201
|
Samrat SK, Li W, Singh S, Kumar R, Agrawal B. Alternate reading frame protein (F protein) of hepatitis C virus: paradoxical effects of activation and apoptosis on human dendritic cells lead to stimulation of T cells. PLoS One 2014; 9:e86567. [PMID: 24475147 PMCID: PMC3903568 DOI: 10.1371/journal.pone.0086567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/11/2013] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) leads to chronic infection in the majority of infected individuals due to lack, failure, or inefficiency of generated adaptive immune responses. In a minority of patients, acute infection is followed by viral clearance. The immune correlates of viral clearance are not clear yet but have been extensively investigated, suggesting that multispecific and multifunctional cellular immunity is involved. The generation of cellular immunity is highly dependent upon how antigen presenting cells (APCs) process and present various viral antigens. Various structural and non-structural HCV proteins derived from the open reading frame (ORF) have been implicated in modulation of dendritic cells (DCs) and APCs. Besides the major ORF proteins, the HCV core region also encodes an alternate reading frame protein (ARFP or F), whose function in viral pathogenesis is not clear. In the current studies, we sought to determine the role of HCV-derived ARFP in modulating dendritic cells and stimulation of T cell responses. Recombinant adenovirus vectors containing F or core protein derived from HCV (genotype 1a) were prepared and used to endogenously express these proteins in dendritic cells. We made an intriguing observation that endogenous expression of F protein in human DCs leads to contrasting effects on activation and apoptosis of DCs, allowing activated DCs to efficiently internalize apoptotic DCs. These in turn result in efficient ability of DCs to process and present antigen and to prime and stimulate F protein derived peptide-specific T cells from HCV-naive individuals. Taken together, our findings suggest important aspects of F protein in modulating DC function and stimulating T cell responses in humans.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wen Li
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shakti Singh
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rakesh Kumar
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
202
|
Fernandez-Ponce C, Dominguez-Villar M, Aguado E, Garcia-Cozar F. CD4+ primary T cells expressing HCV-core protein upregulate Foxp3 and IL-10, suppressing CD4 and CD8 T cells. PLoS One 2014; 9:e85191. [PMID: 24465502 PMCID: PMC3896374 DOI: 10.1371/journal.pone.0085191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/30/2013] [Indexed: 12/11/2022] Open
Abstract
Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(low)PD-1(high)TIM-3(high) regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.
Collapse
Affiliation(s)
- Cecilia Fernandez-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Margarita Dominguez-Villar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Francisco Garcia-Cozar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| |
Collapse
|
203
|
Bellier B, Klatzmann D. Virus-like particle-based vaccines against hepatitis C virus infection. Expert Rev Vaccines 2014; 12:143-54. [DOI: 10.1586/erv.13.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
204
|
Immune responses of orange-spotted grouper, Epinephelus coioides, against virus-like particles of betanodavirus produced in Escherichia coli. Vet Immunol Immunopathol 2014; 157:87-96. [DOI: 10.1016/j.vetimm.2013.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022]
|
205
|
Hartigan-O'Connor DJ, Lin D, Ryan JC, Shvachko VA, Cozen ML, Segal MR, Terrault NA, Lanier LL, Manos MM, McCune JM. Monocyte activation by interferon α is associated with failure to achieve a sustained virologic response after treatment for hepatitis C virus infection. J Infect Dis 2013; 209:1602-12. [PMID: 24325966 DOI: 10.1093/infdis/jit801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Interferon α (IFN-α) and ribavirin can induce a sustained virologic response (SVR) in some but not all hepatitis C virus (HCV)-infected patients. The mechanism of effective treatment is unclear. One possibility is that IFN-α differentially improves the functional capacity of classic myeloid dendritic cells (mDCs) by altering expression of surface molecules or cytokines. Others have proposed that antigen-presenting cell activation could be paradoxically detrimental during HCV infection because of the production by monocytes of substances inhibitory or toxic to plasmacytoid dendritic cells. METHODS We examined responses to in vitro IFN-α treatment of peripheral blood leukocyte samples from a retrospective treatment cohort of nearly 200 HCV-seropositive patients who had undergone antiviral therapy with ribavirin and pegylated IFN. We analyzed the variable responses of antigen-presenting cell subsets to drug. RESULTS We found that patients achieving SVR were no more likely to have robust mDC activation in response to IFN-α than those who did not achieve SVR. Rather, patients achieving SVR were distinguished by restrained monocyte activation in the presence of IFN-α, a factor that was second in importance only to IL28B genotype in its association with SVR. CONCLUSIONS These results suggest that interindividual variability in the response of monocytes to IFN-α is an important determinant of treatment success with IFN-α-based regimens.
Collapse
|
206
|
Wada T, Kohara M, Yasutomi Y. DNA vaccine expressing the non-structural proteins of hepatitis C virus diminishes the expression of HCV proteins in a mouse model. Vaccine 2013; 31:5968-74. [PMID: 24144476 DOI: 10.1016/j.vaccine.2013.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/08/2013] [Indexed: 12/20/2022]
Abstract
Most of the people infected with hepatitis C virus (HCV) develop chronic hepatitis, which in some cases progresses to cirrhosis and ultimately to hepatocellular carcinoma. Although various immunotherapies against the progressive disease status of HCV infection have been studied, a preventive or therapeutic vaccine against this pathogen is still not available. In this study, we constructed a DNA vaccine expressing an HCV structural protein (CN2), non-structural protein (N25) or the empty plasmid DNA as a control and evaluated their efficacy as a candidate HCV vaccine in C57BL/6 and novel genetically modified HCV infection model (HCV-Tg) mice. Strong cellular immune responses to several HCV structural and non-structural proteins, characterized by cytotoxicity and interferon-gamma (IFN-γ) production, were observed in CN2 or N25 DNA vaccine-immunized C57BL/6 mice but not in empty plasmid DNA-administered mice. The therapeutic effects of these DNA vaccines were also examined in HCV-Tg mice that conditionally express HCV proteins in their liver. Though a reduction in cellular immune responses was observed in HCV-Tg mice, there was a significant decrease in the expression of HCV protein in mice administered the N25 DNA vaccine but not in mice administered the empty plasmid DNA. Moreover, both CD8(+) and CD4(+) T cells were required for the decrease of HCV protein in the liver. We found that the N25 DNA vaccine improved pathological changes in the liver compared to the empty plasmid DNA. Thus, these DNA vaccines, especially that expressing the non-structural protein gene, may be an alternative approach for treatment of individuals chronically infected with HCV.
Collapse
Affiliation(s)
- Takeshi Wada
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
207
|
Irshad M, Mankotia DS, Irshad K. An insight into the diagnosis and pathogenesis of hepatitis C virus infection. World J Gastroenterol 2013; 19:7896-7909. [PMID: 24307784 PMCID: PMC3848138 DOI: 10.3748/wjg.v19.i44.7896] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/11/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023] Open
Abstract
This review focuses on research findings in the area of diagnosis and pathogenesis of hepatitis C virus (HCV) infection over the last few decades. The information based on published literature provides an update on these two aspects of HCV. HCV infection, previously called blood transmitted non-A, non-B infection, is prevalent globally and poses a serious public health problem worldwide. The diagnosis of HCV infection has evolved from serodetection of non-specific and low avidity anti-HCV antibodies to detection of viral nucleic acid in serum using the polymerase chain reaction (PCR) technique. Current PCR assays detect viral nucleic acid with high accuracy and the exact copy number of viral particles. Moreover, multiplex assays using real-time PCR are available for identification of HCV-genotypes and their isotypes. In contrast to previous methods, the newly developed assays are not only fast and economic, but also resolve the problem of the window period as well as differentiate present from past infection. HCV is a non-cytopathic virus, thus, its pathogenesis is regulated by host immunity and metabolic changes including oxidative stress, insulin resistance and hepatic steatosis. Both innate and adaptive immunity play an important role in HCV pathogenesis. Cytotoxic lymphocytes demonstrate crucial activity during viral eradication or viral persistence and are influenced by viral proteins, HCV-quasispecies and several metabolic factors regulating liver metabolism. HCV pathogenesis is a very complex phenomenon and requires further study to determine the other factors involved.
Collapse
|
208
|
Spengler U, Nischalke HD, Nattermann J, Strassburg CP. Between Scylla and Charybdis: The role of the human immune system in the pathogenesis of hepatitis C. World J Gastroenterol 2013; 19:7852-7866. [PMID: 24307779 PMCID: PMC3848133 DOI: 10.3748/wjg.v19.i44.7852] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 10/25/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) frequently elicits only mild immune responses so that it can often establish chronic infection. In this case HCV antigens persist and continue to stimulate the immune system. Antigen persistence then leads to profound changes in the infected host’s immune responsiveness, and eventually contributes to the pathology of chronic hepatitis. This topic highlight summarizes changes associated with chronic hepatitis C concerning innate immunity (interferons, natural killer cells), adaptive immune responses (immunoglobulins, T cells, and mechanisms of immune regulation (regulatory T cells). Our overview clarifies that a strong anti-HCV immune response is frequently associated with acute severe tissue damage. In chronic hepatitis C, however, the effector arms of the immune system either become refractory to activation or take over regulatory functions. Taken together these changes in immunity may lead to persistent liver damage and cirrhosis. Consequently, effector arms of the immune system will not only be considered with respect to antiviral defence but also as pivotal mechanisms of inflammation, necrosis and progression to cirrhosis. Thus, avoiding Scylla - a strong, sustained antiviral immune response with inital tissue damage - takes the infected host to virus-triggered immunopathology, which ultimately leads to cirrhosis and liver cancer - the realm of Charybdis.
Collapse
|
209
|
Fouad H, Raziky MSE, Aziz RAA, Sabry D, Aziz GMA, Ewais M, Sayed AR. Dendritic cell co-stimulatory and co-inhibitory markers in chronic HCV: an Egyptian study. World J Gastroenterol 2013; 19:7711-8. [PMID: 24282359 PMCID: PMC3837270 DOI: 10.3748/wjg.v19.i43.7711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/30/2013] [Accepted: 08/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To assess co-stimulatory and co-inhibitory markers of dendritic cells (DCs) in hepatitis C virus (HCV) infected subjects with and without uremia. METHODS Three subject groups were included in the study: group 1 involved 50 control subjects, group 2 involved 50 patients with chronic HCV infection and group 3 involved 50 HCV uremic subjects undergoing hemodialysis. CD83, CD86 and CD40 as co-stimulatory markers and PD-L1 as a co-inhibitory marker were assessed in peripheral blood mononuclear cells by real-time polymerase chain reaction. Interleukin-10 (IL-10) and hyaluronic acid (HA) levels were also assessed. All findings were correlated with disease activity, viral load and fibrogenesis. RESULTS There was a significant decrease in co-stimulatory markers; CD83, CD86 and CD40 in groups 2 and 3 vs the control group. Co-stimulatory markers were significantly higher in group 3 vs group 2. There was a significant elevation in PD-L1 in both HCV groups vs the control group. PD-L1 was significantly lower in group 3 vs group 2. There was a significant elevation in IL-10 and HA levels in groups 2 and 3, where IL-10 was higher in group 3 and HA was lower in group 3 vs group 2. HA level was significantly correlated with disease activity and fibrosis grade in group 2. IL-10 was significantly correlated with fibrosis grade in group 2. There were significant negative correlations between co-stimulatory markers and viral load in groups 2 and 3, except CD83 in dialysis patients. There was a significant positive correlation between PD-L1 and viral load in both HCV groups. CONCLUSION A significant decrease in DC co-stimulatory markers and a significant increase in a DC co-inhibitory marker were observed in HCV subjects and to a lesser extent in dialysis patients.
Collapse
|
210
|
Selection of conserved epitopes from hepatitis C virus for pan-populational stimulation of T-cell responses. Clin Dev Immunol 2013; 2013:601943. [PMID: 24348677 PMCID: PMC3856138 DOI: 10.1155/2013/601943] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
The hepatitis C virus (HCV) is able to persist as a chronic infection, which can lead to cirrhosis and liver cancer. There is evidence that clearance of HCV is linked to strong responses by CD8 cytotoxic T lymphocytes (CTLs), suggesting that eliciting CTL responses against HCV through an epitope-based vaccine could prove an effective means of immunization. However, HCV genomic plasticity as well as the polymorphisms of HLA I molecules restricting CD8 T-cell responses challenges the selection of epitopes for a widely protective vaccine. Here, we devised an approach to overcome these limitations. From available databases, we first collected a set of 245 HCV-specific CD8 T-cell epitopes, all known to be targeted in the course of a natural infection in humans. After a sequence variability analysis, we next identified 17 highly invariant epitopes. Subsequently, we predicted the epitope HLA I binding profiles that determine their potential presentation and recognition. Finally, using the relevant HLA I-genetic frequencies, we identified various epitope subsets encompassing 6 conserved HCV-specific CTL epitopes each predicted to elicit an effective T-cell response in any individual regardless of their HLA I background. We implemented this epitope selection approach for free public use at the EPISOPT web server.
Collapse
|
211
|
Liu S, Chen R, Hagedorn CH. Direct visualization of hepatitis C virus-infected Huh7.5 cells with a high titre of infectious chimeric JFH1-EGFP reporter virus in three-dimensional Matrigel cell cultures. J Gen Virol 2013; 95:423-433. [PMID: 24243732 DOI: 10.1099/vir.0.055772-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Identification of the hepatitis C virus (HCV) JFH1 isolate enabled the development of infectious HCV cell culture systems. However, the relatively low virus titres and instability of some chimeric JFH1 reporter viruses restricts some uses of this system. We describe a higher-titre JFH1-EGFP reporter virus where the NS5A V3 region was replaced with the EGFP gene and adapted by serial passage in Huh7.5 cells. Six adaptive mutants were identified: one each in E2, P7 and NS4B, plus three in the NS5A region. These adaptive mutants increased the reporter virus titres to 1×10(6) immunofluorescent focus-forming units ml(-1), which is the highest titre of JFH1-EGFP reporter virus reported to our knowledge. This chimeric virus did not lose EGFP expression following 40 days of passage and it can be used to test the activity of HCV antivirals by measuring EGFP fluorescence in 96-well plates. Moreover, this reporter virus allows living infected Huh7.5 cells in Matrigel three-dimensional (3D) cultures to be visualized and produces infectious viral particles in these 3D cultures. The chimeric NS5A-EGFP infectious JFH1 reporter virus described should enable new studies of the HCV life cycle in 3D cell cultures and will be useful in identifying antivirals that interfere with HCV release or entry.
Collapse
Affiliation(s)
- Shuanghu Liu
- Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Ren Chen
- Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Curt H Hagedorn
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
212
|
Hood SP, Mee ET, Perkins H, Bowen O, Dale JM, Almond NM, Karayiannis P, Bright H, Berry NJ, Rose NJ. Changes in immune cell populations in the periphery and liver of GBV-B-infected and convalescent tamarins (Saguinus labiatus). Virus Res 2013; 179:93-101. [PMID: 24246306 PMCID: PMC3969288 DOI: 10.1016/j.virusres.2013.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 01/09/2023]
Abstract
GBV-B infection of tamarins is a valuable model for acute HCV infection. We observed distinct expression patterns of PD-1, a marker of T-cell activation, on peripheral and hepatic lymphocytes. Differential PD-1 expression is coincident with reduction in peripheral GBV-B. Liver-associated viral RNA in the absence of peripheral viraemia indicates maintenance of occult infection.
Flaviviruses related to hepatitis C virus (HCV) in suitable animal models may provide further insight into the role that cellular immunity contributes to spontaneous clearance of HCV. We characterised changes in lymphocyte populations in tamarins with an acute GBV-B infection, a hepatitis virus of the flaviviridae. Major immune cell populations were monitored in peripheral and intra-hepatic lymphocytes at high viraemia or following a period when peripheral virus was no longer detected. Limited changes in major lymphocyte populations were apparent during high viraemia; however, the proportions of CD3+ lymphocytes decreased and CD20+ lymphocytes increased once peripheral viraemia became undetectable. Intrahepatic lymphocyte populations increased at both time points post-infection. Distinct expression patterns of PD-1, a marker of T-cell activation, were observed on peripheral and hepatic lymphocytes; notably there was elevated PD-1 expression on hepatic CD4+ T-cells during high viraemia, suggesting an activated phenotype, which decreased following clearance of peripheral viraemia. At times when peripheral vRNA was not detected, suggesting viral clearance, we were able to readily detect GBV-B RNA in the liver, indicative of long-term virus replication. This study is the first description of changes in lymphocyte populations during GBV-B infection of tamarins and provides a foundation for more detailed investigations of the responses that contribute to the control of GBV-B infection.
Collapse
Affiliation(s)
- Simon P Hood
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Edward T Mee
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Hannah Perkins
- Internal Medicine Research Unit, Pfizer Research and Development, Sandwich, Kent CT13 9NJ, UK
| | - Ori Bowen
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Jessica M Dale
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Neil M Almond
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Peter Karayiannis
- Hepatology and Gastroenterology Section, Department of Medicine, Imperial College London, Variety Wing Floor D, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Helen Bright
- Internal Medicine Research Unit, Pfizer Research and Development, Sandwich, Kent CT13 9NJ, UK
| | - Neil J Berry
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Nicola J Rose
- Division of Virology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| |
Collapse
|
213
|
Kachko A, Loesgen S, Shahzad-Ul-Hussan S, Tan W, Zubkova I, Takeda K, Wells F, Rubin S, Bewley CA, Major ME. Inhibition of hepatitis C virus by the cyanobacterial protein Microcystis viridis lectin: mechanistic differences between the high-mannose specific lectins MVL, CV-N, and GNA. Mol Pharm 2013; 10:4590-4602. [PMID: 24152340 DOI: 10.1021/mp400399b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant or microbial lectins are known to exhibit potent antiviral activities against viruses with glycosylated surface proteins, yet the mechanism(s) by which these carbohydrate-binding proteins exert their antiviral activities is not fully understood. Hepatitis C virus (HCV) is known to possess glycosylated envelope proteins (gpE1E2) and to be potently inhibited by lectins. Here, we tested in detail the antiviral properties of the newly discovered Microcystis viridis lectin (MVL) along with cyanovirin-N (CV-N) and Galanthus nivalis agglutinin (GNA) against cell culture HCV, as well as their binding properties toward viral particles, target cells, and recombinant HCV glycoproteins. Using infectivity assays, CV-N, MVL, and GNA inhibited HCV with IC50 values of 0.6 nM, 30.4 nM, and 11.1 nM, respectively. Biolayer interferometry analysis demonstrated a higher affinity of GNA to immobilized recombinant HCV glycoproteins compared to CV-N and MVL. Complementary studies, including fluorescence-activated cell sorting (FACS) analysis, confocal microscopy, and pre- and post-virus binding assays, showed a complex mechanism of inhibition for CV-N and MVL that includes both viral and cell association, while GNA functions by binding directly to the viral particle. Combinations of GNA with CV-N or MVL in HCV infection studies revealed synergistic inhibitory effects, which can be explained by different glycan recognition profiles of the mainly high-mannoside specific lectins, and supports the hypothesis that these lectins inhibit through different and complex modes of action. Our findings provide important insights into the mechanisms by which lectins inhibit HCV infection. Overall, the data suggest MVL and CV-N have the potential for toxicity due to interactions with cellular proteins while GNA may be a better therapeutic agent due to specificity for the HCV gpE1E2.
Collapse
Affiliation(s)
- Alla Kachko
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Sandra Loesgen
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892, USA
| | - Syed Shahzad-Ul-Hussan
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892, USA.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda Maryland 20892, USA
| | - Wendy Tan
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Iryna Zubkova
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892. USA
| | - Frances Wells
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Steven Rubin
- Laboratory of Method Development, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892. USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892, USA
| | - Marian E Major
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| |
Collapse
|
214
|
Activation and evasion of antiviral innate immunity by hepatitis C virus. J Mol Biol 2013; 426:1198-209. [PMID: 24184198 DOI: 10.1016/j.jmb.2013.10.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) chronically infects 130-170 million people worldwide and is a major public health burden. HCV is an RNA virus that infects hepatocytes within liver, and this infection is sensed as non-self by the intracellular innate immune response to program antiviral immunity to HCV. HCV encodes several strategies to evade this antiviral response, and this evasion of innate immunity plays a key role in determining viral persistence. This review discusses the molecular mechanisms of how the intracellular innate immune system detects HCV infection, including how HCV pathogen-associated molecular patterns are generated during infection and where they are recognized as foreign by the innate immune system. Further, this review highlights the key innate immune evasion strategies used by HCV to establish persistent infection within the liver, as well as how host genotype influences the outcome of HCV infection. Understanding these HCV-host interactions is key in understanding how to target HCV during infection and for the design of more effective HCV therapies at the immunological level.
Collapse
|
215
|
Honegger JR, Kim S, Price AA, Kohout JA, McKnight KL, Prasad MR, Lemon SM, Grakoui A, Walker CM. Loss of immune escape mutations during persistent HCV infection in pregnancy enhances replication of vertically transmitted viruses. Nat Med 2013; 19:1529-33. [PMID: 24162814 PMCID: PMC3823809 DOI: 10.1038/nm.3351] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/20/2013] [Indexed: 12/11/2022]
Abstract
Globally, about 1% of pregnant women are persistently infected with the hepatitis C virus (HCV). Mother-to-child transmission of HCV occurs in 3-5% of pregnancies and accounts for most new childhood infections. HCV-specific CD8(+) cytotoxic T lymphocytes (CTLs) are vital in the clearance of acute HCV infections, but in the 60-80% of infections that persist, these cells become functionally exhausted or select for mutant viruses that escape T cell recognition. Increased HCV replication during pregnancy suggests that maternofetal immune tolerance mechanisms may further impair HCV-specific CTLs, limiting their selective pressure on persistent viruses. To assess this possibility, we characterized circulating viral quasispecies during and after consecutive pregnancies in two women. This revealed a loss of some escape mutations in HLA class I epitopes during pregnancy that was associated with emergence of more fit viruses. CTL selective pressure was reimposed after childbirth, at which point escape mutations in these epitopes again predominated in the quasispecies and viral load dropped sharply. Importantly, the viruses transmitted perinatally were those with enhanced fitness due to reversion of escape mutations. Our findings indicate that the immunoregulatory changes of pregnancy reduce CTL selective pressure on HCV class I epitopes, thereby facilitating vertical transmission of viruses with optimized replicative fitness.
Collapse
Affiliation(s)
- Jonathan R Honegger
- 1] The Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, Ohio, USA. [2] Department of Pediatrics, The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Zampino R, Marrone A, Restivo L, Guerrera B, Sellitto A, Rinaldi L, Romano C, Adinolfi LE. Chronic HCV infection and inflammation: Clinical impact on hepatic and extra-hepatic manifestations. World J Hepatol 2013; 5:528-540. [PMID: 24179612 PMCID: PMC3812455 DOI: 10.4254/wjh.v5.i10.528] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/06/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
The liver has a central role in regulating inflammation by its capacity to secrete a number of proteins that control both local and systemic inflammatory responses. Chronic inflammation or an exaggerated inflammatory response can produce detrimental effects on target organs. Chronic hepatitis C virus (HCV) infection causes liver inflammation by complex and not yet well-understood molecular pathways, including direct viral effects and indirect mechanisms involving cytokine pathways, oxidative stress and steatosis induction. An increasing body of evidence recognizes the inflammatory response in chronic hepatitis C as pathogenically linked to the development of both liver-limited injury (fibrosis, cirrhosis and hepatocellular carcinoma) and extrahepatic HCV-related diseases (lymphoproliferative disease, atherosclerosis, cardiovascular and brain disease). Defining the complex mechanisms of HCV-induced inflammation could be crucial to determine the global impact of infection, to estimate progression of the disease, and to explore novel therapeutic approaches to avert HCV-related diseases. This review focuses on HCV-related clinical conditions as a result of chronic liver and systemic inflammatory states.
Collapse
|
217
|
Yazdanian M, Memarnejadian A, Mahdavi M, Sadat SM, Motevali F, Vahabpour R, Khanahmad H, Siadat SD, Aghasadeghi MR, Roohvand F. Immunization of Mice by BCG Formulated HCV Core Protein Elicited Higher Th1-Oriented Responses Compared to Pluronic-F127 Copolymer. HEPATITIS MONTHLY 2013; 13:e14178. [PMID: 24348641 PMCID: PMC3842517 DOI: 10.5812/hepatmon.14178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/14/2013] [Accepted: 09/25/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND A supreme vaccine for Hepatitis C virus (HCV) infection should elicit strong Th1-oriented cellular responses. In the absence of a Th1-specific adjuvant, immunizations by protein antigens generally induce Th2-type and weak cellular responses. OBJECTIVES To evaluate the adjuvant effect of BCG in comparison with nonionic copolymer-Pluronic F127 (F127) as a classic adjuvant in the formulation of HCV core protein (HCVcp) as a candidate vaccine for induction of Th1 immune responses. MATERIALS AND METHODS Expression of N-terminally His-Tagged HCVcp (1-122) by pIVEX2.4a-core vector harboring the corresponding gene under the control of arabinose-inducible (araBAD) promoter was achieved in BL21-AI strain of E.coli and purified through application of nitrilotriacetic acid (Ni-NTA) chromatography. Mice were immunized subcutaneously (s.c.) in base of the tail with 100 μl of immunogen (F127+HCVcp or BCG+HCVcp; 5 μgHCVcp/mouse/dose) or control formulations (PBS, BCG, F127) at weeks 0, 3, 6. Total and subtypes of IgG, as well as cellular immune responses (Proliferation, In vivo CTL and IFN-γ/IL-4 ELISpot assays against a strong and dominant H2-d restricted, CD8+-epitopic peptide, core 39-48; RRGPRLGVRA of HCVcp) were compared in each group of immunized animals. RESULTS Expression and purification of core protein around the expected size (21 kDa) was confirmed by Western blotting. The HCVcp + BCG vaccinated mice showed significantly higher lymphocyte proliferation and IFN-γ production but lower levels of cell lysis (45% versus 62% in CTL assay) than the HCVcp+F127 immunized animals. "Besides, total anti-core IgG and IgG1 levels were significantly higher in HCVcp + F127 immunized mice as compared to HCVcp + BCG vaccinated animals, indicating relatively higher efficacy of F127 for the stimulation of humoral and Th2-oriented immune responses". CONCLUSIONS Results showed that HCVcp + BCG induced a moderate CTL and mixed Th1/Th2 immune responses with higher levels of cell proliferation and IFN-γ secretion, indicating that BCG may have a better outcome when formulated in HCVcp-based subunit vaccines.
Collapse
Affiliation(s)
- Maryam Yazdanian
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Arash Memarnejadian
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding authors: Arash Memarnejadian, Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166969291, E-mail: ; Farzin Roohvand, Virology Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail: ,
| | - Mehdi Mahdavi
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Seyed Mehdi Sadat
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Fatemeh Motevali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | | | - Hossein Khanahmad
- BCG Research Center, Karaj Research and Production Complex, Pasteur Institute of Iran, Karaj, IR Iran
| | | | | | - Farzin Roohvand
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding authors: Arash Memarnejadian, Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166969291, E-mail: ; Farzin Roohvand, Virology Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail: ,
| |
Collapse
|
218
|
Abstract
Since the discovery of hepatitis C virus (HCV) by molecular cloning almost a quarter of a century ago, unprecedented at the time because the virus had never been grown in cell culture or detected serologically, there have been impressive strides in many facets of our understanding of the natural history of the disease, the viral life cycle, the pathogenesis, and antiviral therapy. It is apparent that the virus has developed multiple strategies to evade immune surveillance and eradication. This Review covers what we currently understand of the temporal and spatial immunological changes within the human innate and adaptive host immune responses that ultimately determine the outcomes of HCV infection.
Collapse
|
219
|
Weiland O, Ahlén G, Diepolder H, Jung MC, Levander S, Fons M, Mathiesen I, Sardesai NY, Vahlne A, Frelin L, Sällberg M. Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther 2013; 21:1796-805. [PMID: 23752314 PMCID: PMC3776630 DOI: 10.1038/mt.2013.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022] Open
Abstract
Clearance of infections caused by the hepatitis C virus (HCV) correlates with HCV-specific T cell function. We therefore evaluated therapeutic vaccination in 12 patients with chronic HCV infection. Eight patients also underwent a subsequent standard-of-care (SOC) therapy with pegylated interferon (IFN) and ribavirin. The phase I/IIa clinical trial was performed in treatment naive HCV genotype 1 patients, receiving four monthly vaccinations in the deltoid muscles with 167, 500, or 1,500 μg codon-optimized HCV nonstructural (NS) 3/4A-expressing DNA vaccine delivered by in vivo electroporation (EP). Enrollment was done with 2 weeks interval between patients for safety reasons. Treatment was safe and well tolerated. The vaccinations significantly improved IFN-γ-producing responses to HCV NS3 during the first 6 weeks of therapy. Five patients experienced 2-10 weeks 0.6-2.4 log10 reduction in serum HCV RNA. Six out of eight patients starting SOC therapy within 1-30 months after the last vaccine dose were cured. This first-in-man therapeutic HCV DNA vaccine study with the vaccine delivered by in vivo EP shows transient effects in patients with chronic HCV genotype 1 infection. The interesting result noted after SOC therapy suggests that therapeutic vaccination can be explored in a combination with SOC treatment.
Collapse
Affiliation(s)
- Ola Weiland
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gustaf Ahlén
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helmut Diepolder
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Maria-Christina Jung
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
- ImmuSystems, Munich, Germany
| | - Sepideh Levander
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael Fons
- Inovio Pharmaceuticals, Blue Bell, Pennsylvania, USA
| | | | | | - Anders Vahlne
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- ChronTech Pharma AB, Huddinge, Sweden
| | - Lars Frelin
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
220
|
Fournillier A, Frelin L, Jacquier E, Ahlén G, Brass A, Gerossier E, Holmström F, Broderick KE, Sardesai NY, Bonnefoy JY, Inchauspé G, Sällberg M. A heterologous prime/boost vaccination strategy enhances the immunogenicity of therapeutic vaccines for hepatitis C virus. J Infect Dis 2013; 208:1008-19. [PMID: 23776192 PMCID: PMC3749006 DOI: 10.1093/infdis/jit267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/27/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We explored the concept of heterologous prime/boost vaccination using 2 therapeutic vaccines currently in clinical development aimed at treating chronically infected hepatitis C virus (HCV) patients: prime with a DNA-based vaccine expressing HCV genotype 1a NS3/4A proteins (ChronVac-C) and boost with a modified vaccinia virus Ankara vaccine expressing genotype 1b NS3/4/5B proteins (MVATG16643). METHODS Two ChronVac-C immunizations 4 weeks apart were delivered intramuscularly in combination with in vivo electroporation and subsequently 5 or 12 weeks later boosted by 3 weekly subcutaneous injections of MVATG16643. Two mouse strains were used, and we evaluated quality, magnitude, and functionality of the T cells induced. RESULTS DNA prime/MVA boost regimen induced significantly higher levels of interferon γ (IFN-γ) or interleukin 2 (IL-2) ELISpot responses compared with each vaccine alone, independent of the time of analysis and the time interval between vaccinations. Both CD8⁺ and CD4⁺ T-cell responses as well as the spectrum of epitopes recognized was improved. A significant increase in polyfunctional IFN-γ/tumor necrosis factor α (TNF-α)/CD107a⁺ CD8⁺ T cells was detected following ChronVac-C/MVATG16643 vaccination (from 3% to 25%), and prime/boost was the only regimen that activated quadrifunctional T cells (IFN-γ/TNF-α/CD107a/IL-2). In vivo functional protective capacity of DNA prime/MVA boost was demonstrated in a Listeria-NS3-1a challenge model. CONCLUSIONS We provide a proof-of-concept that immunogenicity of 2 HCV therapeutic vaccines can be improved using their combination, which merits further clinical development.
Collapse
Affiliation(s)
- Anne Fournillier
- Département des Maladies Infectieuses, Transgene SA, Centre d'Infectiologie, Lyon, France
| | - Lars Frelin
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Emilie Jacquier
- Département des Maladies Infectieuses, Transgene SA, Centre d'Infectiologie, Lyon, France
| | - Gustaf Ahlén
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anette Brass
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Estelle Gerossier
- Département des Maladies Infectieuses, Transgene SA, Centre d'Infectiologie, Lyon, France
| | - Fredrik Holmström
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | - Jean-Yves Bonnefoy
- Département des Maladies Infectieuses, Transgene SA, Centre d'Infectiologie, Lyon, France
| | - Geneviève Inchauspé
- Département des Maladies Infectieuses, Transgene SA, Centre d'Infectiologie, Lyon, France
| | - Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
221
|
Lauterbach H, Pätzold J, Kassub R, Bathke B, Brinkmann K, Chaplin P, Suter M, Hochrein H. Genetic Adjuvantation of Recombinant MVA with CD40L Potentiates CD8 T Cell Mediated Immunity. Front Immunol 2013; 4:251. [PMID: 23986761 PMCID: PMC3753717 DOI: 10.3389/fimmu.2013.00251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/10/2013] [Indexed: 12/15/2022] Open
Abstract
Modified vaccinia Ankara (MVA) is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70) early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression) was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated cytotoxic T-lymphocytes (CTLs) also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality, and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases.
Collapse
Affiliation(s)
- Henning Lauterbach
- Department of Research Immunology, Bavarian Nordic GmbH , Martinsried , Germany
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Yoshizato K, Tateno C. A mouse with humanized liver as an animal model for predicting drug effects and for studying hepatic viral infection: where to next? Expert Opin Drug Metab Toxicol 2013; 9:1419-35. [DOI: 10.1517/17425255.2013.826649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
223
|
GSTT1 null genotype contributes to hepatocellular carcinoma risk: a meta-analysis. Tumour Biol 2013; 35:213-8. [DOI: 10.1007/s13277-013-1026-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/15/2013] [Indexed: 01/15/2023] Open
|
224
|
The role of chemokines in acute and chronic hepatitis C infection. Cell Mol Immunol 2013; 11:25-40. [PMID: 23954947 DOI: 10.1038/cmi.2013.37] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/08/2013] [Accepted: 07/14/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C imposes a significant burden on global healthcare. Chronic infection is associated with progressive inflammation of the liver which typically manifests in cirrhosis, organ failure and cancer. By virtue of elaborate evasion strategies, hepatitis C virus (HCV) succeeds as a persistent human virus. It has an extraordinary capacity to subvert the immune response enabling it to establish chronic infections and associated liver disease. Chemokines are low molecular weight chemotactic peptides that mediate the recruitment of inflammatory cells into tissues and back into the lymphatics and peripheral blood. Thus, they are central to the temporal and spatial distribution of effector and regulatory immune cells. The interactions between chemokines and their cognate receptors help shape the immune response and therefore, have a major influence on the outcome of infection. However, chemokines represent a target for modulation by viruses including the HCV. HCV is known to modulate chemokine expression in vitro and may therefore enable its survival by subverting the immune response in vivo through altered leukocyte chemotaxis resulting in impaired viral clearance and the establishment of chronic low-grade inflammation. In this review, the roles of chemokines in acute and chronic HCV infection are described with a particular emphasis placed on chemokine modulation as a means of immune subversion. We provide an in depth discussion of the part played by chemokines in mediating hepatic fibrosis while addressing the potential applications for these chemoattractants in prognostic medicine.
Collapse
|
225
|
Pasetto A, Aleman S, Chen M. Functional attributes of responding T cells in HCV infection: the recent advances in engineering functional antiviral T cells. Arch Immunol Ther Exp (Warsz) 2013; 62:23-30. [PMID: 23955531 DOI: 10.1007/s00005-013-0248-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) is one of the major causes of hepatocellular carcinoma (HCC) around the world. HCV promotes characteristics of cancer stem cells and the infected cells are insensitive to apoptotic signals, which lead to persistent antigen stimulation and T cell exhaustion in the host. In spite of new effective antiviral drugs, new challenges are around the corner as drug-resistant viral strains and drug-drug interactions have already been reported. Considering that there are few effective treatments available for HCC, novel immunotherapies to prevent HCC and late stage HCV-related liver diseases should be considered. Given that adoptive immunotherapy with antigen-specific T lymphocytes has emerged as an effective therapeutic strategy for combating cancer, there is, therefore, reason to examine the possibility of using highly functional HCV-reactive T cells in immunotherapy. This review aims to provide the current understanding of natural HCV responding T cells in HCV infection and to give an update on the novel approaches that have the capacity to ex vivo generate functional T cells for potential adoptive cell therapy. Approaches based on the pMHC tetramer-associated magnetic enrichment, exogenous HCV T cell receptor transfer, and induced pluripotent stem cell technologies are described herein. Their potentials as immunotherapeutic against HCV-related diseases are discussed.
Collapse
Affiliation(s)
- Anna Pasetto
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | | |
Collapse
|
226
|
ZHOU YUN, ZHAO FUTAO, CHEN LIN, MA LI, WANG YU, HE YU, MA ZHIYUAN, LIU HAILI, GUO YONGHONG, ZHANG YING, YAO ZHIQIANG, HAO CHUNQIU, JIA ZHANSHENG. Development of a dendritic cell vaccine encoding multiple cytotoxic T lymphocyte epitopes targeting hepatitis C virus. Int J Mol Med 2013; 32:901-9. [DOI: 10.3892/ijmm.2013.1466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/18/2013] [Indexed: 11/05/2022] Open
|
227
|
Mailly L, Robinet E, Meuleman P, Baumert TF, Zeisel MB. Hepatitis C virus infection and related liver disease: the quest for the best animal model. Front Microbiol 2013; 4:213. [PMID: 23898329 PMCID: PMC3724122 DOI: 10.3389/fmicb.2013.00212] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma (HCC) making the virus the most common cause of liver failure and transplantation. HCV is estimated to chronically affect 130 million individuals and to lead to more than 350,000 deaths per year worldwide. A vaccine is currently not available. The recently developed direct acting antivirals (DAAs) have markedly increased the efficacy of the standard of care but are not efficient enough to completely cure all chronically infected patients and their toxicity limits their use in patients with advanced liver disease, co-morbidity or transplant recipients. Because of the host restriction, which is limited to humans and non-human primates, in vivo study of HCV infection has been hampered since its discovery more than 20 years ago. The chimpanzee remains the most physiological model to study the innate and adaptive immune responses, but its use is ethically difficult and is now very restricted and regulated. The development of a small animal model that allows robust HCV infection has been achieved using chimeric liver immunodeficient mice, which are therefore not suitable for studying the adaptive immune responses. Nevertheless, these models allowed to go deeply in the comprehension of virus-host interactions and to assess different therapeutic approaches. The immunocompetent mouse models that were recently established by genetic humanization have shown an interesting improvement concerning the study of the immune responses but are still limited by the absence of the complete robust life cycle of the virus. In this review, we will focus on the relevant available animal models of HCV infection and their usefulness for deciphering the HCV life cycle and virus-induced liver disease, as well as for the development and evaluation of new therapeutics. We will also discuss the perspectives on future immunocompetent mouse models and the hurdles to their development.
Collapse
Affiliation(s)
- Laurent Mailly
- Inserm U1110, Université de Strasbourg Strasbourg, France
| | | | | | | | | |
Collapse
|
228
|
Liang TJ. Current progress in development of hepatitis C virus vaccines. Nat Med 2013; 19:869-78. [PMID: 23836237 PMCID: PMC6263146 DOI: 10.1038/nm.3183] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
Despite major advances in the understanding and treatment of hepatitis C, a preventive vaccine remains elusive. The marked genetic diversity and multiple mechanisms of persistence of hepatitis C virus, combined with the relatively poor immune response of the infected host against the virus, are major barriers. The lack of robust and convenient model systems further hampers the effort to develop an effective vaccine. Advances in our understanding of virus-host interactions and protective immunity in hepatitis C virus infection provide an important roadmap to develop potent and broadly directed vaccine candidates targeting both humoral and cellular immune responses. Multiple approaches to generating and testing viral immunogens have met with variable success. Several candidates have advanced to clinical trials based on promising results in chimpanzees. The ultimate path to a successful preventive vaccine requires comprehensive evaluations of all aspects of protective immunity, innovative application of state-of-the-art vaccine technology and properly designed vaccine trials that can affirm definitive endpoints of efficacy.
Collapse
Affiliation(s)
- T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
229
|
Horner SM, Gale M. Regulation of hepatic innate immunity by hepatitis C virus. Nat Med 2013; 19:879-88. [PMID: 23836238 PMCID: PMC4251871 DOI: 10.1038/nm.3253] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/30/2013] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) is a global public health problem involving chronic infection of the liver, which can cause liver disease and is linked with liver cancer. Viral innate immune evasion strategies and human genetic determinants underlie the transition of acute HCV infection to viral persistence and the support of chronic infection. Host genetic factors, such as sequence polymorphisms in IFNL3, a gene in the host interferon system, can influence both the outcome of the infection and the response to antiviral therapy. Recent insights into how HCV regulates innate immune signaling within the liver reveal a complex interaction of patient genetic background with viral and host factors of innate immune triggering and control that imparts the outcome of HCV infection and immunity.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
230
|
Liu R, Rao H, Wang J, Xie X, Jiang D, Pan X, Zhao P, Zhang H, Wei L. Determination of the human antibody response to the neutralization epitopes encompassing amino acids 313-327 and 432-443 of hepatitis C virus E1E2 glycoproteins. PLoS One 2013; 8:e66872. [PMID: 23826163 PMCID: PMC3691243 DOI: 10.1371/journal.pone.0066872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/13/2013] [Indexed: 12/28/2022] Open
Abstract
It has been reported that monoclonal antibodies (MAbs) to the E1E2 glycoproteins may have the potential to prevent hepatitis C virus (HCV) infection. The protective epitopes targeted by these MAbs have been mapped to the regionsencompassing amino acids 313–327 and 432–443. In this study, we synthesized these two peptides and tested the reactivity of serum samples from 336 patients, 210 of whichwere from Chronic Hepatitis C (CHC) patients infected with diverse HCV genotypes.The remaining 126 samples were isolated from patients who had spontaneously clearedHCV infection.In the chronic HCV-infected group (CHC group), the prevalence of human serum antibodies reactive to epitopes 313–327 and 432–443was 24.29%(51 of 210) and4.76%(10 of 210),respectively. In thespontaneousclearance group (SC group),the prevalence was 0.79%(1 of 126) and 12.70%(16 of 126), respectively.The positive serum samples that contained antibodies reactive to epitope 313–327 neutralizedHCV pseudoparticles (HCVpp) bearing the envelope glycoproteins of genotypes 1a or 1b and/or 4, but genotypes 2a, 3a, 5 and 6 were not neutralized. The neutralizing activity of these serum samples could not be inhibited by peptide 313–327. Six samples (SC17, SC38, SC86, SC92, CHC75 and CHC198) containing antibodies reactive to epitope 432–443 had cross-genotype neutralizing activities. Theneutralizing activityof SC38, SC86, SC92 and CHC75waspartiallyinhibited by peptide 432–443. However,the neutralizing activity of sample SC17 for genotype 4HCVpp and sample CHC198 for genotype 1b HCVppwere notinhibited by the peptide.This study identifies the neutralizing ability of endogenous anti-HCV antibodies and warrants the exploration of antibodies reactive to epitope432–443as sources for future antibody therapies.
Collapse
Affiliation(s)
- Ruyu Liu
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Huiying Rao
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Jianghua Wang
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Xingwang Xie
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Dong Jiang
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Xiaoben Pan
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Henghui Zhang
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Lai Wei
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
231
|
Kared H, Fabre T, Bédard N, Bruneau J, Shoukry NH. Galectin-9 and IL-21 mediate cross-regulation between Th17 and Treg cells during acute hepatitis C. PLoS Pathog 2013; 9:e1003422. [PMID: 23818845 PMCID: PMC3688567 DOI: 10.1371/journal.ppat.1003422] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/30/2013] [Indexed: 12/12/2022] Open
Abstract
Loss of CD4 T cell help correlates with virus persistence during acute hepatitis C virus (HCV) infection, but the underlying mechanism(s) remain unknown. We developed a combined proliferation/intracellular cytokine staining assay to monitor expansion of HCV-specific CD4 T cells and helper cytokines expression patterns during acute infections with different outcomes. We demonstrate that acute resolving HCV is characterized by strong Th1/Th17 responses with specific expansion of IL-21-producing CD4 T cells and increased IL-21 levels in plasma. In contrast, viral persistence was associated with lower frequencies of IL-21-producing CD4 T cells, reduced proliferation and increased expression of the inhibitory receptors T cell immunoglobulin and mucin-domain-containing-molecule-3 (Tim-3), programmed death 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) on HCV-specific CD8 T cells. Progression to persistent infection was accompanied by increased plasma levels of the Tim-3 ligand Galectin-9 (Gal-9) and expansion of Gal-9 expressing regulatory T cells (Tregs). In vitro supplementation of Tim-3(high) HCV-specific CD8 T cells with IL-21 enhanced their proliferation and prevented Gal-9 induced apoptosis. siRNA-mediated knockdown of Gal-9 in Treg cells rescued IL-21 production by HCV-specific CD4 T cells. We propose that failure of CD4 T cell help during acute HCV is partially due to an imbalance between Th17 and Treg cells whereby exhaustion of both CD4 and CD8 T cells through the Tim-3/Gal-9 pathway may be limited by IL-21 producing Th17 cells or enhanced by Gal-9 producing Tregs.
Collapse
Affiliation(s)
- Hassen Kared
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
| | - Thomas Fabre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Departement de médecine familiale, Université de Montréal, Montréal, Québec, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montréal, Québec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
232
|
Russi S, Lauletta G, Serviddio G, Sansonno S, Conteduca V, Sansonno L, De Re V, Sansonno D. T cell receptor variable β gene repertoire in liver and peripheral blood lymphocytes of chronically hepatitis C virus-infected patients with and without mixed cryoglobulinaemia. Clin Exp Immunol 2013; 172:254-62. [PMID: 23574322 DOI: 10.1111/cei.12035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2012] [Indexed: 12/20/2022] Open
Abstract
To characterize the repertoire of T lymphocytes in chronically hepatitis C virus (HCV)-infected patients with and without mixed cryoglobulinaemia (MC). T cell receptor (TCR) variable (V) β clonalities in portal tracts isolated from liver biopsy sections with a laser capture microdissection technique in 30 HCV-positive MC patients were studied by size spectratyping. Complementarity-determining region 3 (CDR3) profiles of liver-infiltrating lymphocytes (LIL) were also compared with those circulating in the blood. The representative results of TCR Vβ by CDR3 were also obtained from liver tissues and peripheral blood lymphocytes (PBL) of 21 chronically HCV-infected patients without MC. LIL were highly restricted, with evidence of TCR Vβ clonotypic expansions in 23 of 30 (77%) and in 15 of 21 (71%) MC and non-MC patients, respectively. The blood compartment contained TCR Vβ expanded clones in 19 (63%) MC and 12 (57%) non-MC patients. The occurrence of LIL clonalities was detected irrespective of the degree of liver damage or circulating viral load, whereas it correlated positively with higher levels of intrahepatic HCV RNA. These results support the notion that TCR Vβ repertoire is clonally expanded in HCV-related MC with features comparable to those found in chronically HCV-infected patients without MC.
Collapse
Affiliation(s)
- S Russi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Guo LY, Jin XP, Niu W, Li XF, Liu BH, Wang YL. Association of XPD and XRCC1 genetic polymorphisms with hepatocellular carcinoma risk. Asian Pac J Cancer Prev 2013; 13:4423-6. [PMID: 23167354 DOI: 10.7314/apjcp.2012.13.9.4423] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIM XRCC1 and XPD are two major repair genes involved in nucleotide excision repair (NER), which is reported to be associated with risk of several cancers. We explored the association of XRCC1 and XPD polymorphisms with the risk of HCC. METHODS A total of 410 cases with HCC and 410 health controls were collected. XRCC1 Arg194Trp, XRCC1 Arg399Gln, XPD Lys751Gln and XPD Asp312Asn genotyping was performed by duplex polymerase-chain-reaction with the confronting-two-pair primer (PCR-CTPP) method. RESULTS XRCC1 194Trp/Trp was strongly significantly associated with an increased risk of HCC cancer when compared with the wide-type genotype (OR=2.26, 95% CI=(1.23-5.38). Individuals carrying the XRCC1 399Gln/ Gln showed increased risk of HCC (OR=1.74, 95%CI=1.06-2.74). The XPD 751Gln/Gln and Gln allele genotype were associated with strong elevated susceptibility to HCC (OR=3.51 and 1.42, respectively). CONCLUSION These results suggest that polymorphisms in XRCC1 and XPD may have functional significance in risk of HCC.
Collapse
Affiliation(s)
- Lian-Yi Guo
- Department of Gastroenterology, The First Affiliated Hospital, Liaoning Medical University, Jinzhou, China
| | | | | | | | | | | |
Collapse
|
234
|
Hajizadeh MR, Mokarram P, Kamali sarvestani E, Bolhassani A, Mostafavi Pour Z. Recombinant Nonstructural 3 Protein, rNS3, of Hepatitis C Virus Along With Recombinant GP96 Induce IL-12, TNFα and α5integrin Expression in Antigen Presenting Cells. HEPATITIS MONTHLY 2013; 13:e8104. [PMID: 24032046 PMCID: PMC3768236 DOI: 10.5812/hepatmon.8104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/06/2013] [Accepted: 03/10/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is the main cause of chronic liver disease and to date there has been no vaccine development to prevent this infection. Among non-structural HCV proteins, NS3 protein is an excellent goal for a therapeutic vaccine, due to its large size and less variation in conserved regions. The immunogenic properties of heat shock proteins (HSPs) for instance GP96 have prompted investigations into their function as strong adjuvant to improve innate and adaptive immunity. OBJECTIVES The aim of this study was to examine additive effects of recombinant GP96 (rGP96) fragments accompanied by rNS3 on expression levels of α5integrin and pro-inflammatory cytokines, IL-12 and TNFα, in Antigen Presenting Cells (APCs). MATERIALS AND METHODS Recombinant viral proteins (rNS3 and rRGD-NS3), N-terminal and C-terminal fragments of GP96 were produced and purified from E. coli in order to treat the cells; mouse spleen Dendritic Cells (DCs) and THP-1 macrophages. RESULTS Our results showed that rNT-GP96 alone significantly increases the expression level of IL-12, TNFα and α5integrin in THP-1 macrophages and DCs, while IL-12 and TNFα expression levels were unaffected by either rNS3 or rRGD-NS3. Interestingly, the co-addition of these recombinant proteins with rNT-GP96 increased IL-12, TNFα and α5integrin expression. Pearson Correlation showed a direct association between α5integrin with IL-12 and TNF-α expression. CONCLUSIONS we have highlighted the role of rNS3 plus rNT-GP96 mediated by α5integrin in producing IL-12 and TNFα. It can be suggested that rNT-GP96 could enhance immunity characteristic of rNS3 protein via production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Mohammad Reza Hajizadeh
- Recombinant Proteins Lab, Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Pooneh Mokarram
- Recombinant Proteins Lab, Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Gastroentrohepatology Research Center, Medical School, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | | | - Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, IR Iran
| | - Zohreh Mostafavi Pour
- Recombinant Proteins Lab, Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Faculty for Advanced Biomedical Sciences, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Zohreh Mostafavi Pour, Recombinant Proteins Lab, Biochemistry Department, Faculty for Advanced Biomedical Sciences, Shiraz University of Medical Sciences, P.O. Box: 71345-1167. Shiraz, IR Iran. Tel: +98-7112303029, Fax: +98-7112303029, E-mail:
| |
Collapse
|
235
|
Claassen MAA, Janssen HLA, Boonstra A. Role of T cell immunity in hepatitis C virus infections. Curr Opin Virol 2013; 3:461-7. [PMID: 23735335 DOI: 10.1016/j.coviro.2013.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/17/2013] [Accepted: 05/10/2013] [Indexed: 12/16/2022]
Abstract
Chronic infections with the hepatitis C virus (HCV) are a major global health issue. Viral replication is restricted to hepatocytes, and occurs for decades at high replication rates. Over the last decade, it became accepted that HCV-specific CD4(+) and CD8(+) T cells are crucial for protective immunity to HCV. However, a characteristic feature of persistent HCV infection is the dysfunctional T cell response, and over recent years enormous progress has been made in understanding the mechanisms that dampen the antiviral T cell responses in blood and liver of chronic HCV patients and also impact disease progression.
Collapse
Affiliation(s)
- Mark A A Claassen
- Liver Unit, Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | |
Collapse
|
236
|
Hepatitis C virus infection induces inflammatory cytokines and chemokines mediated by the cross talk between hepatocytes and stellate cells. J Virol 2013; 87:8169-78. [PMID: 23678168 DOI: 10.1128/jvi.00974-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inflammatory cytokines and chemokines play important roles in inflammation during viral infection. Hepatitis C virus (HCV) is a hepatotropic RNA virus that is closely associated with chronic liver inflammation, fibrosis, and hepatocellular carcinoma. During the progression of HCV-related diseases, hepatic stellate cells (HSCs) contribute to the inflammatory response triggered by HCV infection. However, the underlying molecular mechanisms that mediate HSC-induced chronic inflammation during HCV infection are not fully understood. By coculturing HSCs with HCV-infected hepatocytes in vitro, we found that HSCs stimulated HCV-infected hepatocytes, leading to the expression of proinflammatory cytokines and chemokines such as interleukin-6 (IL-6), IL-8, macrophage inflammatory protein 1α (MIP-1α), and MIP-1β. Moreover, we found that this effect was mediated by IL-1α, which was secreted by HSCs. HCV infection enhanced production of CCAAT/enhancer binding protein (C/EBP) β mRNA, and HSC-dependent IL-1α production contributed to the stimulation of C/EBPβ target cytokines and chemokines in HCV-infected hepatocytes. Consistent with this result, knockdown of mRNA for C/EBPβ in HCV-infected hepatocytes resulted in decreased production of cytokines and chemokines after the addition of HSC conditioned medium. Induction of cytokines and chemokines in hepatocytes by the HSC conditioned medium required a yet to be identified postentry event during productive HCV infection. The cross talk between HSCs and HCV-infected hepatocytes is a key feature of inflammation-mediated, HCV-related diseases.
Collapse
|
237
|
Yue M, Deng X, Zhai X, Xu K, Kong J, Zhang J, Zhou Z, Yu X, Xu X, Liu Y, Zhu D, Zhang Y. Th1 and Th2 cytokine profiles induced by hepatitis C virus F protein in peripheral blood mononuclear cells from chronic hepatitis C patients. Immunol Lett 2013; 152:89-95. [PMID: 23680070 DOI: 10.1016/j.imlet.2013.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/04/2013] [Accepted: 05/05/2013] [Indexed: 12/28/2022]
Abstract
Th1 and Th2 cytokine response has been confirmed to be correlated with the pathogenesis of HCV infection. The aim of the study is to investigate the Th1 and Th2 cytokine profiles induced by HCV alternate reading frame protein (F protein) in chronic hepatitis C patients. We assessed the immune responses specific to HCV F protein in 55 chronic HCV patients. IFN-γ, IL-2, IL-4 and IL-5 secretion by peripheral blood mononuclear cells (PBMC) post F protein stimulation were compared among HCV patients and healthy donors. Finally, the associations between HCV F protein and HLA class II alleles were explored. We found that the seroprevalence of anti-F antibodies in HCV-related hepatocellular carcinoma (HCC) patients was significantly higher than that of patients without HCC, but such a significant difference in humoral immune responses to F protein was not observed in HCV 1b-infected- and non-HCV 1b-infected-patients. Additionally, the PBMC proliferation of HCC patients was significantly lower than that of patients without HCC. Furthermore, F protein stimulation of PBMCs from F-seropositive patients resulted in Th2 biased cytokine responses (significantly decreased IFN-γ and/or IL-2 and significantly increased IL-4 and/or IL-5 levels) that reportedly may contribute to HCC progression and pathogenesis. However, no significant difference in the association between HCV F protein and HLA-DRB1*0201, 0301, 0405, 1001 and HLA-DQB1*0201, 0401, 0502, 0602 was observed in this study. These findings suggest that F protein may contribute to the HCV-associated bias in Th1/Th2 responses of chronic hepatitis C patients including the progress of HCC pathogenesis.
Collapse
Affiliation(s)
- Ming Yue
- School of Life Science and Technology, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat Immunol 2013; 14:603-10. [PMID: 23644506 DOI: 10.1038/ni.2606] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/04/2013] [Indexed: 01/10/2023]
Abstract
During chronic infection, pathogen-specific CD8(+) T cells upregulate expression of molecules such as the inhibitory surface receptor PD-1, have diminished cytokine production and are thought to undergo terminal differentiation into exhausted cells. Here we found that T cells with memory-like properties were generated during chronic infection. After transfer into naive mice, these cells robustly proliferated and controlled a viral infection. The reexpanded T cell populations continued to have the exhausted phenotype they acquired during the chronic infection. Thus, the cells underwent a form of differentiation that was stably transmitted to daughter cells. We therefore propose that during persistent infection, effector T cells stably differentiate into a state that is optimized to limit viral replication without causing overwhelming immunological pathology.
Collapse
|
239
|
Acute hepatitis C in an HIV-infected patient: a case report and review of literature. J Gen Intern Med 2013; 28:734-8. [PMID: 23151989 PMCID: PMC3631075 DOI: 10.1007/s11606-012-2258-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/18/2012] [Accepted: 10/10/2012] [Indexed: 01/14/2023]
Abstract
With the decrease in transmission via transfusions and injection drug use, acute symptomatic hepatitis C is infrequently seen in developed countries. We report a case of a human immunodeficiency virus (HIV)-infected adult who presented with abdominal pain. His alanine aminotransferase was greater than sixty times the upper limit of normal without any evidence on examination of fulminant hepatic failure. His workup revealed an elevated hepatitis C viral level with a negative hepatitis C antibody. He was discharged once his liver function tests improved. As an outpatient, he had a recurrent bout of symptoms with an elevation of his alanine aminotransferase and hepatitis C viral levels that promoted anti-hepatitis C virus treatment. This case illustrates the importance of considering acute hepatitis C as a cause of acute hepatitis in HIV-infected men who have sex with men. While patients with acute symptomatic hepatitis C generally have a higher rate of spontaneous viral clearance compared to those with an insidious acute infection, most still progress to chronic hepatitis C infection, and patients with HIV coinfection carry a higher risk of progression to chronic disease.
Collapse
|
240
|
HCV J6/JFH1 tilts the capability of myeloid-derived dendritic cells to favor the induction of immunosuppression and Th17-related inflammatory cytokines. Pharm Res 2013; 32:741-8. [PMID: 23619596 DOI: 10.1007/s11095-013-1050-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/02/2013] [Indexed: 12/24/2022]
Abstract
PURPOSE How HCV virus affects the function of dendritic cells (DCs) and their ability to induce CD4+ T cell response remains not fully understood. This study was done to elucidate the impact of HCV on the function of DCs and on DC's capability to induce CD4+ T-cell response. METHODS Monocyte-derived DCs (MoDCs) were treated with cell-culture HCV (HCVcc). The effects of HCVcc on DC maturation, CD40L-induced DC maturation, and cytokine production and the capacity of DCs to induce Th cytokine production of allogeneic CD4+ T cells were evaluated. RESULTS HCVcc exposure increased expression of both IL-6 and IL-10 by MoDCs. HCV-exposed MoDCs also selectively facilitated allogeneic CD4+ T cells to further produce Th17-related cytokines interleukin 1 (IL-1), IL-6, and IL-17A. Pretreatment of IL-17A inhibited HCV production in Huh7.5 cells, suggesting that induction of Th17 cells may be beneficial to host anti-HCV immunity. Paradoxically, induction of IL-10 expression and the failure of HCV-exposed MoDCs to facilitate other Th cell development may hinder the anti-viral immunity. CONCLUSIONS This study highlights both the therapeutic potential of IL-17A in treating HCV infection and the cautious consideration of HCV-induced immunosuppression in DC-based therapy.
Collapse
|
241
|
Boesecke C, Wedemeyer H, Rockstroh JK. Diagnosis and treatment of acute hepatitis C virus infection. Infect Dis Clin North Am 2013; 26:995-1010. [PMID: 23083829 DOI: 10.1016/j.idc.2012.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first 6 months after exposure to hepatitis C virus (HCV) are regarded as acute hepatitis C (AHC). Two patient populations worldwide share the highest prevalence of AHC virus infection: injection drug users and HIV-positive men who have sex with men. Diagnosis of AHC is often difficult in both patient populations as the acute inflammatory phase can be clinically asymptomatic and patients at highest risk for acquiring AHC (injection drug users) tend to evade regular medical care. This article addresses similarities and differences in the epidemiology, diagnosis, and management of AHC monoinfection and coinfection.
Collapse
Affiliation(s)
- Christoph Boesecke
- Department of Internal Medicine I, Bonn University Hospital, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | | | | |
Collapse
|
242
|
Cameron B, Galbraith S, Li H, Lloyd A. Correlates and characteristics of hepatitis C virus-specific T-cell immunity in exposed uninfected high-risk prison inmates. J Viral Hepat 2013; 20:e96-106. [PMID: 23490396 DOI: 10.1111/jvh.12016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/01/2012] [Indexed: 01/04/2023]
Abstract
Some hepatitis C (HCV)-uninfected, high-risk individuals have HCV-specific cellular immunity without viraemia or seroconversion. The characteristics of these responses and the risk behavioural associations were studied in 94 subjects in a prospective cohort of recently seronegative prisoners reporting injecting drug use (IDU). Detailed behavioural data were collected. HCV antibody and PCR testing were performed. ELISpot assays for HCV-induced interferon (IFN)-γ and interleukin (IL)-2 production by T lymphocytes, as well as multiplex in vitro cytokine production assays, were performed. Seventy-eight subjects remained antibody and PCR negative and 16 seroconverted. Of the seronegative group, 22 (28%) had IFN-γ ELISpot responses in comparison with 13 of the 16 seroconverters (82%). This seronegative immune status was associated positively with injecting anabolic steroids and negatively with a recent break from IDU. The IFN-γ ELISpot responses involved both CD4 and CD8 T lymphocytes and were comparable in magnitude, but narrower in specificity, in uninfected subjects than in seroconverters. A subset of seronegative subjects had HCV-induced cytokine production patterns comparable with the seroconverters with increased production of IFN-γ, IL-2 and tumour necrosis factor (TNF)-α and reduced IL-10 in response to nonstructural peptides. In conclusion, comparable patterns of HCV-specific cellular immunity are found in recently infected subjects and in a minority of high-risk, uninfected subjects. Further characterization of these responses and their protective efficacy will inform HCV vaccine development.
Collapse
Affiliation(s)
- B Cameron
- Inflammation and Infection Research Centre, School of Medical Sciences, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
243
|
Schmidt J, Blum HE, Thimme R. T-cell responses in hepatitis B and C virus infection: similarities and differences. Emerg Microbes Infect 2013; 2:e15. [PMID: 26038456 PMCID: PMC3630955 DOI: 10.1038/emi.2013.14] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 01/05/2023]
Abstract
Chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection are global health problems affecting 600 million people worldwide. Indeed, HBV and HCV are hepatotropic viruses that can cause acute and chronic liver disease progressing to liver cirrhosis and even hepatocellular carcinoma. Furthermore, co-infections of HBV and HCV with HIV are emerging worldwide. These co-infections are even more likely to develop persistent infection and are difficult to treat. There is growing evidence that virus-specific CD4+ and CD8+ T-cell responses play a central role in the outcome and pathogenesis of HBV and HCV infection. While virus-specific T-cell responses are able to successfully clear the virus in a subpopulation of patients, failure of these T-cell responses is associated with the development of viral persistence. In this review article, we will discuss similarities and differences in HBV- and HCV-specific T-cell responses that are central in determining viral clearance, persistence and liver disease.
Collapse
Affiliation(s)
- Julia Schmidt
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| | - Hubert E Blum
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| |
Collapse
|
244
|
Methods for monitoring gene gun-induced HBV- and HCV-specific immune responses in mouse models. Methods Mol Biol 2013; 940:239-67. [PMID: 23104348 DOI: 10.1007/978-1-62703-110-3_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The hepatitis B and C viruses (HBV/HCV) are major causes for chronic liver disease globally. For HBV new antiviral compounds can suppress the viral replication for years, but off-therapy responses are rare. Current therapies based on interferon and ribavirin can cure 45-85% of the treated HCV-infected patients largely depending on the viral genotype. New regimens including protease inhibitors will be introduced during 2011 and these will increase the cure rates for the hardest to treat HCV genotype 1 from 45 to 65%. Here a major need is to replace the immunomodulatory effects of interferon and/or ribavirin. Thus, therapeutic vaccines have a place in both chronic HBV and HCV infection. Unfortunately, none of these viruses can infect mice whereby substitute models are needed. We have used several types of murine models to predict the clinical efficacy of therapeutic vaccines for chronic HBV and HCV infections. In this chapter we describe transdermal delivery of genetic vaccines using the Helios Gene Gun device. A central role is that the model should have generally functional immune response, but with selective defects towards HBV and/or HCV. Thus, mice with stable integrated transgenes are useful. However, as a simple model to study the hepatic entry and functionality of a HBV- and/or HCV-specific immune responses other models are needed, where a killed transgenic hepatocyte is replaced by a healthy non-transgenic hepatocyte. Here we can effectively apply a technique termed hydrodynamic injection, which makes 10-30% of hepatocytes transiently transgenic for any plasmid. Within this chapter the methods used to characterize transiently transgenic mice are described. The main methods are the hydrodynamic injection technique, detection of transgene expression by immuno-precipitation, western blot, and immunohistochemistry. Finally, the in vivo functionality of T cells can be determined by using stably transfected syngeneic tumor cell lines expressing HBV and/or HCV proteins. The tumor challenge model enables studies of in vivo T cell function, whereas the cytotoxicity assay is used to determine T cell function in vitro. Overall, these models effectively reveal the efficiency by which various vaccine technologies, including biolistic DNA vaccination can kill the "infected" hepatocyte.
Collapse
|
245
|
Hepatitis C virus adaptation to T-cell immune pressure. ScientificWorldJournal 2013; 2013:673240. [PMID: 23554569 PMCID: PMC3608127 DOI: 10.1155/2013/673240] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/17/2013] [Indexed: 01/07/2023] Open
Abstract
Replication of the hepatitis C virus (HCV) is an error-prone process. This high error rate results in the emergence of viral populations (quasispecies) within hosts and contributes to interhost variability. Numerous studies have demonstrated that both viral and host factors contribute to this viral diversity, which can ultimately affect disease outcome. As the host's immune response is an important correlate of infection outcome for HCV, many of these viral variations are strongly influenced by T-cell immune pressure and accordingly constitute an efficient strategy to subvert such pressures (viral adaptations). This paper will review the data on viral diversity observed between and within hosts infected with HCV from the acute to the chronic stage of infection and will focus on viral adaptation to the host's T-cell immune response.
Collapse
|
246
|
Hikita H, Nakagawa H, Tateishi R, Masuzaki R, Enooku K, Yoshida H, Omata M, Soroida Y, Sato M, Gotoh H, Suzuki A, Iwai T, Yokota H, Koike K, Yatomi Y, Ikeda H. Perihepatic lymph node enlargement is a negative predictor of liver cancer development in chronic hepatitis C patients. J Gastroenterol 2013; 48:366-73. [PMID: 22790352 DOI: 10.1007/s00535-012-0635-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Perihepatic lymph node enlargement (PLNE) is a common ultrasound finding in chronic hepatitis C patients. Although PLNE is considered to reflect the inflammatory response to hepatitis C virus (HCV), its clinical significance remains unclear. METHODS Between December 2004 and June 2005, we enrolled 846 chronic hepatitis C patients in whom adequate ultrasound examinations had been performed. PLNE was defined as a perihepatic lymph node that was at least 1 cm in the longest axis by ultrasonography. We analyzed the clinical features of patients with PLNE and prospectively investigated the association between PLNE and hepatocellular carcinoma (HCC) development. RESULTS We detected PLNE in 169 (20.0%) patients. Female sex, lower body mass index (BMI), and HCV serotype 1 were independently associated with the presence of PLNE. However, there were no significant differences in liver function tests, liver stiffness, and hepatitis C viral loads between patients with and without PLNE. During the follow-up period (mean 4.8 years), HCC developed in 121 patients. Unexpectedly, patients with PLNE revealed a significantly lower risk of HCC development than those without PLNE (p = 0.019, log rank test). Multivariate analysis revealed that the presence of PLNE was an independent negative predictor of HCC development (hazard ratio 0.551, p = 0.042). In addition, the sustained viral response rate in patients who received interferon (IFN) therapy was significantly lower in patients with PLNE than in patients without PLNE. CONCLUSIONS Patients with PLNE had a lower risk of HCC development than those without PLNE. This study may provide new insights into daily clinical practice and the pathophysiology of HCV-induced hepatitis and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hiromi Hikita
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Qian F, Bolen CR, Jing C, Wang X, Zheng W, Zhao H, Fikrig E, Bruce RD, Kleinstein SH, Montgomery RR. Impaired toll-like receptor 3-mediated immune responses from macrophages of patients chronically infected with hepatitis C virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:146-55. [PMID: 23220997 PMCID: PMC3571267 DOI: 10.1128/cvi.00530-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/23/2012] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) is the most common chronic blood-borne infection in the United States, with the majority of patients becoming chronically infected and a subset (20%) progressing to cirrhosis and hepatocellular carcinoma. Individual variations in immune responses may help define successful resistance to infection with HCV. We have compared the immune response in primary macrophages from patients who have spontaneously cleared HCV (viral load negative [VL-], n = 37) to that of primary macrophages from HCV genotype 1 chronically infected (VL+) subjects (n = 32) and found that macrophages from VL- subjects have an elevated baseline expression of Toll-like receptor 3 (TLR3). Macrophages from HCV patients were stimulated ex vivo through the TLR3 pathway and assessed using gene expression arrays and pathway analysis. We found elevated TLR3 response genes and pathway activity from VL- subjects. Furthermore, macrophages from VL- subjects showed higher production of beta interferon (IFN-β) and related IFN response genes by quantitative PCR (Q-PCR) and increased phosphorylation of STAT-1 by immunoblotting. Analysis of polymorphisms in TLR3 revealed a significant association of intronic TLR3 polymorphism (rs13126816) with the clearance of HCV and the expression of TLR3. Of note, peripheral blood mononuclear cells (PBMCs) from the same donors showed opposite changes in gene expression, suggesting ongoing inflammatory responses in PBMCs from VL+ HCV patients. Our results suggest that an elevated innate immune response enhances HCV clearance mechanisms and may offer a potential therapeutic approach to increase viral clearance.
Collapse
Affiliation(s)
| | | | | | | | - Wei Zheng
- W. M. Keck Biotechnology Resource Laboratory
| | - Hongyu Zhao
- W. M. Keck Biotechnology Resource Laboratory
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine
- The Howard Hughes Medical Institute
| | | | - Steven H. Kleinstein
- Department of Pathology
- Interdepartmental Program in Computational Biology and Bioinformatics
| | | |
Collapse
|
248
|
Shi C, Ploss A. Hepatitis C virus vaccines in the era of new direct-acting antivirals. Expert Rev Gastroenterol Hepatol 2013; 7:171-85. [PMID: 23363265 DOI: 10.1586/egh.12.72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is a major global health problem as it has a high propensity for establishing chronicity. Chronic HCV carriers are at risk of developing severe liver disease including fibrosis, cirrhosis and liver cancer. While treatment has considerably improved over the years, therapy is still only partially effective, and is plagued by side effects, which contribute to treatment failure and is expensive to manage. The drug development pipeline contains several compounds that hold promise to achieve the goal of a short and more tolerable therapy, and are also likely to improve treatment response rates. It remains to be seen, however, how potent antiviral drug cocktails will affect the hepatitis C burden worldwide. In resource-poor environments, considerable costs, inadequate infrastructure for medical supervision and distribution may diminish the impact of future therapies. Consequently, development of novel therapeutic and prophylactic strategies is imperative to contain HCV infection globally.
Collapse
Affiliation(s)
- Chao Shi
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
249
|
Cai W, Qin A, Guo P, Yan D, Hu F, Yang Q, Xu M, Fu Y, Zhou J, Tang X. Clinical Significance and Functional Studies of Myeloid-Derived Suppressor Cells in Chronic Hepatitis C Patients. J Clin Immunol 2013; 33:798-808. [DOI: 10.1007/s10875-012-9861-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/28/2012] [Indexed: 01/03/2023]
|
250
|
Holmström F, Pasetto A, Nähr V, Brass A, Kriegs M, Hildt E, Broderick KE, Chen M, Ahlén G, Frelin L. A synthetic codon-optimized hepatitis C virus nonstructural 5A DNA vaccine primes polyfunctional CD8+ T cell responses in wild-type and NS5A-transgenic mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:1113-24. [PMID: 23284053 DOI: 10.4049/jimmunol.1201497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hepatitis C virus (HCV) nonstructural (NS) 5A protein has been shown to promote viral persistence by interfering with both innate and adaptive immunity. At the same time, the HCV NS5A protein has been suggested as a target for antiviral therapy. In this study, we performed a detailed characterization of HCV NS5A immunogenicity in wild-type (wt) and immune tolerant HCV NS5A-transgenic (Tg) C57BL/6J mice. We evaluated how efficiently HCV NS5A-based genetic vaccines could activate strong T cell responses. Truncated and full-length wt and synthetic codon-optimized NS5A genotype 1b genes were cloned into eukaryotic expression plasmids, and the immunogenicity was determined after i.m. immunization in combination with in vivo electroporation. The NS5A-based genetic vaccines primed high Ab levels, with IgG titers of >10(4) postimmunization. With respect to CD8(+) T cell responses, the coNS5A gene primed more potent IFN-γ-producing and lytic cytotoxic T cells in wt mice compared with NS5A-Tg mice. In addition, high frequencies of NS5A-specific CD8(+) T cells were found in wt mice after a single immunization. To test the functionality of the CTL responses, the ability to inhibit growth of NS5A-expressing tumor cells in vivo was analyzed after immunization. A single dose of coNS5A primed tumor-inhibiting responses in both wt and NS5A-Tg mice. Finally, immunization with the coNS5A gene primed polyfunctional NS5A-specific CD8(+) T cell responses. Thus, the coNS5A gene is a promising therapeutic vaccine candidate for chronic HCV infections.
Collapse
Affiliation(s)
- Fredrik Holmström
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|