201
|
Sünwoldt J, Bosche B, Meisel A, Mergenthaler P. Neuronal Culture Microenvironments Determine Preferences in Bioenergetic Pathway Use. Front Mol Neurosci 2017; 10:305. [PMID: 29085280 PMCID: PMC5649214 DOI: 10.3389/fnmol.2017.00305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022] Open
Abstract
In the brain, metabolic supply and demand is directly coupled to neuronal activation. Methods for culturing primary rodent brain cells have come of age and are geared toward sophisticated modeling of human brain physiology and pathology. However, the impact of the culture microenvironment on neuronal function is rarely considered. Therefore, we investigated the role of different neuronal culture supplements for neuronal survival and metabolic activity in a model of metabolic deprivation of neurons using oxygen deprivation, glucose deprivation, as well as live cell metabolic flux analysis. We demonstrate the impact of neuronal culture conditions on metabolic function and neuronal survival under conditions of metabolic stress. In particular, we find that the common neuronal cell culture supplement B27 protects neurons from cell death under hypoxic conditions and inhibits glycolysis. Furthermore, we present data that B27 as well as the alternative neuronal culture supplement N2 restrict neuronal glucose metabolism. On the contrary, we find that the more modern supplement GS21 promotes neuronal energy metabolism. Our data support the notion that careful control of the metabolic environment is an essential component in modeling brain function and the cellular and molecular pathophysiology of brain disease in culture.
Collapse
Affiliation(s)
- Juliane Sünwoldt
- Charité - Universitätsmedizin Berlin, Department of Experimental Neurology, Berlin, Germany
| | - Bert Bosche
- Division of Neurosurgery, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Neurocritical Care, First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Eckenhagen, Germany
| | - Andreas Meisel
- Charité - Universitätsmedizin Berlin, Department of Experimental Neurology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Berlin, Germany
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Experimental Neurology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
202
|
Bain AR, Ainslie PN, Barak OF, Hoiland RL, Drvis I, Mijacika T, Bailey DM, Santoro A, DeMasi DK, Dujic Z, MacLeod DB. Hypercapnia is essential to reduce the cerebral oxidative metabolism during extreme apnea in humans. J Cereb Blood Flow Metab 2017; 37:3231-3242. [PMID: 28071964 PMCID: PMC5584699 DOI: 10.1177/0271678x16686093] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cerebral metabolic rate of oxygen (CMRO2) is reduced during apnea that yields profound hypoxia and hypercapnia. In this study, to dissociate the impact of hypoxia and hypercapnia on the reduction in CMRO2, 11 breath-hold competitors completed three apneas under: (a) normal conditions (NM), yielding severe hypercapnia and hypoxemia, (b) with prior hyperventilation (HV), yielding severe hypoxemia only, and (c) with prior 100% oxygen breathing (HX), yielding the greatest level of hypercapnia, but in the absence of hypoxemia. The CMRO2 was calculated from the product of cerebral blood flow (ultrasound) and the radial artery-jugular venous oxygen content difference (cannulation). Secondary measures included net-cerebral glucose/lactate exchange and nonoxidative metabolism. Reductions in CMRO2 were largest in the HX condition (-44 ± 15%, p < 0.05), with the most severe hypercapnia (PaCO2 = 58 ± 5 mmHg) but maintained oxygen saturation. The CMRO2 was reduced by 24 ± 27% in NM ( p = 0.05), but unchanged in the HV apnea where hypercapnia was absent. A net-cerebral lactate release was observed at the end of apnea in the HV and NM condition, but not in the HX apnea (main effect p < 0.05). These novel data support hypercapnia/pH as a key mechanism mediating reductions in CMRO2 during apnea, and show that severe hypoxemia stimulates lactate release from the brain.
Collapse
Affiliation(s)
- Anthony R Bain
- 1 Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Philip N Ainslie
- 1 Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Otto F Barak
- 2 School of Medicine, University of Split, Split, Croatia
| | | | - Ivan Drvis
- 4 School of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Tanja Mijacika
- 2 School of Medicine, University of Split, Split, Croatia
| | - Damian M Bailey
- 5 Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | | | | | - Zeljko Dujic
- 2 School of Medicine, University of Split, Split, Croatia
| | | |
Collapse
|
203
|
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, Flores G, Díaz A, Guevara J. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017. [PMID: 28650104 DOI: 10.1002/syn.21990] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aβ-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.
Collapse
Affiliation(s)
- Eduardo Rojas-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias-INER, Ciudad de México, Mexico
| | - Raúl Chavez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla Rojas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
204
|
Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65:1205-1226. [PMID: 28300322 PMCID: PMC5669250 DOI: 10.1002/glia.23136] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Astrocytes are key homeostatic cells of the central nervous system. They cooperate with neurons at several levels, including ion and water homeostasis, chemical signal transmission, blood flow regulation, immune and oxidative stress defense, supply of metabolites and neurogenesis. Astroglia is also important for viability and maturation of stem-cell derived neurons. Neurons critically depend on intrinsic protective and supportive properties of astrocytes. Conversely, all forms of pathogenic stimuli which disturb astrocytic functions compromise neuronal functionality and viability. Support of neuroprotective functions of astrocytes is thus an important strategy for enhancing neuronal survival and improving outcomes in disease states. In this review, we first briefly examine how astrocytic dysfunction contributes to major neurological disorders, which are traditionally associated with malfunctioning of processes residing in neurons. Possible molecular entities within astrocytes that could underpin the cause, initiation and/or progression of various disorders are outlined. In the second section, we explore opportunities enhancing neuroprotective function of astroglia. We consider targeting astrocyte-specific molecular pathways which are involved in neuroprotection or could be expected to have a therapeutic value. Examples of those are oxidative stress defense mechanisms, glutamate uptake, purinergic signaling, water and ion homeostasis, connexin gap junctions, neurotrophic factors and the Nrf2-ARE pathway. We propose that enhancing the neuroprotective capacity of astrocytes is a viable strategy for improving brain resilience and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Beihui Liu
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Sergey Kasparov
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
- Institute for Chemistry and BiologyBaltic Federal UniversityKaliningradRussian Federation
| |
Collapse
|
205
|
Goyal MS, Vlassenko AG, Blazey TM, Su Y, Couture LE, Durbin TJ, Bateman RJ, Benzinger TLS, Morris JC, Raichle ME. Loss of Brain Aerobic Glycolysis in Normal Human Aging. Cell Metab 2017; 26:353-360.e3. [PMID: 28768174 PMCID: PMC5573225 DOI: 10.1016/j.cmet.2017.07.010] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/25/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023]
Abstract
The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG.
Collapse
Affiliation(s)
- Manu S Goyal
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Andrei G Vlassenko
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tyler M Blazey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yi Su
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lars E Couture
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tony J Durbin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tammie L-S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus E Raichle
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
206
|
Díaz-García CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G. Neuronal Stimulation Triggers Neuronal Glycolysis and Not Lactate Uptake. Cell Metab 2017; 26:361-374.e4. [PMID: 28768175 PMCID: PMC5559896 DOI: 10.1016/j.cmet.2017.06.021] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/29/2017] [Accepted: 06/27/2017] [Indexed: 01/05/2023]
Abstract
Proper brain function requires a substantial energy supply, up to 20% of whole-body energy in humans, and brain activation produces large dynamic variations in energy demand. While local increases in cerebral blood flow are well known, the cellular responses to energy demand are controversial. During brain excitation, glycolysis of glucose to lactate temporarily exceeds the rate of mitochondrial fuel oxidation; although the increased energy demand occurs mainly within neurons, some have suggested this glycolysis occurs mainly in astrocytes, which then shuttle lactate to neurons as their primary fuel. Using metabolic biosensors in acute hippocampal slices and brains of awake mice, we find that neuronal metabolic responses to stimulation do not depend on astrocytic stimulation by glutamate release, nor do they require neuronal uptake of lactate; instead they reflect increased direct glucose consumption by neurons. Neuronal glycolysis temporarily outstrips oxidative metabolism, and provides a rapid response to increased energy demand.
Collapse
Affiliation(s)
| | - Rebecca Mongeon
- Department of Neurobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Carolina Lahmann
- Department of Neurobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Dorothy Koveal
- Department of Neurobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Hannah Zucker
- Department of Neurobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
207
|
Lyssiotis CA, Kimmelman AC. Metabolic Interactions in the Tumor Microenvironment. Trends Cell Biol 2017; 27:863-875. [PMID: 28734735 DOI: 10.1016/j.tcb.2017.06.003] [Citation(s) in RCA: 553] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022]
Abstract
Tumors are dynamic pseudoorgans that contain numerous cell types interacting to create a unique physiology. Within this network, the malignant cells encounter many challenges and rewire their metabolic properties accordingly. Such changes can be experienced and executed autonomously or through interaction with other cells in the tumor. The focus of this review is on the remodeling of the tumor microenvironment that leads to pathophysiologic interactions that are influenced and shaped by metabolism. They include symbiotic nutrient sharing, nutrient competition, and the role of metabolites as signaling molecules. Examples of such processes abound in normal organismal physiology, and such heterocellular metabolic interactions are repurposed to support tumor metabolism and growth. The importance and ubiquity of these processes are just beginning to be realized, and insights into their role in tumor development and progression are being used to design new drug targets and cancer therapies.
Collapse
Affiliation(s)
- Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
208
|
Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Res Bull 2017; 133:12-30. [PMID: 28341600 PMCID: PMC5555796 DOI: 10.1016/j.brainresbull.2017.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism.
Collapse
Affiliation(s)
- Annadurai Anandhan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Maria S Jacome
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Pablo Hernandez-Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | | | - Robert Powers
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States.
| |
Collapse
|
209
|
Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic Biol Med 2017; 108:668-682. [PMID: 28435052 DOI: 10.1016/j.freeradbiomed.2017.04.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide (•NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which •NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of •NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which •NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in aging, traumatic brain injury, epilepsy and age-associated neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, suggesting that a shift in cellular redox balance may contribute to divert •NO bioactivity from regulation to dysfunction.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
210
|
Shih CC, Lee TS, Tsuang FY, Lin PL, Cheng YJ, Cheng HL, Wu CY. Pretreatment serum lactate level as a prognostic biomarker in patients undergoing supratentorial primary brain tumor resection. Oncotarget 2017; 8:63715-63723. [PMID: 28969023 PMCID: PMC5609955 DOI: 10.18632/oncotarget.18891] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/05/2017] [Indexed: 12/15/2022] Open
Abstract
Introduction Malignant primary brain tumors are one of the most aggressive cancers. Pretreatment serum nonneuronal biomarkers closely associated with postoperative outcomes are of high clinical relevance. The present study aimed to identify potential pretreatment serum biomarkers that may influence oncological outcomes in patients with primary brain tumors. Methods A total of 74 patients undergoing supratentorial primary brain tumor resection were enrolled. Before tumor resection, serum neuronal biomarkers, namely neuron-specific enolase (NSE), S100β, and glial fibrillary acidic protein (GFAP), and serum nonneuronal biomarkers, namely neutrophil gelatinase-associated lipocalin (NGAL), lactate dehydrogenase (LDH), and lactate, were measured and associated postoperative oncological outcomes, including brain tumor grading, progression-free survival (PFS), and overall survival (OS), were compared. Results Patients with high-grade brain tumors had significantly higher pretreatment serum lactate levels (p = 0.011). By contrast, other biomarkers were comparable between patients with high-grade and low-grade brain tumors. Receiver operating characteristic curve analysis of serum lactate levels yielded an area under the curve of 0.71 for differentiating between high-grade and low-grade brain tumors. Kaplan–Meier survival analysis revealed patients with high serum lactate levels (≧2.0 mmol/L) had shorter PFS and OS (p = 0.021 and p = 0.093, respectively). In a multiple regression model, only elevated serum lactate levels were associated with poor PFS and OS (p = 0.021 and p = 0.048, respectively). Conclusions An elevated pretreatment serum lactate level is a prognostic biomarker of high-grade primary brain tumors and is significantly associated with poor PFS in patients with supratentorial brain tumors undergoing tumor resection. By contrast, other serum biomarkers are not significantly associated with oncological outcomes.
Collapse
Affiliation(s)
- Chung-Chih Shih
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shiun Lee
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Fon-Yih Tsuang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Lin Lin
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Jung Cheng
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Liang Cheng
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Yu Wu
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
211
|
Nordström CH, Koskinen LO, Olivecrona M. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care. Front Neurol 2017; 8:274. [PMID: 28674514 PMCID: PMC5474476 DOI: 10.3389/fneur.2017.00274] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022] Open
Abstract
Neurocritical care (NCC) is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP) and cerebral blood flow (CBF) and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood-brain barrier (BBB) and the regulation of CBF. Brain volume is strictly controlled as the BBB permeability to crystalloids is very low restricting net transport of water across the capillary wall. Cerebral pressure autoregulation prevents changes in intracranial blood volume and intracapillary hydrostatic pressure at variations in arterial blood pressure. Information regarding cerebral oxidative metabolism is obtained from measurements of brain tissue oxygen tension (PbtO2) and biochemical data obtained from intracerebral microdialysis. As interstitial lactate/pyruvate (LP) ratio instantaneously reflects shifts in intracellular cytoplasmatic redox state, it is an important indicator of compromised cerebral oxidative metabolism. The combined information obtained from PbtO2, LP ratio, and the pattern of biochemical variables reveals whether impaired oxidative metabolism is due to insufficient perfusion (ischemia) or mitochondrial dysfunction. Intracerebral microdialysis and PbtO2 give information from a very small volume of tissue. Accordingly, clinical interpretation of the data must be based on information of the probe location in relation to focal brain damage. Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance, the information from all monitoring techniques should be presented bedside online. Accordingly, in the future, the chemical variables obtained from microdialysis will probably be analyzed by biochemical sensors.
Collapse
Affiliation(s)
| | - Lars-Owe Koskinen
- Department of Clinical Neuroscience, Division of Neurosurgery, Umeå University, Umeå, Sweden
| | - Magnus Olivecrona
- Faculty of Health and Medicine, Department of Anesthesia and Intensive Care, Section for Neurosurgery Örebro University Hospital, Örebro University, Örebro, Sweden
- Department for Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
212
|
Hussien GZ, Elbadawy AM, Elshamaa HA. Lactate/pyruvate monitoring during carotid endarterectomy under general anaesthesia versus cervical plexus block: A randomised controlled study. Indian J Anaesth 2017; 61:424-428. [PMID: 28584353 PMCID: PMC5444222 DOI: 10.4103/ija.ija_545_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND AIMS Carotid endarterectomy (CEA) reduces the risk of stroke in patients with significant carotid stenosis and may be performed under general anaesthesia (GA) or regional anaesthesia (RA). This study aimed to compare RA and GA with regard the jugular venous bulb blood lactate and pyruvate levels. METHODS This randomised-controlled trial was done between October-2013 and September-2015. Thirty-six patients were randomised into either GA or RA groups, with six excluded after randomisation. In the RA group, combined deep and superficial cervical plexus blocks were performed. In the GA group, anaesthesia was induced with propofol and fentanyl. In both groups, monitoring of neurological function was done. Sampling of the contralateral jugular bulb blood was done. The main outcome measures were lactate and pyruvate in the jugular venous blood. For comparing categorical data, Chi-square test was used, and for the numerical variables, t-test was used. RESULTS Demographics were comparable in the two Groups. Serum lactate and pyruvate levels were higher in the GA group than RA group. At 120 min under anaesthesia, lactate and pyruvate levels under RA vs. GA, respectively were 0.76±0.03 mEq/L vs. 1.14±0.06, p-0.001 mEq/L, and 0.08± 0.00 mEq/L vs. 0.10±0.01 mEq/L, p=0.006. Lactate/ pyruvate ratios were normal in both groups. The mean blood pressure was significantly lower in the GA group during anaesthesia. CONCLUSION In patients undergoing Carotid endarterectomy, serum levels of both lactate and pyruvate were higher under general versus regional anaesthesia.
Collapse
Affiliation(s)
- Gomaa Z Hussien
- Department of Anaesthesia, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed M Elbadawy
- Department of Anaesthesia, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hossam A Elshamaa
- Department of Anaesthesia, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
213
|
Automatic frequency and phase alignment of in vivo J-difference-edited MR spectra by frequency domain correlation. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:537-544. [PMID: 28573461 PMCID: PMC5701960 DOI: 10.1007/s10334-017-0627-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/16/2017] [Accepted: 05/18/2017] [Indexed: 12/05/2022]
Abstract
Objective J-difference editing is often used to select resonances of compounds with coupled spins in 1H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. Materials and methods In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. Results In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. Conclusion Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.
Collapse
|
214
|
Sonnay S, Gruetter R, Duarte JMN. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo. Front Neurosci 2017; 11:288. [PMID: 28603480 PMCID: PMC5445183 DOI: 10.3389/fnins.2017.00288] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS), several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers), the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here, we review state-of-the-art MR methods to study brain function and metabolism in vivo, and their contribution to the current understanding of how astrocytic energy metabolism supports glutamatergic activity and cerebral function. In this context, recent data suggests that astrocytic metabolism has been underestimated. Namely, the rate of oxidative metabolism in astrocytes is about half of that in neurons, and it can increase as much as the rate of neuronal metabolism in response to sensory stimulation.
Collapse
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland.,Department of Radiology, University of LausanneLausanne, Switzerland.,Department of Radiology, University of GenevaGeneva, Switzerland
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| |
Collapse
|
215
|
Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J Neurosci Res 2017; 95:2217-2235. [PMID: 28463438 DOI: 10.1002/jnr.24064] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
Abstract
Hypometabolism, characterized by decreased brain glucose consumption, is a common feature of many neurodegenerative diseases. Initial hypometabolic brain state, created by characteristic risk factors, may predispose the brain to acquired epilepsy and sporadic Alzheimer's and Parkinson's diseases, which are the focus of this review. Analysis of available data suggests that deficient glucose metabolism is likely a primary initiating factor for these diseases, and that resulting neuronal dysfunction further promotes the metabolic imbalance, establishing an effective positive feedback loop and a downward spiral of disease progression. Therefore, metabolic correction leading to the normalization of abnormalities in glucose metabolism may be an efficient tool to treat the neurological disorders by counteracting their primary pathological mechanisms. Published and preliminary experimental results on this approach for treating Alzheimer's disease and epilepsy models support the efficacy of metabolic correction, confirming the highly promising nature of the strategy. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California, 94158, USA
| |
Collapse
|
216
|
Oheim M, Schmidt E, Hirrlinger J. Local energy on demand: Are 'spontaneous' astrocytic Ca 2+-microdomains the regulatory unit for astrocyte-neuron metabolic cooperation? Brain Res Bull 2017; 136:54-64. [PMID: 28450076 DOI: 10.1016/j.brainresbull.2017.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/18/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022]
Abstract
Astrocytes are a neural cell type critically involved in maintaining brain energy homeostasis as well as signaling. Like neurons, astrocytes are a heterogeneous cell population. Cortical astrocytes show a complex morphology with a highly branched aborization and numerous fine processes ensheathing the synapses of neighboring neurons, and typically extend one process connecting to blood vessels. Recent studies employing genetically encoded fluorescent calcium (Ca2+) indicators have described 'spontaneous' localized Ca2+-transients in the astrocyte periphery that occur asynchronously, independently of signals in other parts of the cells, and that do not involve somatic Ca2+ transients; however, neither it is known whether these Ca2+-microdomains occur at or near neuronal synapses nor have their molecular basis nor downstream effector(s) been identified. In addition to Ca2+ microdomains, sodium (Na+) transients occur in astrocyte subdomains, too, most likely as a consequence of Na+ co-transport with the neurotransmitter glutamate, which also regulates mitochondrial movements locally - as do cytoplasmic Ca2+ levels. In this review, we cover various aspects of these local signaling events and discuss how structural and biophysical properties of astrocytes might foster such compartmentation. Astrocytes metabolically interact with neurons by providing energy substrates to active neurons. As a single astrocyte branch covers hundreds to thousands of synapses, it is tempting to speculate that these metabolic interactions could occur localized to specific subdomains of astrocytes, perhaps even at the level of small groups of synapses. We discuss how astrocytic metabolism might be regulated at this scale and which signals might contribute to its regulation. We speculate that the astrocytic structures that light up transiently as Ca2+-microdomains might be the functional units of astrocytes linking signaling and metabolic processes to adapt astrocytic function to local energy demands. The understanding of these local regulatory and metabolic interactions will be fundamental to fully appreciate the complexity of brain energy homeostasis as well as its failure in disease and may shed new light on the controversy about neuron-glia bi-directional signaling at the tripartite synapse.
Collapse
Affiliation(s)
- Martin Oheim
- CNRS UMR 8118, Brain Physiology Laboratory, F-75006 Paris, France; Fédération de Recherche en Neurosciences FR3636, Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Université Sorbonne Paris Cité (USPC), F-75006 Paris, France.
| | - Elke Schmidt
- CNRS UMR 8118, Brain Physiology Laboratory, F-75006 Paris, France; Fédération de Recherche en Neurosciences FR3636, Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Université Sorbonne Paris Cité (USPC), F-75006 Paris, France
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, D-04103 Leipzig, Germany; Dept. of Neurogenetics, Max-Planck-Institute for Experimental Medicine, D-37075 Göttingen, Germany.
| |
Collapse
|
217
|
Trevisiol A, Saab AS, Winkler U, Marx G, Imamura H, Möbius W, Kusch K, Nave KA, Hirrlinger J. Monitoring ATP dynamics in electrically active white matter tracts. eLife 2017; 6. [PMID: 28414271 PMCID: PMC5415357 DOI: 10.7554/elife.24241] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/16/2017] [Indexed: 11/24/2022] Open
Abstract
In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders. DOI:http://dx.doi.org/10.7554/eLife.24241.001 The brain contains an intricate network of nerve cells that receive, process, send and store information. This information travels as electrical impulses along a long, thin part of each nerve cell known as the nerve fiber or axon. The act of sending these electrical signals requires a lot of energy, and energy in cells is most often stored within molecules of adenosine triphosphate (called ATP for short). Importantly, a better understanding of how the production and consumption of ATP in nerve cells relates to electrical activity would help scientists to better understand how a shortage of energy in the brain contributes to diseases like multiple sclerosis. However, to date, it has been challenging to study the dynamics of ATP in nerve cells that are active. Now, Trevisiol et al. describe a new system that allows changes in ATP levels to be seen within active nerve cells. First, mice were genetically engineered to produce a molecule that works like an ATP sensor only in their nerve cells. This made it possible to visualize the amount of ATP inside the axons in real-time using a microscope. Measuring ATP levels and recording the electrical signals moving along an axon at the same time allowed Trevisiol et al. to see how ATP content and electrical activity correlate and regulate each other. The experiments reveal that strong electrical activity reduces the ATP content of the axon. Trevisiol et al. also discovered that nerve cells are unable to generate enough energy on their own to sustain their electrical activity. These results provide evidence that other cells in the brain – most likely non-nerve cells called oligodendrocytes – play an active role in delivering energy-rich substances to the axons of nerve cells. In the future, the same tools and approaches could be used to monitor ATP levels and electrical activity in mice that model neurological disorders. Such experiments could tell scientists more about how disturbing energy production in nerve cells affects these diseases. DOI:http://dx.doi.org/10.7554/eLife.24241.002
Collapse
Affiliation(s)
- Andrea Trevisiol
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Aiman S Saab
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany.,Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Grit Marx
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany.,Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
218
|
Schönfeld P, Reiser G. Brain energy metabolism spurns fatty acids as fuel due to their inherent mitotoxicity and potential capacity to unleash neurodegeneration. Neurochem Int 2017; 109:68-77. [PMID: 28366720 DOI: 10.1016/j.neuint.2017.03.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 12/21/2022]
Abstract
The brain uses long-chain fatty acids (LCFAs) to a negligible extent as fuel for the mitochondrial energy generation, in contrast to other tissues that also demand high energy. Besides this generally accepted view, some studies using cultured neural cells or whole brain indicate a moderately active mitochondrial β-oxidation. Here, we corroborate the conclusion that brain mitochondria are unable to oxidize fatty acids. In contrast, the combustion of liver-derived ketone bodies by neural cells is long-known. Furthermore, new insights indicate the use of odd-numbered medium-chain fatty acids as valuable source for maintaining the level of intermediates of the citric acid cycle in brain mitochondria. Non-esterified LCFAs or their activated forms exert a large variety of harmful side-effects on mitochondria, such as enhancing the mitochondrial ROS generation in distinct steps of the β-oxidation and therefore potentially increasing oxidative stress. Hence, the question arises: Why do in brain energy metabolism mitochondria selectively spurn LCFAs as energy source? The most likely answer are the relatively higher content of peroxidation-sensitive polyunsaturated fatty acids and the low antioxidative defense in brain tissue. There are two remarkable peroxisomal defects, one relating to α-oxidation of phytanic acid and the other to uptake of very long-chain fatty acids (VLCFAs) which lead to pathologically high tissue levels of such fatty acids. Both, the accumulation of phytanic acid and that of VLCFAs give an enlightening insight into harmful activities of fatty acids on neural cells, which possibly explain why evolution has prevented brain mitochondria from the equipment with significant β-oxidation enzymatic capacity.
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
219
|
Wang Q, Jie W, Liu JH, Yang JM, Gao TM. An astroglial basis of major depressive disorder? An overview. Glia 2017; 65:1227-1250. [DOI: 10.1002/glia.23143] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| |
Collapse
|
220
|
Respiration-Deficient Astrocytes Survive As Glycolytic Cells In Vivo. J Neurosci 2017; 37:4231-4242. [PMID: 28314814 DOI: 10.1523/jneurosci.0756-16.2017] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 01/22/2017] [Accepted: 02/16/2017] [Indexed: 11/21/2022] Open
Abstract
Neurons and glial cells exchange energy-rich metabolites and it has been suggested, originally based on in vitro data, that astrocytes provide lactate to glutamatergic synapses ("lactate shuttle"). Here, we have studied astrocytes that lack mitochondrial respiration in vitro and in vivo A novel mouse mutant (GLASTCreERT2::Cox10flox/flox) was generated, in which the administration of tamoxifen causes mutant astrocytes to fail in the assembly of mitochondrial cytochrome c oxidase (COX). Focusing on cerebellar Bergmann glia (BG) cells, which exhibit the highest rate of Cre-mediated recombination, we found a normal density of viable astrocytes even 1 year after tamoxifen-induced Cox10 gene targeting. Our data show that BG cells, and presumably all astrocytes, can survive by aerobic glycolysis for an extended period of time in the absence of glial pathology or unspecific signs of neurodegeneration.SIGNIFICANCE STATEMENT When astrocytes are placed into culture, they import glucose and release lactate, an energy-rich metabolite readily metabolized by neurons. This observation led to the "glia-to-neuron lactate shuttle hypothesis," but in vivo evidence for this hypothesis is weak. To study astroglial energy metabolism and the directionality of lactate flux, we generated conditional Cox10 mouse mutants lacking mitochondrial respiration in astrocytes, which forces these cells to survive by aerobic glycolysis. Here, we report that these mice are fully viable in the absence of any signs of glial or neuronal loss, suggesting that astrocytes are naturally glycolytic cells.
Collapse
|
221
|
Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM. Central Regulation of Glucose Homeostasis. Compr Physiol 2017; 7:741-764. [DOI: 10.1002/cphy.c160015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
222
|
Venkat P, Chopp M, Chen J. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croat Med J 2017; 57:223-8. [PMID: 27374823 PMCID: PMC4937223 DOI: 10.3325/cmj.2016.57.223] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases.
Collapse
Affiliation(s)
| | | | - Jieli Chen
- Jieli Chen, Senior Staff Investigator, Henry Ford Hospital, Neurology Research, E&R Building, 3091, Detroit, MI, 48202, USA,
| |
Collapse
|
223
|
Smith SK, Lee CA, Dausch ME, Horman BM, Patisaul HB, McCarty GS, Sombers LA. Simultaneous Voltammetric Measurements of Glucose and Dopamine Demonstrate the Coupling of Glucose Availability with Increased Metabolic Demand in the Rat Striatum. ACS Chem Neurosci 2017; 8:272-280. [PMID: 27984698 DOI: 10.1021/acschemneuro.6b00363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral blood flow ensures delivery of nutrients, such as glucose, to brain sites with increased metabolic demand. However, little is known about rapid glucose dynamics at discrete locations during neuronal activation in vivo. Acute exposure to many substances of abuse elicits dopamine release and neuronal activation in the striatum; however, the concomitant changes in striatal glucose remain largely unknown. Recent developments have combined fast-scan cyclic voltammetry with glucose oxidase enzyme modified carbon-fiber microelectrodes to enable the measurement of glucose dynamics with subsecond temporal resolution in the mammalian brain. This work evaluates several waveforms to enable the first simultaneous detection of endogenous glucose and dopamine at single recording sites. These molecules, one electroactive and one nonelectroactive, were found to fluctuate in the dorsal striatum in response to electrical stimulation of the midbrain and systemic infusion of cocaine/raclopride. The data reveal the second-by-second dynamics of these species in a striatal microenvironment, and directly demonstrate the coupling of glucose availability with increased metabolic demand. This work provides a foundation that will enable detailed investigation of local mechanisms that regulate the coupling of cerebral blood flow with metabolic demand under normal conditions, and in animal studies of drug abuse and addiction.
Collapse
Affiliation(s)
- Samantha K. Smith
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Christie A. Lee
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Matthew E. Dausch
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Brian M. Horman
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Heather B. Patisaul
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Gregory S. McCarty
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Leslie A. Sombers
- Department
of Chemistry, ‡Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
224
|
Bas-Orth C, Tan YW, Lau D, Bading H. Synaptic Activity Drives a Genomic Program That Promotes a Neuronal Warburg Effect. J Biol Chem 2017; 292:5183-5194. [PMID: 28196867 DOI: 10.1074/jbc.m116.761106] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/01/2017] [Indexed: 12/17/2022] Open
Abstract
Synaptic activity drives changes in gene expression to promote long lasting adaptations of neuronal structure and function. One example of such an adaptive response is the buildup of acquired neuroprotection, a synaptic activity- and gene transcription-mediated increase in the resistance of neurons against harmful conditions. A hallmark of acquired neuroprotection is the stabilization of mitochondrial structure and function. We therefore re-examined previously identified sets of synaptic activity-regulated genes to identify genes that are directly linked to mitochondrial function. In mouse and rat primary hippocampal cultures, synaptic activity caused an up-regulation of glycolytic genes and a concomitant down-regulation of genes required for oxidative phosphorylation, mitochondrial biogenesis, and maintenance. Changes in metabolic gene expression were induced by action potential bursting, but not by glutamate bath application activating extrasynaptic NMDA receptors. The specific and coordinate pattern of gene expression changes suggested that synaptic activity promotes a shift of neuronal energy metabolism from oxidative phosphorylation toward aerobic glycolysis, also known as the Warburg effect. The ability of neurons to up-regulate glycolysis has, however, been debated. We therefore used FACS sorting to show that, in mixed neuron glia co-cultures, activity-dependent regulation of metabolic gene expression occurred in neurons. Changes in gene expression were accompanied by changes in the phosphorylation-dependent regulation of the key metabolic enzyme, pyruvate dehydrogenase. Finally, increased synaptic activity caused an increase in the ratio of l-lactate production to oxygen consumption in primary hippocampal cultures. Based on these data we suggest the existence of a synaptic activity-mediated neuronal Warburg effect that may promote mitochondrial homeostasis and neuroprotection.
Collapse
Affiliation(s)
- Carlos Bas-Orth
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Yan-Wei Tan
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - David Lau
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
225
|
Winkler U, Seim P, Enzbrenner Y, Köhler S, Sicker M, Hirrlinger J. Activity-dependent modulation of intracellular ATP in cultured cortical astrocytes. J Neurosci Res 2017; 95:2172-2181. [PMID: 28151554 DOI: 10.1002/jnr.24020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023]
Abstract
Brain function is absolutely dependent on an appropriate supply of energy. A shortfall in supply-as occurs, for instance, following stroke-can lead rapidly to irreversible damage to this vital organ. While the consequences of pathophysiological energy depletion have been well documented, much less is known about the physiological energy dynamics of brain cells, although changes in the intracellular concentration of adenosine triphosphate (ATP), the major energy carrier of cells, have been postulated to contribute to cellular signaling. To address this issue more closely, we have investigated intracellular ATP in cultured primary cortical astrocytes by time-lapse microscopy using a genetically encoded fluorescent sensor for ATP. The cytosolic ATP sensor signal decreased after application of the neurotransmitter glutamate in a manner dependent on both glutamate concentration and glutamate transporter activity, but independent of glutamate receptors. The application of dopamine did not affect ATP levels within astrocytes. These results confirm that intracellular ATP levels in astrocytes do indeed respond to changes in physiological activity and pave the way for further studies addressing factors that affect regulation of ATP. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Pauline Seim
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Yvonne Enzbrenner
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Marit Sicker
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
226
|
Dienel GA. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J Neurosci Res 2017; 95:2103-2125. [PMID: 28151548 DOI: 10.1002/jnr.24015] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Abstract
Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMRglc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMRO2 /CMRglc ) fell during activation in human brain, and the small rise in CMRO2 could not fully support oxidation of lactate produced by disproportionate increases in CMRglc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMRglc -CMRO2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
227
|
Riske L, Thomas RK, Baker GB, Dursun SM. Lactate in the brain: an update on its relevance to brain energy, neurons, glia and panic disorder. Ther Adv Psychopharmacol 2017; 7:85-89. [PMID: 28255438 PMCID: PMC5315230 DOI: 10.1177/2045125316675579] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lactate is considered an important metabolite in the human body, but there has been considerable debate about its roles in brain function. Research in recent years has suggested that lactate from astrocytes may be crucial for supporting axonal function, especially during times of high metabolic demands or hypoglycemia. The astrocyte-neuron lactate transfer shuttle system serves a protective function to ensure a supply of substrates for brain metabolism, and oligodendrocytes appear to also influence availability of lactate. There is increasing evidence for lactate acting as a signaling molecule in the brain to link metabolism, substrate availability, blood flow and neuronal activity. This review will attempt to connect evidence to the relationship lactate has to panic disorder (PD), which suggests that its transporters, receptors or metabolism warrant investigation as potential therapeutic targets in PD.
Collapse
Affiliation(s)
- Laurel Riske
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Rejish K Thomas
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Department of Psychiatry (Neurochemical Research Unit, NRU), 12th Floor, Clinical Science Building, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| |
Collapse
|
228
|
Sonnay S, Duarte JMN, Just N. Lactate and glutamate dynamics during prolonged stimulation of the rat barrel cortex suggest adaptation of cerebral glucose and oxygen metabolism. Neuroscience 2017; 346:337-348. [PMID: 28153690 DOI: 10.1016/j.neuroscience.2017.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/29/2022]
Abstract
A better understanding of BOLD responses stems from a better characterization of the brain's ability to metabolize glucose and oxygen. Non-invasive techniques such as functional magnetic resonance spectroscopy (fMRS) have thus been developed allowing for the reproducible assessment of metabolic changes during barrel cortex (S1BF) activations in rats. The present study aimed at further exploring the role of neurotransmitters on local and temporal changes in vascular and metabolic function in S1BF. fMRS and fMRI data were acquired sequentially in α-chloralose anesthetized rats during 32-min rest and trigeminal nerve stimulation periods. During stimulation, concentrations of lactate (Lac) and glutamate (Glu) increased in S1BF by 0.23±0.05 and 0.34±0.05μmol/g respectively in S1BF. Dynamic analysis of metabolite concentrations allowed estimating changes in cerebral metabolic rates of glucose (ΔCMRGlc) and oxygen (ΔCMRO2). Findings confirmed a prevalence of oxidative metabolism during prolonged S1BF activation. Habituation led to a significant BOLD magnitude decline as a function of time while both total ΔCMRGlc and ΔCMRO2 remained constant revealing adaptation of glucose and oxygen metabolisms to support ongoing trigeminal nerve stimulation.
Collapse
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale Lausanne, Switzerland
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale Lausanne, Switzerland
| | - Nathalie Just
- CIBM-AIT core, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
229
|
Astrocytic transporters in Alzheimer's disease. Biochem J 2017; 474:333-355. [DOI: 10.1042/bcj20160505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022]
Abstract
Astrocytes play a fundamental role in maintaining the health and function of the central nervous system. Increasing evidence indicates that astrocytes undergo both cellular and molecular changes at an early stage in neurological diseases, including Alzheimer's disease (AD). These changes may reflect a change from a neuroprotective to a neurotoxic phenotype. Given the lack of current disease-modifying therapies for AD, astrocytes have become an interesting and viable target for therapeutic intervention. The astrocyte transport system covers a diverse array of proteins involved in metabolic support, neurotransmission and synaptic architecture. Therefore, specific targeting of individual transporter families has the potential to suppress neurodegeneration, a characteristic hallmark of AD. A small number of the 400 transporter superfamilies are expressed in astrocytes, with evidence highlighting a fraction of these are implicated in AD. Here, we review the current evidence for six astrocytic transporter subfamilies involved in AD, as reported in both animal and human studies. This review confirms that astrocytes are indeed a viable target, highlights the complexities of studying astrocytes and provides future directives to exploit the potential of astrocytes in tackling AD.
Collapse
|
230
|
Yudkoff M. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS. Neurochem Res 2017; 42:10-18. [PMID: 27696119 PMCID: PMC5285401 DOI: 10.1007/s11064-016-2057-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 01/17/2023]
Abstract
Glutamatergic neurotransmission entails a tonic loss of glutamate from nerve endings into the synapse. Replacement of neuronal glutamate is essential in order to avoid depletion of the internal pool. In brain this occurs primarily via the glutamate-glutamine cycle, which invokes astrocytic synthesis of glutamine and hydrolysis of this amino acid via neuronal phosphate-dependent glutaminase. This cycle maintains constancy of internal pools, but it does not provide a mechanism for inevitable losses of glutamate N from brain. Import of glutamine or glutamate from blood does not occur to any appreciable extent. However, the branched-chain amino acids (BCAA) cross the blood-brain barrier swiftly. The brain possesses abundant branched-chain amino acid transaminase activity which replenishes brain glutamate and also generates branched-chain ketoacids. It seems probable that the branched-chain amino acids and ketoacids participate in a "glutamate-BCAA cycle" which involves shuttling of branched-chain amino acids and ketoacids between astrocytes and neurons. This mechanism not only supports the synthesis of glutamate, it also may constitute a mechanism by which high (and potentially toxic) concentrations of glutamate can be avoided by the re-amination of branched-chain ketoacids.
Collapse
Affiliation(s)
- Marc Yudkoff
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
231
|
Newman LA, Scavuzzo CJ, Gold PE, Korol DL. Training-induced elevations in extracellular lactate in hippocampus and striatum: Dissociations by cognitive strategy and type of reward. Neurobiol Learn Mem 2017; 137:142-153. [PMID: 27919829 PMCID: PMC5215615 DOI: 10.1016/j.nlm.2016.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/27/2016] [Accepted: 12/01/2016] [Indexed: 01/05/2023]
Abstract
Recent evidence suggests that astrocytes convert glucose to lactate, which is released from the astrocytes and supports learning and memory. This report takes a multiple memory perspective to test the role of astrocytes in cognition using real-time lactate measurements during learning and memory. Extracellular lactate levels in the hippocampus or striatum were determined with lactate biosensors while rats were learning place (hippocampus-sensitive) or response (striatum-sensitive) versions of T-mazes. In the first experiment, rats were trained on the place and response tasks to locate a food reward. Extracellular lactate levels in the hippocampus increased beyond those of feeding controls during place training but not during response training. However, striatal lactate levels did not increase beyond those of controls when rats were trained on either the place or the response version of the maze. Because food ingestion itself increased blood glucose and brain lactate levels, the contribution of feeding may have confounded the brain lactate measures. Therefore, we conducted a second similar experiment using water as the reward. A very different pattern of lactate responses to training emerged when water was used as the task reward. First, provision of water itself did not result in large increases in either brain or blood lactate levels. Moreover, extracellular lactate levels increased in the striatum during response but not place learning, whereas extracellular lactate levels in the hippocampus did not differ across tasks. The findings from the two experiments suggest that the relative engagement of the hippocampus and striatum dissociates not only by task but also by reward type. The divergent lactate responses of the hippocampus and striatum in place and response tasks under different reward conditions may reflect ethological constraints tied to foraging for food and water.
Collapse
Affiliation(s)
- Lori A Newman
- Department of Biology, Syracuse University, Syracuse, NY 13224, USA
| | - Claire J Scavuzzo
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Paul E Gold
- Department of Biology, Syracuse University, Syracuse, NY 13224, USA
| | - Donna L Korol
- Department of Biology, Syracuse University, Syracuse, NY 13224, USA.
| |
Collapse
|
232
|
β-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms. Neurochem Res 2016; 42:35-49. [DOI: 10.1007/s11064-016-2099-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
|
233
|
Dienel GA, Rothman DL, Nordström CH. Microdialysate concentration changes do not provide sufficient information to evaluate metabolic effects of lactate supplementation in brain-injured patients. J Cereb Blood Flow Metab 2016; 36:1844-1864. [PMID: 27604313 PMCID: PMC5094313 DOI: 10.1177/0271678x16666552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Cerebral microdialysis is a widely used clinical tool for monitoring extracellular concentrations of selected metabolites after brain injury and to guide neurocritical care. Extracellular glucose levels and lactate/pyruvate ratios have high diagnostic value because they can detect hypoglycemia and deficits in oxidative metabolism, respectively. In addition, patterns of metabolite concentrations can distinguish between ischemia and mitochondrial dysfunction, and are helpful to choose and evaluate therapy. Increased intracranial pressure can be life-threatening after brain injury, and hypertonic solutions are commonly used for pressure reduction. Recent reports have advocated use of hypertonic sodium lactate, based on claims that it is glucose sparing and provides an oxidative fuel for injured brain. However, changes in extracellular concentrations in microdialysate are not evidence that a rise in extracellular glucose level is beneficial or that lactate is metabolized and improves neuroenergetics. The increase in glucose concentration may reflect inhibition of glycolysis, glycogenolysis, and pentose phosphate shunt pathway fluxes by lactate flooding in patients with mitochondrial dysfunction. In such cases, lactate will not be metabolizable and lactate flooding may be harmful. More rigorous approaches are required to evaluate metabolic and physiological effects of administration of hypertonic sodium lactate to brain-injured patients.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA, and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Carl-Henrik Nordström
- Department of Neurosurgery, Lund University Hospital, Lund, Sweden, and Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
234
|
Feuerstein D, Backes H, Gramer M, Takagaki M, Gabel P, Kumagai T, Graf R. Regulation of cerebral metabolism during cortical spreading depression. J Cereb Blood Flow Metab 2016; 36:1965-1977. [PMID: 26661217 PMCID: PMC5094298 DOI: 10.1177/0271678x15612779] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 12/01/2022]
Abstract
We analyzed the metabolic response to cortical spreading depression that drastically increases local energy demand to restore ion homeostasis. During single and multiple cortical spreading depressions in the rat cortex, we simultaneously monitored extracellular levels of glucose and lactate using rapid sampling microdialysis and glucose influx using 18 F-fluorodeoxyglucose positron emission tomography while tracking cortical spreading depression using laser speckle imaging. Combining the acquired data with steady-state requirements we developed a mass-conserving compartment model including neurons and glia that was consistent with the observed data. In summary, our findings are: (1) Early breakdown of glial glycogen provides a major source of energy during increased energy demand and leaves 80% of blood-borne glucose to neurons. (2) Lactate is used solely by neurons and only if extracellular lactate levels are >80% above normal. (3) Although the ratio of oxygen and glucose consumption transiently reaches levels <3, the major part (>90%) of the overall energy supply is from oxidative metabolism. (4) During cortical spreading depression, brain release of lactate exceeds its consumption suggesting that lactate is only a circumstantial energy substrate. Our findings provide a general scenario for the metabolic response to increased cerebral energy demand.
Collapse
Affiliation(s)
- Delphine Feuerstein
- Multimodal Imaging of Brain Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Heiko Backes
- Multimodal Imaging of Brain Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Markus Gramer
- Multimodal Imaging of Brain Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Masatoshi Takagaki
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Paula Gabel
- Multimodal Imaging of Brain Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Tetsuya Kumagai
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Rudolf Graf
- Multimodal Imaging of Brain Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
235
|
Nalbandian M, Takeda M. Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations. BIOLOGY 2016; 5:E38. [PMID: 27740597 PMCID: PMC5192418 DOI: 10.3390/biology5040038] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
Abstract
Lactate (or its protonated form: lactic acid) has been studied by many exercise scientists. The lactate paradigm has been in constant change since lactate was first discovered in 1780. For many years, it was unfairly seen as primarily responsible for muscular fatigue during exercise and a waste product of glycolysis. The status of lactate has slowly changed to an energy source, and in the last two decades new evidence suggests that lactate may play a much bigger role than was previously believed: many adaptations to exercise may be mediated in some way by lactate. The mechanisms behind these adaptations are yet to be understood. The aim of this review is to present the state of lactate science, focusing on how this molecule may mediate exercise-induced adaptations.
Collapse
Affiliation(s)
- Minas Nalbandian
- Graduate School of Sports and Health Science, Doshisha University, Kyoto 610-0394, Japan.
| | - Masaki Takeda
- Faculty of Sports and Health Science, Doshisha University, Kyoto 610-0394, Japan.
| |
Collapse
|
236
|
Boury-Jamot B, Halfon O, Magistretti PJ, Boutrel B. Lactate release from astrocytes to neurons contributes to cocaine memory formation. Bioessays 2016; 38:1266-1273. [DOI: 10.1002/bies.201600118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Benjamin Boury-Jamot
- Department of Psychiatry; Centre for Psychiatric Neuroscience; Lausanne University Hospital; Lausanne Switzerland
- Brain Mind Institute; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Olivier Halfon
- Division of Child and Adolescent Psychiatry; Department of Psychiatry; Lausanne University Hospital; Lausanne Switzerland
| | - Pierre J. Magistretti
- Department of Psychiatry; Centre for Psychiatric Neuroscience; Lausanne University Hospital; Lausanne Switzerland
- Brain Mind Institute; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- King Abdullah University of Science and Technology (KAUST); Thuwal Saudi Arabia
| | - Benjamin Boutrel
- Department of Psychiatry; Centre for Psychiatric Neuroscience; Lausanne University Hospital; Lausanne Switzerland
- Division of Child and Adolescent Psychiatry; Department of Psychiatry; Lausanne University Hospital; Lausanne Switzerland
| |
Collapse
|
237
|
Proia P, Di Liegro CM, Schiera G, Fricano A, Di Liegro I. Lactate as a Metabolite and a Regulator in the Central Nervous System. Int J Mol Sci 2016; 17:E1450. [PMID: 27598136 PMCID: PMC5037729 DOI: 10.3390/ijms17091450] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
More than two hundred years after its discovery, lactate still remains an intriguing molecule. Considered for a long time as a waste product of metabolism and the culprit behind muscular fatigue, it was then recognized as an important fuel for many cells. In particular, in the nervous system, it has been proposed that lactate, released by astrocytes in response to neuronal activation, is taken up by neurons, oxidized to pyruvate and used for synthesizing acetyl-CoA to be used for the tricarboxylic acid cycle. More recently, in addition to this metabolic role, the discovery of a specific receptor prompted a reconsideration of its role, and lactate is now seen as a sort of hormone, even involved in processes as complex as memory formation and neuroprotection. As a matter of fact, exercise offers many benefits for our organisms, and seems to delay brain aging and neurodegeneration. Now, exercise induces the production and release of lactate into the blood which can reach the liver, the heart, and also the brain. Can lactate be a beneficial molecule produced during exercise, and offer neuroprotection? In this review, we summarize what we have known on lactate, discussing the roles that have been attributed to this molecule over time.
Collapse
Affiliation(s)
- Patrizia Proia
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo I-90128, Italy.
| | - Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Anna Fricano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
| |
Collapse
|
238
|
Paris D, Melck D, Longo A, Napoletano S, Carotenuto G, Nicolais L, Motta A, Vitale E. Metabolic response of SH-SY5Y cells to gold nanoparticles by NMR-based metabolomics analyses. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/4/045003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
239
|
Biochemical indications of cerebral ischaemia and mitochondrial dysfunction in severe brain trauma analysed with regard to type of lesion. Acta Neurochir (Wien) 2016; 158:1231-40. [PMID: 27188288 DOI: 10.1007/s00701-016-2835-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The study focuses on three questions related to the clinical usefulness of microdialysis in severe brain trauma: (1) How frequently is disturbed cerebral energy metabolism observed in various types of lesions? (2) How often does the biochemical pattern indicate cerebral ischaemia and mitochondrial dysfunction? (3) How do these patterns relate to mortality? METHOD The study includes 213 consecutive patients with severe brain trauma (342 intracerebral microdialysis catheters). The patients were classified into four groups according to the type of lesion: extradural haematoma (EDH), acute subdural haematoma (SDH), cerebral haemorrhagic contusion (CHC) and no mass lesion (NML). Altogether about 150,000 biochemical analyses were performed during the initial 96 h after trauma. RESULTS Compromised aerobic metabolism occurred during 38 % of the study period. The biochemical pattern indicating mitochondrial dysfunction was more common than that of ischaemia. In EDH and NML aerobic metabolism was generally close to normal. In SDH or CHC it was often severely compromised. Mortality was increased in SDH with impaired aerobic metabolism, while CHC did not exhibit a similar relation. CONCLUSIONS Compromised energy metabolism is most frequent in patients with SDH and CHC (32 % and 49 % of the study period, respectively). The biochemical pattern of mitochondrial dysfunction is more common than that of ischaemia (32 % and 6 % of the study period, respectively). A correlation between mortality and biochemical data is obtained provided the microdialysis catheter is placed in an area where energy metabolism reflects tissue outcome in a large part of the brain.
Collapse
|
240
|
Karagiannis A, Sylantyev S, Hadjihambi A, Hosford PS, Kasparov S, Gourine AV. Hemichannel-mediated release of lactate. J Cereb Blood Flow Metab 2016; 36:1202-11. [PMID: 26661210 PMCID: PMC4900446 DOI: 10.1177/0271678x15611912] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/21/2015] [Indexed: 11/16/2022]
Abstract
In the central nervous system lactate contributes to the extracellular pool of readily available energy substrates and may also function as a signaling molecule which mediates communication between glial cells and neurons. Monocarboxylate transporters are believed to provide the main pathway for lactate transport across the membranes. Here we tested the hypothesis that lactate could also be released via opening of pannexin and/or functional connexin hemichannels. In acute slices prepared from the brainstem, hippocampus, hypothalamus and cortex of adult rats, enzymatic amperometric biosensors detected significant tonic lactate release inhibited by compounds, which block pannexin/connexin hemichannels and facilitated by lowering extracellular [Ca(2+)] or increased PCO2 Enhanced lactate release triggered by hypoxia was reduced by ∼50% by either connexin or monocarboxylate transporter blockers. Stimulation of Schaffer collateral fibers triggered lactate release in CA1 area of the hippocampus, which was facilitated in conditions of low extracellular [Ca(2+)], markedly reduced by blockade of connexin hemichannels and abolished by lactate dehydrogenase inhibitor oxamate. These results indicate that lactate transport across the membranes may occur via mechanisms other than monocarboxylate transporters. In the central nervous system, hemichannels may function as a conduit of lactate release, and this mechanism is recruited during hypoxia and periods of enhanced neuronal activity.
Collapse
Affiliation(s)
- Anastassios Karagiannis
- Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London, UK
| | - Sergiy Sylantyev
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Anna Hadjihambi
- Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London, UK
| | - Patrick S Hosford
- Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London, UK
| | - Sergey Kasparov
- Department of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Alexander V Gourine
- Department of Neuroscience, Physiology and Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London (UCL), London, UK
| |
Collapse
|
241
|
Dienel GA, Cruz NF. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem 2016; 138:14-52. [DOI: 10.1111/jnc.13630] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Gerald A. Dienel
- Department of Cell Biology and Physiology; University of New Mexico; Albuquerque; New Mexico USA
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| | - Nancy F. Cruz
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| |
Collapse
|
242
|
Jády AG, Nagy ÁM, Kőhidi T, Ferenczi S, Tretter L, Madarász E. Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes. Stem Cells Dev 2016; 25:995-1005. [PMID: 27116891 PMCID: PMC4931359 DOI: 10.1089/scd.2015.0388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H(+) production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In "starving" neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons.
Collapse
Affiliation(s)
- Attila Gy Jády
- 1 Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine of Hungarian Academy of Sciences , Budapest, Hungary .,2 Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University , Budapest, Hungary
| | - Ádám M Nagy
- 3 Department of Medical Biochemistry, Semmelweis University , Budapest, Hungary
| | - Tímea Kőhidi
- 1 Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine of Hungarian Academy of Sciences , Budapest, Hungary
| | - Szilamér Ferenczi
- 4 Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine of Hungarian Academy of Sciences , Budapest, Hungary
| | - László Tretter
- 3 Department of Medical Biochemistry, Semmelweis University , Budapest, Hungary
| | - Emília Madarász
- 1 Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine of Hungarian Academy of Sciences , Budapest, Hungary
| |
Collapse
|
243
|
Su CK, Yen SC, Li TW, Sun YC. Enzyme-Immobilized 3D-Printed Reactors for Online Monitoring of Rat Brain Extracellular Glucose and Lactate. Anal Chem 2016; 88:6265-73. [DOI: 10.1021/acs.analchem.6b00272] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheng-Kuan Su
- Department
of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Shuo-Chih Yen
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Wen Li
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Yuh-Chang Sun
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
244
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
245
|
Sonnay S, Duarte JM, Just N, Gruetter R. Compartmentalised energy metabolism supporting glutamatergic neurotransmission in response to increased activity in the rat cerebral cortex: A 13C MRS study in vivo at 14.1 T. J Cereb Blood Flow Metab 2016; 36:928-40. [PMID: 26823472 PMCID: PMC4853840 DOI: 10.1177/0271678x16629482] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022]
Abstract
Many tissues exhibit metabolic compartmentation. In the brain, while there is no doubt on the importance of functional compartmentation between neurons and glial cells, there is still debate on the specific regulation of pathways of energy metabolism at different activity levels. Using (13)C magnetic resonance spectroscopy (MRS) in vivo, we determined fluxes of energy metabolism in the rat cortex under α-chloralose anaesthesia at rest and during electrical stimulation of the paws. Compared to resting metabolism, the stimulated rat cortex exhibited increased glutamate-glutamine cycle (+67 nmol/g/min, +95%, P < 0.001) and tricarboxylic (TCA) cycle rate in both neurons (+62 nmol/g/min, +12%, P < 0.001) and astrocytes (+68 nmol/g/min, +22%, P = 0.072). A minor, non-significant modification of the flux through pyruvate carboxylase was observed during stimulation (+5 nmol/g/min, +8%). Altogether, this increase in metabolism amounted to a 15% (67 nmol/g/min, P < 0.001) increase in CMRglc(ox), i.e. the oxidative fraction of the cerebral metabolic rate of glucose. In conclusion, stimulation of the glutamate-glutamine cycle under α-chloralose anaesthesia is associated to similar enhancement of neuronal and glial oxidative metabolism.
Collapse
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale, Lausanne, Switzerland
| | - João Mn Duarte
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale, Lausanne, Switzerland
| | - Nathalie Just
- Centre d'Imagerie Biomédicale - Animal and Technology Core, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale, Lausanne, Switzerland Department of Radiology, University of Geneva, Switzerland Department of Radiology, University of Lausanne, Switzerland
| |
Collapse
|
246
|
Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes. Sci Rep 2016; 6:23673. [PMID: 27026049 PMCID: PMC4812252 DOI: 10.1038/srep23673] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/07/2016] [Indexed: 01/02/2023] Open
Abstract
Hypothalamic astrocytes can respond to metabolic signals, such as leptin and insulin, to modulate adjacent neuronal circuits and systemic metabolism. Ghrelin regulates appetite, adiposity and glucose metabolism, but little is known regarding the response of astrocytes to this orexigenic hormone. We have used both in vivo and in vitro approaches to demonstrate that acylated ghrelin (acyl-ghrelin) rapidly stimulates glutamate transporter expression and glutamate uptake by astrocytes. Moreover, acyl-ghrelin rapidly reduces glucose transporter (GLUT) 2 levels and glucose uptake by these glial cells. Glutamine synthetase and lactate dehydrogenase decrease, while glycogen phosphorylase and lactate transporters increase in response to acyl-ghrelin, suggesting a change in glutamate and glucose metabolism, as well as glycogen storage by astrocytes. These effects are partially mediated through ghrelin receptor 1A (GHSR-1A) as astrocytes do not respond equally to desacyl-ghrelin, an isoform that does not activate GHSR-1A. Moreover, primary astrocyte cultures from GHSR-1A knock-out mice do not change glutamate transporter or GLUT2 levels in response to acyl-ghrelin. Our results indicate that acyl-ghrelin may mediate part of its metabolic actions through modulation of hypothalamic astrocytes and that this effect could involve astrocyte mediated changes in local glucose and glutamate metabolism that alter the signals/nutrients reaching neighboring neurons.
Collapse
|
247
|
Chatton JY, Magistretti PJ, Barros LF. Sodium signaling and astrocyte energy metabolism. Glia 2016; 64:1667-76. [PMID: 27027636 DOI: 10.1002/glia.22971] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Abstract
The Na(+) gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na(+) -dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na(+) load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na(+) extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na(+) following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na(+) as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na(+) and the metabolic machinery. GLIA 2016;64:1667-1676.
Collapse
Affiliation(s)
- Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, Rue Du Bugnon 9, Lausanne, Switzerland
| | - Pierre J Magistretti
- King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.,Brain Mind Institute, Ecole Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
248
|
Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem Int 2016; 98:56-71. [PMID: 27013346 DOI: 10.1016/j.neuint.2016.03.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/22/2022]
Abstract
In the mammalian brain, a family of sodium-dependent transporters maintains low extracellular glutamate and shapes excitatory signaling. The bulk of this activity is mediated by the astroglial glutamate transporters GLT-1 and GLAST (also called EAAT2 and EAAT1). In this review, we will discuss evidence that these transporters co-localize with, form physical (co-immunoprecipitable) interactions with, and functionally couple to various 'energy-generating' systems, including the Na(+)/K(+)-ATPase, the Na(+)/Ca(2+) exchanger, glycogen metabolizing enzymes, glycolytic enzymes, and mitochondria/mitochondrial proteins. This functional coupling is bi-directional with many of these systems both being regulated by glutamate transport and providing the 'fuel' to support glutamate uptake. Given the importance of glutamate uptake to maintaining synaptic signaling and preventing excitotoxicity, it should not be surprising that some of these systems appear to 'redundantly' support the energetic costs of glutamate uptake. Although the glutamate-glutamine cycle contributes to recycling of neurotransmitter pools of glutamate, this is an over-simplification. The ramifications of co-compartmentalization of glutamate transporters with mitochondria for glutamate metabolism are discussed. Energy consumption in the brain accounts for ∼20% of the basal metabolic rate and relies almost exclusively on glucose for the production of ATP. However, the brain does not possess substantial reserves of glucose or other fuels. To ensure adequate energetic supply, increases in neuronal activity are matched by increases in cerebral blood flow via a process known as 'neurovascular coupling'. While the mechanisms for this coupling are not completely resolved, it is generally agreed that astrocytes, with processes that extend to synapses and endfeet that surround blood vessels, mediate at least some of the signal that causes vasodilation. Several studies have shown that either genetic deletion or pharmacologic inhibition of glutamate transport impairs neurovascular coupling. Together these studies strongly suggest that glutamate transport not only coordinates excitatory signaling, but also plays a pivotal role in regulating brain energetics.
Collapse
|
249
|
Narayanan K, Erathodiyil N, Gopalan B, Chong S, Wan ACA, Ying JY. Targeting Warburg Effect in Cancers with PEGylated Glucose. Adv Healthc Mater 2016; 5:696-701. [PMID: 26792539 DOI: 10.1002/adhm.201500613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/13/2015] [Indexed: 11/06/2022]
Abstract
In highly proliferative cancer cells, energy is predominantly produced by a high rate of glycolysis, followed by lactic acid fermentation, despite the availability of oxygen - an observation known as the Warburg effect. As a consequence, cells employing this glycolytic pathway require high uptake of glucose and increased metabolic rates to maintain their proliferation. It has been hypothesized that by blocking glucose uptake using modified glucose molecules, apoptosis in the cancer cells can be induced. In this study, it has been showed that several poly(ethylene glycol) (PEG)-modified glucose compounds could reduce cell proliferation in various cancer cell lines by a phenomenon that blocked the availability of the glucose transporters and reduced AKT1 (serine/threonine-specific protein kinase) activation. Xenograft cancer models that are intravenously administered with glucose-conjugated branched PEG (GBrP) daily for 14 d show little tumor development, as compared to the control group without GBrP treatment. The toxicological effects and the pharmacokinetics of the PEGylated glucose are studied in rodents. The PEGylated glucose exerts no systemic toxicity at 40 mg kg(-1) dosage. However, doses above 80 mg kg(-1) show dose-dependent toxicity in all the organs analyzed. The present results suggest PEGylated glucose as a promising "metabolic therapy" approach for the treatment of cancer.
Collapse
Affiliation(s)
- Karthikeyan Narayanan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos Singapore 138669 Singapore
| | - Nandanan Erathodiyil
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos Singapore 138669 Singapore
| | - Began Gopalan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos Singapore 138669 Singapore
| | - Shiya Chong
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos Singapore 138669 Singapore
| | - Andrew C. A. Wan
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos Singapore 138669 Singapore
| | - Jackie Y. Ying
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos Singapore 138669 Singapore
| |
Collapse
|
250
|
DiNuzzo M. Astrocyte-Neuron Interactions during Learning May Occur by Lactate Signaling Rather than Metabolism. Front Integr Neurosci 2016; 10:2. [PMID: 26858613 PMCID: PMC4731513 DOI: 10.3389/fnint.2016.00002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi,"Rome, Italy; Dipartimento di Fisica, Sapienza Università di RomaRome, Italy
| |
Collapse
|