201
|
Abstract
In the last 50 years, the average self-reported sleep duration in the United States has decreased by 1.5-2 hours in parallel with an increasing prevalence of obesity and diabetes. Epidemiological studies and meta-analyses report a strong relationship between short or disturbed sleep, obesity, and abnormalities in glucose metabolism. This relationship is likely to be bidirectional and causal in nature, but many aspects remain to be elucidated. Sleep and the internal circadian clock influence a host of endocrine parameters. Sleep curtailment in humans alters multiple metabolic pathways, leading to more insulin resistance, possibly decreased energy expenditure, increased appetite, and immunological changes. On the other hand, psychological, endocrine, and anatomical abnormalities in individuals with obesity and/or diabetes can interfere with sleep duration and quality, thus creating a vicious cycle. In this review, we address mechanisms linking sleep with metabolism, highlight the need for studies conducted in real-life settings, and explore therapeutic interventions to improve sleep, with a potential beneficial effect on obesity and its comorbidities.
Collapse
Affiliation(s)
- Eliane A Lucassen
- Immunogenetics Section, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
202
|
Schmidt C, Peigneux P, Cajochen C. Age-related changes in sleep and circadian rhythms: impact on cognitive performance and underlying neuroanatomical networks. Front Neurol 2012; 3:118. [PMID: 22855682 PMCID: PMC3405459 DOI: 10.3389/fneur.2012.00118] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/08/2012] [Indexed: 11/13/2022] Open
Abstract
Circadian and homeostatic sleep-wake regulatory processes interact in a fine tuned manner to modulate human cognitive performance. Dampening of the circadian alertness signal and attenuated deterioration of psychomotor vigilance in response to elevated sleep pressure with aging change this interaction pattern. As evidenced by neuroimaging studies, both homeostatic sleep pressure and circadian sleep-wake promotion impact on cognition-related cortical and arousal-promoting subcortical brain regions including the thalamus, the anterior hypothalamus, and the brainstem locus coeruleus (LC). However, how age-related changes in circadian and homeostatic processes impact on the cerebral activity subtending waking performance remains largely unexplored. Post-mortem studies point to neuronal degeneration in the SCN and age-related modifications in the arousal-promoting LC. Alongside, cortical frontal brain areas are particularly susceptible both to aging and misalignment between circadian and homeostatic processes. In this perspective, we summarize and discuss here the potential neuroanatomical networks underlying age-related changes in circadian and homeostatic modulation of waking performance, ranging from basic arousal to higher order cognitive behaviors.
Collapse
Affiliation(s)
- Christina Schmidt
- Centre for Chronobiology, Psychiatric Hospital of the University of BaselBasel, Switzerland
| | - Philippe Peigneux
- Neuropsychology and Functional Neuroimaging Research Unit, Université Libre de BruxellesBruxelles, Belgium
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of BaselBasel, Switzerland
| |
Collapse
|
203
|
Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol 2012; 71:531-46. [PMID: 22592840 DOI: 10.1097/nen.0b013e3182588293] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ascending reticular activating system (ARAS) mediates arousal, an essential component of human consciousness. Lesions of the ARAS cause coma, the most severe disorder of consciousness. Because of current methodological limitations, including of postmortem tissue analysis, the neuroanatomic connectivity of the human ARAS is poorly understood. We applied the advanced imaging technique of high angular resolution diffusion imaging (HARDI) to elucidate the structural connectivity of the ARAS in 3 adult human brains, 2 of which were imaged postmortem. High angular resolution diffusion imaging tractography identified the ARAS connectivity previously described in animals and also revealed novel human pathways connecting the brainstem to the thalamus, the hypothalamus, and the basal forebrain. Each pathway contained different distributions of fiber tracts from known neurotransmitter-specific ARAS nuclei in the brainstem. The histologically guided tractography findings reported here provide initial evidence for human-specific pathways of the ARAS. The unique composition of neurotransmitter-specific fiber tracts within each ARAS pathway suggests structural specializations that subserve the different functional characteristics of human arousal. This ARAS connectivity analysis provides proof of principle that HARDI tractography may affect the study of human consciousness and its disorders, including in neuropathologic studies of patients dying in coma and the persistent vegetative state.
Collapse
|
204
|
Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 2012; 243:4-20. [PMID: 22766204 DOI: 10.1016/j.expneurol.2012.06.026] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/19/2012] [Accepted: 06/24/2012] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN), site of the primary clock in the circadian rhythm system, has three major afferent connections. The most important consists of a retinohypothalamic projection through which photic information, received by classical rod/cone photoreceptors and intrinsically photoreceptive retinal ganglion cells, gains access to the clock. This information influences phase and period of circadian rhythms. The two other robust afferent projections are the median raphe serotonergic pathway and the geniculohypothalamic (GHT), NPY-containing pathway from the thalamic intergeniculate leaflet (IGL). Beyond this simple framework, the number of anatomical routes that could theoretically be involved in rhythm regulation is enormous, with the SCN projecting to 15 regions and being directly innervated by about 35. If multisynaptic afferents to the SCN are included, the number expands to approximately brain 85 areas providing input to the SCN. The IGL, a known contributor to circadian rhythm regulation, has a still greater level of complexity. This nucleus connects abundantly throughout the brain (to approximately 100 regions) by pathways that are largely bilateral and reciprocal. Few of these sites have been evaluated for their contributions to circadian rhythm regulation, although most have a theoretical possibility of doing so via the GHT. The anatomy of IGL connections suggests that one of its functions may be regulation of eye movements during sleep. Together, neural circuits of the SCN and IGL are complex and interconnected. As yet, few have been tested with respect to their involvement in rhythm regulation.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, NY 11794-8101, USA.
| |
Collapse
|
205
|
Abstract
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts 02301, USA
| | | | | | | | | |
Collapse
|
206
|
Shi M, Hu ZL, Zheng MH, Song NN, Huang Y, Zhao G, Han H, Ding YQ. Notch-Rbpj signaling is required for the development of noradrenergic neurons in the mouse locus coeruleus. J Cell Sci 2012; 125:4320-32. [PMID: 22718343 DOI: 10.1242/jcs.102152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The locus coeruleus (LC) is the main source of noradrenaline in the brain and is implicated in a broad spectrum of physiological and behavioral processes. However, genetic pathways controlling the development of noradrenergic neurons in the mammalian brain are largely unknown. We report here that Rbpj, a key nuclear effector in the Notch signaling pathway, plays an essential role in LC neuron development in the mouse. Conditional inactivation of Rbpj in the dorsal rhombomere (r) 1, where LC neurons are born, resulted in a dramatic increase in the number of Phox2a- and Phox2b-expressing early-differentiating LC neurons, and dopamine-β-hydroxylase- and tyrosine-hydroxylase-expressing late-differentiating LC neurons. In contrast, other neuronal populations derived from the dorsal r1 were either reduced or unchanged. In addition, a drastic upregulation of Ascl1, an essential factor for noradrenergic neurogenesis, was observed in dorsal r1 of conditional knockout mice. Through genomic sequence analysis and EMSA and ChIP assays, a conserved Rbpj-binding motif was identified within the Ascl1 promoter. A luciferase reporter assay revealed that Rbpj per se could induce Ascl1 transactivation but this effect was counteracted by its downstream-targeted gene Hes1. Moreover, our in vitro gene transfection and in ovo electroporation assays showed that Rbpj upregulated Ascl1 expression when Hes1 expression was knocked down, although it also exerted a repressive effect on Ascl1 expression in the presence of Hes1. Thus, our results provide the first evidence that Rbpj functions as a key modulator of LC neuron development by regulating Ascl1 expression directly, and indirectly through its target gene Hes1.
Collapse
Affiliation(s)
- Ming Shi
- Key Laboratory of Arrhythmias, Ministry of Education of China East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China.
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Nishino S, Deguzman C, Yamadera W, Chiba S, Kanbayashi T. Neurochemistry and Biomarkers of Narcolepsy and Other Primary and Secondary Hypersomnias. Sleep Med Clin 2012. [DOI: 10.1016/j.jsmc.2012.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
208
|
Salomone S, Shanahan JM, Bramham J, O'Connell RG, Robertson IH. A biofeedback-based programme to improve attention and impulsivity in adults with ADHD. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/03033910.2012.708899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
209
|
Abstract
In most animals, sleep is considered a global brain and behavioral state. However, recent intracortical recordings have shown that aspects of non-rapid eye movement (NREM) sleep and wakefulness can occur simultaneously in different parts of the cortex in mammals, including humans. Paradoxically, however, NREM sleep still manifests as a global behavioral shutdown. In this review, the authors examine this paradox from an evolutionary perspective. On the basis of strategic modeling, they suggest that in animals with brains composed of heavily interconnected and functionally interdependent units, a global regulator of sleep maintains the behavioral shutdown that defines sleep and thereby ensures that local use-dependent functions are performed in a safe and efficient manner. This novel perspective has implications for understanding deficits in human cognitive performance resulting from sleep deprivation, sleep disorders such as sleepwalking, changes in consciousness that occur during sleep, and the function of sleep itself.
Collapse
|
210
|
Hahn C, Cowell JM, Wiprzycka UJ, Goldstein D, Ralph M, Hasher L, Zelazo PD. Circadian rhythms in executive function during the transition to adolescence: the effect of synchrony between chronotype and time of day. Dev Sci 2012; 15:408-16. [PMID: 22490180 PMCID: PMC4103784 DOI: 10.1111/j.1467-7687.2012.01137.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To explore the influence of circadian rhythms on executive function during early adolescence, we administered a battery of executive function measures (including a Go-Nogo task, the Iowa Gambling Task, a Self-ordered Pointing task, and an Intra/Extradimensional Shift task) to Morning-preference and Evening-preference participants (N = 80) between the ages of 11 and 14 years who were tested in the morning or afternoon. Significant Chronotype × Time of Day interactions (controlling for amount of sleep the previous night) revealed that adolescents tested at their optimal times of day performed better than those tested at their nonoptimal times. Implications for our understanding of physiological arousal, sleep, and executive function during adolescence are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Lynn Hasher
- University of Toronto
- Rotman Research Institute of Baycrest Centre
| | | |
Collapse
|
211
|
Wright KP, Lowry CA, LeBourgeois MK. Circadian and wakefulness-sleep modulation of cognition in humans. Front Mol Neurosci 2012; 5:50. [PMID: 22529774 PMCID: PMC3328852 DOI: 10.3389/fnmol.2012.00050] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/27/2012] [Indexed: 11/13/2022] Open
Abstract
Cognitive and affective processes vary over the course of the 24 h day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24 h period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain (BF) and hypothalamic arousal systems and inhibition or disruption of these systems reduces brain arousal, impairs cognition, and promotes sleep. The internal circadian timekeeping system modulates cognition and affective function by projections from the master circadian clock, located in the hypothalamic suprachiasmatic nuclei (SCN), to arousal and sleep systems and via clock gene oscillations in brain tissues. Understanding the basic principles of circadian and wakefulness-sleep physiology can help to recognize how the circadian system modulates human cognition and influences learning, memory and emotion. Developmental changes in sleep and circadian processes and circadian misalignment in circadian rhythm sleep disorders have important implications for learning, memory and emotion. Overall, when wakefulness occurs at appropriate internal biological times, circadian clockwork benefits human cognitive and emotion function throughout the lifespan. Yet, when wakefulness occurs at inappropriate biological times because of environmental pressures (e.g., early school start times, long work hours that include work at night, shift work, jet lag) or because of circadian rhythm sleep disorders, the resulting misalignment between circadian and wakefulness-sleep physiology leads to impaired cognitive performance, learning, emotion, and safety.
Collapse
Affiliation(s)
- Kenneth P. Wright
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado, BoulderCO, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, Behavioral Neuroendocrinology Laboratory, University of Colorado, BoulderCO, USA
| | - Monique K. LeBourgeois
- Department of Integrative Physiology, Sleep and Development Laboratory, University of Colorado, BoulderCO, USA
| |
Collapse
|
212
|
Richardson KA, Aston-Jones G. Lateral hypothalamic orexin/hypocretin neurons that project to ventral tegmental area are differentially activated with morphine preference. J Neurosci 2012; 32:3809-17. [PMID: 22423101 PMCID: PMC3321304 DOI: 10.1523/jneurosci.3917-11.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 12/12/2011] [Accepted: 01/13/2012] [Indexed: 11/21/2022] Open
Abstract
Orexin (or hypocretin) is synthesized exclusively in dorsomedial, perifornical, and lateral hypothalamus (LH). These neurons are implicated in several functions, including reward processing. We examined the ventral tegmental area (VTA) as a possible site of orexin action for drug preference during protracted morphine abstinence, and studied functional topography of orexin projections to VTA. Male Sprague Dawley rats were used to investigate whether orexin cells that project to VTA exhibit Fos activation with morphine conditioned place preference (CPP), and whether these cells exhibit increased Fos with morphine CPP during protracted abstinence. Unilateral injections of a retrograde tracer (WGA-Au, 350-400 nl) were made into the VTA or a nonreward area, locus ceruleus, and morphine or placebo pellets were implanted for 14 d. Approximately 2 weeks after pellet removal (post dependence), CPP conditioning and testing were conducted. Triple labeling for WGA-Au, Fos, and orexin revealed that the percentage of VTA-projecting orexin neurons Fos activated on the CPP test day significantly increased in post-dependent (vs nondependent) rats, and was exclusive to LH orexin neurons (not dorsomedial or perifornical). Post-dependent animals showed a positive correlation between CPP scores and percentages of Fos-activated, caudal VTA-projecting LH orexin cells. Unlike afferents to caudal VTA, percentages of rostral VTA-projecting, LH orexin cells that were Fos activated showed a positive correlation with CPP only in nondependent animals. Fos in LC-projecting orexin cells was not correlated with CPP in any group. These results indicate that VTA is a heterogeneous and functionally significant target of orexin neurons for morphine reward during protracted abstinence.
Collapse
Affiliation(s)
- Kimberlei A. Richardson
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059 and
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
213
|
Koresh O, Kozlovsky N, Kaplan Z, Zohar J, Matar MA, Cohen H. The long-term abnormalities in circadian expression of Period 1 and Period 2 genes in response to stress is normalized by agomelatine administered immediately after exposure. Eur Neuropsychopharmacol 2012; 22:205-21. [PMID: 21925847 DOI: 10.1016/j.euroneuro.2011.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/26/2011] [Accepted: 07/22/2011] [Indexed: 11/27/2022]
Abstract
In mammals, the circadian and stress systems are involved in adaptation to predictable and unpredictable stimuli, respectively. A series of experiments examined the relationship between stress-induced posttraumatic stress (PTSD)-like behavioral response patterns in rats and brain levels of genes related to circadian rhythms. The effects of agomelatine, administered immediately after exposure, on stress-related behavior and on local expression of Per1 and Per2 were assessed. Animals were exposed to predator scent stress. The outcome measures included behavior in an elevated plus-maze (EPM) and acoustic startle response (ASR) 7days after the exposure. Pre-set cut-off behavioral criteria classified exposed animals according to behavioral responses in EPM and ASR paradigms as those with 'extreme behavioral response' (EBR), 'minimal behavioral response (MBR),' or 'partial behavioral response' (PBR). Per1 and Per2 expression in hippocampal subregions, frontal cortex and suprachiasmatic nucleus (SCN) 8days after exposure were evaluated using immunohistochemical and RT-PCR techniques at zeitgeber-times 19 and 13. The effects of agomelatine, on behavioral tests were evaluated on Day 8. Local brain expression of Per1 and Per2 mRNA was subsequently assessed. Data were analyzed in relation to individual behavior patterns. Animals with extreme behavioral response (EBR) displayed a distinct pattern of Per1 and Per2 expression in the SCN, which was the opposite of that observed in the control and MBR animals. In the DG, no variation in Per2 expression was observed in the EBR and PBR animals. Immediate post-exposure treatment with agomelatine significantly reduced percentage of extreme-responders and normalized the expression of Per1 and Per2 as compared to controls. Stress-induced alterations in Per genes in the EBR animals may represent an imbalance between normally precisely orchestrated physiological and behavioral processes and psychopathological processes. These findings indicate that these circadian-related genes play a role in the neurobiological response to predator scent stress and provide supportive evidence that the use of agomelatine immediately after traumatic experience may be protective against the subsequent development of PTSD.
Collapse
Affiliation(s)
- Ori Koresh
- Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | | | | | | | | | | |
Collapse
|
214
|
Schmidt C, Peigneux P, Leclercq Y, Sterpenich V, Vandewalle G, Phillips C, Berthomier P, Berthomier C, Tinguely G, Gais S, Schabus M, Desseilles M, Dang-Vu T, Salmon E, Degueldre C, Balteau E, Luxen A, Cajochen C, Maquet P, Collette F. Circadian preference modulates the neural substrate of conflict processing across the day. PLoS One 2012; 7:e29658. [PMID: 22238632 PMCID: PMC3251569 DOI: 10.1371/journal.pone.0029658] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022] Open
Abstract
Human morning and evening chronotypes differ in their preferred timing for sleep and wakefulness, as well as in optimal daytime periods to cope with cognitive challenges. Recent evidence suggests that these preferences are not a simple by-product of socio-professional timing constraints, but can be driven by inter-individual differences in the expression of circadian and homeostatic sleep-wake promoting signals. Chronotypes thus constitute a unique tool to access the interplay between those processes under normally entrained day-night conditions, and to investigate how they impinge onto higher cognitive control processes. Using functional magnetic resonance imaging (fMRI), we assessed the influence of chronotype and time-of-day on conflict processing-related cerebral activity throughout a normal waking day. Sixteen morning and 15 evening types were recorded at two individually adapted time points (1.5 versus 10.5 hours spent awake) while performing the Stroop paradigm. Results show that interference-related hemodynamic responses are maintained or even increased in evening types from the subjective morning to the subjective evening in a set of brain areas playing a pivotal role in successful inhibitory functioning, whereas they decreased in morning types under the same conditions. Furthermore, during the evening hours, activity in a posterior hypothalamic region putatively involved in sleep-wake regulation correlated in a chronotype-specific manner with slow wave activity at the beginning of the night, an index of accumulated homeostatic sleep pressure. These results shed light into the cerebral mechanisms underlying inter-individual differences of higher-order cognitive state maintenance under normally entrained day-night conditions.
Collapse
Affiliation(s)
- Christina Schmidt
- Cyclotron Research Centre, University of Liège, Liège, Belgium
- Cognitive and Behavioral Neuroscience Centre, University of Liège, Liège, Belgium
| | - Philippe Peigneux
- Cyclotron Research Centre, University of Liège, Liège, Belgium
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Université Libre de Bruxelles, Brussels, Belgium
| | - Yves Leclercq
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | - Steffen Gais
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - Manuel Schabus
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | | | - Thanh Dang-Vu
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - Eric Salmon
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | | | - Evelyne Balteau
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - André Luxen
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Pierre Maquet
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - Fabienne Collette
- Cyclotron Research Centre, University of Liège, Liège, Belgium
- Cognitive and Behavioral Neuroscience Centre, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
215
|
Mori M, Mori K, Ida T, Sato T, Kojima M, Miyazato M, Kangawa K. Different distribution of neuromedin S and its mRNA in the rat brain: NMS peptide is present not only in the hypothalamus as the mRNA, but also in the brainstem. Front Endocrinol (Lausanne) 2012; 3:152. [PMID: 23264767 PMCID: PMC3524995 DOI: 10.3389/fendo.2012.00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/16/2012] [Indexed: 11/24/2022] Open
Abstract
Neuromedin S (NMS) is a neuropeptide identified as another endogenous ligand for two orphan G protein-coupled receptors, FM-3/GPR66 and FM-4/TGR-1, which have also been identified as types 1 and 2 receptors for neuromedin U structurally related to NMS. Although expression of NMS mRNA is found mainly in the brain, spleen, and testis, the distribution of its peptide has not yet been investigated. Using a newly prepared antiserum, we developed a highly sensitive radioimmunoassay for rat NMS. NMS peptide was clearly detected in the rat brain at a concentration of 68.3 ± 3.4 fmol/g wet weight, but it was hardly detected in the spleen and testis. A high content of NMS peptide was found in the hypothalamus, midbrain, and pons-medulla oblongata, whereas abundant expression of NMS mRNA was detected only in the hypothalamus. These differing distributions of the mRNA and peptide suggest that nerve fibers originating from hypothalamic NMS neurons project into the midbrain, pons, or medulla oblongata. In addition, abundant expression of type 2 receptor mRNA was detected not only in the hypothalamus, but also in the midbrain and pons-medulla oblongata. These results suggest novel, unknown physiological roles of NMS within the brainstem.
Collapse
Affiliation(s)
- Miwa Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research InstituteOsaka, Japan
- Miwa Mori and Kenji Mori have contributed equally to this work
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research InstituteOsaka, Japan
- Miwa Mori and Kenji Mori have contributed equally to this work
| | - Takanori Ida
- Interdisciplinary Research Organization, University of MiyazakiMiyazaki, Japan
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Sciences, Kurume UniversityFukuoka, Japan
| | - Masayasu Kojima
- Molecular Genetics, Institute of Life Sciences, Kurume UniversityFukuoka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research InstituteOsaka, Japan
- *Correspondence: Mikiya Miyazato, Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan. e-mail:
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research InstituteOsaka, Japan
| |
Collapse
|
216
|
O'Keeffe SM, Thome J, Coogan AN. The noradrenaline reuptake inhibitor atomoxetine phase-shifts the circadian clock in mice. Neuroscience 2011; 201:219-30. [PMID: 22119060 DOI: 10.1016/j.neuroscience.2011.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/17/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
Circadian rhythms are recurring cycles in physiology and behaviour that repeat with periods of near 24 h and are driven by an endogenous circadian timekeeping system with a master circadian pacemaker located in the suprachiasmatic nucleus (SCN). Atomoxetine is a specific noradrenaline reuptake inhibitor that is used in the clinical management of attention-deficit/hyperactivity disorder (ADHD). In the current study we examined the effects of atomoxetine on circadian rhythms in mice. Atomoxetine (i.p.; 3 mg/kg) treatment of mice free-running in constant light (LL) at circadian time (CT) 6 induced large phase delays that were significantly different to saline controls. Treatment of animals with atomoxetine at CT13 or CT18 did not elicit any significant phase shifts. We also examined the effects of atomoxetine treatment of animals free-running in constant darkness (DD). Atomoxetine treatment at CT6 in these animals leads to more modest, but significant, phase advances, whereas treatment at CT18 did not elicit significant phase shifts. The effects of atomoxetine in LL were attenuated by pretreatment with the α-1 adrenoreceptor antagonist prazosin and were mimicked by another noradrenaline reuptake inhibitor, reboxetine. Further, atomoxetine treatment at CT6 induced a downregulation of c-Fos and CLOCK in the SCN, but did not alter the expression of PER2 and BMAL1. Atomoxetine during the night phase did not alter any of these factors. Atomoxetine treatment preceding a light pulse at CT15 enhanced the magnitude of the photic-phase shift, whereas it altered photic induction of the immediate early gene products c-Fos and ARC in the SCN. These data indicate that atomoxetine can reset the circadian clock and indicate that part of the therapeutic profile of atomoxetine may be through circadian rhythm modulation.
Collapse
Affiliation(s)
- S M O'Keeffe
- Department of Psychology, National University of Ireland Maynooth, Co. Kildare, Republic of Ireland
| | | | | |
Collapse
|
217
|
Singletary KG, Naidoo N. Disease and Degeneration of Aging Neural Systems that Integrate Sleep Drive and Circadian Oscillations. Front Neurol 2011; 2:66. [PMID: 22028699 PMCID: PMC3199684 DOI: 10.3389/fneur.2011.00066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022] Open
Abstract
Sleep/wake and circadian rest-activity rhythms become irregular with age. Typical outcomes include fragmented sleep during the night, advanced sleep phase syndrome and increased daytime sleepiness. These changes lead to a reduction in the quality of life due to cognitive impairments and emotional stress. More importantly, severely disrupted sleep and circadian rhythms have been associated with an increase in disease susceptibility. Additionally, many of the same brain areas affected by neurodegenerative diseases include the sleep and wake promoting systems. Any advances in our knowledge of these sleep/wake and circadian networks are necessary to target neural areas or connections for therapy. This review will discuss research that uses molecular, behavioral, genetic and anatomical methods to further our understanding of the interaction of these systems.
Collapse
Affiliation(s)
- Kristan G Singletary
- Center for Sleep and Circadian Neurobiology, School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
218
|
Fleshner M, Booth V, Forger DB, Diniz Behn CG. Circadian regulation of sleep-wake behaviour in nocturnal rats requires multiple signals from suprachiasmatic nucleus. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:3855-83. [PMID: 21893532 DOI: 10.1098/rsta.2011.0085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The dynamics of sleep and wake are strongly linked to the circadian clock. Many models have accurately predicted behaviour resulting from dynamic interactions between these two systems without specifying physiological substrates for these interactions. By contrast, recent experimental work has identified much of the relevant physiology for circadian and sleep-wake regulation, but interaction dynamics are difficult to study experimentally. To bridge these approaches, we developed a neuronal population model for the dynamic, bidirectional, neurotransmitter-mediated interactions of the sleep-wake and circadian regulatory systems in nocturnal rats. This model proposes that the central circadian pacemaker, located within the suprachiasmatic nucleus (SCN) of the hypothalamus, promotes sleep through single neurotransmitter-mediated signalling to sleep-wake regulatory populations. Feedback projections from these populations to the SCN alter SCN firing patterns and fine-tune this modulation. Although this model reproduced circadian variation in sleep-wake dynamics in nocturnal rats, it failed to describe the sleep-wake dynamics observed in SCN-lesioned rats. We thus propose two alternative, physiologically based models in which neurotransmitter- and neuropeptide-mediated signalling from the SCN to sleep-wake populations introduces mechanisms to account for the behaviour of both the intact and SCN-lesioned rat. These models generate testable predictions and offer a new framework for modelling sleep-wake and circadian interactions.
Collapse
Affiliation(s)
- Michelle Fleshner
- Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043, USA
| | | | | | | |
Collapse
|
219
|
Taxini CL, Takakura AC, Gargaglioni LH, Moreira TS. Control of the central chemoreflex by A5 noradrenergic neurons in rats. Neuroscience 2011; 199:177-86. [PMID: 22015927 DOI: 10.1016/j.neuroscience.2011.09.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/05/2011] [Accepted: 09/30/2011] [Indexed: 11/16/2022]
Abstract
Central chemoreflex stimulation produces an increase in phrenic nerve activity (PNA) and sympathetic nerve activity (SNA). The A5 noradrenergic region projects to several brainstem areas involved in autonomic regulation and contributes to the increase in SNA elicited by peripheral chemoreflex activation. The aim of the present study was to further test the hypothesis that the A5 noradrenergic region could contribute to central chemoreflex activation. In urethane-anesthetized, sino-aortic denervated, and vagotomized male Wistar rats (n=6-8/group), hypercapnia (end-expiratory CO₂ from 5% to 10%) increased mean arterial pressure (MAP; Δ=+33±4 mmHg, P<0.05), splanchnic SNA (sSNA; Δ=+97±13%, P<0.05), and PNA frequency and amplitude. Bilateral injection of muscimol (GABA-A agonist; 2 mM) into the A5 noradrenergic region reduced the rise in MAP (Δ=+19±3 mmHg, P<0.05), sSNA (Δ=+63±5%, P<0.05), and PNA frequency and amplitude produced by hypercapnia. Injections of the immunotoxin anti-dopamine β-hydroxylase-saporin (anti-DβH-SAP) into the A5 region destroyed TH⁺ neurons but spared facial motoneurons and the chemosensitive neurons in the retrotrapezoid nucleus that express the transcription factor Phox2b and that are non-catecholaminergic (TH⁻Phox2b⁺). Two weeks after selective destruction of the A5 region with the anti-DβH-SAP toxin, the increase in MAP (Δ=+22±5 mmHg, P<0.05), sSNA (Δ=+68±9%, P<0.05), and PNA amplitude was reduced after central chemoreflex activation. These results suggest that A5 noradrenergic neurons contribute to the increase in MAP, sSNA, and PNA activation during central chemoreflex stimulation.
Collapse
Affiliation(s)
- C L Taxini
- Department of Morphology and Animal Physiology, São Paulo State University (UNESP), 14884-900 Jaboticabal, SP, Brazil
| | | | | | | |
Collapse
|
220
|
Genetics of circadian rhythms and mood spectrum disorders. Eur Neuropsychopharmacol 2011; 21 Suppl 4:S676-82. [PMID: 21835597 DOI: 10.1016/j.euroneuro.2011.07.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 11/22/2022]
Abstract
Mood spectrum disorders (bipolar disorder, recurrent depressive disorder and seasonal affective disorder) are accompanied by circadian deregulations, which can occur during acute mood episodes as well as during euthymic periods, and are particularly common among bipolar patients in remission. This suggests that altered circadian rhythms may be biological markers of these disorders. Rhythm dysfunctions have been observed in mood disorder patients by using actigraphic measures and by assessing social metric rhythms, diurnal preferences and melatonin secretion. Since many of these markers are heritable and therefore driven by clock genes, these genes may represent susceptibility factors for mood spectrum disorders. Indeed, several genetic association studies have suggested that certain circadian gene variants play a role in susceptibility to these disorders. Such connections to circadian genes such as CLOCK, ARNTL1, NPAS2, PER3 and NR1D1 have been repeatedly demonstrated for bipolar disorders, and to a lesser extent for recurrent depressive disorders and seasonal affective disorders. The study of circadian phenotypes and circadian genes in mood spectrum disorders represents a major field of research that may yet reveal the pathophysiological determinants of these disorders.
Collapse
|
221
|
Merica H, Fortune RD. The neuronal transition probability (NTP) model for the dynamic progression of non-REM sleep EEG: the role of the suprachiasmatic nucleus. PLoS One 2011; 6:e23593. [PMID: 21886801 PMCID: PMC3158790 DOI: 10.1371/journal.pone.0023593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022] Open
Abstract
Little attention has gone into linking to its neuronal substrates the dynamic structure of non-rapid-eye-movement (NREM) sleep, defined as the pattern of time-course power in all frequency bands across an entire episode. Using the spectral power time-courses in the sleep electroencephalogram (EEG), we showed in the typical first episode, several moves towards-and-away from deep sleep, each having an identical pattern linking the major frequency bands beta, sigma and delta. The neuronal transition probability model (NTP)--in fitting the data well--successfully explained the pattern as resulting from stochastic transitions of the firing-rates of the thalamically-projecting brainstem-activating neurons, alternating between two steady dynamic-states (towards-and-away from deep sleep) each initiated by a so-far unidentified flip-flop. The aims here are to identify this flip-flop and to demonstrate that the model fits well all NREM episodes, not just the first. Using published data on suprachiasmatic nucleus (SCN) activity we show that the SCN has the information required to provide a threshold-triggered flip-flop for TIMING the towards-and-away alternations, information provided by sleep-relevant feedback to the SCN. NTP then determines the PATTERN of spectral power within each dynamic-state. NTP was fitted to individual NREM episodes 1-4, using data from 30 healthy subjects aged 20-30 years, and the quality of fit for each NREM measured. We show that the model fits well all NREM episodes and the best-fit probability-set is found to be effectively the same in fitting all subject data. The significant model-data agreement, the constant probability parameter and the proposed role of the SCN add considerable strength to the model. With it we link for the first time findings at cellular level and detailed time-course data at EEG level, to give a coherent picture of NREM dynamics over the entire night and over hierarchic brain levels all the way from the SCN to the EEG.
Collapse
Affiliation(s)
- Helli Merica
- Laboratoire de Sommeil et de Neurophysiologie, Hôpitaux Universitaires de Genève, Belle Idée, Geneva, Switzerland.
| | | |
Collapse
|
222
|
The cholinergic system, circadian rhythmicity, and time memory. Behav Brain Res 2011; 221:466-80. [DOI: 10.1016/j.bbr.2010.11.039] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 01/23/2023]
|
223
|
Moreira TS, Takakura AC, Damasceno RS, Falquetto B, Totola LT, Sobrinho CR, Ragioto DT, Zolezi FP. Central chemoreceptors and neural mechanisms of cardiorespiratory control. Braz J Med Biol Res 2011; 44:883-9. [PMID: 21789465 DOI: 10.1590/s0100-879x2011007500094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/15/2011] [Indexed: 02/07/2023] Open
Abstract
The arterial partial pressure (P(CO)(2)) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO(2) from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO(2) exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO(2) causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO(2)-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.
Collapse
Affiliation(s)
- T S Moreira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Mayorov DN. Brain angiotensin AT1 receptors as specific regulators of cardiovascular reactivity to acute psychoemotional stress. Clin Exp Pharmacol Physiol 2011; 38:126-35. [PMID: 21143493 DOI: 10.1111/j.1440-1681.2010.05469.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Cardiovascular reactivity, an abrupt rise in blood pressure (BP) and heart rate in response to psychoemotional stress, is a risk factor for heart disease. Pharmacological and molecular genetic studies suggest that brain angiotensin (Ang) II and AT(1) receptors are required for the normal expression of sympathetic cardiovascular responses to various psychological stressors. Moreover, overactivity of the brain AngII system may contribute to enhanced cardiovascular reactivity in hypertension. 2. Conversely, brain AT(1) receptors appear to be less important for the regulation of sympathetic cardiovascular responses to a range of stressors involving an immediate physiological threat (physical stressors) in animal models. 3. Apart from threatening events, appetitive stimuli can induce a distinct, central nervous system-mediated rise in BP. However, evidence indicates that brain AT(1) receptors are not essential for the regulation of cardiovascular arousal associated with positively motivated behaviour, such as anticipation and the consumption of palatable food. The role of central AT(1) receptors in regulating cardiovascular activation elicited by other types of appetitive stimuli remains to be determined. 4. Emerging evidence also indicates that brain AT(1) receptors play a limited role in the regulation of cardiovascular responses to non-emotional natural daily activities, sleep and exercise. 5. Collectively, these findings suggest that, with respect to cardiovascular arousal, central AT(1) receptors may be involved primarily in the regulation of the defence response. Therefore, these receptors could be a potential therapeutic target for selective attenuation of BP hyperreactivity to aversive stressors, without altering physiologically important cardiovascular adjustments to normal daily activities, sleep and exercise.
Collapse
Affiliation(s)
- Dmitry N Mayorov
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
225
|
Milhiet V, Etain B, Boudebesse C, Bellivier F. Circadian biomarkers, circadian genes and bipolar disorders. ACTA ACUST UNITED AC 2011; 105:183-9. [PMID: 21767641 DOI: 10.1016/j.jphysparis.2011.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bipolar disorders are associated with circadian deregulations both during acute mood episodes and during euthymic periods, suggesting that these circadian rhythms may represent trait markers of the disease. Several arguments demonstrate that deregulations of circadian rhythms may be part of the pathophysiology of bipolar disorders. Abnormal quantitative and qualitative circadian disturbances have been repeatedly showed in bipolar patients, both during euthymic periods and acute phases, using different assessment tools such as actigraphy, polysomnography, and blood melatonin monitoring. In addition, many circadian physiological functions have been demonstrated to be altered in bipolar patients, such as secretion of hormones and other endogenous substances, core temperature, and fibroblasts activity. Furthermore, mood stabilizers efficiency could partially be explained by their impact on the regulation of the circadian rhythms. The implication of genetic vulnerability factors has long been demonstrated in bipolar disorders and several circadian genes have been tested for association in bipolar disorders. Although preliminary, interesting results have been obtained in several independent studies.
Collapse
Affiliation(s)
- Vanessa Milhiet
- INSERM, Unité 955, IMRB, Pôle de Génomique Médicale, Equipe de Psychiatrie Génétique, Créteil, France
| | | | | | | |
Collapse
|
226
|
Stone EA, Lin Y, Sarfraz Y, Quartermain D. The role of the central noradrenergic system in behavioral inhibition. BRAIN RESEARCH REVIEWS 2011; 67:193-208. [PMID: 21315760 PMCID: PMC3101301 DOI: 10.1016/j.brainresrev.2011.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/30/2011] [Accepted: 02/03/2011] [Indexed: 02/06/2023]
Abstract
Although the central noradrenergic system has been shown to be involved in a number of behavioral and neurophysiological processes, the relation of these to its role in depressive illness has been difficult to define. The present review discusses the hypothesis that one of its chief functions that may be related to affective illness is the inhibition of behavioral activation, a prominent symptom of the disorder. This hypothesis is found to be consistent with most previous neuropsychopharmacological and immunohistochemical experiments on active behavior in rodents in a variety of experimental conditions using manipulation of neurotransmission at both locus coeruleus and forebrain adrenergic receptors. The findings support a mechanism in which high rates of noradrenergic neural activity suppress the neural activity of principal neurons in forebrain regions mediating active behavior. The suppression may be mediated through postsynaptic galaninergic and adrenergic receptors, and via the release of corticotrophin-releasing hormone. The hypothesis is consistent with clinical evidence for central noradrenergic system hyperactivity in depressives and with the view that this hyperactivity is a contributing etiological factor in the disorder. A similar mechanism may underlie the ability of the noradrenergic system to suppress seizure activity suggesting that inhibition of the spread of neural activation may be a unifying function.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Psychiatry, New York University Langone School of Medicine, 550 First Ave., New York, NY 10016, USA.
| | | | | | | |
Collapse
|
227
|
Hamada T, Honma S, Honma KI. Light responsiveness of clock genes, Per1 and Per2, in the olfactory bulb of mice. Biochem Biophys Res Commun 2011; 409:727-31. [DOI: 10.1016/j.bbrc.2011.05.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
|
228
|
Abstract
The mammalian circadian system is a complex hierarchical temporal network which is organized around an ensemble of uniquely coupled cells comprising the principal circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus. This central pacemaker is entrained each day by the environmental light/dark cycle and transmits synchronizing cues to cell-autonomous oscillators in tissues throughout the body. Within cells of the central pacemaker and the peripheral tissues, the underlying molecular mechanism by which oscillations in gene expression occur involves interconnected feedback loops of transcription and translation. Over the past 10 years, we have learned much regarding the genetics of this system, including how it is particularly resilient when challenged by single-gene mutations, how accessory transcriptional loops enhance the robustness of oscillations, how epigenetic mechanisms contribute to the control of circadian gene expression, and how, from coupled neuronal networks, emergent clock properties arise. Here, we will explore the genetics of the mammalian circadian system from cell-autonomous molecular oscillations, to interactions among central and peripheral oscillators and ultimately, to the daily rhythms of behavior observed in the animal.
Collapse
|
229
|
Hu WP, Li JD, Colwell CS, Zhou QY. Decreased REM sleep and altered circadian sleep regulation in mice lacking vasoactive intestinal polypeptide. Sleep 2011; 34:49-56. [PMID: 21203371 DOI: 10.1093/sleep/34.1.49] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Vasoactive intestinal polypeptide (VIP) has been implicated in sleep regulation as a promoter of rapid eye movement (REM) sleep. Previous work has shown that the amount of time spent in REM sleep is increased by intracerebroventricular administration of VIP, and reduced by treatment with VIP antagonists or antibodies against VIP. A variety of evidence suggests that VIP is critical for normal expression of circadian rhythmicity of diverse physiological and behavioral parameters. In the present study, we investigated the role of this peptide in sleep regulation using VIP-deficient (VIP-/-) mice. METHODS EEG/EMG sleep-wake patterns were recorded in VIP-/- mice and their wild-type littermate controls under normal light-dark (LD), constant darkness (DD) and sleep deprivation conditions. RESULTS VIP-/- mice exhibited reduced REM sleep time over the 24-h cycle while total daily amounts of NREM sleep and wakefulness were not altered significantly. The reduced REM sleep time in VIP-/- mice occurred entirely during the day due to a reduction in the duration, but not the frequency, of REM sleep bouts. In response to sleep deprivation, compensatory rebounds in NREM sleep and REM sleep were also attenuated in VIP-/- mice. Finally, the loss of VIP altered the temporal distribution of sleep in that the VIP -/- mice exhibited smaller amplitude rhythms in total sleep, NREM sleep, and REM sleep under both LD and DD. CONCLUSIONS These results indicate that VIP regulates the duration of REM sleep, sleep homeostatic mechanisms as well as the temporal patterning of sleep.
Collapse
Affiliation(s)
- Wang-Ping Hu
- Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
230
|
Van Dongen HP, Belenky G, Krueger JM. A local, bottom-up perspective on sleep deprivation and neurobehavioral performance. Curr Top Med Chem 2011; 11:2414-22. [PMID: 21906023 PMCID: PMC3243827 DOI: 10.2174/156802611797470286] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/10/2010] [Indexed: 11/22/2022]
Abstract
Waking neurobehavioral performance is temporally regulated by a sleep/wake homeostatic process and a circadian process in interaction with a time-on-task effect. Neurobehavioral impairment resulting from these factors is task-specific, and characterized by performance variability. Several aspects of these phenomena are not well understood, and cannot be explained solely by a top-down (subcortically driven) view of sleep/wake and performance regulation. We present a bottom-up theory, where we postulate that task performance is degraded by local, use-dependent sleep in neuronal groups subserving cognitive processes associated with the task at hand. The theory offers explanations for the temporal dependence of neurobehavioral performance on time awake, time on task, and their interaction; for the effectiveness of task switching and rest breaks to overcome the time-on-task effect (but not the effects of sleep deprivation); for the task-specific nature of neurobehavioral impairment; and for the stochastic property of performance variability.
Collapse
Affiliation(s)
- Hans P.A. Van Dongen
- Sleep and Performance Research Center and Neuroscience Program, Washington State University, USA
| | - Gregory Belenky
- Sleep and Performance Research Center and Neuroscience Program, Washington State University, USA
| | - James M. Krueger
- Sleep and Performance Research Center and Neuroscience Program, Washington State University, USA
| |
Collapse
|
231
|
Affiliation(s)
- Seiji Nishino
- Stanford University School of Medicine, Stanford Sleep Research Center, Palo Alto, CA, USA.
| | | |
Collapse
|
232
|
Kanbar R, Depuy SD, West GH, Stornetta RL, Guyenet PG. Regulation of visceral sympathetic tone by A5 noradrenergic neurons in rodents. J Physiol 2010; 589:903-17. [PMID: 21173073 DOI: 10.1113/jphysiol.2010.198374] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ventrolateral pons contains the A5 group of noradrenergic neurons which regulate the circulation and probably breathing. The present experiments were designed to identify these neurons definitively in vivo, to examine their response to chemoreceptor stimuli (carotid body stimulation and changes in brain pH) and to determine their effects on sympathetic outflow. Bulbospinal A5 neurons, identified by juxtacellular labelling in anaesthetized rats, had a slow regular discharge, were vigorously activated by peripheral chemoreceptor stimulation with cyanide, but only mildly activated by hyperoxic hypercapnia (central chemoreceptor stimulation). The caudal end of the A5 region also contained neurons with properties reminiscent of retrotrapezoid neurons. These cells lacked a spinal axon and were characterized by a robust response to CO2. The pH sensitivity of A5 neurons, examined in brain slices from neonatal (postnatal days 6–10) tyrosine hydroxylase (TH)-GFP transgenic mice, was about 10 times smaller than that of similarly recorded retrotrapezoid neurons. Selective stimulation of the A5 neurons in rats using channelrhodopsin optogenetics (A5 TH neurons represented 66% of transfected cells) produced fivefold greater activation of the renal nerve than the lumbar sympathetic chain. In summary, adult A5 noradrenergic neurons are vigorously activated by carotid body stimulation. This effect presumably contributes to the increase in visceral sympathetic nerve activity elicited by acute hypoxia. A5 neurons respond weakly to hypercapnia in vivo or to changes in pH in slices suggesting that their ability to sense local variations in brain pH or Pco₂ is limited.
Collapse
Affiliation(s)
- Roy Kanbar
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
233
|
Harwood B, Davidson AW, Rice CL. Motor unit discharge rates of the anconeus muscle during high-velocity elbow extensions. Exp Brain Res 2010; 208:103-13. [PMID: 21107544 DOI: 10.1007/s00221-010-2463-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/10/2010] [Indexed: 10/18/2022]
Abstract
Motor unit recruitment and motor unit discharge rate (MUDR) have been widely studied in isometric conditions but minimally during velocity-dependent contractions. For isometric contractions, surface electromyography (EMG) activity of the elbow extensors plateaus at near maximal torques (Le Bozec et al. 1980; Le Bozec and Maton 1982). One study (Maton and Bouisset 1975) recorded single motor unit (MU) activity at maximal velocities; however, only the rate of the first interspike interval (ISI) was reported and likely was not representative of the average MUDR of the MU train. The purpose was to calculate average MUDRs of the anconeus during loaded velocity-dependent contractions from zero velocity (isometric) up to maximal velocity (V(max25)) through a large range of motion. A Biodex dynamometer was used to record elbow extension torque, position, and velocity. Single MU potentials were collected from the anconeus with intramuscular EMG, and surface EMG was sampled from the lateral head of the triceps brachii during maximal voluntary isometric contractions (MVCs) and velocity-dependent contractions loaded at 25% MVC over 120° range of motion at five target velocities (0, 25, 50, 75, 100%V(max25)). Elbow extension velocities ranged from 93 to 494°/s and average MUDR ranged from 11.8 Hz at 25%MVC to 39.0 Hz at 100%V(max25.) Overall average MUDRs increased as a function of velocity, although the root mean square of triceps brachii surface EMG plateaued at 50%V(max25). Piecewise regression analysis revealed two distinct linear ranges each described by a unique equation, suggesting that MUDRs of the anconeus enter a secondary range of firing, characterized by a steeper slope as velocity approaches maximum.
Collapse
Affiliation(s)
- B Harwood
- Canadian Centre for Activity and Aging, Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | | | | |
Collapse
|
234
|
Stephenson JL, Christou EA, Maluf KS. Discharge rate modulation of trapezius motor units differs for voluntary contractions and instructed muscle rest. Exp Brain Res 2010; 208:203-15. [PMID: 21063691 DOI: 10.1007/s00221-010-2471-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
This study examined discharge rate modulation at respiratory (0-0.5 Hz) and beta (16-32 Hz) frequencies in trapezius motor units active during voluntary contractions and during periods of instructed rest under conditions of low and high psychosocial stress. In separate sessions, single motor unit activity was recorded from the trapezius muscle of healthy women during low-intensity voluntary contractions and during periods of instructed muscle rest that followed voluntary contractions. The level of psychosocial stress during periods of instructed muscle rest was manipulated using a verbal math task combined with social evaluative threat which increased perceived anxiety, heart rate, and blood pressure (P ≤ 0.002). Discharge rate modulation was quantified by the mean power of motor unit discharge rate profiles within frequency bands of interest. Under low stress conditions, motor units active during instructed rest had greater power at 0-0.5 Hz (P = 0.002) and less power at 16-32 Hz (P = 0.009) compared to those active during voluntary contraction. Exposure to the stressor increased the amount of motor unit activity during instructed rest (P = 0.021) but did not alter the power of discharge rate modulation at 0-0.5 Hz (P = 0.391) or 16-32 Hz (P = 0.089). These results indicate that sustained motor unit activity during periods of instructed muscle rest has a lesser contribution from inputs at beta frequencies and a greater contribution from inputs at respiratory frequencies than present during low-intensity voluntary contractions. Furthermore, increases in motor unit activity when exposed to stressors during periods of instructed rest are not caused by changes in inputs at respiratory or beta frequencies.
Collapse
Affiliation(s)
- Jennifer L Stephenson
- Department of Physical Medicine & Rehabilitation, Applied Neuromuscular Physiology Lab, Physical Therapy Program, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
235
|
Chen L, McKenna JT, Bolortuya Y, Winston S, Thakkar MM, Basheer R, Brown RE, McCarley RW. Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period. Eur J Neurosci 2010; 32:1528-36. [PMID: 21089218 PMCID: PMC3058252 DOI: 10.1111/j.1460-9568.2010.07401.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The locus coeruleus (LC) regulates sleep/wakefulness and is densely innervated by orexinergic neurons in the lateral hypothalamus. Here we used small interfering RNAs (siRNAs) to test the role of LC orexin type 1 receptor (OxR1) in sleep–wake control. In sleep studies, bilateral OxR1 siRNA injections led to an increase of time spent in rapid eye movement (REM) sleep, which was selective for the dark (active) period, peaked at approximately 30% of control during the second dark period after injection and then disappeared after 4 days. Cataplexy-like episodes were not observed. The percentage time spent in wakefulness and non-REM (NREM) sleep and the power spectral profile of NREM and REM sleep were unaffected. Control animals, injected with scrambled siRNA, had no sleep changes after injection. Quantification of the knockdown revealed that unilateral microinjection of siRNAs targeting OxR1 into the rat LC on two consecutive days induced a 45.5% reduction of OxR1 mRNA in the LC 2 days following the injections when compared with the contralateral side receiving injections of control (scrambled) siRNAs. This reduction disappeared 4 days after injection. Similarly, unilateral injection of OxR1 siRNA into the LC revealed a marked (33.5%) reduction of OxR1 staining 2 days following injections. In contrast, both the mRNA level and immunohistochemical staining for tyrosine hydroxylase were unaffected. The results indicate that a modest knockdown of OxR1 is sufficient to induce observable sleep changes. Moreover, orexin neurons, by acting on OxR1 in the LC, play a role in the diurnal gating of REM sleep.
Collapse
Affiliation(s)
- Lichao Chen
- Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Brockton, MA 02301,USA.
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Vaughn LK, Denning G, Stuhr KL, de Wit H, Hill MN, Hillard CJ. Endocannabinoid signalling: has it got rhythm? Br J Pharmacol 2010; 160:530-43. [PMID: 20590563 DOI: 10.1111/j.1476-5381.2010.00790.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Endogenous cannabinoid signalling is widespread throughout the body, and considerable evidence supports its modulatory role in many fundamental physiological processes. The daily and seasonal cycles of the relationship of the earth and sun profoundly affect the terrestrial environment. Terrestrial species have adapted to these cycles in many ways, most well studied are circadian rhythms and hibernation. The purpose of this review was to examine literature support for three hypotheses: (i) endocannabinoid signalling exhibits brain region-specific circadian rhythms; (ii) endocannabinoid signalling modulates the rhythm of circadian processes in mammals; and (iii) changes in endocannabinoid signalling contribute to the state of hibernation. The results of two novel studies are presented. First, we report the results of a study of healthy humans demonstrating that plasma concentrations of the endocannabinoid, N-arachidonylethanolamine (anandamide), exhibit a circadian rhythm. Concentrations of anandamide are threefold higher at wakening than immediately before sleep, a relationship that is dysregulated by sleep deprivation. Second, we investigated differences in endocannabinoids and congeners in plasma from Marmota monax obtained in the summer and during the torpor state of hibernation. We report that 2-arachidonoylglycerol is below detection in M. monax plasma and that concentrations of anandamide are not different. However, plasma concentrations of the anorexigenic lipid oleoylethanolamide were significantly lower in hibernation, while the concentrations of palmitoylethanolamide and 2-oleoylglycerol were significantly greater in hibernation. We conclude that available data support a bidirectional relationship between endocannabinoid signalling and circadian processes, and investigation of the contribution of endocannabinoid signalling to the dramatic physiological changes that occur during hibernation is warranted.
Collapse
Affiliation(s)
- Linda K Vaughn
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|
237
|
Abstract
By definition central respiratory chemoreceptors (CRCs) are cells that are sensitive to changes in brain PCO(2) or pH and contribute to the stimulation of breathing elicited by hypercapnia or metabolic acidosis. CO(2) most likely works by lowering pH. The pertinent proton receptors have not been identified and may be ion channels. CRCs are probably neurons but may also include acid-sensitive glia and vascular cells that communicate with neurons via paracrine mechanisms. Retrotrapezoid nucleus (RTN) neurons are the most completely characterized CRCs. Their high sensitivity to CO(2) in vivo presumably relies on their intrinsic acid sensitivity, excitatory inputs from the carotid bodies and brain regions such as raphe and hypothalamus, and facilitating influences from neighboring astrocytes. RTN neurons are necessary for the respiratory network to respond to CO(2) during the perinatal period and under anesthesia. In conscious adults, RTN neurons contribute to an unknown degree to the pH-dependent regulation of breathing rate, inspiratory, and expiratory activity. The abnormal prenatal development of RTN neurons probably contributes to the congenital central hypoventilation syndrome. Other CRCs presumably exist, but the supportive evidence is less complete. The proposed locations of these CRCs are the medullary raphe, the nucleus tractus solitarius, the ventrolateral medulla, the fastigial nucleus, and the hypothalamus. Several wake-promoting systems (serotonergic and catecholaminergic neurons, orexinergic neurons) are also putative CRCs. Their contribution to central respiratory chemoreception may be behavior dependent or vary according to the state of vigilance.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
238
|
Gompf HS, Greenberg JH, Aston-Jones G, Ianculescu AG, Scanlan TS, Dratman MB. 3-Monoiodothyronamine: the rationale for its action as an endogenous adrenergic-blocking neuromodulator. Brain Res 2010; 1351:130-140. [PMID: 20615397 PMCID: PMC2926234 DOI: 10.1016/j.brainres.2010.06.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 01/02/2023]
Abstract
The investigations reported here were designed to gain insights into the role of 3-monoiodothyronamine (T1AM) in the brain, where the amine was originally identified and characterized. Extensive deiodinase studies indicated that T1AM was derived from the T4 metabolite, reverse triiodothyronine (revT3), while functional studies provided well-confirmed evidence that T1AM has strong adrenergic-blocking effects. Because a state of adrenergic overactivity prevails when triiodothyronine (T3) concentrations become excessive, the possibility that T3's metabolic partner, revT3, might give rise to an antagonist of those T3 actions was thought to be reasonable. All T1AM studies thus far have required use of pharmacological doses. Therefore we considered that choosing a physiological site of action was a priority and focused on the locus coeruleus (LC), the major noradrenergic control center in the brain. Site-directed injections of T1AM into the LC elicited a significant, dose-dependent neuronal firing rate change in a subset of adrenergic neurons with an EC(50)=2.7 microM, a dose well within the physiological range. Further evidence for its physiological actions came from autoradiographic images obtained following intravenous carrier-free (125)I-labeled T1AM injection. These showed that the amine bound with high affinity to the LC and to other selected brain nuclei, each of which is both an LC target and a known T3 binding site. This new evidence points to a physiological role for T1AM as an endogenous adrenergic-blocking neuromodulator in the central noradrenergic system.
Collapse
Affiliation(s)
- Heinrich S Gompf
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Joel H Greenberg
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary Aston-Jones
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Alexandra G Ianculescu
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Tom S Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - Mary B Dratman
- Department of Medicine (Endocrinology), University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
239
|
Abstract
OBJECTIVE Biological rhythm pathways are highlighted in a number of etiological models of bipolar disorder, and the management of circadian instability appears in consensus treatment guidelines. There are, however, significant conceptual and empirical limitations on our understanding of a hypothesised link between circadian, sleep, and emotion regulation processes in bipolar disorder. The aim of this article is to articulate the limits of scientific knowledge in relation to this hypothesis. METHODS A critical evaluation of various literatures was undertaken. The basic science of circadian and sleep processes, their involvement in normal emotion regulation, and the types of evidence suggesting circadian/sleep involvement in bipolar disorder are reviewed. RESULTS Multiple lines of evidence suggest that circadian and sleep-wake processes are causally involved in bipolar disorder. These processes demonstrably interact with other neurobiological pathways known to be important in bipolar disorder, but are unique in that they are open to behavioural manipulation. CONCLUSION Further research into biological rhythm pathways to bipolar disorder is warranted. Person-environment feedback loops are fundamental to circadian adaptation, and models of circadian pathogenesis (and treatment) should recognize this complexity.
Collapse
Affiliation(s)
- Greg Murray
- Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| | | |
Collapse
|
240
|
Johnson MD, Heckman CJ. Interactions between focused synaptic inputs and diffuse neuromodulation in the spinal cord. Ann N Y Acad Sci 2010; 1198:35-41. [PMID: 20536918 DOI: 10.1111/j.1749-6632.2010.05430.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinal motoneurons (MNs) amplify synaptic inputs by producing strong dendritic persistent inward currents (PICs), which allow the MN to generate the firing rates and forces necessary for normal behaviors. However, PICs prolong MN depolarization after the initial excitation is removed, tend to "wind-up" with repeated activation and are regulated by a diffuse neuromodulatory system that affects all motor pools. We have shown that PICs are very sensitive to reciprocal inhibition from Ia afferents of antagonist muscles and as a result PIC amplification is related to limb configuration. Because reciprocal inhibition is tightly focused, shared only between strict anatomical antagonists, this system opposes the diffuse effects of the descending neuromodulation that facilitates PICs. Because inhibition appears necessary for PIC control, we hypothesize that Ia inhibition interacts with Ia excitation in a "push-pull" fashion, in which a baseline of simultaneous excitation and inhibition allows depolarization to occur via both excitation and disinhibition (and vice versa for hyperpolarization). Push-pull control appears to mitigate the undesirable affects associated with the PIC while still taking full advantage of PIC amplification.
Collapse
Affiliation(s)
- M D Johnson
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois, USA.
| | | |
Collapse
|
241
|
Heinrichs SC. Neurobehavioral consequences of stressor exposure in rodent models of epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:808-15. [PMID: 19913590 DOI: 10.1016/j.pnpbp.2009.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 10/22/2009] [Accepted: 11/03/2009] [Indexed: 12/20/2022]
Abstract
Both normal, non-epileptic as well as seizure-prone rodents exhibit a spectrum of anxiogenic-like behaviors in response to stressor exposure. Comparative analysis reveals that the same set of emotionality dependent measures is sensitive to both stress reactivity in normal rodents as well as stress hyperreactivity typically seen in seizure-prone rodents. A variety of unconditioned, exploratory tasks reflect global sensitivity to stressor exposure in the form of behavioral inhibition of locomotor output. Moreover, well chosen stressors can trigger de novo seizures with or without a history of seizure incidence. Seizures may be elicited in response to stressful environmental stimuli such as noxious noises, tail suspension handling, or home cage disturbance. Stress reactivity studies in rodents with a genetic predisposition to seizures have yielded important clues regarding brain substrates that mediate seizure ontogeny and modulate ictogenesis. Brains of seizure susceptible rodents reflect elevated content of the stress-related neuropeptide, corticotropin-releasing factor (CRF) in several nuclei relative to non-susceptible controls and neutralization of brain CRF attenuates seizure sensitivity. Findings outlined in this review support a diathesis-stress hypothesis in which behavioral- and neuro-pathologies of genetically seizure susceptible rodents arise in part due to multifaceted hyperreactivity to noxious environmental stimuli.
Collapse
Affiliation(s)
- Stephen C Heinrichs
- Regis College, Psychology Department, Science Building 103, 235 Wellesley Street, Weston, MA 02493, United States.
| |
Collapse
|
242
|
Calati R, Gaspar-Barba E, Yukler A, Serretti A. T3111C CLOCK SINGLE NUCLEOTIDE POLYMORPHISM AND MOOD DISORDERS: A META-ANALYSIS. Chronobiol Int 2010; 27:706-21. [DOI: 10.3109/07420521003681480] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
243
|
The locus coeruleus and central chemosensitivity. Respir Physiol Neurobiol 2010; 173:264-73. [PMID: 20435170 DOI: 10.1016/j.resp.2010.04.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 11/21/2022]
Abstract
The locus coeruleus (LC) lies in the dorsal pons and supplies noradrenergic (NA) input to many regions of the brain, including respiratory control areas. The LC may provide tonic input for basal respiratory drive and is involved in central chemosensitivity since focal acidosis of the region stimulates ventilation and ablation reduces CO(2)-induced increased ventilation. The output of LC is modulated by both serotonergic and glutamatergic inputs. A large percentage of LC neurons are intrinsically activated by hypercapnia. This percentage and the magnitude of their response are highest in young neonates and decrease dramatically after postnatal day P10. The cellular bases for intrinsic chemosensitivity of LC neurons are comprised of multiple factors, primary among them being reduced extracellular and intracellular pH, which inhibit inwardly rectifying and voltage-gated K(+) channels, and activate L-type Ca(2+) channels. Activation of K(Ca) channels in LC neurons may limit their ultimate response to hypercapnia. Finally, the LC mediates central chemosensitivity and contains pH-sensitive neurons in amphibians, suggesting that the LC has a long-standing phylogenetic role in respiratory control.
Collapse
|
244
|
Miñana-Solis MC, Ángeles-Castellanos M, Feillet C, Pévet P, Challet E, Escobar C. Differential Effects of a Restricted Feeding Schedule on Clock-Gene Expression in the Hypothalamus of the Rat. Chronobiol Int 2010; 26:808-20. [DOI: 10.1080/07420520903044240] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
245
|
Guyenet PG, Stornetta RL, Abbott SBG, Depuy SD, Fortuna MG, Kanbar R. Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. J Appl Physiol (1985) 2010; 108:995-1002. [PMID: 20075262 DOI: 10.1152/japplphysiol.00712.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, we examine why blood pressure (BP) and sympathetic nerve activity (SNA) increase during a rise in central nervous system (CNS) P(CO(2)) (central chemoreceptor stimulation). CNS acidification modifies SNA by two classes of mechanisms. The first one depends on the activation of the central respiratory controller (CRG) and causes the much-emphasized respiratory modulation of the SNA. The CRG probably modulates SNA at several brain stem or spinal locations, but the most important site of interaction seems to be the caudal ventrolateral medulla (CVLM), where unidentified components of the CRG periodically gate the baroreflex. CNS P(CO(2)) also influences sympathetic tone in a CRG-independent manner, and we propose that this process operates differently according to the level of CNS P(CO(2)). In normocapnia and indeed even below the ventilatory recruitment threshold, CNS P(CO(2)) exerts a tonic concentration-dependent excitatory effect on SNA that is plausibly mediated by specialized brain stem chemoreceptors such as the retrotrapezoid nucleus. Abnormally high levels of P(CO(2)) cause an aversive interoceptive awareness in awake individuals and trigger arousal from sleep. These alerting responses presumably activate wake-promoting and/or stress-related pathways such as the orexinergic, noradrenergic, and serotonergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have brainwide projections that contribute to the CO(2)-induced rise in breathing and SNA by facilitating neuronal activity at innumerable CNS locations. In the case of SNA, these sites include the nucleus of the solitary tract, the ventrolateral medulla, and the preganglionic neurons.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908-0735, USA.
| | | | | | | | | | | |
Collapse
|
246
|
Kim L. Stress, Sleep Physiology, and Related Insomnia Disorders. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2010. [DOI: 10.5124/jkma.2010.53.8.707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Leen Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
247
|
|
248
|
Cajochen C, Chellappa S, Schmidt C. What keeps us awake? The role of clocks and hourglasses, light, and melatonin. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 93:57-90. [PMID: 20970001 DOI: 10.1016/s0074-7742(10)93003-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
What is it that keeps us awake? Our assumption is that we consciously control our daily activities including sleep-wake behavior, as indicated by our need to make use of an alarm clock to wake up in the morning in order to be at work on time. However, when we travel across multiple time zones or do shift work, we realize that our intentionally planned timings to rest and to remain active can interfere with an intrinsic regulation of sleep/wake cycles. This regulation is driven by a small region in the anterior hypothalamus of the brain, termed as the "circadian clock". This clock spontaneously synchronizes with the environmental light-dark cycle, thus enabling all organisms to adapt to and anticipate environmental changes. As a result, the circadian clock actively gates sleep and wakefulness to occur in synchrony with the light-dark cycles. Indeed, our internal clock is our best morning alarm clock, since it shuts off melatonin production and boosts cortisol secretion and heart rate 2-3h prior awakening from Morpheus arms. The main reason most of us still use artificial alarm clocks is that we habitually carry on a sleep depth and/or the sleep-wake timing is not ideally matched with our social/work schedule. This in turn can lead hourglass processes, as indexed by accumulated homeostatic sleep need over time, to strongly oppose the clock. To add to the complexity of our sleep and wakefulness behavior, light levels as well as exogenous melatonin can impinge on the clock, by means of their so-called zeitgeber (synchronizer) role or by acutely promoting sleep or wakefulness. Here we attempt to bring a holistic view on how light, melatonin, and the brain circuitry underlying circadian and homeostatic processes can modulate sleep and in particular alertness, by actively promoting awakening/arousal and sleep at certain times during the 24-h day.
Collapse
Affiliation(s)
- Christian Cajochen
- Center for Chronobiology, Psychiatric Hospital of the University of Basel, CH-4012 Basel, Switzerland
| | | | | |
Collapse
|
249
|
|
250
|
Angeles-Castellanos M, Salgado-Delgado R, Rodriguez K, Buijs RM, Escobar C. The suprachiasmatic nucleus participates in food entrainment: a lesion study. Neuroscience 2009; 165:1115-26. [PMID: 20004704 DOI: 10.1016/j.neuroscience.2009.11.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/17/2009] [Accepted: 11/24/2009] [Indexed: 11/19/2022]
Abstract
Daily feeding schedules entrain temporal patterns of behavior, metabolism, neuronal activity and clock gene expression in several brain areas and periphery while the suprachiasmatic nucleus (SCN), the biological clock, remains coupled to the light/dark cycle. Because bilateral lesions of the SCN do not abolish food entrained behavioral and hormonal rhythms it is suggested that food entrained and light entrained systems are independent of each other. Special circumstances indicate a possible interaction between the light and the food entrained systems and indicate modulation of SCN activity by restricted feeding. This study explores the influence of the SCN on food entrained rhythms. Food entrained temporal profiles of behavior, core temperature, corticosterone and glucose, as well as Fos and PER1 immunoreactivity in the hypothalamus and corticolimbic structures were explored in rats bearing bilateral SCN lesions (SCNX). In SCNX rats food anticipatory activity and the food entrained temperature and corticosterone increase were expressed with earlier onset and higher values than in intact controls. Glucose levels were lower in SCNX rats in all time points and SCNX rats anticipation to a meal induced higher c-Fos positive neurons in the hypothalamus, while a decreased c-Fos response was observed in corticolimbic structures. SCNX rats also exhibited an upregulation of the PER1 peak in hypothalamic structures, especially in the dorsomedial hypothalamic nucleus (DMH), while in some limbic structures PER1 rhythmicity was dampened. The present results indicate that the SCN participates actively during food entrainment modulating the response of hypothalamic and corticolimbic structures, resulting in an increased anticipatory response.
Collapse
Affiliation(s)
- M Angeles-Castellanos
- Departamento de Anatomía, Fac de Medicina, Universidad Nacional Autónoma de México, México DF
| | | | | | | | | |
Collapse
|