTM is important to study because glycosylation is involved in proper protein folding, protein anchoring to cell membranes, and the delivery of proteins to organelles, and these processes are impaired in AD. Concanavalin-A (Con-A) binds to N-linked glycoproteins, but hydrophobic sites on nonglycoproteins are also known to bind Con-A. To our knowledge, the present study is the first to examine Con-A-associated brain proteins in MCI and AD with focus on the hippocampus and inferior parietal lobule (IPL) brain regions. Proteins found in AD hippocampus with altered levels are glutamate dehydrogenase (GDH), glial fibrillary acidic protein (GFAP), tropomyosin 3 (TPM3), Rab GDP-dissociation inhibitor XAP-4 (XAP4), and heat shock protein 90 (HSP90). Proteins found with altered levels in AD IPL are alpha-enolase, gamma-enolase, and XAP-4. MCI hippocampal proteins with altered levels are dihydropyrimidase-2 (DRP2), glucose-regulated protein 78 (GRP-78), protein phosphatase related protein Sds-22 (Sds22), and GFAP and the only protein found with altered levels in MCI IPL was beta-synuclein. These results are discussed with reference to biochemical and pathological alterations in and progression of AD.
Collapse
Affiliation(s)
- Joshua B Owen
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
Zanazzi G, Matthews G. The molecular architecture of ribbon presynaptic terminals. Mol Neurobiol 2009; 39:130-48. [PMID: 19253034 PMCID: PMC2701268 DOI: 10.1007/s12035-009-8058-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/04/2009] [Indexed: 12/24/2022]
Abstract
The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone where glutamate release occurs in response to calcium influx through L-type channels. Ribbons are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma membrane calcium pumps, together with endomembrane pumps and channels, play important roles in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several molecular and cellular specializations work in concert to support the sustained exocytosis of glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance, abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several forms of auditory neuropathy and retinopathy.
Collapse
Affiliation(s)
- George Zanazzi
- Department of Neurobiology & Behavior, State Universtiy of New York, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
213
|
Anitei M, Cowan AE, Pfeiffer SE, Bansal R. Role for Rab3a in oligodendrocyte morphological differentiation. J Neurosci Res 2009; 87:342-52. [PMID: 18798275 DOI: 10.1002/jnr.21870] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rab3a, a small GTPase important for exocytosis, is uniquely up-regulated as oligodendrocytes enter terminal differentiation and initiate myelin biosynthesis. In this study, we analyze the role of this protein in oligodendrocyte morphological differentiation by using Rab3a overexpression and siRNAi-mediated Rab3a silencing. We found that Rab3a silencing delayed mature oligodendrocyte morphological differentiation but did not interfere with lineage progression of OL progenitors; this is consistent with the high levels of Rab3a expressed by mature oligodendrocytes compared with progenitor cells. Overexpression of GTP-bound, but not that of wild-type, Rab3a delayed OL morphological differentiation; this suggests that expression of a GTP-bound Rab3a mutant interferes with the normal function of endogenous Rab3a. We have also identified in oligodendrocytes two other exocytic small GTPases, Rab27B and RalA. Together, these findings indicate that Rab3a specifically stimulates morphological differentiation of mature oligodendrocytes and thus may be part of the necessary machinery for myelin membrane biogenesis.
Collapse
Affiliation(s)
- Mihaela Anitei
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut 06030-3401, USA
| | | | | | | |
Collapse
|
214
|
Williams JA, Chen X, Sabbatini ME. Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am J Physiol Endocrinol Metab 2009; 296:E405-14. [PMID: 19088252 PMCID: PMC2660147 DOI: 10.1152/ajpendo.90874.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small GTP-binding (G) proteins act as molecular switches to regulate a number of cellular processes, including vesicular transport. Emerging evidence indicates that small G proteins regulate a number of steps in the secretion of pancreatic acinar cells. Diverse small G proteins have been localized at discrete compartments along the secretory pathway and particularly on the secretory granule. Rab3D, Rab27B, and Rap1 are present on the granule membrane and play a role in the steps leading up to exocytosis. Whether the function of these G proteins is simply to ensure appropriate targeting or if they are involved as regulatory molecules is discussed. Most evidence suggests that Rab3D and Rab27B play a role in tethering the secretory granule to its target membrane. Other Rabs have been identified on the secretory granule that are associated with different steps in the secretory pathway. The Rho family small G proteins RhoA and Rac1 also regulate secretion through remodeling of the actin cytoskeleton. Possible mechanisms for regulation of these G proteins and their effector molecules are considered.
Collapse
Affiliation(s)
- John A Williams
- Dept. of Molecular and Integrative Physiology, Univ. of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
215
|
Regus-Leidig H, Tom Dieck S, Specht D, Meyer L, Brandstätter JH. Early steps in the assembly of photoreceptor ribbon synapses in the mouse retina: the involvement of precursor spheres. J Comp Neurol 2009; 512:814-24. [PMID: 19067356 DOI: 10.1002/cne.21915] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The retinal photoreceptor ribbon synapse is a chemical synapse structurally and functionally specialized for the tonic release of neurotransmitter. It is characterized by the presynaptic ribbon, an electron-dense organelle at the active zone covered by hundreds of synaptic vesicles. In conventional synapses, dense-core transport vesicles carrying a set of active zone proteins are implicated in early steps of synapse formation. In photoreceptor ribbon synapses, synaptic spheres are suggested to be involved in ribbon synapse assembly, but nothing is known about the molecular composition of these organelles. With light, electron, and stimulated emission depletion microscopy and immunocytochemistry, we investigated a series of presynaptic proteins during photoreceptor synaptogenesis. The cytomatrix proteins Bassoon, Piccolo, RIBEYE, and RIM1 appear early in synaptogenesis. They are transported in nonmembranous, electron-dense, spherical transport units, which we called precursor spheres, to the future presynaptic site. Other presynaptic proteins, i.e., Munc13, CAST1, RIM2, and an L-type Ca(2+) channel alpha1 subunit are not associated with the precursor spheres. They cluster directly at the active zone some time after the first set of cytomatrix proteins has arrived. By quantitative electron microscopy, we found an inverse correlation between the numbers of spheres and synaptic ribbons in the postnatally developing photoreceptor synaptic terminals. From these results, we suggest that the precursor spheres are the transport units for proteins of the photoreceptor ribbon compartment and are involved in the assembly of mature synaptic ribbons.
Collapse
Affiliation(s)
- Hanna Regus-Leidig
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
216
|
RIM1alpha and RIM1beta are synthesized from distinct promoters of the RIM1 gene to mediate differential but overlapping synaptic functions. J Neurosci 2009; 28:13435-47. [PMID: 19074017 DOI: 10.1523/jneurosci.3235-08.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
At a synapse, presynaptic terminals form a specialized area of the plasma membrane called the active zone that mediates neurotransmitter release. RIM1alpha is a multidomain protein that constitutes a central component of the active zone by binding to other active zone proteins such as Munc13 s, alpha-liprins, and ELKS, and to synaptic vesicle proteins such as Rab3 and synaptotagmin-1. In mice, knockout of RIM1alpha significantly impairs synaptic vesicle priming and presynaptic long-term plasticity, but is not lethal. We now find that the RIM1 gene encodes a second, previously unknown RIM1 isoform called RIM1beta that is upregulated in RIM1alpha knock-out mice. RIM1beta is identical to RIM1alpha except for the N terminus where RIM1beta lacks the N-terminal Rab3-binding sequence of RIM1alpha. Using newly generated knock-out mice lacking both RIM1alpha and RIM1beta, we demonstrate that different from the deletion of only RIM1alpha, deletion of both RIM1alpha and RIM1beta severely impairs mouse survival. Electrophysiological analyses show that the RIM1alphabeta deletion abolishes long-term presynaptic plasticity, as does RIM1alpha deletion alone. In contrast, the impairment in synaptic strength and short-term synaptic plasticity that is caused by the RIM1alpha deletion is aggravated by the deletion of both RIM1alpha and RIM1beta. Thus, our data indicate that the RIM1 gene encodes two different isoforms that perform overlapping but distinct functions in neurotransmitter release.
Collapse
|
217
|
Weidenhofer J, Scott RJ, Tooney PA. Investigation of the expression of genes affecting cytomatrix active zone function in the amygdala in schizophrenia: effects of antipsychotic drugs. J Psychiatr Res 2009; 43:282-90. [PMID: 18490030 DOI: 10.1016/j.jpsychires.2008.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 11/18/2022]
Abstract
The cytomatrix active zone (CAZ) is a specialized cellular structure regulating release of vesicles. We reported previously increased expression of three CAZ genes, piccolo, RIMS2 and RIMS3 in the amygdala in schizophrenia. This study determined the levels of gene and protein expression for components of the active zone including two additional CAZ genes in the amygdala from subjects with schizophrenia and non-psychiatric controls, as well as the effects of antipsychotic drugs. Whilst relative real-time PCR analysis did not identify significant change in the expression of six additional active zone genes, Western blot analysis showed increased piccolo and RIMS2 protein expression in the amygdala in schizophrenia. In vitro analysis suggests antipsychotic drug treatment was unlikely to have caused the changes in RIMS2, RIMS3 and piccolo expression observed in the amygdala in schizophrenia. Therefore, this study provides further evidence suggesting that piccolo, RIMS2, RIMS3, but not the entire components of the active zone are involved in the neurobiology of schizophrenia.
Collapse
Affiliation(s)
- Judith Weidenhofer
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, NSW 2308, Australia
| | | | | |
Collapse
|
218
|
Nomura H, Ohtsuka T, Tadokoro S, Tanaka M, Hirashima N. Involvement of ELKS, an active zone protein, in exocytotic release from RBL-2H3 cells. Cell Immunol 2009; 258:204-11. [DOI: 10.1016/j.cellimm.2009.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/11/2009] [Accepted: 05/11/2009] [Indexed: 11/28/2022]
|
219
|
Perez-Mansilla B, Nurrish S. A network of G-protein signaling pathways control neuronal activity in C. elegans. ADVANCES IN GENETICS 2009; 65:145-192. [PMID: 19615533 DOI: 10.1016/s0065-2660(09)65004-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Caenorhabditis elegans neuromuscular junction (NMJ) is one of the best studied synapses in any organism. A variety of genetic screens have identified genes required both for the essential steps of neurotransmitter release from motorneurons as well as the signaling pathways that regulate rates of neurotransmitter release. A number of these regulatory genes encode proteins that converge to regulate neurotransmitter release. In other cases genes are known to regulate signaling at the NMJ but how they act remains unknown. Many of the proteins that regulate activity at the NMJ participate in a network of heterotrimeric G-protein signaling pathways controlling the release of synaptic vesicles and/or dense-core vesicles (DCVs). At least four heterotrimeric G-proteins (Galphaq, Galpha12, Galphao, and Galphas) act within the motorneurons to control the activity of the NMJ. The Galphaq, Galpha12, and Galphao pathways converge to control production and destruction of the lipid-bound second messenger diacylglycerol (DAG) at sites of neurotransmitter release. DAG acts via at least two effectors, MUNC13 and PKC, to control the release of both neurotransmitters and neuropeptides from motorneurons. The Galphas pathway converges with the other three heterotrimeric G-protein pathways downstream of DAG to regulate neuropeptide release. Released neurotransmitters and neuropeptides then act to control contraction of the body-wall muscles to control locomotion. The lipids and proteins involved in these networks are conserved between C. elegans and mammals. Thus, the C. elegans NMJ acts as a model synapse to understand how neuronal activity in the human brain is regulated.
Collapse
Affiliation(s)
- Borja Perez-Mansilla
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Stephen Nurrish
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
220
|
Abstract
Incretins are gut hormones that are secreted from enteroendocrine cells into the blood within minutes after eating. One of their many physiological roles is to regulate the amount of insulin that is secreted after eating. In this manner, as well as others to be described in this review, their final common raison d'être is to aid in disposal of the products of digestion. There are two incretins, known as glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1), that share many common actions in the pancreas but have distinct actions outside of the pancreas. Both incretins are rapidly deactivated by an enzyme called dipeptidyl peptidase 4 (DPP4). A lack of secretion of incretins or an increase in their clearance are not pathogenic factors in diabetes. However, in type 2 diabetes (T2DM), GIP no longer modulates glucose-dependent insulin secretion, even at supraphysiological (pharmacological) plasma levels, and therefore GIP incompetence is detrimental to beta-cell function, especially after eating. GLP-1, on the other hand, is still insulinotropic in T2DM, and this has led to the development of compounds that activate the GLP-1 receptor with a view to improving insulin secretion. Since 2005, two new classes of drugs based on incretin action have been approved for lowering blood glucose levels in T2DM: an incretin mimetic (exenatide, which is a potent long-acting agonist of the GLP-1 receptor) and an incretin enhancer (sitagliptin, which is a DPP4 inhibitor). Exenatide is injected subcutaneously twice daily and its use leads to lower blood glucose and higher insulin levels, especially in the fed state. There is glucose-dependency to its insulin secretory capacity, making it unlikely to cause low blood sugars (hypoglycemia). DPP4 inhibitors are orally active and they increase endogenous blood levels of active incretins, thus leading to prolonged incretin action. The elevated levels of GLP-1 are thought to be the mechanism underlying their blood glucose-lowering effects.
Collapse
Affiliation(s)
- Wook Kim
- National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
221
|
Alpadi K, Magupalli VG, Käppel S, Köblitz L, Schwarz K, Seigel GM, Sung CH, Schmitz F. RIBEYE recruits Munc119, a mammalian ortholog of the Caenorhabditis elegans protein unc119, to synaptic ribbons of photoreceptor synapses. J Biol Chem 2008; 283:26461-7. [PMID: 18664567 PMCID: PMC3258921 DOI: 10.1074/jbc.m801625200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 07/07/2008] [Indexed: 11/06/2022] Open
Abstract
Munc119 (also denoted as RG4) is a mammalian ortholog of the Caenorhabditis elegans protein unc119 and is essential for vision and synaptic transmission at photoreceptor ribbon synapses by unknown molecular mechanisms. Munc119/RG4 is related to the prenyl-binding protein PrBP/delta and expressed at high levels in photoreceptor ribbon synapses. Synaptic ribbons are presynaptic specializations in the active zone of these tonically active synapses and contain RIBEYE as a unique and major component. In the present study, we identified Munc119 as a RIBEYE-interacting protein at photoreceptor ribbon synapses using five independent approaches. The PrBP/delta homology domain of Munc119 is essential for the interaction with the NADH binding region of RIBEYE(B) domain. But RIBEYE-Munc119 interaction does not depend on NADH binding. A RIBEYE point mutant (RE(B)E844Q) that no longer interacted with Munc119 still bound NADH, arguing that binding of Munc119 and NADH to RIBEYE are independent from each other. Our data indicate that Munc119 is a synaptic ribbon-associated component. We show that Munc119 can be recruited to synaptic ribbons via its interaction with RIBEYE. Our data suggest that the RIBEYE-Munc119 interaction is essential for synaptic transmission at the photoreceptor ribbon synapse.
Collapse
Affiliation(s)
- Kannan Alpadi
- Department of Neuroanatomy, Institute for
Anatomy and Cell Biology, Saarland University, Medical School Homburg/Saar,
66421 Homburg/Saar, Germany, the Department of
Ophthalmology, Physiology, and Biophysics, SUNY University at Buffalo,
Buffalo, New York 14214, and the Margaret M.
Dyson Vision Research Institute, Department of Ophthalmology, Cell and
Developmental Biology, Weill Medical College of Cornell University, New York,
New York 10021
| | - Venkat Giri Magupalli
- Department of Neuroanatomy, Institute for
Anatomy and Cell Biology, Saarland University, Medical School Homburg/Saar,
66421 Homburg/Saar, Germany, the Department of
Ophthalmology, Physiology, and Biophysics, SUNY University at Buffalo,
Buffalo, New York 14214, and the Margaret M.
Dyson Vision Research Institute, Department of Ophthalmology, Cell and
Developmental Biology, Weill Medical College of Cornell University, New York,
New York 10021
| | - Stefanie Käppel
- Department of Neuroanatomy, Institute for
Anatomy and Cell Biology, Saarland University, Medical School Homburg/Saar,
66421 Homburg/Saar, Germany, the Department of
Ophthalmology, Physiology, and Biophysics, SUNY University at Buffalo,
Buffalo, New York 14214, and the Margaret M.
Dyson Vision Research Institute, Department of Ophthalmology, Cell and
Developmental Biology, Weill Medical College of Cornell University, New York,
New York 10021
| | - Louise Köblitz
- Department of Neuroanatomy, Institute for
Anatomy and Cell Biology, Saarland University, Medical School Homburg/Saar,
66421 Homburg/Saar, Germany, the Department of
Ophthalmology, Physiology, and Biophysics, SUNY University at Buffalo,
Buffalo, New York 14214, and the Margaret M.
Dyson Vision Research Institute, Department of Ophthalmology, Cell and
Developmental Biology, Weill Medical College of Cornell University, New York,
New York 10021
| | - Karin Schwarz
- Department of Neuroanatomy, Institute for
Anatomy and Cell Biology, Saarland University, Medical School Homburg/Saar,
66421 Homburg/Saar, Germany, the Department of
Ophthalmology, Physiology, and Biophysics, SUNY University at Buffalo,
Buffalo, New York 14214, and the Margaret M.
Dyson Vision Research Institute, Department of Ophthalmology, Cell and
Developmental Biology, Weill Medical College of Cornell University, New York,
New York 10021
| | - Gail M. Seigel
- Department of Neuroanatomy, Institute for
Anatomy and Cell Biology, Saarland University, Medical School Homburg/Saar,
66421 Homburg/Saar, Germany, the Department of
Ophthalmology, Physiology, and Biophysics, SUNY University at Buffalo,
Buffalo, New York 14214, and the Margaret M.
Dyson Vision Research Institute, Department of Ophthalmology, Cell and
Developmental Biology, Weill Medical College of Cornell University, New York,
New York 10021
| | - Ching-Hwa Sung
- Department of Neuroanatomy, Institute for
Anatomy and Cell Biology, Saarland University, Medical School Homburg/Saar,
66421 Homburg/Saar, Germany, the Department of
Ophthalmology, Physiology, and Biophysics, SUNY University at Buffalo,
Buffalo, New York 14214, and the Margaret M.
Dyson Vision Research Institute, Department of Ophthalmology, Cell and
Developmental Biology, Weill Medical College of Cornell University, New York,
New York 10021
| | - Frank Schmitz
- Department of Neuroanatomy, Institute for
Anatomy and Cell Biology, Saarland University, Medical School Homburg/Saar,
66421 Homburg/Saar, Germany, the Department of
Ophthalmology, Physiology, and Biophysics, SUNY University at Buffalo,
Buffalo, New York 14214, and the Margaret M.
Dyson Vision Research Institute, Department of Ophthalmology, Cell and
Developmental Biology, Weill Medical College of Cornell University, New York,
New York 10021
| |
Collapse
|
222
|
RIM1alpha phosphorylation at serine-413 by protein kinase A is not required for presynaptic long-term plasticity or learning. Proc Natl Acad Sci U S A 2008; 105:14680-5. [PMID: 18799741 DOI: 10.1073/pnas.0806679105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of presynaptic cAMP-dependent protein kinase A (PKA) triggers presynaptic long-term plasticity in synapses such as cerebellar parallel fiber and hippocampal mossy fiber synapses. RIM1alpha, a large multidomain protein that forms a scaffold at the presynaptic active zone, is essential for presynaptic long-term plasticity in these synapses and is phosphorylated by PKA at serine-413. Previous studies suggested that phosphorylation of RIM1alpha at serine-413 is required for presynaptic long-term potentiation in parallel fiber synapses formed in vitro by cultured cerebellar neurons and that this type of presynaptic long-term potentiation is mediated by binding of 14-3-3 proteins to phosphorylated serine-413. To test the role of serine-413 phosphorylation in vivo, we have now produced knockin mice in which serine-413 is mutated to alanine. Surprisingly, we find that in these mutant mice, three different forms of presynaptic PKA-dependent long-term plasticity are normal. Furthermore, we observed that in contrast to RIM1alpha KO mice, RIM1 knockin mice containing the serine-413 substitution exhibit normal learning capabilities. The lack of an effect of the serine-413 mutation of RIM1alpha is not due to compensation by RIM2alpha because mice carrying both the serine-413 substitution and a RIM2alpha deletion still exhibited normal long-term presynaptic plasticity. Thus, phosphorylation of serine-413 of RIM1alpha is not essential for PKA-dependent long-term presynaptic plasticity in vivo, suggesting that PKA operates by a different mechanism despite the dependence of long-term presynaptic plasticity on RIM1alpha.
Collapse
|
223
|
Multiple RIBEYE-RIBEYE interactions create a dynamic scaffold for the formation of synaptic ribbons. J Neurosci 2008; 28:7954-67. [PMID: 18685021 DOI: 10.1523/jneurosci.1964-08.2008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic ribbons are large, dynamic structures in the active zone complex of ribbon synapses and important for the physiological properties of these tonically active synapses. RIBEYE is a unique and major protein component of synaptic ribbons. The aim of the present study was to understand how the synaptic ribbon is built and how the construction of the ribbon could contribute to its ultrastructural plasticity. In the present study, we demonstrate that RIBEYE self-associates using different independent approaches (yeast two-hybrid analyses, protein pull downs, synaptic ribbon-RIBEYE interaction assays, coaggregation experiments, transmission electron microscopy and immunogold electron microscopy). The A-domain [RIBEYE(A)] and B-domain [RIBEYE(B)] of RIBEYE contain five distinct sites for RIBEYE-RIBEYE interactions. Three interaction sites are present in the A-domain of RIBEYE and mediate RIBEYE(A)-RIBEYE(A) homodimerization and heterodimerization with the B-domain. The docking site for RIBEYE(A) on RIBEYE(B) is topographically and functionally different from the RIBEYE(B) homodimerization interface and is negatively regulated by nicotinamide adenine dinucleotide. The identified multiple RIBEYE-RIBEYE interactions have the potential to build the synaptic ribbon: heterologously expressed RIBEYE forms large electron-dense aggregates that are in part physically associated with surrounding vesicles and membrane compartments. These structures resemble spherical synaptic ribbons. These ribbon-like structures coassemble with the active zone protein bassoon, an interaction partner of RIBEYE at the active zone of ribbon synapses, emphasizing the physiological relevance of these RIBEYE-containing aggregates. Based on the identified multiple RIBEYE-RIBEYE interactions, we provide a molecular mechanism for the dynamic assembly of synaptic ribbons from individual RIBEYE subunits.
Collapse
|
224
|
Gracheva EO, Hadwiger G, Nonet ML, Richmond JE. Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density. Neurosci Lett 2008; 444:137-42. [PMID: 18721860 DOI: 10.1016/j.neulet.2008.08.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/19/2008] [Accepted: 08/08/2008] [Indexed: 01/19/2023]
Abstract
Rim is a multi-domain, active zone protein that regulates exocytosis and is implicated in vesicle priming and presynaptic plasticity. We recently demonstrated that synaptic defects associated with loss of Caenorhabditis elegans Rim (termed UNC-10) are accompanied by a reduction in docked vesicles adjacent to the presynaptic density. Since Rim is known to interact with the vesicle-associated GTPase Rab3A, here we asked whether UNC-10-dependent recruitment of synaptic vesicles to the presynaptic density was through an UNC-10/Rab-3 interaction. We first established that C. elegans Rab3 (termed RAB-3) in its GTP but not GDP-bound state interacts with UNC-10. We then demonstrated by EM analysis that rab-3 mutant synapses exhibit the same vesicle-targeting defect as unc-10 mutants. Furthermore, unc-10;rab-3 double mutants phenocopy the targeting defects of the single mutants, suggesting UNC-10 and RAB-3 act in the same pathway to target vesicles at the presynaptic density. Endogenous release of unc-10;rab-3 double mutants was similar to that of unc-10 single mutants, but more severe than rab-3 mutants, suggesting the common targeting defects are reflected by the milder rab-3 release defect. Rim has recently been shown to positively regulate calcium influx through direct interactions with calcium channels. Consistent with this notion we found UNC-10 colocalized with the calcium channel, UNC-2 at C. elegans presynaptic densities and synaptic release in unc-10 and rab-3 mutants exhibit reduced calcium-sensitivity. Together these results suggest that vesicles targeted to the presynaptic density by RAB-3/UNC-10 interactions are ideally positioned for efficient calcium-dependent release.
Collapse
Affiliation(s)
- Elena O Gracheva
- Department of Biological Sciences, University of Illinois at Chicago, 840 West Taylor St., Chicago, IL 60607, United States
| | | | | | | |
Collapse
|
225
|
Park JJ, Loh YP. How peptide hormone vesicles are transported to the secretion site for exocytosis. Mol Endocrinol 2008; 22:2583-95. [PMID: 18669645 DOI: 10.1210/me.2008-0209] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Post-Golgi transport of peptide hormone-containing vesicles from the site of genesis at the trans-Golgi network to the release site at the plasma membrane is essential for activity-dependent hormone secretion to mediate various endocrinological functions. It is known that these vesicles are transported on microtubules to the proximity of the release site, and they are then loaded onto an actin/myosin system for distal transport through the actin cortex to just below the plasma membrane. The vesicles are then tethered to the plasma membrane, and a subpopulation of them are docked and primed to become the readily releasable pool. Cytoplasmic tails of vesicular transmembrane proteins, as well as many cytosolic proteins including adaptor proteins, motor proteins, and guanosine triphosphatases, are involved in vesicle budding, the anchoring of the vesicles, and the facilitation of movement along the transport systems. In addition, a set of cytosolic proteins is also necessary for tethering/docking of the vesicles to the plasma membrane. Many of these proteins have been identified from different types of (neuro)endocrine cells. Here, we summarize the proteins known to be involved in the mechanisms of sorting various cargo proteins into regulated secretory pathway hormone-containing vesicles, movement of these vesicles along microtubules and actin filaments, and their eventual tethering/docking to the plasma membrane for hormone secretion.
Collapse
Affiliation(s)
- Joshua J Park
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | |
Collapse
|
226
|
Martelli AM, Baldini G, Tabellini G, Koticha D, Bareggi R, Baldini G. Rab3A and Rab3D Control the Total Granule Number and the Fraction of Granules Docked at the Plasma Membrane in PC12 Cells. Traffic 2008. [DOI: 10.1111/j.1600-0854.2000.11207.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
227
|
Ng EL, Tang BL. Rab GTPases and their roles in brain neurons and glia. ACTA ACUST UNITED AC 2008; 58:236-46. [PMID: 18485483 DOI: 10.1016/j.brainresrev.2008.04.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/29/2008] [Accepted: 04/06/2008] [Indexed: 12/19/2022]
Affiliation(s)
- Ee Ling Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | |
Collapse
|
228
|
Jaques F, Jousset H, Tomas A, Prost AL, Wollheim CB, Irminger JC, Demaurex N, Halban PA. Dual effect of cell-cell contact disruption on cytosolic calcium and insulin secretion. Endocrinology 2008; 149:2494-505. [PMID: 18218692 DOI: 10.1210/en.2007-0974] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell-to-cell interactions play an important role in insulin secretion. Compared with intact islets, dispersed pancreatic beta-cells show increased basal and decreased glucose-stimulated insulin secretion. In this study, we used mouse MIN6B1 cells to investigate the mechanisms that control insulin secretion when cells are in contact with each other or not. RNAi-mediated silencing of the adhesion molecule E-cadherin in confluent cells reduced glucose-stimulated secretion to the levels observed in isolated cells but had no impact on basal secretion. Dispersed cells presented high cytosolic Ca(2+) activity, depolymerized cytoskeleton and ERK1/2 activation in low glucose conditions. Both the increased basal secretion and the spontaneous Ca(2+) activity were corrected by transient removal of Ca(2+) or prolonged incubation of cells in low glucose, a procedure that restored the ability of dispersed cells to respond to glucose (11-fold stimulation). In conclusion, we show that dispersed pancreatic beta-cells can respond robustly to glucose once their elevated basal secretion has been corrected. The increased basal insulin secretion of dispersed cells is due to spontaneous Ca(2+) transients that activate downstream Ca(2+) effectors, whereas engagement of cell adhesion molecules including E-cadherin contributes to the greater secretory response to glucose seen in cells with normal intercellular contacts.
Collapse
Affiliation(s)
- Fabienne Jaques
- Department of Genetic Medicine and Development, University of Geneva Medical Center, 1211 Geneva-4, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Simsek-Duran F, Lonart G. The role of RIM1alpha in BDNF-enhanced glutamate release. Neuropharmacology 2008; 55:27-34. [PMID: 18499195 DOI: 10.1016/j.neuropharm.2008.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 03/14/2008] [Accepted: 04/11/2008] [Indexed: 11/30/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is known to activate proline-directed Ser/Thr protein kinases and to enhance glutamatergic transmission via a Rab3a-dependent molecular pathway. The identity of molecular targets in BDNF's action on Rab3a pathway, a synaptic vesicle protein involved in vesicle trafficking and synaptic plasticity, is not fully known. Here we demonstrate that BDNF enhances depolarization-evoked efflux of [(3)H]-glutamate from nerve terminals isolated from the CA1 region of the hippocampus. BDNF also potentiated hyperosmotic shock-evoked [(3)H]-glutamate efflux, indicating an effect on the size of the readily releasable pool. This effect of BDNF was completely abolished in nerve terminals derived from Rim1alphaKO (Rab3 interacting molecule 1alpha null mutant) mice. Using in vitro phosphorylation assays we identified two novel phosphorylation sites, Ser447 and Ser745 that were substrates for ERK2, a proline-directed kinase known to be activated by BDNF. The pSer447 site was phosphorylated under resting conditions in hippocampal CA1 nerve terminals and its phosphorylation was enhanced by BDNF treatment, as indicated by the use of a pSer447-RIM1alpha antibody we have developed. Together these findings identify RIM1alpha, a component of the Rab3a molecular pathway in mediating presynaptic plasticity, as a necessary factor in BDNF's enhancement of [(3)H]-glutamate efflux from hippocampal CA1 nerve terminals and indicate a possible role for RIM1alpha phosphorylation in BDNF-dependent presynaptic plasticity.
Collapse
Affiliation(s)
- Fatma Simsek-Duran
- Department of Pathology and Anatomy, Eastern Virginia Medical School, 700 W. Olney Road Norfolk, VA 23507, USA
| | | |
Collapse
|
230
|
Lonart G, Tang X, Simsek-Duran F, Machida M, Sanford LD. The role of active zone protein Rab3 interacting molecule 1 alpha in the regulation of norepinephrine release, response to novelty, and sleep. Neuroscience 2008; 154:821-31. [PMID: 18495360 DOI: 10.1016/j.neuroscience.2008.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/15/2008] [Accepted: 03/18/2008] [Indexed: 11/15/2022]
Abstract
Sleep mechanisms and synaptic plasticity are thought to interact to regulate homeostasis and memory formation. However, the influences of molecules that mediate synaptic plasticity on sleep are not well understood. In this study we demonstrate that mice lacking Rab3 interacting molecule 1 alpha (RIM1 alpha) (Rim1 alpha KO), a protein of the synaptic active zone required for certain types of synaptic plasticity and learning, had 53+/-5% less baseline rapid eye movement (REM) sleep compared with their wild type littermates. Also, compared with wild type littermates, exposure of the mice to an open field or to a novel object induced more robust and longer lasting locomotion suggesting altered habituation. This difference in exploratory behavior correlated with genotype specific changes in REM and deregulated release of norepinephrine in the cortex and basal amygdala of the Rim1 alpha KO mice. Also, moderate sleep deprivation (4 h), a test of the homeostatic sleep response, induced REM sleep rebound with different time course in Rim1 alpha KO and their wild type littermates. As norepinephrine plays an important role in regulating arousal and REM sleep, our data suggest that noradrenergic deficiency in Rim1 alpha KO animals impacts exploratory behavior and sleep regulation and contributes to impairments in learning.
Collapse
Affiliation(s)
- G Lonart
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | | | | | | |
Collapse
|
231
|
Abstract
Synapses are specialized communication junctions between neurons whose plasticity provides the structural and functional basis for information processing and storage in the brain. Recent biochemical, genetic and imaging studies in diverse model systems are beginning to reveal the molecular mechanisms by which synaptic vesicles, ion channels, receptors and other synaptic components assemble to make a functional synapse. Recent evidence has shown that the formation and function of synapses are critically regulated by the liprin-alpha family of scaffolding proteins. The liprin-alphas have been implicated in pre- and post-synaptic development by recruiting synaptic proteins and regulating synaptic cargo transport. Here, we will summarize the diversity of liprin binding partners, highlight the factors that control the function of liprin-alphas at the synapse and discuss how liprin-alpha family proteins regulate synapse formation and synaptic transmission.
Collapse
|
232
|
Tomas A, Meda P, Regazzi R, Pessin JE, Halban PA. Munc 18-1 and granuphilin collaborate during insulin granule exocytosis. Traffic 2008; 9:813-32. [PMID: 18208509 DOI: 10.1111/j.1600-0854.2008.00709.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Munc 18-1 is a member of the Sec/Munc family of syntaxin-binding proteins known to bind to the plasma membrane Q-SNARE syntaxin1 and whose precise role in regulated exocytosis remains controversial. Here, we show that Munc 18-1 plays a positive role in regulated insulin secretion from pancreatic beta cells. Munc 18-1 depletion caused a loss in the secretory capacity of both transiently transfected INS 1E cells and a stable clone with tetracycline-regulated Munc 18-1 RNA interference. In addition, Munc 18-1-depleted cells exhibited defective docking of insulin granules to the plasma membrane and accumulated insulin in the trans Golgi network. Furthermore, glucose stimulation after Munc 18-1 depletion resulted in the rapid formation of autophagosomes. In contrast, overexpression of Munc 18-1 had no effect on insulin secretion. Although there was no detectable interaction between Munc 18-1 and Munc-18-interacting protein 1 or calcium/calmodulin-dependent serine protein kinase, Munc 18-1 associated with the granular protein granuphilin. This association was regulated by glucose and was required for the specific interaction of insulin granules with syntaxin1. We conclude that Munc 18-1 and granuphilin collaborate in the docking of insulin granules to the plasma membrane in an initial fusion-incompetent state, with Munc 18-1 subsequently playing a positive role in a later stage of insulin granule exocytosis.
Collapse
Affiliation(s)
- Alejandra Tomas
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
233
|
Roscioni SS, Elzinga CRS, Schmidt M. Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:345-57. [PMID: 18176800 DOI: 10.1007/s00210-007-0246-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/05/2007] [Indexed: 12/17/2022]
Abstract
Epac1 (also known as cAMP-GEF-I) and Epac2 (also known as cAMP-GEF-II) are cyclic AMP-activated guanine nucleotide exchange factors for Ras-like GTPases. Since their discovery about 10 years ago, it is now accepted that Epac proteins are novel cAMP sensors that regulate several pivotal cellular processes, including calcium handling, cell proliferation, cell survival, cell differentiation, cell polarization, cell-cell adhesion events, gene transcription, secretion, ion transport, and neuronal signaling. Recent studies even indicated that Epac proteins might play a role in the regulation of inflammation and the development of cardiac hypertrophy. Meanwhile, a plethora of diverse effectors of Epac proteins have been assigned, such as Ras and Rho GTPases, phospholiase C-epsilon, phospholipase D, mitogen-activated protein kinases, protein kinase B/Akt, ion channels, secretory-granule associated proteins and regulators of the actin-microtubule network, the latter probably involved in the spatiotemporal dynamics of Epac-related signaling. This review highlights multi-faceted effectors and diverse biological functions driven by Epac proteins that might explain certain controversial signaling properties of cAMP.
Collapse
Affiliation(s)
- Sara S Roscioni
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | | | | |
Collapse
|
234
|
Abstract
G-proteins (guanine nucleotide-binding proteins) are membrane-attached proteins composed of three subunits, alpha, beta, and gamma. They transduce signals from G-protein coupled receptors (GPCRs) to target effector proteins. The agonistactivated receptor induces a conformational change in the G-protein trimer so that the alpha-subunit binds GTP in exchange for GDP and alpha-GTP, and betagamma-subunits separate to interact with the target effector. Effector-interaction is terminated by the alpha-subunit GTPase activity, whereby bound GTP is hydrolyzed to GDP. This is accelerated in situ by RGS proteins, acting as GTPase-activating proteins (GAPs). Galpha-GDP and Gbetagamma then reassociate to form the Galphabetagamma trimer. G-proteins primarily involved in the modulation of neurotransmitter release are G(o), G(q) and G(s). G(o) mediates the widespread presynaptic auto-inhibitory effect of many neurotransmitters (e.g., via M2/M4 muscarinic receptors, alpha(2) adrenoreceptors, micro/delta opioid receptors, GABAB receptors). The G(o) betagamma-subunit acts in two ways: first, and most ubiquitously, by direct binding to CaV2 Ca(2+) channels, resulting in a reduced sensitivity to membrane depolarization and reduced Ca(2+) influx during the terminal action potential; and second, through a direct inhibitory effect on the transmitter release machinery, by binding to proteins of the SNARE complex. G(s) and G(q) are mainly responsible for receptor-mediated facilitatory effects, through activation of target enzymes (adenylate cyclase, AC and phospholipase-C, PLC respectively) by the GTP-bound alpha-subunits.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
235
|
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
236
|
Thoreson WB. Kinetics of synaptic transmission at ribbon synapses of rods and cones. Mol Neurobiol 2007; 36:205-23. [PMID: 17955196 PMCID: PMC2474471 DOI: 10.1007/s12035-007-0019-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/18/2007] [Indexed: 11/24/2022]
Abstract
The ribbon synapse is a specialized structure that allows photoreceptors to sustain the continuous release of vesicles for hours upon hours and years upon years but also respond rapidly to momentary changes in illumination. Light responses of cones are faster than those of rods and, mirroring this difference, synaptic transmission from cones is also faster than transmission from rods. This review evaluates the various factors that regulate synaptic kinetics and contribute to kinetic differences between rod and cone synapses. Presynaptically, the release of glutamate-laden synaptic vesicles is regulated by properties of the synaptic proteins involved in exocytosis, influx of calcium through calcium channels, calcium release from intracellular stores, diffusion of calcium to the release site, calcium buffering, and extrusion of calcium from the cytoplasm. The rate of vesicle replenishment also limits the ability of the synapse to follow changes in release. Post-synaptic factors include properties of glutamate receptors, dynamics of glutamate diffusion through the cleft, and glutamate uptake by glutamate transporters. Thus, multiple synaptic mechanisms help to shape the responses of second-order horizontal and bipolar cells.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, 4th floor, Durham Research Center, 985840 Nebraska Medical Center, Omaha, NE 68198-5840, USA.
| |
Collapse
|
237
|
Yao I, Takagi H, Ageta H, Kahyo T, Sato S, Hatanaka K, Fukuda Y, Chiba T, Morone N, Yuasa S, Inokuchi K, Ohtsuka T, MacGregor GR, Tanaka K, Setou M. SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell 2007; 130:943-57. [PMID: 17803915 PMCID: PMC3049808 DOI: 10.1016/j.cell.2007.06.052] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 05/01/2007] [Accepted: 06/18/2007] [Indexed: 12/23/2022]
Abstract
Little is known about how synaptic activity is modulated in the central nervous system. We have identified SCRAPPER, a synapse-localized E3 ubiquitin ligase, which regulates neural transmission. SCRAPPER directly binds and ubiquitinates RIM1, a modulator of presynaptic plasticity. In neurons from Scrapper-knockout (SCR-KO) mice, RIM1 had a longer half-life with significant reduction in ubiquitination, indicating that SCRAPPER is the predominant ubiquitin ligase that mediates RIM1 degradation. As anticipated in a RIM1 degradation defect mutant, SCR-KO mice displayed altered electrophysiological synaptic activity, i.e., increased frequency of miniature excitatory postsynaptic currents. This phenotype of SCR-KO mice was phenocopied by RIM1 overexpression and could be rescued by re-expression of SCRAPPER or knockdown of RIM1. The acute effects of proteasome inhibitors, such as upregulation of RIM1 and the release probability, were blocked by the impairment of SCRAPPER. Thus, SCRAPPER has an essential function in regulating proteasome-mediated degradation of RIM1 required for synaptic tuning.
Collapse
Affiliation(s)
- Ikuko Yao
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | - Hiroshi Takagi
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | - Hiroshi Ageta
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | - Tomoaki Kahyo
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | - Showbu Sato
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | - Ken Hatanaka
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | - Yoshiyuki Fukuda
- National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Tomoki Chiba
- Laboratory of Frontier Science, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Nobuhiro Morone
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahiigashi-cho, Kodaira, Tokyo 187-8502, Japan
| | - Shigeki Yuasa
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahiigashi-cho, Kodaira, Tokyo 187-8502, Japan
| | - Kaoru Inokuchi
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | - Toshihisa Ohtsuka
- Department of Clinical and Molecular Pathology, Faculty of Medicine/Graduate School of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Grant R. MacGregor
- Department of Developmental and Cell Biology, and Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697-3940, USA
| | - Keiji Tanaka
- Laboratory of Frontier Science, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Mitsutoshi Setou
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
- National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Correspondence:
| |
Collapse
|
238
|
Leung YM, Kwan EP, Ng B, Kang Y, Gaisano HY. SNAREing voltage-gated K+ and ATP-sensitive K+ channels: tuning beta-cell excitability with syntaxin-1A and other exocytotic proteins. Endocr Rev 2007; 28:653-63. [PMID: 17878408 DOI: 10.1210/er.2007-0010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, syntaxin, SNAP25 (synaptosome-associated protein of 25 kDa), and synaptobrevin, constitute the minimal machinery for exocytosis in secretory cells such as neurons and neuroendocrine cells by forming a series of complexes prior to and during vesicle fusion. It was subsequently found that these SNARE proteins not only participate in vesicle fusion, but also tether with voltage-dependent Ca(2+) channels to form an excitosome that precisely regulates calcium entry at the site of exocytosis. In pancreatic islet beta-cells, ATP-sensitive K(+) (K(ATP)) channel closure by high ATP concentration leads to membrane depolarization, voltage-dependent Ca(2+) channel opening, and insulin secretion, whereas subsequent opening of voltage-gated K(+) (Kv) channels repolarizes the cell to terminate exocytosis. We have obtained evidence that syntaxin-1A physically interacts with Kv2.1 (the predominant Kv in beta-cells) and the sulfonylurea receptor subunit of beta-cell K(ATP) channel to modify their gating behaviors. A model has proposed that the conformational changes of syntaxin-1A during exocytosis induce distinct functional modulations of K(ATP) and Kv2.1 channels in a manner that optimally regulates cell excitability and insulin secretion. Other proteins involved in exocytosis, such as Munc-13, tomosyn, rab3a-interacting molecule, and guanyl nucleotide exchange factor II, have also been implicated in direct or indirect regulation of beta-cell ion channel activities and excitability. This review discusses this interesting aspect that exocytotic proteins not only promote secretion per se, but also fine-tune beta-cell excitability via modulation of ion channel gating.
Collapse
Affiliation(s)
- Yuk M Leung
- Departmnet of Physiology, China Medical University, Taichung 40402, Taiwan.
| | | | | | | | | |
Collapse
|
239
|
Kwan EP, Xie L, Sheu L, Ohtsuka T, Gaisano HY. Interaction between Munc13-1 and RIM is critical for glucagon-like peptide-1 mediated rescue of exocytotic defects in Munc13-1 deficient pancreatic beta-cells. Diabetes 2007; 56:2579-88. [PMID: 17639022 DOI: 10.2337/db06-1207] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) rescues insulin secretory deficiency in type 2 diabetes partly via cAMP actions on exchange protein directly activated by cAMP (Epac2) and protein kinase A (PKA)-activated Rab3A-interacting molecule 2 (Rim2). We had reported that haplodeficient Munc13-1(+/-) mouse islet beta-cells exhibited reduced insulin secretion, causing glucose intolerance. Munc13-1 binds Epac2 and Rim2, but their functional interactions remain unclear. RESEARCH DESIGN AND METHODS We used Munc13-1(+/-) islet beta-cells to examine the functional interactions between Munc13-1 and Epac2 and PKA. GLP-1 stimulation of Munc13-1(+/-) islets normalized the reduced biphasic insulin secretion by its actions on intact islet cAMP production and normal Epac2 and Rim2 levels. RESULTS To determine which exocytotic steps caused by Munc13-1 deficiency are rescued by Epac2 and PKA, we used patch-clamp capacitance measurements, showing that 1) cAMP restored the reduced readily releasable pool (RRP) and partially restored refilling of a releasable pool of vesicles in Munc13-1(+/-) beta-cells, 2) Epac-selective agonist [8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate] partially restored the reduced RRP and refilling of a releasable pool of vesicles, and 3) PKA blockade by H89 (leaving Epac intact) impaired cAMP ability to restore the RRP and refilling of a releasable pool of vesicles. Conversely, PKA-selective agonist (N(6)-benzoyladenosine-cAMP) completely restored RRP and partially restored refilling of a releasable pool of vesicles. To determine specific contributions within Epac-Rim2-Munc13-1 interaction sites accounting for cAMP rescue of exocytosis caused by Munc13-1 deficiency, we found that blockade of Rim2-Munc13-1 interaction with Rim-Munc13-1-binding domain peptide abolished cAMP rescue, whereas blockade of Epac-Rim2 interaction with Rim2-PDZ peptide only moderately reduced refilling with little effect on RRP. CONCLUSIONS cAMP rescue of priming defects caused by Munc13-1 deficiency via Epac and PKA signaling pathways requires downstream Munc13-1-Rim2 interaction.
Collapse
Affiliation(s)
- Edwin P Kwan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
240
|
A Comprehensive Identification of Synaptic Vesicle Proteins in Rat Brains by cRPLC/MS-MS and 2DE/MALDI-TOF-MS. B KOREAN CHEM SOC 2007. [DOI: 10.5012/bkcs.2007.28.9.1499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
241
|
Liang F, Zhang B, Tang J, Guo J, Li W, Ling EA, Chu H, Wu Y, Chan YG, Cao Q. RIM3gamma is a postsynaptic protein in the rat central nervous system. J Comp Neurol 2007; 503:501-10. [PMID: 17534942 DOI: 10.1002/cne.21403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
RIMs (Rab3-interacting molecules) are synaptic proteins essential for neural transmission and plasticity. RIM1alpha has been implicated in membrane trafficking and regulation of secretory vesicle exocytosis in eukaryotic cells. Little information is as yet available on RIM3gamma. In the present study, we investigated the cellular expression, subcellular distribution, and possible functions of RIM3gamma in the rat CNS. Rim3gamma cDNA was subcloned and the protein expressed in vitro for the generation and purification of a rabbit anti-RIM3gamma polyclonal antibody. In situ hybridization histochemistry, immunohistochemistry, and immunoelectron microscopy were performed to map expression of the mRNA and protein in the rat CNS. Our results indicated widespread distribution of RIM3gamma in diverse CNS neuronal cell types. The mRNA was found mainly in the cell bodies, whereas the protein immunoreactivity was localized chiefly to neuronal dendrites and to the postsynaptic densities as visualized under the light and electron microscope. This postsynaptic placement of RIM3gamma is distinct from the presynaptic localization of RIM1alpha but may contribute to regulating synaptic transmission and plasticity. The identification of RIM3gamma as a postsynaptic protein has functional implications for CNS synapse functions.
Collapse
Affiliation(s)
- Fengyi Liang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117597.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Mittelstaedt T, Schoch S. Structure and evolution of RIM-BP genes: identification of a novel family member. Gene 2007; 403:70-9. [PMID: 17855024 DOI: 10.1016/j.gene.2007.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 11/16/2022]
Abstract
RIM-binding proteins (RIM-BPs) were identified as binding partners of the presynaptic active zone proteins RIMs as well as for voltage-gated Ca(2+)-channels. They were suggested to form a functional link between the synaptic-vesicle fusion apparatus and Ca(2+)-channels. Here we show that the RIM-BP gene family diversified in different stages during evolution, but retained their unique domain structure. While invertebrate genomes contain one, and vertebrates include at least two RIM-BPs, we identified an additional gene, RIM-BP3, which is exclusively expressed in mammals. RIM-BP3 is encoded by a single exon of which three copies are present in the human genome. All RIM-BP genes encode proteins with three SH3-domains and two to three fibronectin III repeats. The flanking regions diverge in size and sequence and are alternatively spliced in RIM-BP1 and -2. Quantitative real-time RT-PCR and in situ hybridization analyses revealed overlapping but distinct expression patterns throughout the brain for RIM-BP1 and -2, while RIM-BP3 was detected at high levels outside the nervous system. The modular domain structure of RIM-BPs, their expression pattern and the conservative expansion during evolution shown here support their potential role as important molecular adaptors.
Collapse
Affiliation(s)
- Tobias Mittelstaedt
- Department of Neuropathology and Epileptology, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | | |
Collapse
|
243
|
Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtová A, Kao HT, Greengard P, Gundelfinger ED, Triller A, Marty S. Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 2007; 27:6868-77. [PMID: 17596435 PMCID: PMC6672225 DOI: 10.1523/jneurosci.1773-07.2007] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic terminals are specialized for mediating rapid fusion of synaptic vesicles (SVs) after calcium influx. The regulated trafficking of SVs likely results from a highly organized cytomatrix. How this cytomatrix links SVs, maintains them near the active zones (AZs) of release, and organizes docked SVs at the release sites is not fully understood. To analyze the three-dimensional (3D) architecture of the presynaptic cytomatrix, electron tomography of presynaptic terminals contacting spines was performed in the stratum radiatum of the rat hippocampal CA1 area. To preserve the cytomatrix, hippocampal slices were immobilized using high-pressure freezing, followed by cryosubstitution and embedding. SVs are surrounded by a dense network of filaments. A given vesicle is connected to approximately 1.5 neighboring ones. SVs at the periphery of this network are also linked to the plasma membrane, by longer filaments. More of these filaments are found at the AZ. At the AZ, docked SVs are grouped around presynaptic densities. Filaments with adjacent SVs emerge from these densities. Immunogold localizations revealed that synapsin is located in the presynaptic bouton, whereas Bassoon and CAST (ERC2) are at focal points next to the AZ. In synapsin triple knock-out mice, the number of SVs is reduced by 63%, but the size of the boutons is reduced by only 18%, and the mean distance of SVs to the AZ is unchanged. This 3D analysis reveals the morphological constraints exerted by the presynaptic molecular scaffold. SVs are tightly interconnected in the axonal bouton, and this network is preferentially connected to the AZ.
Collapse
Affiliation(s)
- Léa Siksou
- Inserm U789, Ecole Normale Supérieure, 75005 Paris, France
| | | | - Jean-Pierre Lechaire
- Service de CryoMicroscopie Electronique, Institut Fédératif de Recherche Biologie Intégrative 83 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 75252 Paris cedex 05, France
| | - Thomas Boudier
- Imagerie Intégrative, Inserm U759, Institut Curie, Bâtiment 112, Centre Universitaire Orsay, 91405 Orsay cedex, France
| | - Toshihisa Ohtsuka
- Department of Clinical and Molecular Pathology, Faculty of Medicine/Graduate School of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Anna Fejtová
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Hung-Teh Kao
- Department of Psychiatry, New York University School of Medicine, and Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, and
| | - Paul Greengard
- Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021
| | - Eckart D. Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | | | - Serge Marty
- Inserm U789, Ecole Normale Supérieure, 75005 Paris, France
| |
Collapse
|
244
|
Chevaleyre V, Heifets BD, Kaeser PS, Südhof TC, Castillo PE. Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. Neuron 2007; 54:801-12. [PMID: 17553427 PMCID: PMC2001295 DOI: 10.1016/j.neuron.2007.05.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 04/13/2007] [Accepted: 05/18/2007] [Indexed: 11/25/2022]
Abstract
Endocannabinoids (eCBs) have emerged as key activity-dependent signals that, by activating presynaptic cannabinoid receptors (i.e., CB1) coupled to G(i/o) protein, can mediate short-term and long-term synaptic depression (LTD). While the presynaptic mechanisms underlying eCB-dependent short-term depression have been identified, the molecular events linking CB1 receptors to LTD are unknown. Here we show in the hippocampus that long-term, but not short-term, eCB-dependent depression of inhibitory transmission requires presynaptic cAMP/PKA signaling. We further identify the active zone protein RIM1alpha as a key mediator of both CB1 receptor effects on the release machinery and eCB-dependent LTD in the hippocampus. Moreover, we show that eCB-dependent LTD in the amygdala and hippocampus shares major mechanistic features. These findings reveal the signaling pathway by which CB1 receptors mediate long-term effects of eCBs in two crucial brain structures. Furthermore, our results highlight a conserved mechanism of presynaptic plasticity in the brain.
Collapse
Affiliation(s)
- Vivien Chevaleyre
- Dept. of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 104612
| | - Boris D. Heifets
- Dept. of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 104612
| | - Pascal S. Kaeser
- Center for Basic Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Thomas C. Südhof
- Center for Basic Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Pablo E. Castillo
- Dept. of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 104612
- #Correspondence should be addressed to P.E.C. (): Pablo E. Castillo, Dominick P. Purpura Dept. of Neuroscience, Albert Einstein College of Medicine, Kennedy Center Rm. 703, 1410 Pelham Parkway South, Bronx, NY 10461, (718) 430 3263, (718) 430 8821
| |
Collapse
|
245
|
Coleman WL, Bill CA, Bykhovskaia M. Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse. Neuroscience 2007; 148:1-6. [PMID: 17640821 DOI: 10.1016/j.neuroscience.2007.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 06/04/2007] [Accepted: 06/10/2007] [Indexed: 11/25/2022]
Abstract
Rab3a is a small GTP binding protein associated with presynaptic vesicles that is thought to regulate vesicle targeting to active zones. Although this rab3a function implies that vesicle docking and action potential-evoked release might be inhibited in rab3a gene-deleted synapses, such inhibition has never been demonstrated. To investigate vesicle docking at the neuromuscular junction of rab3a gene-deleted (rab3a(-)) mice, we performed electron microscopy analysis of the diaphragm slow-fatigue (type I) synapses. We found a significant (26%) reduction in the number of vesicles docked to the presynaptic membrane in rab3a(-) terminals, although intraterminal vesicles were not affected. Aiming to detect possible changes in quantal release due to rab3a gene deletion, we minimized the variability between preparations employing focal recordings of synaptic responses from visualized type I endplates. We found a significant decrease in both evoked (27% reduction in quantal content) and spontaneous (28% reduction in mini frequency) quantal release. The decrease in the evoked release produced by rab3a deletion was most pronounced at reduced extracellular Ca(2+) concentrations (over 50% decrease at 0.5 and 0.2 mM Ca(2+)). By manipulating extracellular calcium, we demonstrated that calcium cooperativity is not altered in rab3a(-) synapses, however calcium sensitivity of quantal release is affected. Thus, we demonstrated that rab3a positively regulates docking and basal quantal release at the mouse neuromuscular junction. This result is consistent with the proposed role of rab3a in trafficking and targeting vesicles to the active zones.
Collapse
Affiliation(s)
- W L Coleman
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | |
Collapse
|
246
|
van Weering JR, Toonen RF, Verhage M. The role of Rab3a in secretory vesicle docking requires association/dissociation of guanidine phosphates and Munc18-1. PLoS One 2007; 2:e616. [PMID: 17637832 PMCID: PMC1910611 DOI: 10.1371/journal.pone.0000616] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 06/14/2007] [Indexed: 11/19/2022] Open
Abstract
Rab3a is a small GTPase that binds selectively to secretory vesicles and switches between active, GTP-bound and inactive, GDP-bound conformations. In yeast, Rab and SM-genes interact genetically to promote vesicle targeting/fusion. We tested different Rab3a conformations and genetic interactions with the SM-gene munc18-1 on the docking function of Rab3a in mammalian chromaffin cells. We expressed Rab3a mutants locked in the GTP- or GDP-bound form in wild-type and munc18-1 null mutant cells and analyzed secretory vesicle distribution. We confirmed that wild-type Rab3a promotes vesicle docking in wild-type cells. Unexpectedly, both GTP- and GDP-locked Rab3a mutants did not promote docking. Furthermore, wild-type Rab3a did not promote docking in munc18-1 null cells and GTP- and GDP-Rab3a both decreased the amount of docked vesicles. The results show that GTP- and GDP-locked conformations do not support a Munc18-1 dependent role of Rab3a in docking. This suggests that nucleotide cycling is required to support docking and that this action of Rab3a is upstream of Munc18-1.
Collapse
Affiliation(s)
- Jan R.T. van Weering
- Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ruud F. Toonen
- Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
247
|
Guan R, Dai H, Tomchick DR, Dulubova I, Machius M, Südhof TC, Rizo J. Crystal structure of the RIM1alpha C2B domain at 1.7 A resolution. Biochemistry 2007; 46:8988-98. [PMID: 17630786 PMCID: PMC2597510 DOI: 10.1021/bi700698a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RIM proteins play critical roles in synaptic vesicle priming and diverse forms of presynaptic plasticity. The C-terminal C2B domain is the only module that is common to all RIMs but is only distantly related to well-studied C2 domains, and its three-dimensional structure and interactions have not been characterized in detail. Using NMR spectroscopy, we now show that N- and C-terminal extensions beyond the predicted C2B domain core sequence are necessary to form a folded, stable RIM1alpha C2B domain. We also find that the isolated RIM1alpha C2B domain is not sufficient for previously described protein-protein interactions involving the RIM1alpha C-terminus, suggesting that additional sequences adjacent to the C2B domain might be required for these interactions. However, analytical ultracentrifugation shows that the RIM1alpha C2B domain forms weak dimers in solution. The crystal structure of the RIM1alpha C2B domain dimer at 1.7 A resolution reveals that it forms a beta-sandwich characteristic of C2 domains and that the unique N- and C-terminal extensions form a small subdomain that packs against the beta-sandwich and mediates dimerization. Our results provide a structural basis to understand the function of RIM C2B domains and suggest that dimerization may be a crucial aspect of RIM function.
Collapse
Affiliation(s)
- Rong Guan
- Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
| | - Han Dai
- Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
| | - Diana R. Tomchick
- Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
| | - Irina Dulubova
- Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
| | - Mischa Machius
- Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
| | - Thomas C. Südhof
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
| | - Josep Rizo
- Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390
- To whom correspondence should be addressed. Phone: 214-645-6360. FAX: 214-645-6353. E-mail:
| |
Collapse
|
248
|
Wojcik SM, Brose N. Regulation of Membrane Fusion in Synaptic Excitation-Secretion Coupling: Speed and Accuracy Matter. Neuron 2007; 55:11-24. [PMID: 17610814 DOI: 10.1016/j.neuron.2007.06.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unlike most other secretory processes, neurotransmitter release at chemical synapses is extremely fast, tightly regulated, spatially restricted, and dynamically adjustable at the same time. In this review, we focus on recent discoveries of molecular and cell biological processes that determine how fusion competence of vesicles is achieved and controlled in order to suit the specific requirements of synaptic transmitter release with respect to speed and spatial selectivity.
Collapse
Affiliation(s)
- Sonja M Wojcik
- Max-Planck-Institut für Experimentelle Medizin, Abteilung Molekulare Neurobiologie, Hermann-Rein-Strasse 3, D-37075 Göttingen, Deutschland.
| | | |
Collapse
|
249
|
Miki T, Kiyonaka S, Uriu Y, De Waard M, Wakamori M, Beedle AM, Campbell KP, Mori Y. Mutation associated with an autosomal dominant cone-rod dystrophy CORD7 modifies RIM1-mediated modulation of voltage-dependent Ca2+ channels. Channels (Austin) 2007; 1:144-7. [PMID: 18690027 DOI: 10.4161/chan.4660] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Genetic analyses have revealed an association between the gene encoding the Rab3A-interacting molecule (RIM1) and the autosomal dominant cone-rod dystrophy CORD7. However, the pathogenesis of CORD7 remains unclear. We recently revealed that RIM1 regulates voltage-dependent Ca(2+) channel (VDCC) currents and anchors neurotransmitter-containing vesicles to VDCCs, thereby controlling neurotransmitter release. We demonstrate here that the mouse RIM1 arginine-to-histidine substitution (R655H), which corresponds to the human CORD7 mutation, modifies RIM1 function in regulating VDCC currents elicited by the P/Q-type Ca(v)2.1 and L-type Ca(v)1.4 channels. Thus, our data can raise an interesting possibility that CORD7 phenotypes including retinal deficits and enhanced cognition are at least partly due to altered regulation of presynaptic VDCC currents.
Collapse
Affiliation(s)
- Takafumi Miki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Sisodiya SM, Thompson PJ, Need A, Harris SE, Weale ME, Wilkie SE, Michaelides M, Free SL, Walley N, Gumbs C, Gerrelli D, Ruddle P, Whalley LJ, Starr JM, Hunt DM, Goldstein DB, Deary IJ, Moore AT. Genetic enhancement of cognition in a kindred with cone-rod dystrophy due to RIMS1 mutation. J Med Genet 2007; 44:373-80. [PMID: 17237123 PMCID: PMC2740882 DOI: 10.1136/jmg.2006.047407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/30/2006] [Accepted: 01/04/2007] [Indexed: 11/03/2022]
Abstract
BACKGROUND The genetic basis of variation in human cognitive abilities is poorly understood. RIMS1 encodes a synapse active-zone protein with important roles in the maintenance of normal synaptic function: mice lacking this protein have greatly reduced learning ability and memory function. OBJECTIVE An established paradigm examining the structural and functional effects of mutations in genes expressed in the eye and the brain was used to study a kindred with an inherited retinal dystrophy due to RIMS1 mutation. MATERIALS AND METHODS Neuropsychological tests and high-resolution MRI brain scanning were undertaken in the kindred. In a population cohort, neuropsychological scores were associated with common variation in RIMS1. Additionally, RIMS1 was sequenced in top-scoring individuals. Evolution of RIMS1 was assessed, and its expression in developing human brain was studied. RESULTS Affected individuals showed significantly enhanced cognitive abilities across a range of domains. Analysis suggests that factors other than RIMS1 mutation were unlikely to explain enhanced cognition. No association with common variation and verbal IQ was found in the population cohort, and no other mutations in RIMS1 were detected in the highest scoring individuals from this cohort. RIMS1 protein is expressed in developing human brain, but RIMS1 does not seem to have been subjected to accelerated evolution in man. CONCLUSIONS A possible role for RIMS1 in the enhancement of cognitive function at least in this kindred is suggested. Although further work is clearly required to explore these findings before a role for RIMS1 in human cognition can be formally accepted, the findings suggest that genetic mutation may enhance human cognition in some cases.
Collapse
Affiliation(s)
- Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|