201
|
Zhao H, Ito Y, Chappel J, Andrews NW, Teitelbaum SL, Ross FP. Synaptotagmin VII regulates bone remodeling by modulating osteoclast and osteoblast secretion. Dev Cell 2008; 14:914-25. [PMID: 18539119 DOI: 10.1016/j.devcel.2008.03.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 02/13/2008] [Accepted: 03/31/2008] [Indexed: 01/23/2023]
Abstract
Maintenance of bone mass and integrity requires a tight balance between resorption by osteoclasts and formation by osteoblasts. Exocytosis of functional proteins is a prerequisite for the activity of both cells. In the present study, we show that synaptotagmin VII, a calcium sensor protein that regulates exocytosis, is associated with lysosomes in osteoclasts and bone matrix protein-containing vesicles in osteoblasts. Absence of synaptotagmin VII inhibits cathepsin K secretion and formation of the ruffled border in osteoclasts and bone matrix protein deposition in osteoblasts, without affecting the differentiation of either cell. Reflecting these in vitro findings, synaptotagmin VII-deficient mice are osteopenic due to impaired bone resorption and formation. Therefore, synaptotagmin VII plays an important role in bone remodeling and homeostasis by modulating secretory pathways functionally important in osteoclasts and osteoblasts.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
202
|
Mechanisms of the anabolic effects of teriparatide on bone: insight from the treatment of a patient with pycnodysostosis. J Bone Miner Res 2008; 23:1076-83. [PMID: 18302508 DOI: 10.1359/jbmr.080231] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pycnodysostosis is an extremely rare genetic osteosclerosis caused by cathepsin K deficiency. We hypothesized that teriparatide, a potent anabolic agent used in the treatment of osteoporosis, might reduce skeletal fragility by activating bone turnover. We studied a typical case of pycnodysostosis in a 37-yr-old woman who exhibited short stature, skull and thorax deformities, and a history of severe fragility fractures. Cathepsin K gene sequencing was performed. Before and after 6 mo of 20 microg/d teriparatide, biochemical markers of bone turnover were measured, and 3D bone structure and microarchitecture was assessed in vivo by HR-pQCT. Qualitative and quantitative analysis of transiliac bone biopsies were performed, and the degree of mineralization was evaluated by quantitative microradiography. In vitro assessment of bone resorption was performed after separation and differentiation of CD14(+) monocytes from peripheral blood. Bone structure assessed by HR-pQCT on the radius and tibia showed augmentation of cortical and trabecular density. Transiliac bone biopsy showed highly increased bone mass (+63% versus age- and sex-matched controls), a decrease in bone remodeling without evidence of active osteoblasts, and a severe decrease in the dynamic parameters of bone formation (mineralizing surfaces, -90% and bone formation rate, -93% versus age- and sex-matched controls). This depressed bone turnover probably explained the increased degree of mineralization. The presence of a novel missense mutation leading to an A141V amino acid substitution confirmed a genetic defect of cathepsin K as the cause of the disease. The deficiency of active osteoclasts was confirmed by an in vitro study that showed a decreased concentration of CD14(+) monocytes (the precursor of osteoclasts) in blood. These osteoclasts had low resorptive activity when incubated on bone slices. After 6 mo of teriparatide, the structure, microarchitecture, and turnover of bone--assessed by HR-pQCT, histology, and bone turnover markers--remained unchanged. Our data strongly suggest that some features of the osteoclastic phenotype--that are absent in pycnodysostosis--are a prerequisite for the anabolic effect of PTH on osteoblasts.
Collapse
|
203
|
Väänänen HK, Laitala-Leinonen T. Osteoclast lineage and function. Arch Biochem Biophys 2008; 473:132-8. [DOI: 10.1016/j.abb.2008.03.037] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 01/03/2023]
|
204
|
Wakkach A, Augier S, Breittmayer JP, Blin-Wakkach C, Carle GF. Characterization of IL-10-Secreting T Cells Derived from Regulatory CD4+CD25+ Cells by the TIRC7 Surface Marker. THE JOURNAL OF IMMUNOLOGY 2008; 180:6054-63. [DOI: 10.4049/jimmunol.180.9.6054] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
205
|
Yang S, Chen W, Stashenko P, Li YP. Specificity of RGS10A as a key component in the RANKL signaling mechanism for osteoclast differentiation. J Cell Sci 2008; 120:3362-71. [PMID: 17881498 PMCID: PMC3587975 DOI: 10.1242/jcs.008300] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Significant progress has been made in studies of the mechanisms by which RANKL induces terminal osteoclast differentiation. However, many crucial details in the RANKL-evoked signaling pathway for osteoclast differentiation remain to be defined. We characterized genes specifically expressed in osteoclasts by differential screening of a human osteoclastoma cDNA library, and found that the regulator of G-protein signaling 10A (RGS10A), but not the RGS10B isoform, was specifically expressed in human osteoclasts. The expression of RGS10A is also induced by RANKL in osteoclast precursors and is prominently expressed in mouse osteoclast-like cells. RGS10A silencing by RNA interference blocked intracellular [Ca2+]i oscillations, the expression of NFAT2, and osteoclast terminal differentiation in both bone marrow cells and osteoclast precursor cell lines. Reintroduction of RGS10A rescued the impaired osteoclast differentiation. RGS10A silencing also resulted in premature osteoclast apoptosis. RGS10A silencing affected the RANKL-[Ca2+]i oscillation-NFAT2 signaling pathway but not other RANKL-induced responses. Our data demonstrate that target components of RGS10A are distinct from those of RGS12 in the RANKL signaling mechanism. Our results thus show the specificity of RGS10A as a key component in the RANKL-evoked signaling pathway for osteoclast differentiation, which may present a promising target for therapeutic intervention.
Collapse
|
206
|
Poly(adp-ribose) polymerase-1 regulates Tracp gene promoter activity during RANKL-induced osteoclastogenesis. J Bone Miner Res 2008; 23:564-71. [PMID: 18021007 DOI: 10.1359/jbmr.071111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The Tracp gene encodes an acid phosphatase strongly upregulated during osteoclastogenesis on RANKL treatment. Using the mouse osteoclastic model RAW264.7, we studied Tracp gene expression, and we identified PARP-1 as a transcriptional repressor negatively regulated by RANKL during osteoclastogenesis. INTRODUCTION The Tracp gene encodes an acid phosphatase strongly expressed in differentiated osteoclasts. TRACP enzyme has a dual role and is involved in (1) the regulation of the biological activity of the bone matrix phosphoproteins osteopontin and bone sialoprotein and (2) the intracellular collagen degradation. Based on our previous work on Tcirg1 gene expression, and using data available in the literature, we focused on a 200-bp sequence located upstream the Tracp gene transcriptional start to identify binding activities. MATERIALS AND METHODS We first performed siRNA transfections and RAW264.7 cell treatment with an inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) activity. After EMSA and supershift experiments, we measured the promoter activity of wildtype and mutant constructs throughout the osteoclastic differentiation. RESULTS We first showed that depleting PARP-1 mRNA in the pre-osteoclastic cell line RAW264.7 results in an increase of both matrix metalloproteinase 9 and TRACP mRNA expression (3.5- and 2.5-fold, respectively). Moreover, in response to 3-aminobenzamide treatment, we measured a weak stimulation of MMP9 mRNA expression, whereas up to a 2-fold enhancement above the control condition of TRACP mRNA expression was observed. We next identified in the -839/-639 Tracp promoter region a PARP-1 binding site, and supershift experiments showed the interaction of a PARP-1 binding activity with the Tracp promoter sequence -830/-808. Finally, RAW264.7 cell transfection with a promoter construct mutated for this PARP-1 interacting sequence showed the functionality of this site within intact pre-osteoclastic cells. CONCLUSIONS In this study, we provide evidence that the transcriptional activity of the Tracp gene, in pre-osteoclastic cells, is negatively regulated by the binding of PARP-1 protein to a potential consensus sequence located in its promoter region. Taken together with our previous results related to the control of Tcirg1 gene expression, our data suggest that PARP-1 exerts a pivotal role in the basal repression of genes that are upregulated during RANKL-induced osteoclastogenesis.
Collapse
|
207
|
Osteoclast-osteoblast communication. Arch Biochem Biophys 2008; 473:201-9. [PMID: 18406338 DOI: 10.1016/j.abb.2008.03.027] [Citation(s) in RCA: 522] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 12/20/2022]
Abstract
Cells in osteoclast and osteoblast lineages communicate with each other through cell-cell contact, diffusible paracrine factors and cell-bone matrix interaction. Osteoclast-osteoblast communication occurs in a basic multicellular unit (BMU) at the initiation, transition and termination phases of bone remodeling. At the initiation phase, hematopoietic precursors are recruited to the BMU. These precursors express cell surface receptors including c-Fms, RANK and costimulatory molecules, such as osteoclast-associated receptor (OSCAR), and differentiate into osteoclasts following cell-cell contact with osteoblasts, which express ligands. Subsequently, the transition from bone resorption to formation is mediated by osteoclast-derived 'coupling factors', which direct the differentiation and activation of osteoblasts in resorbed lacunae to refill it with new bone. Bidirectional signaling generated by interaction between ephrinB2 on osteoclasts and EphB4 on osteoblast precursors facilitates the transition. Such interaction is likely to occur between osteoclasts and lining cells in the bone remodeling compartment (BRC). At the termination phase, bone remodeling is completed by osteoblastic bone formation and mineralization of bone matrix. Here, we describe molecular communication between osteoclasts and osteoblasts at distinct phases of bone remodeling.
Collapse
|
208
|
Supanchart C, Kornak U. Ion channels and transporters in osteoclasts. Arch Biochem Biophys 2008; 473:161-5. [PMID: 18406337 DOI: 10.1016/j.abb.2008.03.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/27/2022]
Abstract
The resorbing osteoclast is an exceptional cell that secretes large amounts of acid through the coupled activity of a v-type H+-ATPase and a chloride channel that both reside in the ruffled membrane. Impairment of this acid secretion machinery by genetic mutations can abolish bone resorption activity, resulting in osteopetrotic phenotypes. Another key feature of osteoclasts is the transport of high amounts of calcium and phosphate from the resorption lacuna to the basolateral plasma membrane. Evidence exists that this occurs in part through entry of these ions into the osteoclast cytosol. Handling of such large amounts of a cellular messenger requires elaborate mechanisms. Membrane proteins that regulate osteoclast calcium homeostasis and the effect of calcium on osteoclast function and survival are therefore the second main focus of this review.
Collapse
Affiliation(s)
- Chayarop Supanchart
- Institut fuer Medizinische Genetik, Charité Universitaetsmedizin, Campus Virchow, Augustenburger Platz 1, 13353 Berlin, Germany
| | | |
Collapse
|
209
|
Saroussi S, Nelson N. Vacuolar H+-ATPase—an enzyme for all seasons. Pflugers Arch 2008; 457:581-7. [PMID: 18320212 DOI: 10.1007/s00424-008-0458-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 01/14/2008] [Indexed: 01/02/2023]
|
210
|
Lee SH, Kim T, Park ES, Yang S, Jeong D, Choi Y, Rho J. NHE10, an osteoclast-specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival [corrected]. Biochem Biophys Res Commun 2008; 369:320-6. [PMID: 18269914 DOI: 10.1016/j.bbrc.2008.01.168] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 01/31/2008] [Indexed: 01/21/2023]
Abstract
Bone homeostasis is tightly regulated by the balanced actions of osteoblasts (OBs) and osteoclasts (OCs). We previously analyzed the gene expression profile of OC differentiation using a cDNA microarray, and identified a novel osteoclastogenic gene candidate, clone OCL-1-E7 [J. Rho, C.R. Altmann, N.D. Socci, L. Merkov, N. Kim, H. So, O. Lee, M. Takami, A.H. Brivanlou, Y. Choi, Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis, DNA Cell Biol. 21 (2002) 541-549]. In this study, we have isolated full-length cDNAs corresponding to this clone from mice and humans to determine the functional roles of this gene in osteoclastogenesis. The full-length cDNA of OCL-1-E7 encodes 12 membrane-spanning domains that are typical of isoforms of the Na(+)/H(+) exchangers (NHEs), indicating that this clone is a novel member of the NHE family (hereafter referred to as NHE10). Here, we show that NHE10 is highly expressed in OCs in response to receptor activator of nuclear factor-kappaB ligand signaling and is required for OC differentiation and survival.
Collapse
Affiliation(s)
- Seoung Hoon Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
211
|
Karsdal MA, Neutzsky-Wulff AV, Dziegiel MH, Christiansen C, Henriksen K. Osteoclasts secrete non-bone derived signals that induce bone formation. Biochem Biophys Res Commun 2008; 366:483-8. [DOI: 10.1016/j.bbrc.2007.11.168] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
212
|
Askmyr MK, Fasth A, Richter J. Towards a better understanding and new therapeutics of osteopetrosis. Br J Haematol 2008; 140:597-609. [PMID: 18241253 DOI: 10.1111/j.1365-2141.2008.06983.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lack of or dysfunction in osteoclasts result in osteopetrosis, a group of rare but often severe, genetic disorders affecting skeletal tissue. Increase in bone mass results in skeletal malformation and bone marrow failure that may be fatal. Many of the underlying defects have lately been characterized in humans and in animal models of the disease. In humans, these defects often involve mutations in genes expressing proteins involved in the acidification of the osteoclast resorption compartment, a process necessary for proper bone degradation. So far, the only cure for children with severe osteopetrosis is allogeneic hematopoietic stem cell (HSC) transplantation but without a matching donor this form of therapy is far from optimal. The characterization of the genetic defects opens up the possibility for gene replacement therapy as an alternative. Accordingly, HSC-targeted gene therapy in a mouse model of infantile malignant osteopetrosis was recently shown to correct many aspects of the disease.
Collapse
Affiliation(s)
- Maria K Askmyr
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | | | | |
Collapse
|
213
|
Feng H, Cheng T, Pavlos NJ, Yip KHM, Carrello A, Seeber R, Eidne K, Zheng MH, Xu J. Cytoplasmic terminus of vacuolar type proton pump accessory subunit Ac45 is required for proper interaction with V(0) domain subunits and efficient osteoclastic bone resorption. J Biol Chem 2008; 283:13194-204. [PMID: 18227071 DOI: 10.1074/jbc.m709712200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Solubilization of mineralized bone by osteoclasts is largely dependent on the acidification of the extracellular resorption lacuna driven by the vacuolar (H+)-ATPases (V-ATPases) polarized within the ruffled border membranes. V-ATPases consist of two functionally and structurally distinct domains, V(1) and V(0). The peripheral cytoplasmically oriented V(1) domain drives ATP hydrolysis, which necessitates the translocation of protons across the integral membrane bound V(0) domain. Here, we demonstrate that an accessory subunit, Ac45, interacts with the V(0) domain and contributes to the vacuolar type proton pump-mediated function in osteoclasts. Consistent with its role in intracellular acidification, Ac45 was found to be localized to the ruffled border region of polarized resorbing osteoclasts and enriched in pH-dependent endosomal compartments that polarized to the ruffled border region of actively resorbing osteoclasts. Interestingly, truncation of the 26-amino acid residue cytoplasmic tail of Ac45, which encodes an autonomous internalization signal, was found to impair bone resorption in vitro. Furthermore, biochemical analysis revealed that although both wild type Ac45 and mutant were capable of associating with subunits a3, c, c'', and d, deletion of the cytoplasmic tail altered its binding proximity with a3, c'', and d. In all, our data suggest that the cytoplasmic terminus of Ac45 contains elements necessary for its proper interaction with V(0) domain and efficient osteoclastic bone resorption.
Collapse
Affiliation(s)
- Haotian Feng
- Molecular Orthopaedic Laboratory, Centre for Orthopaedic Research, School of Surgery and Pathology, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Wada Y, Sun-Wada GH, Tabata H, Kawamura N. Vacuolar-type proton ATPase as regulator of membrane dynamics in multicellular organisms. J Bioenerg Biomembr 2008; 40:53-7. [PMID: 18214654 DOI: 10.1007/s10863-008-9128-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/27/2007] [Indexed: 02/07/2023]
Abstract
Acidification inside membrane compartments is a common feature of all eukaryotic cells. The acidic milieu is involved in many physiological processes including secretion, protein processing, and others. However, its cellular relevance has not been well established beyond the results of in vitro studies involving cultured cell systems. In the last decade, human and mouse genetics have revealed that the acidification machinery is implicated in multiple pathophysiological disorders, and thus our understanding of physiological consequences of the defective acidification in multicellular organisms has improved. In invertebrates including Drosophila and nematodes, mutations of V-ATPase were found to lead the development of rather unexpected phenotypes. Studies have suggested that V-ATPase may be involved in membrane fusion and vesicle formation, important processes for membrane trafficking, and have further implied its involvement in cell-cell fusion. This rather novel idea arose from the phenotypes associated with genetic disorders involving V-ATPase genes in various genetic model systems. In this article, we focus and overview the non-classical, beyond proton-pumping function of the vacuolar-type ATPase in exo/endocytic systems.
Collapse
Affiliation(s)
- Yoh Wada
- Division of Biological Science, Institute for Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | |
Collapse
|
215
|
Margolis DS, Szivek JA, Lai LW, Lien YHH. Phenotypic characteristics of bone in carbonic anhydrase II-deficient mice. Calcif Tissue Int 2008; 82:66-76. [PMID: 18175028 DOI: 10.1007/s00223-007-9098-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 12/04/2007] [Indexed: 02/04/2023]
Abstract
Carbonic anhydrase II (CAII)-deficient mice were created to study the syndrome of CAII deficiency in humans including osteopetrosis, renal tubular acidosis, and cerebral calcification. Although CAII mice have renal tubular acidosis, studies that analyzed only cortical bones found no changes characteristic of osteopetrosis. Consistent with previous studies, the tibiae of CAII-deficient mice were significantly smaller than those of wild-type (WT) mice (28.7 +/- 0.9 vs. 43.6 +/- 3.7 mg; p < 0.005), and the normalized cortical bone volume of CAII-deficient mice (79.3 +/- 2.2%) was within 5% of that of WT mice (82.7 +/- 2.3%; p < 0.05), however, metaphyseal widening of the tibial plateau was noted in CAII-deficient mice, consistent with osteopetrosis. In contrast to cortical bone, trabecular bone volume demonstrated a nearly 50% increase in CAII-deficient mice (22.9 +/- 3.5% in CAII, compared to 15.3 +/- 1.6% in WT; p < 0.001). In addition, histomorphometry demonstrated that bone formation rate was decreased by 68% in cortical bone (4.77 +/- 1.65 microm3/microm2/day in WT vs. 2.07 +/- 1.71 microm3/microm2/day in CAII mice; p < 0.05) and 55% in trabecular bone (0.617 +/- 0.230 microm3/microm2/day in WT vs. 0.272 +/- 0.114 microm3/microm2/day in CAII mice; p < 0.05) in CAII-deficient mice. The number of osteoclasts was significantly increased (67%) in CAII-deficient mice, while osteoblast number was not different from that in WT mice. The metaphyseal widening and changes in the trabecular bone are consistent with osteopetrosis, making the CAII-deficient mouse a valuable model of human disease.
Collapse
Affiliation(s)
- David S Margolis
- Orthopaedic Research Lab, Department of Orthopaedic Surgery, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
216
|
V-ATPase functions in normal and disease processes. Pflugers Arch 2007; 457:589-98. [DOI: 10.1007/s00424-007-0382-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 10/26/2007] [Indexed: 01/30/2023]
|
217
|
Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts. Exp Cell Res 2007; 314:564-73. [PMID: 18036591 DOI: 10.1016/j.yexcr.2007.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/18/2007] [Accepted: 10/19/2007] [Indexed: 01/14/2023]
Abstract
Tropomyosins (Tms) are alpha-helical dimers that bind and stabilize actin microfilaments while regulating their accessibility to other actin-associated proteins. Four genes encode expression of over forty Tms, most of which are expressed in nonmuscle cells. In recent years, it has become clear that individual Tm isoforms may regulate specific actin pools within cells. In this study, we examined how osteoclast function may be regulated by the tropomyosin isoform Tm-4, which we previously showed to be highly localized to podosomes and sealing zones of osteoclasts. RNAi-mediated knockdown of Tm-4, both in RAW264.7- and mouse marrow-derived osteoclasts, resulted in thinning of the actin ring of the sealing zone. Knockdown of Tm-4 also resulted in diminished bone resorptive capacity and altered resorption pit shape. In contrast, osteoclasts overexpressing Tm-4 demonstrated thickened podosomes on glass as well as thickened, aberrant actin structures on bone, and diminished motility and resorptive capacity. These results indicate that Tm-4 plays a role in regulating adhesion structures of osteoclasts, most likely by stabilizing the actin microfilaments present in podosomes and the sealing zone.
Collapse
|
218
|
Rein J, Voss M, Blenau W, Walz B, Baumann O. Hormone-induced assembly and activation of V-ATPase in blowfly salivary glands is mediated by protein kinase A. Am J Physiol Cell Physiol 2007; 294:C56-65. [PMID: 17977948 DOI: 10.1152/ajpcell.00041.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vacuolar H(+)-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary gland cells energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). We have shown previously that exposure to 5-HT induces a cAMP-mediated reversible assembly of V(0) and V(1) subcomplexes to V-ATPase holoenzymes and increases V-ATPase-driven proton transport. Here, we analyze whether the effect of cAMP on V-ATPase is mediated by protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac), the cAMP target proteins that are present within the salivary glands. Immunofluorescence microscopy shows that PKA activators, but not Epac activators, induce the translocation of V(1) components from the cytoplasm to the apical membrane, indicative of an assembly of V-ATPase holoenzymes. Measurements of transepithelial voltage changes and microfluorometric pH measurements at the luminal surface of cells in isolated glands demonstrate further that PKA-activating cAMP analogs increase cation transport to the gland lumen and induce a V-ATPase-dependent luminal acidification, whereas activators of Epac do not. Inhibitors of PKA block the 5-HT-induced V(1) translocation to the apical membrane and the increase in proton transport. We conclude that cAMP exerts its effects on V-ATPase via PKA.
Collapse
Affiliation(s)
- Julia Rein
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany
| | | | | | | | | |
Collapse
|
219
|
Kawasaki-Nishi S, Yamaguchi A, Forgac M, Nishi T. Tissue specific expression of the splice variants of the mouse vacuolar proton-translocating ATPase a4 subunit. Biochem Biophys Res Commun 2007; 364:1032-6. [PMID: 17971301 DOI: 10.1016/j.bbrc.2007.10.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 10/20/2007] [Indexed: 12/11/2022]
Abstract
We have identified splicing variants of the mouse a4 subunit which have the same open reading frame but have a different 5'-noncoding sequence. Further determination of the 5'-upstream region of the a4 gene in mouse indicated the presence of two first exons (exon 1a and exon 1b) which include the 5'-noncoding sequence of each variant. The mRNAs of both splicing variants (a4-I and a4-II) show a similar expression pattern in mouse kidney by in situ hybridization. However, tissue and developmental expression patterns of the variants are different. In addition to strong expression in kidney, a4-I expression was detected in heart, lung, skeletal muscle, and testis, whereas a4-II is expressed in lung, liver, and testis. During development, a4-I was expressed beginning with the early embryonic stage, but a4-II mRNA was detected from day 17. These results suggest that each a4 variant has both a tissue and developmental stage specific function.
Collapse
Affiliation(s)
- Shoko Kawasaki-Nishi
- Department of Cell Membrane Biology, ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, Japan
| | | | | | | |
Collapse
|
220
|
Sørensen MG, Henriksen K, Neutzsky-Wulff AV, Dziegiel MH, Karsdal MA. Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. J Bone Miner Res 2007; 22:1640-8. [PMID: 17576165 DOI: 10.1359/jbmr.070613] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Dissolution of the inorganic phase of bone by the osteoclasts mediated by V-ATPase and ClC-7 is a prerequisite for bone resorption. Inhibitors of osteoclastic V-ATPase or ClC-7 are novel approaches for inhibition of osteoclastic bone resorption. By testing natural compounds in acidification assays, diphyllin was identified. We characterized diphyllin with respect to the pharmacological effects on osteoclasts. INTRODUCTION Osteoclastic acidification of the resorption lacuna and bone resorption requires activity of both V-ATPase and the chloride channel ClC-7. Inhibition of these processes represents a novel approach for treatment of bone metabolic disorders. We identified diphyllin, a novel inhibitor of V-ATPase, and characterized this natural compound with respect to activity in human osteoclasts. MATERIALS AND METHODS Diphyllin was tested in the acid influx assay and V-ATPase assay using bovine chromaffin granules. Human osteoclasts were generated from CD14+ monocytes cultured with macrophage-colony stimulating factor (M-CSF) and RANKL. The effect of diphyllin on lysosomal acidification in human osteoclasts was studied using acridine orange. The effect of diphyllin on bone resorption by osteoclasts was measured as release of C-terminal cross-linked telopeptide of type I collagen (CTX-I) and calcium into the supernatants and by scoring pit area. Osteoclast number, TRACP activity, and cell viability were measured. Furthermore, the effect of diphyllin on bone nodule formation was tested using the mouse osteoblast cell line MC3T3-E1. RESULTS In the acid influx assay, diphyllin potently inhibited the acid influx (IC50 = 0.6 nM). We found that diphyllin inhibited V-ATPase with an IC50 value of 17 nM, compared with 4 nM for bafilomycin A1. Moreover, diphyllin dose-dependently inhibited lysosomal acidification in human osteoclasts. Furthermore, we found that diphyllin inhibited human osteoclastic bone resorption measured by CTX-I (IC50 = 14 nM), calcium release, and pit area, despite increasing TRACP activity, numbers of osteoclasts, and cell viability. Finally, diphyllin showed no effect on bone formation in vitro, whereas bafilomycin A1 was toxic. CONCLUSIONS We identified a natural compound that potently inhibits V-ATPase and thereby lysosomal acidification in osteoclasts, which leads to abrogation of bone resorption. Because recent studies indicate that inhibition of the osteoclastic acidification leads to inhibition of resorption without inhibiting formation, we speculate that diphyllin is a potential novel treatment for bone disorders involving excessive resorption.
Collapse
|
221
|
Wang Y, Cipriano DJ, Forgac M. Arrangement of subunits in the proteolipid ring of the V-ATPase. J Biol Chem 2007; 282:34058-65. [PMID: 17897940 PMCID: PMC2394185 DOI: 10.1074/jbc.m704331200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar ATPases (V-ATPases) are multisubunit complexes containing two domains. The V(1) domain (subunits A-H) is peripheral and carries out ATP hydrolysis. The V(0) domain (subunits a, c, c', c'', d, and e) is membrane-integral and carries out proton transport. In yeast, there are three proteolipid subunits as follows: subunit c (Vma3p), subunit c' (Vma11p), and subunit c'' (Vma16p). The proteolipid subunits form a six-membered ring containing single copies of subunits c' and c'' and four copies of subunit c. To determine the possible arrangements of proteolipid subunits in V(0) that give rise to a functional V-ATPase complex, a series of gene fusions was constructed to constrain the arrangement of pairs of subunits in the ring. Fusions containing c'' employed a truncated version of this protein lacking the first putative transmembrane helix (which we have shown previously to be functional), to ensure that the N and C termini of all subunits were located on the luminal side of the membrane. Fusion constructs were expressed in strains disrupted in c', c'', or both but containing a wild copy of c to ensure the presence of the required number of copies of subunit c. The c-c''(DeltaTM1), c''(DeltaTM1)-c', and c'-c constructs all complemented the vma(-) phenotype and gave rise to complexes possessing greater than 25% of wild-type levels of activity. By contrast, neither the c-c', the c'-c''(DeltaTM1), nor the c''(DeltaTM1)-c constructs complemented the vma(-) phenotype. These results suggest that functionally assembled V-ATPase complexes contain the proteolipid subunits arranged in a unique order in the ring.
Collapse
Affiliation(s)
| | | | - Michael Forgac
- ¶ To whom correspondence should be addressed: Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111. Tel: 617-636-6939; Fax: 617-636-0445; E-mail:
| |
Collapse
|
222
|
Nielsen RH, Karsdal MA, Sørensen MG, Dziegiel MH, Henriksen K. Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival. Biochem Biophys Res Commun 2007; 360:834-9. [PMID: 17631274 DOI: 10.1016/j.bbrc.2007.06.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 11/29/2022]
Abstract
Osteoclasts are the sole cells possessing the ability to resorb calcified bone matrix. This occurs via secretion of hydrochloric acid mediated by the V-ATPase and the chloride channel ClC-7. Loss of acidification leads to osteopetrosis characterized by ablation of bone resorption and increased osteoclast numbers, indicating increased life span of the osteoclasts. To investigate the role of the inorganic phase of bone with respect to osteoclast life span, we used the V-ATPase inhibitor bafilomycin and the calcium uptake antagonist ryanodine on human osteoclasts cultured on calcified and decalcified bone slices. Bafilomycin inhibited bone resorption and increased osteoclast survival on calcified but not decalcified bones. Ryanodine attenuated calcium uptake and thereby augmented osteoclast survival on calcified bones. In summary, we found that acidification leading to calcium release from bone during resorption controls osteoclast survival, potentially explaining the increased numbers of osteoclasts in patients with osteopetrosis.
Collapse
Affiliation(s)
- Rasmus H Nielsen
- Nordic Bioscience A/S, Herlev Hovedgade 207, Herlev, DK-2730, Denmark
| | | | | | | | | |
Collapse
|
223
|
Sørensen MG, Henriksen K, Schaller S, Karsdal MA. Biochemical markers in preclinical models of osteoporosis. Biomarkers 2007; 12:266-86. [PMID: 17453741 DOI: 10.1080/13547500601070842] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although several treatments for osteoporosis exist, further understanding of the mode of action of current treatments, as well as development of novel treatments, are of interest. Thus, preclinical models of osteoporosis are very useful, as they provide the possibility for gaining knowledge about the cellular mechanisms underlying the disease and for studying pharmaceutical prevention or intervention of the disease in simple and strictly controlled systems. In this review, we present a comprehensive collection of studies using biochemical markers of bone turnover for investigation of preclinical models of osteoporosis. These range from pure and simple in vitro systems, such as osteoclast cultures, to ex vivo models, such as cultures of embryonic murine tibiae and, finally, to in vivo models, such as ovariectomy and orchidectomy of rats. We discuss the relevance of the markers in the individual models, and compare their responses to those observed using 'golden standard' methods.
Collapse
Affiliation(s)
- M G Sørensen
- Pharmos Bioscience A/S, Herlev Hovedgade, Herlev, Denmark
| | | | | | | |
Collapse
|
224
|
Yang S, Li YP. RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+]i oscillation regulation. Genes Dev 2007; 21:1803-16. [PMID: 17626792 PMCID: PMC1920174 DOI: 10.1101/gad.1544107] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased osteoclastic resorption leads to many bone diseases, including osteoporosis and rheumatoid arthritis. While rapid progress has been made in characterizing osteoclast differentiation signaling pathways, how receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL) evokes essential [Ca2+]i oscillation signaling remains unknown. Here, we characterized RANKL-induced signaling proteins and found regulator of G-protein signaling 10 (RGS10) is predominantly expressed in osteoclasts. We generated RGS10-deficient (RGS10-/-) mice that exhibited severe osteopetrosis and impaired osteoclast differentiation. Our data demonstrated that ectopic expression of RGS10 dramatically increased the sensitivity of osteoclast differentiation to RANKL signaling; the deficiency of RGS10 resulted in the absence of [Ca2+]i oscillations and loss of NFATc1; ectopic NFATc1 expression rescues impaired osteoclast differentiation from deletion of RGS10; phosphatidylinositol 3,4,5-trisphosphate (PIP3) is essential to PLCgamma activation; and RGS10 competitively interacts with Ca2+/calmodulin and PIP3 in a [Ca2+]i-dependent manner to mediate PLCgamma activation and [Ca2+]i oscillations. Our results revealed a mechanism through which RGS10 specifically regulates the RANKL-evoked RGS10/calmodulin-[Ca2+]i oscillation-calcineurin-NFATc1 signaling pathway in osteoclast differentiation using an in vivo model. RGS10 provides a potential therapeutic target for the treatment of bone diseases.
Collapse
Affiliation(s)
- Shuying Yang
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts 02115, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA
| | - Yi-Ping Li
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts 02115, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA
- Corresponding author.E-MAIL ; FAX (617) 262-4021
| |
Collapse
|
225
|
Beranger GE, Momier D, Guigonis JM, Samson M, Carle GF, Scimeca JC. Differential binding of poly(ADP-Ribose) polymerase-1 and JunD/Fra2 accounts for RANKL-induced Tcirg1 gene expression during osteoclastogenesis. J Bone Miner Res 2007; 22:975-83. [PMID: 17419679 DOI: 10.1359/jbmr.070406] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED We studied Tcirg1 gene expression on RANKL-induced osteoclastic differentiation of the mouse model RAW264.7 cells. We identified a mechanism involving PARP-1 inhibition release and JunD/Fra-2 binding, which is responsible for Tcirg1 gene upregulation. INTRODUCTION The Tcirg1 gene encodes the a3 isoform of the V-ATPase a subunit, which plays a critical role in the resorption activity of the osteoclast. Using serial deletion constructs of the Tcirg1 gene promoter, we performed a transcriptional study to identify factor(s) involved in the regulation of the RANKL-induced gene expression. MATERIALS AND METHODS The promoter activity of serial-deletion fragments of the Tcirg1 gene promoter was monitored throughout the RAW264.7 cells differentiation process. We next performed sequence analysis, EMSA, UV cross-linking, qPCR, and gel supershift experiments to identify the factor(s) interacting with the promoter. RESULTS A deletion of the -1297-1244 region led to the disappearance of the RANKL-induced promoter activity. EMSA experiments showed the binding of two factors that undergo differential binding on RANKL treatment. Supershift experiments led us to identify the dimer JunD/Fra-2 as the binding activity associated with the -1297/-1268 Tcirg1 gene promoter sequence in response to RANKL. Moreover, we observed poly(ADP-ribose) polymerase-1 (PARP-1) binding to an adjacent site (-1270/-1256), and this interaction was disrupted after RANKL treatment. CONCLUSIONS We provide data that identify junD proto-oncogene (JunD) and Fos-related antigen 2 (Fra-2) as the activator protein-1 (AP-1) factors responsible for the RANKL-induced upregulation of the mouse Tcirg1 gene expression. Moreover, we identified another binding site for PARP-1 that might account for the repression of Tcirg1 gene expression in pre-osteoclastic cells.
Collapse
|
226
|
Yao G, Feng H, Cai Y, Qi W, Kong K. Characterization of vacuolar-ATPase and selective inhibition of vacuolar-H(+)-ATPase in osteoclasts. Biochem Biophys Res Commun 2007; 357:821-7. [PMID: 17462591 DOI: 10.1016/j.bbrc.2007.04.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 04/07/2007] [Indexed: 02/05/2023]
Abstract
V-ATPase plays important roles in controlling the extra- and intra-cellular pH in eukaryotic cell, which is most crucial for cellular processes. V-ATPases are composed of a peripheral V(1) domain responsible for ATP hydrolysis and integral V(0) domain responsible for proton translocation. Osteoclasts are multinucleated cells responsible for bone resorption and relate to many common lytic bone disorders such as osteoporosis, bone aseptic loosening, and tumor-induced bone loss. This review summarizes the structure and function of V-ATPase and its subunit, the role of V-ATPase subunits in osteoclast function, V-ATPase inhibitors for osteoclast function, and highlights the importance of V-ATPase as a potential prime target for anti-resorptive agents.
Collapse
Affiliation(s)
- GuanFeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, ShanTou University Medical College, ShanTou, GuangDong 515041, China
| | | | | | | | | |
Collapse
|
227
|
Sun-Wada GH, Tabata H, Kawamura N, Futai M, Wada Y. Differential expression of a subunit isoforms of the vacuolar-type proton pump ATPase in mouse endocrine tissues. Cell Tissue Res 2007; 329:239-48. [PMID: 17497178 DOI: 10.1007/s00441-007-0421-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 03/31/2007] [Indexed: 11/26/2022]
Abstract
Vacuolar-type proton ATPase (V-ATPase) is a multi-subunit enzyme that couples ATP hydrolysis to the translocation of protons across membranes. Mammalian cells express four isoforms of the a subunit of V-ATPase. Previously, we have shown that V-ATPase with the a3 isoform is highly expressed in pancreatic islets and is located in the membranes of insulin-containing granules in the beta cells. The a3 isoform functions in the regulation of hormone secretion. In this study, we have examined the distribution of a subunit isoforms in endocrine tissues, including the adrenal, parathyroid, thyroid, and pituitary glands, with isoform-specific antibodies. We have found that the a3 isoform is strongly expressed in all these endocrine tissues. Our results suggest that functions of the a3 isoform are commonly involved in the process of exocytosis in regulated secretion.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, 610-0395, Japan.
| | | | | | | | | |
Collapse
|
228
|
Blake-Palmer KG, Su Y, Smith AN, Karet FE. Molecular cloning and characterization of a novel form of the human vacuolar H+-ATPase e-subunit: An essential proton pump component. Gene 2007; 393:94-100. [PMID: 17350184 DOI: 10.1016/j.gene.2007.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 11/17/2022]
Abstract
Several of the 13 subunits comprising mammalian H(+)-ATPases have multiple alternative forms, encoded by separate genes and with differing tissue expression patterns. These may play an important role in the intracellular localization and activity of H(+)-ATPases. Here we report the cloning of a previously uncharacterized human gene, ATP6V0E2, encoding a novel H(+)-ATPase e-subunit designated e2. We demonstrate that in contrast to the ubiquitously expressed gene encoding the e1 subunit (previously called e), this novel gene is expressed in a more restricted tissue distribution, particularly kidney and brain. We show by complementation studies in a yeast strain deficient for the ortholog of this subunit, that either form of the e-subunit is essential for proper proton pump function. The identification of this novel form of the e-subunit lends further support to the hypothesis that subunit differences may play a key role in the structure, site and function of H(+)-ATPases within the cell.
Collapse
Affiliation(s)
- Katherine G Blake-Palmer
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | | | | | | |
Collapse
|
229
|
Otero-Rey EM, Somoza-Martín M, Barros-Angueira F, García-García A. Intracellular pH regulation in oral squamous cell carcinoma is mediated by increased V-ATPase activity via over-expression of the ATP6V1C1 gene. Oral Oncol 2007; 44:193-9. [PMID: 17467328 DOI: 10.1016/j.oraloncology.2007.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/16/2022]
Abstract
Oral squamous cell carcinomas represent more than 90% of all head and neck cancers, and comprise about 4% of all malignancies in western countries. Tumor cell mobility related to increasing intracellular pH results in impaired proliferation and metastasis, suggesting an important role of pH regulation in solid cancer tumorigenesis. The mechanism of physiological pH regulation has been shown to be activated in several solid tumors through constitutive activation of the ATPase complex. How cells regulate this mechanism has not been elucidated in human cancer in detail. The present study, using expression profiling by cDNA array analysis of oral squamous cell carcinoma cells, identified the V-ATPase system as a significant regulatory mechanism. ATP6V1C1 was the most strongly over-expressed gene in oral squamous cell carcinoma at the mRNA level compared to other genes of the V-ATPase complex. These findings provide evidence that intracellular pH regulation is mainly controlled by expression of a single gene, ATP6V1C1, notwithstanding the possible action of other secondary regulatory factors.
Collapse
Affiliation(s)
- Eva María Otero-Rey
- Oral Surgery and Oral Medicine Unit, University of Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
230
|
Niikura K, Nakajima S, Takano M, Yamazaki H. FR177995, a novel vacuolar ATPase inhibitor, exerts not only an inhibitory effect on bone destruction but also anti-immunoinflammatory effects in adjuvant-induced arthritic rats. Bone 2007; 40:888-94. [PMID: 17157574 DOI: 10.1016/j.bone.2006.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 10/22/2006] [Accepted: 10/26/2006] [Indexed: 11/16/2022]
Abstract
There is considerable evidence that osteoclasts are involved in the pathogenesis of juxta-articular bone destruction in rheumatoid arthritis. Vacuolar ATPases (V-ATPases), which are highly expressed in the ruffled border membrane of osteoclasts, play a central role in the process of bone resorption, and V-ATPase inhibitors are effective in preventing bone destruction in several animal models of lytic bone diseases. Here, we evaluated for the first time the effects of V-ATPase inhibition in rats with adjuvant-induced arthritis (AIA) using FR177995, a novel V-ATPase inhibitor. FR177995 completely inhibited H(+) transport driven by V-ATPase, but exerted no effect on the H(+) transport activities of F- and P-ATPase, indicating that FR177995 is a specific inhibitor of V-ATPase. FR177995 acted directly on osteoclastic bone resorption and equally inhibited in vitro bone resorption stimulated by IL-1, IL-6 or PTH. In addition, FR177995 dose-dependently reduced retinoic acid-induced hypercalcemia in thyroparathyroidectomized-ovariectomized rats. When FR177995 was administered to AIA rats once a day, the loss of femoral bone mineral density was significantly improved. Moreover, indicators of cartilage damage (arthritis score and glycosaminoglycan content in the femoral condyles) and inflammation parameters (paw swelling volume, erythrocyte sedimentation rate and plasma sialic acid level) were found to be unexpectedly ameliorated. These results strongly suggest that V-ATPase may be an interesting drug target in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Kazuaki Niikura
- Pharmacology Research Laboratories, Astellas Pharma Inc., Japan.
| | | | | | | |
Collapse
|
231
|
Chen W, Wang Y, Abe Y, Cheney L, Udd B, Li YP. Haploinsuffciency for Znf9 in Znf9+/− Mice Is Associated with Multiorgan Abnormalities Resembling Myotonic Dystrophy. J Mol Biol 2007; 368:8-17. [PMID: 17335846 DOI: 10.1016/j.jmb.2007.01.088] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 01/06/2023]
Abstract
Myotonic dystrophy type 2 is caused by a (CCTG)/(CCUG)n repeat expansion in the first intron of the ZNF9 gene. The pathomechanism for the myotonic dystrophies is not well understood and the role of ZNF9 in myotonic dystrophy type 2 pathogenesis has not been fully clarified. We characterized Znf9+/- mice, in which the expression of Znf9 was significantly decreased, and found that their phenotype reflects many of the features of myotonic dystrophy, including muscle histological morphology, and myotonic discharges and heart conduction abnormalities, shown by electromyography and electrocardiogram analysis, respectively. Znf9 is normally highly expressed in heart and skeletal muscle, where skeletal muscle chloride channel 1 (Clc1) plays an important role. Clc1 expression was dramatically decreased in Znf9+/- mice. Znf9 transgenic mice raised Znf9 and Clc1 expression and rescued the myotonic dystrophy phenotype in Znf9+/- mice. Our results suggest that the Znf9 haploinsufficiency contributes to the myotonic dystrophy phenotype in Znf9+/- mice.
Collapse
Affiliation(s)
- Wei Chen
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
232
|
Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K. Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res 2007; 22:487-94. [PMID: 17227224 DOI: 10.1359/jbmr.070109] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Some osteopetrotic mutations lead to low resorption, increased numbers of osteoclasts, and increased bone formation, whereas other osteopetrotic mutations lead to low resorption, low numbers of osteoclasts, and decreased bone formation. Elaborating on these findings, we discuss the possibility that osteoclasts are the source of anabolic signals for osteoblasts. In normal healthy individuals, bone formation is coupled to bone resorption in a tight equilibrium. When this delicate balance is disturbed, the net result is pathological situations, such as osteopetrosis or osteoporosis. Human osteopetrosis, caused by mutations in proteins involved in the acidification of the resorption lacuna (ClC-7 or the a3-V-ATPase), is characterized by decreased resorption in face of normal or even increased bone formation. Mouse mutations leading to ablation of osteoclasts (e.g., loss of macrophage-colony stimulating factor [M-CSF] or c-fos) lead to secondary negative effects on bone formation, in contrast to mutations where bone resorption is abrogated with sustained osteoclast numbers, such as the c-src mice. These data indicate a central role for osteoclasts, and not necessarily their resorptive activity, in the control of bone formation. In this review, we consider the balance between bone resorption and bone formation, reviewing novel data that have shown that this principle is more complex than originally thought. We highlight the distinct possibility that osteoclast function can be divided into two more or less separate functions, namely bone resorption and stimulation of bone formation. Finally, we describe the likely possibility that bone resorption can be attenuated pharmacologically without the undesirable reduction in bone formation.
Collapse
|
233
|
Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone 2007; 40:251-64. [PMID: 17098490 DOI: 10.1016/j.bone.2006.09.023] [Citation(s) in RCA: 1057] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 12/12/2022]
Abstract
Osteoclasts are multinucleated cells of monocyte/macrophage origin that degrade bone matrix. The differentiation of osteoclasts is dependent on a tumor necrosis factor (TNF) family cytokine, receptor activator of nuclear factor (NF)-kappaB ligand (RANKL), as well as macrophage colony-stimulating factor (M-CSF). Congenital lack of osteoclasts causes osteopetrosis, investigation of which has provided insights into the essential molecules for osteoclastogenesis, including TNF receptor-associated factor (TRAF) 6, NF-kappaB and c-Fos. In addition, genome-wide screening techniques have shed light on an additional set of gene products such as nuclear factor of activated T cells (NFAT) c1. Here we summarize the efforts to understand the sequential molecular events induced by RANKL during osteoclast differentiation. RANKL binds to its receptor RANK, which recruits adaptor molecules such as TRAF6. TRAF6 activates NF-kappaB, which is important for the initial induction of NFATc1. NFATc1 is activated by calcium signaling and binds to its own promoter, thus switching on an autoregulatory loop. An activator protein (AP)-1 complex containing c-Fos is required for the autoamplification of NFATc1, enabling the robust induction of NFATc1. Finally, NFATc1 cooperates with other transcriptional partners to activate osteoclast-specific genes. NFATc1 autoregulation is controlled by an epigenetic mechanism, which has profound implications for an understanding of the general mechanism of irreversible cell fate determination. From the clinical point of view, RANKL signaling pathway has promise as a strategy for suppressing the excessive osteoclast formation characteristic of a variety of bone diseases.
Collapse
Affiliation(s)
- Masataka Asagiri
- Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Tokyo 113-8549, Japan
| | | |
Collapse
|
234
|
Chen W, Yang S, Abe Y, Li M, Wang Y, Shao J, Li E, Li YP. Novel pycnodysostosis mouse model uncovers cathepsin K function as a potential regulator of osteoclast apoptosis and senescence. Hum Mol Genet 2007; 16:410-23. [PMID: 17210673 PMCID: PMC3578583 DOI: 10.1093/hmg/ddl474] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pycnodysostosis is a genetic bone disease featuring the unique bone homeostasis disorders of osteolysis and osteopetrosis in the same organism. The pathomechanism for pycnodysostosis has been largely unknown due to the unavailability of a pycnodysostosis mouse model with all the traits of the disease. We generated cathepsin K(-/-) mouse strains in the 129/Sv and C57BL/6J backgrounds and found that, only in the 129/Sv background, cathepsin K(-/-) mice exhibit many characteristics of the human pycnodysostosis-like phenotype. Our data indicated that 129/Sv cathepsin K(-/-) osteoclasts (OCs) lacked normal apoptosis and senescence and exhibited over-growth both in vitro and in vivo. These abnormalities resulted in an unusually high OC number, which is consistent with a recent case study of human pycnodysostosis. Our results show that cathepsin K function has different effects around the skeleton due to site-specific variations in bone homeostasis, such as phenotypes of osteopetrosis in tibiae and osteolysis in calvariae as a result of cathepsin K mutation. Our data demonstrated that the expression levels of p19, p53 and p21 were significantly reduced in 129/Sv cathepsin K(-/-) OCs and forced expression of cathepsin K in pre-OCs induced premature senescence and increased expression of p19, p53 and p21. This is the first evidence that cathepsin K plays a key role in OC apoptosis and senescence, revealing the importance of OC senescence in bone homeostasis. The finding of this novel cathepsin K function provides insight into the pathomechanism of pycnodysostosis and may provide new drug targets for diseases involved in OC-related abnormal bone homeostasis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
- Harvard-Forsyth Department of Oral Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Shuying Yang
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
- Harvard-Forsyth Department of Oral Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Yoke Abe
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Ming Li
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Yucheng Wang
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - Jianzhong Shao
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
- Life Science College, Zhejiang University, Hangzhou, China
| | - En Li
- Cardiovascular Research Center, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yi-Ping Li
- Department of Cytokine Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
- Harvard-Forsyth Department of Oral Biology, The Forsyth Institute & Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
- To whom correspondence should be addressed: Tel: +1 6178928260; Fax: +1 6172624021;
| |
Collapse
|
235
|
Sørensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH, Karsdal MA. Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab 2007; 25:36-45. [PMID: 17187192 DOI: 10.1007/s00774-006-0725-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 08/30/2006] [Indexed: 10/23/2022]
Abstract
Bone resorption is solely mediated by osteoclasts. Therefore, a pure osteoclast population is of high interest for the investigation of biological aspects of the osteoclasts, such as the direct effect of growth factors and hormones, as well as for testing and characterizing inhibitors of bone resorption. We have established a pure, stable, and reproducible system for purification of human osteoclasts from peripheral blood. We isolated CD14-positive (CD14+) monocytes using anti-CD14-coated beads. After isolation, the monocytes are differentiated into mature osteoclasts by stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappaB ligand (RANKL). Osteoclast formation was only observed in the CD14+ population, not in the CD14- population, and only in the presence of both M-CSF and RANKL, confirming that the CD14+ system is a pure population of osteoclast precursors. No expression of osteoclast markers was observed in the absence of RANKL, whereas RANKL dose-dependently induced the expression of cathepsin K, tartrate-resistant acid phosphatase (TRACP), and matrix metallo proteinase (MMP)-9. Furthermore, morphological characterization of the cells demonstrated that actin rings were only formed in the presence of RANKL. Moreover, the osteoclasts were capable of forming acidic resorption lacunae, and inhibitors of lysosomal acidification attenuated this process. Finally, we measured the response to known bone resorption inhibitors, and found that the osteoclasts were sensitive to these and thereby provided a robust and valid method for interpretation of the effect of antiresorptive compounds. In conclusion, we have established a robust assay for developing osteoclasts that can be used to study several biological aspects of the osteoclasts and which in combination with the resorption marker CTX-I provides a useful tool for evaluating osteoclast function in vitro.
Collapse
|
236
|
Abstract
UNLABELLED How RANKL evokes [Ca(2+)](i) oscillations and leads to osteoclast differentiation is unclear. We identified a new signaling protein, RGS12, and found that RGS12 is essential for [Ca(2+)](i) oscillations and osteoclast differentiation induced by RANKL. RGS12 may play a critical role in the RANKL-evoked PLCgamma-calcium channels-[Ca(2+)](i) oscillation-NFAT2 pathway. INTRODUCTION RANKL-induced [Ca(2+)](i) oscillations play a switch-on role in NFAT2 expression and osteoclast differentiation. However, RANKL evokes [Ca(2+)](i) oscillations and leads to osteoclast differentiation by an unknown mechanism. In this study, we identified a new RANKL-induced signaling protein, regulator of G signaling protein 12 (RGS12), and investigated its effect on osteoclast differentiation in vitro. MATERIALS AND METHODS We used a genome-wide screening approach to identify genes that are specifically or prominently expressed in osteoclasts. To study the role of the RGS12 in osteoclast differentiation, we used vector and lentivirus-based RNAi gene silencing technology to silence the RGS12 gene in the monocyte progenitor cell lines and primary bone marrow-derived monocytes (BMMs). The interaction between RGS12 and N-type calcium channels was elucidated using co-immunoprecipitation and immunoblotting. RESULTS We found that RGS12 was prominently expressed in osteoclast-like cells (OLCs) induced by RANKL. This result was further confirmed at both the mRNA and protein level in human osteoclasts and mouse OLCs. Silence of RGS12 expression using vector and lentivirus based RNA interference (RNAi) impaired phosphorylation of phospholipase C (PLC)gamma and blocked [Ca(2+)](i) oscillations, NFAT2 expression, and osteoclast differentiation in RANKL-induced RAW264.7 cells and BMMs. We further found that N-type calcium channels were expressed in OLCs after RANKL stimulation and that RGS12 directly interacted with the N-type calcium channels. CONCLUSIONS These results reveal that RGS12 is essential for the terminal differentiation of osteoclasts induced by RANKL. It is possible that RGS12 regulates osteoclast differentiation through a PLC gamma-calcium channel-[Ca(2+)](i) oscillation-NFAT2 pathway.
Collapse
Affiliation(s)
- Shuying Yang
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts, USA
- Department of Developmental Biology, and Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Yi-Ping Li
- Department of Cytokine Biology, The Forsyth Institute, Boston, Massachusetts, USA
- Department of Developmental Biology, and Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
237
|
Abstract
Calcium transport and calcium signalling mechanisms in bone cells have, in many cases, been discovered by study of diseases with disordered bone metabolism. Calcium matrix deposition is driven primarily by phosphate production, and disorders in bone deposition include abnormalities in membrane phosphate transport such as in chondrocalcinosis, and defects in phosphate-producing enzymes such as in hypophosphatasia. Matrix removal is driven by acidification, which dissolves the mineral. Disorders in calcium removal from bone matrix by osteoclasts cause osteopetrosis. On the other hand, although bone is central to management of extracellular calcium, bone is not a major calcium sensing organ, although calcium sensing proteins are expressed in both osteoblasts and osteoclasts. Intracellular calcium signals are involved in secondary control including cellular motility and survival, but the relationship of these findings to specific diseases is not clear. Intracellular calcium signals may regulate the balance of cell survival versus proliferation or anabolic functional response as part of signalling cascades that integrate the response to primary signals via cell stretch, estrogen, tyrosine kinase, and tumor necrosis factor receptors.
Collapse
Affiliation(s)
- H C Blair
- Department of Pathology, University of Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
238
|
Niikura K. Effect of a V-ATPase inhibitor, FR202126, in syngeneic mouse model of experimental bone metastasis. Cancer Chemother Pharmacol 2006; 60:555-62. [PMID: 17187252 DOI: 10.1007/s00280-006-0401-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 11/30/2006] [Indexed: 11/30/2022]
Abstract
PURPOSE It has been demonstrated that vacuolar ATPase (V-ATPase) is involved in various aspects of bone metastasis. The aim of this study is to investigate the effect of the anti-bone resorptive activity of the V-ATPase inhibitor FR202126 on bone metastases in mice with metastatic breast cancer. METHOD As a spontaneous model of breast cancer metastasis to bone, mouse breast cancer cells, 4T1, were injected into the mammary fat pad in immunocompetent syngeneic mice. The mice were orally treated with FR202126 for 29 days. Tumor volume was measured once a week. Thirty days after the injection of the cells, the bone mineral density (BMD) of the proximal tibia was measured using peripheral quantitative computed tomography. Histomorphometric analysis of the distal femurs and the proximal tibiae was performed. To elucidate the mechanism behind the anti-osteolytic effect of FR202126, 4T1 cells were treated directly in vitro with FR202126. Cell viability was measured, and cell invasion was assessed using matrigel. RESULTS Oral administration of FR202126 significantly increased BMD by reducing the eroded bone surface ratio. While FR202126 is known to potently inhibit osteoclast mediated bone resorption, it did not prevent invasion by cancer cells or their proliferation. CONCLUSION The V-ATPase inhibitor FR202126 was found to be effective at ameliorating osteolysis induced by metastatic breast cancer, even when the cancer cells themselves are not significantly affected by it. These results suggest that the anti-bone resorptive effect of the V-ATPase inhibitor might be useful for treating bone metastases associated with breast cancer.
Collapse
Affiliation(s)
- Kazuaki Niikura
- Data Management and Regulatory Support Department, Astellas Research Service Co. Ltd., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| |
Collapse
|
239
|
Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, Pignolo RJ, Koczon-Jaremko B, Lorenzo J, Choi Y. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med 2006; 12:1403-9. [PMID: 17128270 DOI: 10.1038/nm1514] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 10/31/2006] [Indexed: 12/22/2022]
Abstract
Matrix-producing osteoblasts and bone-resorbing osteoclasts maintain bone homeostasis. Osteoclasts are multinucleated, giant cells of hematopoietic origin formed by the fusion of mononuclear pre-osteoclasts derived from myeloid cells. Fusion-mediated giant cell formation is critical for osteoclast maturation; without it, bone resorption is inefficient. To understand how osteoclasts differ from other myeloid lineage cells, we previously compared global mRNA expression patterns in these cells and identified genes of unknown function predominantly expressed in osteoclasts, one of which is the d2 isoform of vacuolar (H(+)) ATPase (v-ATPase) V(0) domain (Atp6v0d2). Here we show that inactivation of Atp6v0d2 in mice results in markedly increased bone mass due to defective osteoclasts and enhanced bone formation. Atp6v0d2 deficiency did not affect differentiation or the v-ATPase activity of osteoclasts. Rather, Atp6v0d2 was required for efficient pre-osteoclast fusion. Increased bone formation was probably due to osteoblast-extrinsic factors, as Atp6v02 was not expressed in osteoblasts and their differentiation ex vivo was not altered in the absence of Atp6v02. Our results identify Atp6v0d2 as a regulator of osteoclast fusion and bone formation, and provide genetic data showing that it is possible to simultaneously inhibit osteoclast maturation and stimulate bone formation by therapeutically targeting the function of a single gene.
Collapse
Affiliation(s)
- Seoung-Hoon Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Boyce BF, Xing L, Yao Z, Yamashita T, Shakespeare WC, Wang Y, Metcalf CA, Sundaramoorthi R, Dalgarno DC, Iuliucci JD, Sawyer TK. SRC inhibitors in metastatic bone disease. Clin Cancer Res 2006; 12:6291s-6295s. [PMID: 17062716 DOI: 10.1158/1078-0432.ccr-06-0991] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Src tyrosine kinase was the first gene product shown to have an essential function in bone using recombinant DNA technology after its expression was knocked out in mice approximately 15 years ago. Since then, our understanding of the regulation of bone catabolism has advanced significantly with the identification of other key enzymes that regulate osteoclast formation, activation, and survival after their knockout in mice or recognition of mutations in them in humans. This led to the discovery or development of specific inhibitors of some of these key enzymes, including Src, as proof-of-concept lead compounds or potential clinical candidates for the prevention of diseases associated with increased bone resorption, such as osteoporosis and metastatic bone disease. Although bisphosphonates have been prescribed with proven and improving efficacy for the prevention of bone loss for >30 years, adverse effects, such as upper gastrointestinal tract symptoms, and the requirement to take them at least 2 hours before food have limited patient compliance. Thus, with growing knowledge of the pathways regulating osteoclast function and the appreciation that some of these are active also in tumor cells, drug companies have made efforts to identify small-molecular lead compounds for development into new therapeutic agents for the prevention of bone loss with efficacy that matches or supersedes that of bisphosphonates. In this article, we review our current understanding of the signaling pathways that regulate osteoclast formation, activation, and survival with specific reference to the role of Src tyrosine kinase and downstream signaling and highlight in a variety of models of increased bone resorption the effects of Src kinase inhibitors that have been targeted to bone to limit potential adverse effects on other cells.
Collapse
Affiliation(s)
- Brendan F Boyce
- University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Beranger GE, Momier D, Rochet N, Quincey D, Guigonis JM, Samson M, Carle GF, Scimeca JC. RANKL treatment releases the negative regulation of the poly(ADP-ribose) polymerase-1 on Tcirg1 gene expression during osteoclastogenesis. J Bone Miner Res 2006; 21:1757-69. [PMID: 17002555 DOI: 10.1359/jbmr.060809] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The Tcirg1 gene encodes the osteoclast-specific a3 isoform of the V-ATPase a subunit. Using the mouse osteoclastic model RAW264.7 cells, we studied Tcirg1 gene expression, and we identified PARP-1 as a transcriptional repressor negatively regulated by RANKL during osteoclastogenesis. INTRODUCTION The TCIRG1 gene encodes the a3 isoform of the V-ATPase a subunit, and mutations at this locus account for approximately 60% of infantile malignant osteopetrosis cases. Using RAW264.7 cells as an osteoclastic differentiation model, we undertook a transcriptional study of the mouse Tcirg1 gene focused on the 4-kb region upstream of the transcription starting point. MATERIALS AND METHODS The promoter activity of serial-deletion fragments of the Tcirg1 gene promoter was monitored throughout the RAW264.7 cell differentiation process. We next performed EMSA, UV cross-linking, affinity purification, mass spectrometry analysis, gel supershift, and siRNA transfection experiments to identify the factor(s) interacting with the promoter. RESULTS The -3946/+113 region of the mouse Tcirg1 gene displayed a high basal promoter activity, which was enhanced by RANKL treatment of RAW264.7 cells. Constructs deleted up to -1589 retained this response to RANKL. A deletion up to -1402 induced a 3-fold enhancement of the basal activity, whereas RANKL response was not affected. EMSA experiments led us to identify within the -1589/-1402 region, a 10-nucleotide sequence, which bound a nuclear protein present in nondifferentiated RAW264.7 cells. This interaction was lost using nuclear extracts derived from RANKL-treated cells. Affinity purification followed by mass spectrometry analysis and gel supershift assay allowed the identification of poly(ADP-ribose) polymerase-1 (PARP-1) as this transcriptional repressor, whereas Western blot experiments revealed the cleavage of the DNA-binding domain of PARP-1 on RANKL treatment. Finally, both PARP-1 depletion after siRNA transfection and RAW264.7 cell treatment by an inhibitor of PARP-1 activity induced an increase of a3 mRNA expression. CONCLUSIONS We provide evidence that the basal transcription activity of the Tcirg1 gene is negatively regulated by the binding of PARP-1 protein to its promoter region in mouse pre-osteoclast. On RANKL treatment, PARP-1 protein is cleaved and loses its repression effect, allowing an increase of Tcirg1 gene expression that is critical for osteoclast function.
Collapse
Affiliation(s)
- Guillaume E Beranger
- GéPITOS-K2943 CNRS/UNSA, Faculté de Médecine de l'Université de Nice-Sophia Antipolis, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Sun-Wada GH, Toyomura T, Murata Y, Yamamoto A, Futai M, Wada Y. The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. J Cell Sci 2006; 119:4531-40. [PMID: 17046993 DOI: 10.1242/jcs.03234] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vacuolar-type H(+)-ATPase (V-ATPase) is a multi-subunit enzyme that has important roles in the acidification of a variety of intracellular compartments and some extracellular milieus. Four isoforms for the membrane-intrinsic subunit (subunit a) of the V-ATPase have been identified in mammals, and they confer distinct cellular localizations and activities on the proton pump. We found that V-ATPase with the a3 isoform is highly expressed in pancreatic islets, and is localized to membranes of insulin-containing secretory granules in beta-cells. oc/oc mice, which have a null mutation at the a3 locus, exhibited a reduced level of insulin in the blood, even with high glucose administration. However, islet lysates contained mature insulin, and the ratio of the amount of insulin to proinsulin in oc/oc islets was similar to that of wild-type islets, indicating that processing of insulin was normal even in the absence of the a3 function. The insulin contents of oc/oc islets were reduced slightly, but this was not significant enough to explain the reduced levels of the blood insulin. The secretion of insulin from isolated islets in response to glucose or depolarizing stimulation was impaired. These results suggest that the a3 isoform of V-ATPase has a regulatory function in the exocytosis of insulin secretion.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe 610-0395, Japan.
| | | | | | | | | | | |
Collapse
|
243
|
Liu X, Wang C, Li N, Zhang X, Zheng Y, Cao X. Molecular cloning and characterization of a novel V-ATPase associated protein, DVA9.2, from human dendritic cells. Life Sci 2006; 79:1828-38. [PMID: 16904702 DOI: 10.1016/j.lfs.2006.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 05/05/2006] [Accepted: 06/10/2006] [Indexed: 10/24/2022]
Abstract
The vacuolar proton-ATPase (V-ATPase) is a ubiquitous ATP-driven H(+) transporter that functions in numerous cell processes. Accumulating evidence shows important roles of V-ATPase in tumor metastasis and antigen presentation of dendritic cells (DC). A novel V-ATPase associated protein, designated as DVA9.2 (dendritic cell-derived V-ATPase associated protein of 9.2 kDa), has been identified from a human DC cDNA library by large-scale random sequencing. Full length cDNA of DVA9.2 encodes an 81-residue protein that shares 70-80% homology with human V-ATPase subunit M9.2. Distant relationship is also found with Vma21p, a yeast protein required for V-ATPase assembly. DVA9.2 contains a conserved domain, ATP synthase subunit H (pafm05493), and two membrane-spanning helices. DVA9.2 mRNA is detectable in several human tumor cell lines as well as some human normal cells and tissues. Moreover, the inducible expression of DVA9.2 mRNA in DC during maturation is observed. DVA9.2 displays integration with membrane and main localization in lysosome, endoplasmic reticulum and Golgi-associated organelles, only less at the plasma membrane. In addition, DVA9.2 is co-localized with V(0)-sector subunit a. Silencing of DVA9.2 by small interfering RNA (siRNA) does not affect the V-ATPase activity in cell membrane fractions or attenuate the migration and invasion in breast cancer MDA-MB-231 cells. These results indicate that DVA9.2, as a novel V-ATPase-associated protein, is not essential for the activity of V-ATPase complex and may be involved in functions of DC.
Collapse
Affiliation(s)
- Xingguang Liu
- Institute of Immunology, Second Military Medical University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
244
|
Niikura K. Comparative analysis of the effects of a novel vacuolar adenosine 5'-triphosphatase inhibitor, FR202126, and doxycycline on bone loss caused by experimental periodontitis in rats. J Periodontol 2006; 77:1211-6. [PMID: 16805684 DOI: 10.1902/jop.2006.050344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Doxycycline is reported to inhibit alveolar bone destruction by blocking matrix metalloproteinases (MMPs). Nevertheless, MMPs are not involved in osteoclastic bone resorption; osteoclasts directly resorb bone. An acidic microenvironment, which is formed by vacuolar adenosine 5'-triphosphatase (V-ATPase) expressed in the plasma membranes of osteoclasts, is indispensable for osteoclastic bone resorption. In the present study, we investigated the potential role of the acidic environment on periodontal bone destruction using a novel and specific V-ATPase inhibitor, FR202126, which we compared to doxycycline. METHODS Inhibitory activity against in vitro bone resorption was examined by measuring the Ca2+ release from murine calvariae cultured for 6 days, which were treated with interleukin-1 (IL-1), IL-6, or parathyroid hormone. Experimental periodontitis was induced by a ligature wire tied around the contact between the first and second maxillary molars of male Wistar rats. FR202126 and doxycycline were administered orally once daily for 6 days. Seven days after tying, the maxillae were dissected and mesiodistal longitudinal paraffin sections, including interdental alveolar bone, were processed for histopathologic analysis. RESULTS FR202126 inhibited bone resorption almost completely in calvaria cultures induced by three stimulators, whereas doxycycline was unable to prevent in vitro bone resorption. Oral administration of FR202126 significantly prevented alveolar bone loss in experimental periodontitis. However, doxycycline did not inhibit alveolar bone destruction. CONCLUSION These results suggest that an acidic microenvironment plays a more important role than MMPs in periodontal alveolar bone destruction and that V-ATPase inhibitors may offer a new approach to the treatment of periodontal disease.
Collapse
Affiliation(s)
- K Niikura
- Data Management and Regulatory Support Department, Astellas Research Service, Ibaraki, Japan.
| |
Collapse
|
245
|
Ochotny N, Van Vliet A, Chan N, Yao Y, Morel M, Kartner N, von Schroeder HP, Heersche JNM, Manolson MF. Effects of human a3 and a4 mutations that result in osteopetrosis and distal renal tubular acidosis on yeast V-ATPase expression and activity. J Biol Chem 2006; 281:26102-11. [PMID: 16840787 DOI: 10.1074/jbc.m601118200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPases are multimeric proton pumps. The 100-kDa "a" subunit is encoded by four isoforms (a1-a4) in mammals and two (Vph1p and Stv1p) in yeast. a3 is enriched in osteoclasts and is essential for bone resorption, whereas a4 is expressed in the distal nephron and acidifies urine. Mutations in human a3 and a4 result in osteopetrosis and distal renal tubular acidosis, respectively. Human a3 (G405R and R444L) and a4 (P524L and G820R) mutations were recreated in the yeast ortholog Vph1p, a3 (G424R and R462L), and a4 (W520L and G812R). Mutations in a3 resulted in wild type vacuolar acidification and growth on media containing 4 mM ZnCl2, 200 mM CaCl2, or buffered to pH 7.5 with V-ATPase hydrolytic and pumping activity decreased by 30-35%. Immunoblots confirmed wild type levels for V-ATPase a, A, and B subunits on vacuolar membranes. a4 G812R resulted in defective growth on selective media with V-ATPase hydrolytic and pumping activity decreased by 83-85% yet with wild type levels of a, A, and B subunits on vacuolar membranes. The a4 W520L mutation had defective growth on selective media with no detectable V-ATPase activity and reduced expression of a, A, and B subunits. The a4 W520L mutation phenotypes were dominant negative, as overexpression of wild type yeast a isoforms, Vph1p, or Stv1p, did not restore growth. However, deletion of endoplasmic reticulum assembly factors (Vma12p, Vma21p, and Vma22p) partially restored a and B expression. That a4 W520L affects both Vo and V1 subunits is a unique phenotype for any V-ATPase subunit mutation and supports the concerted pathway for V-ATPase assembly in vivo.
Collapse
Affiliation(s)
- Noelle Ochotny
- Department of Pharmacology, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Hettiarachchi KD, Zimmet PZ, Myers MA. The effects of repeated exposure to sub-toxic doses of plecomacrolide antibiotics on the endocrine pancreas. Food Chem Toxicol 2006; 44:1966-77. [PMID: 16905235 DOI: 10.1016/j.fct.2006.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 03/14/2006] [Accepted: 06/19/2006] [Indexed: 11/25/2022]
Abstract
The plecomacrolide vacuolar ATPase inhibitors bafilomycin and concanamycin contaminate tuberous vegetables and damage pancreatic islets in mice. The consequences of repeated exposure of adult mice to sub-toxic doses of bafilomycin A1 or concanamycin A was examined by injection of the plecomacrolides on each of five consecutive days. There was a significant reduction in islet size in female C57BL/6j mice (p<0.004 and p<0.0001 respectively). There were no significant differences in fasted insulin levels and beta cell mass between treated and control groups but oral glucose tolerance worsened with increasing age in BALB/c female mice injected with concanamycin A. Streptozotocin reduced glucose tolerance and islet number but not islet size in all strains and sexes. Chronic exposure of C57BL/6j mice to concanamycin A for 16 weeks caused a significant reduction in islet size in both sexes and a significant increase in the spleen weight of female mice (p<0.001). We conclude that repeated exposure to small quantities of vacuolar proton-translocating ATPase inhibitory plecomacrolides reduces islet size and can lead to glucose intolerance, possibly due to impaired maintenance of pancreatic islets. This may lead to earlier progression to beta cell failure and insulin deficiency in those at risk of diabetes.
Collapse
Affiliation(s)
- Kalindi D Hettiarachchi
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic. 3800, Australia
| | | | | |
Collapse
|
247
|
Abstract
Osteoclasts are multinucleated cells derived from hematopoietic precursors that are primarily responsible for the degradation of mineralized bone during bone development, homeostasis and repair. In various skeletal disorders such as osteoporosis, hypercalcemia of malignancy, tumor metastases and Paget's disease, bone resorption by osteoclasts exceeds bone formation by osteoblasts leading to decreased bone mass, skeletal fragility and bone fracture. The overall rate of osteoclastic bone resorption is regulated either at the level of differentiation of osteoclasts from their monocytic/macrophage precursor pool or through the regulation of key functional proteins whose specific activities in the mature osteoclast control its attachment, migration and resorption. Thus, reducing osteoclast numbers and/or decreasing the bone resorbing activity of osteoclasts are two common therapeutic approaches for the treatment of hyper-resorptive skeletal diseases. In this review, several of the key functional players involved in the regulation of osteoclast activity will be discussed.
Collapse
Affiliation(s)
- Angela Bruzzaniti
- Department of Orthopaedics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
248
|
Abstract
The osteoclast is a specialized multinucleated variant of the macrophage family. It degrades mineralized tissue, and is required for modeling and remodeling of bone. The osteoclast has long been known to require vitamin D for its differentiation and to be regulated by parathyroid hormone via circulating Ca(2+) levels. Two local signals important in osteoclast survival and differentiation, CSF-1 and RANKL, were characterized by the mid-1990 s. A basic framework of specialized cell attachment and resorption molecules was also clear by that time, including the alpha(v)beta(3) integrin, the key adhesion molecule of the mature osteoclast, the highly expressed vacuolar-type H(+)-ATPase that drives acid secretion to dissolve mineral, and cathepsin K, the predominant acid proteinase for collagenolysis. Recently, additional detail has been added to this framework, showing that the osteoclast has more complex regulation than was previously believed. These include the findings that one component of the V-H(+)-ATPase is unique to the osteoclast, that chloride transport and probably Cl(-)/H(+) exchange are also required for mineral degradation, and that additional receptors besides RANK and Fms regulate osteoclast formation and survival. Additional receptors include estrogen receptor-alpha, TNF-family receptors other than RANK, and, at least in some cases, glycoprotein hormone receptors including the TSH-R and the FSH-R. Challenges in understanding osteoclast biology include how the signalling mechanisms function cooperatively. Recent findings suggest that there is a network of cytoplasmic adapters, including Gab-2 and BCAR1, which are modified by multiple signalling mechanisms and which serve to integrate the signalling pathways.
Collapse
Affiliation(s)
- Harry C Blair
- Department of Pathology, University of Pittsburgh and Veterans' Affairs Health System, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
249
|
Ji YJ, Choi KY, Song HO, Park BJ, Yu JR, Kagawa H, Song WK, Ahnn J. VHA-8, the E subunit of V-ATPase, is essential for pH homeostasis and larval development in C. elegans. FEBS Lett 2006; 580:3161-6. [PMID: 16684534 DOI: 10.1016/j.febslet.2006.04.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/08/2006] [Accepted: 04/24/2006] [Indexed: 11/19/2022]
Abstract
Vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump, which transports protons across the membrane. It is a multi-protein complex which is composed of at least 13 subunits. The Caenorhabditis elegans vha-8 encodes the E subunit of V-ATPase which is expressed in the hypodermis, intestine and H-shaped excretory cells. VHA-8 is necessary for proper intestinal function likely through its role in cellular acidification of intestinal cells. The null mutants of vha-8 show a larval lethal phenotype indicating that vha-8 is an essential gene for larval development in C. elegans. Interestingly, characteristics of necrotic cell death were observed in the hypodermis and intestine of the arrested larvae suggesting that pH homeostasis via the E subunit of V-ATPase is required for the cell survival in C. elegans.
Collapse
Affiliation(s)
- Yon Ju Ji
- Department of Life Science, Gwangju Institute of Science and Technology, Oryong 1, Puk-gu, Gwangju 500-712, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 2006; 440:220-3. [PMID: 16525474 DOI: 10.1038/nature04535] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 12/16/2005] [Indexed: 01/28/2023]
Abstract
Mutations in ClC-7, a late endosomal/lysosomal member of the CLC family of chloride channels and transporters, cause osteopetrosis and lysosomal storage disease in humans and mice. Severe osteopetrosis is also observed with mutations in the OSTM1 gene, which encodes a membrane protein of unknown function. Here we show that both ClC-7 and Ostm1 proteins co-localize in late endosomes and lysosomes of various tissues, as well as in the ruffled border of bone-resorbing osteoclasts. Co-immunoprecipitations show that ClC-7 and Ostm1 form a molecular complex and suggest that Ostm1 is a beta-subunit of ClC-7. ClC-7 is required for Ostm1 to reach lysosomes, where the highly glycosylated Ostm1 luminal domain is cleaved. Protein but not RNA levels of ClC-7 are greatly reduced in grey-lethal mice, which lack Ostm1, suggesting that the ClC-7-Ostm1 interaction is important for protein stability. As ClC-7 protein levels in Ostm1-deficient tissues and cells, including osteoclasts, are decreased below 10% of normal levels, Ostm1 mutations probably cause osteopetrosis by impairing the acidification of the osteoclast resorption lacuna, which depends on ClC-7 (ref. 3). The finding that grey-lethal mice, just like ClC-7-deficient mice, show lysosomal storage and neurodegeneration in addition to osteopetrosis implies a more general importance for ClC-7-Ostm1 complexes.
Collapse
Affiliation(s)
- Philipp F Lange
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Falkenried 94, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|