201
|
Dutta Gupta S, Bommaka MK, Banerjee A. Inhibiting protein-protein interactions of Hsp90 as a novel approach for targeting cancer. Eur J Med Chem 2019; 178:48-63. [PMID: 31176095 DOI: 10.1016/j.ejmech.2019.05.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 12/26/2022]
Abstract
The ninety kilo Dalton molecular weight heat shock protein (Hsp90) is an attractive target for the discovery of novel anticancer agents. Several strategies have been employed for the development of inhibitors against this polypeptide. The most successful strategy is targeting the N-terminal ATP binding region of the chaperone. However, till date not a single molecule reached Phase-IV of clinical trials from this class of Hsp90 inhibitors. The other approach is to target the Cterminal region of the protein. The success with this approach has been limited due to lack of well-defined ligand binding pocket in this terminal. The other promising strategy is to prevent the interaction of client proteins/co-chaperones with Hsp90 protein, i.e., protein-protein interaction inhibitors of Hsp90. The review focuses on advantage of this approach along with the recent advances in the discovery of inhibitors by following this strategy. Additionally, the biology of the client protein/co-chaperone binding site of Hsp90 is also discussed.
Collapse
Affiliation(s)
- Sayan Dutta Gupta
- Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Osmania University, Hyderabad, India.
| | - Manish Kumar Bommaka
- Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Osmania University, Hyderabad, India; School of Chemistry, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
202
|
Intermolecular Interactions between Hsp90 and Hsp70. J Mol Biol 2019; 431:2729-2746. [PMID: 31125567 DOI: 10.1016/j.jmb.2019.05.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022]
Abstract
Members of the Hsp90 and Hsp70 families of molecular chaperones are imp\ortant for the maintenance of protein homeostasis and cellular recovery following environmental stresses, such as heat and oxidative stress. Moreover, the two chaperones can collaborate in protein remodeling and activation. In higher eukaryotes, Hsp90 and Hsp70 form a functionally active complex with Hop (Hsp90-Hsp70 organizing protein) acting as a bridge between the two chaperones. In bacteria, which do not contain a Hop homolog, Hsp90 and Hsp70, DnaK, directly interact during protein remodeling. Although yeast possesses a Hop-like protein, Sti1, Hsp90, and Hsp70 can directly interact in yeast in the absence of Sti1. Previous studies showed that residues in the middle domain of Escherichia coli Hsp90 are important for interaction with the J-protein binding region of DnaK. The results did not distinguish between the possibility that (i) these sites were involved in direct interaction and (ii) the residues in these sites participate in conformational changes which are transduced to other sites on Hsp90 and DnaK that are involved in the direct interaction. Here we show by crosslinking experiments that the direct interaction is between a site in the middle domain of Hsp90 and the J-protein binding site of Hsp70 in both E. coli and yeast. Moreover, J-protein promotes the Hsp70-Hsp90 interaction in the presence of ATP, likely by converting Hsp70 into the ADP-bound conformation. The identification of the protein-protein interaction site is anticipated to lead to a better understanding of the collaboration between the two chaperones in protein remodeling.
Collapse
|
203
|
Cheng L, Yuan B, Ying S, Niu C, Mai H, Guan X, Yang X, Teng Y, Lin J, Huang J, Jin R, Wu J, Liu B, Chang S, Wang E, Zhang C, Hou N, Cheng X, Xu D, Yang X, Gao S, Ye Q. PES1 is a critical component of telomerase assembly and regulates cellular senescence. SCIENCE ADVANCES 2019; 5:eaav1090. [PMID: 31106266 PMCID: PMC6520020 DOI: 10.1126/sciadv.aav1090] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
Telomerase defers the onset of telomere shortening and cellular senescence by adding telomeric repeat DNA to chromosome ends, and its activation contributes to carcinogenesis. Telomerase minimally consists of the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR). However, how telomerase assembles is largely unknown. Here, we demonstrate that PES1 (Pescadillo), a protein overexpressed in many cancers, forms a complex with TERT and TR through direct interaction with TERT, regulating telomerase activity, telomere length maintenance, and senescence. PES1 does not interact with the previously reported telomerase components Reptin, Pontin, p23, and Hsp90. PES1 facilitates telomerase assembly by promoting direct interaction between TERT and TR without affecting TERT and TR levels. PES1 expression correlates positively with telomerase activity and negatively with senescence in patients with breast cancer. Thus, we identify a previously unknown telomerase complex, and targeting PES1 may open a new avenue for cancer therapy.
Collapse
Affiliation(s)
- Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Bin Yuan
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sunyang Ying
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Chang Niu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongxu Mai
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Xin Guan
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Xiaohui Yang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100048, China
| | - Junjian Huang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Rui Jin
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shaohong Chang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Enqun Wang
- Department of Stomatology, Anqing Municipal Hospital of Anhui Medical University, Anqing, Anhui 246003, China
| | - Chunxia Zhang
- Department of Stomatology, Anqing Municipal Hospital of Anhui Medical University, Anqing, Anhui 246003, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Danyang Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Corresponding author. (Q.Y.); (S.G.); (X.Y.)
| | - Shan Gao
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Corresponding author. (Q.Y.); (S.G.); (X.Y.)
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Corresponding author. (Q.Y.); (S.G.); (X.Y.)
| |
Collapse
|
204
|
Luo A, Li X, Zhang X, Zhan H, Du H, Zhang Y, Peng X. Identification of AtHsp90.6 involved in early embryogenesis and its structure prediction by molecular dynamics simulations. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190219. [PMID: 31218061 PMCID: PMC6550000 DOI: 10.1098/rsos.190219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/02/2019] [Indexed: 05/29/2023]
Abstract
Heat-shock protein of 90 kDa (Hsp90) is a key molecular chaperone involved in folding the synthesized protein and controlling protein quality. Conformational dynamics coupled to ATPase activity in N-terminal domain is essential for Hsp90's function. However, the relevant process is still largely unknown in plant Hsp90s, especially those required for plant embryogenesis which is inextricably tied up with human survival. Here, AtHsp90.6, a member of Hsp90 family in Arabidopsis, was firstly identified as a protein essential for embryogenesis. Thus we modelled AtHsp90.6 in its functionally closed 'lid-down' and open 'lid-up' states, exploring the nucleotide binding mechanism in these two states. Free energy landscape and electrostatic potential analysis revealed the switching mechanism between these two states. Collectively, this study quantitatively analysed the conformational changes of AtHsp90.6 bound to ATP or ADP. This result may help us understand the mechanism of action of AtHsp90.6 in future.
Collapse
Affiliation(s)
- An Luo
- College of Life Science, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Xinbo Li
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, People's Republic of China
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430072, People's Republic of China
| | - Xuecheng Zhang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, People's Republic of China
| | - Huadong Zhan
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Yubo Zhang
- Department of Food Science, Foshan University, Foshan 528231, People's Republic of China
| | - Xiongbo Peng
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
205
|
Schopf FH, Huber EM, Dodt C, Lopez A, Biebl MM, Rutz DA, Mühlhofer M, Richter G, Madl T, Sattler M, Groll M, Buchner J. The Co-chaperone Cns1 and the Recruiter Protein Hgh1 Link Hsp90 to Translation Elongation via Chaperoning Elongation Factor 2. Mol Cell 2019; 74:73-87.e8. [PMID: 30876805 DOI: 10.1016/j.molcel.2019.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/17/2018] [Accepted: 02/07/2019] [Indexed: 12/31/2022]
Abstract
The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein. We demonstrate that Cns1 is important for maintaining translation elongation, specifically chaperoning the elongation factor eEF2. In this context, Cns1 interacts with the novel co-factor Hgh1 and forms a quaternary complex together with eEF2 and Hsp90. The in vivo folding and solubility of eEF2 depend on the presence of these proteins. Chaperoning of eEF2 by Cns1 is essential for yeast viability and requires a defined subset of the Hsp90 machinery as well as the identified eEF2 recruiting factor Hgh1.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Christopher Dodt
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Abraham Lopez
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Daniel A Rutz
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Moritz Mühlhofer
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Gesa Richter
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Michael Sattler
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
206
|
Hsp90 Mediates Membrane Deformation and Exosome Release. Mol Cell 2019; 71:689-702.e9. [PMID: 30193096 DOI: 10.1016/j.molcel.2018.07.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Abstract
Hsp90 is an essential chaperone that guards proteome integrity and amounts to 2% of cellular protein. We now find that Hsp90 also has the ability to directly interact with and deform membranes via an evolutionarily conserved amphipathic helix. Using a new cell-free system and in vivo measurements, we show this amphipathic helix allows exosome release by promoting the fusion of multivesicular bodies (MVBs) with the plasma membrane. We dissect the relationship between Hsp90 conformation and membrane-deforming function and show that mutations and drugs that stabilize the open Hsp90 dimer expose the helix and allow MVB fusion, while these effects are blocked by the closed state. Hence, we structurally separated the Hsp90 membrane-deforming function from its well-characterized chaperone activity, and we show that this previously unrecognized function is required for exosome release.
Collapse
|
207
|
Lee BL, Rashid S, Wajda B, Wolmarans A, LaPointe P, Spyracopoulos L. The Hsp90 Chaperone: 1H and 19F Dynamic Nuclear Magnetic Resonance Spectroscopy Reveals a Perfect Enzyme. Biochemistry 2019; 58:1869-1877. [PMID: 30869872 DOI: 10.1021/acs.biochem.9b00144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hsp90 is a crucial chaperone whose ATPase activity is fundamental for stabilizing and activating a diverse array of client proteins. Binding and hydrolysis of ATP by dimeric Hsp90 drive a conformational cycle characterized by fluctuations between a compact, N- and C-terminally dimerized catalytically competent closed state and a less compact open state that is largely C-terminally dimerized. We used 19F and 1H dynamic nuclear magnetic resonance (NMR) spectroscopy to study the opening and closing kinetics of Hsp90 and to determine the kcat for ATP hydrolysis. We derived a set of coupled ordinary differential equations describing the rate laws for the Hsp90 kinetic cycle and used these to analyze the NMR data. We found that the kinetics of closing and opening for the chaperone are slow and that the lower limit for kcat of ATP hydrolysis is ∼1 s-1. Our results show that the chemical step is optimized and that Hsp90 is indeed a "perfect" enzyme.
Collapse
Affiliation(s)
- Brian L Lee
- Department of Biochemistry , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Suad Rashid
- Department of Biochemistry , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Benjamin Wajda
- Department of Biochemistry , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Annemarie Wolmarans
- Department of Cell Biology , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Paul LaPointe
- Department of Cell Biology , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Leo Spyracopoulos
- Department of Biochemistry , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
208
|
D'Ambola M, Fiengo L, Chini MG, Cotugno R, Bader A, Bifulco G, Braca A, De Tommasi N, Dal Piaz F. Fusicoccane Diterpenes from Hypoestes forsskaolii as Heat Shock Protein 90 (Hsp90) Modulators. JOURNAL OF NATURAL PRODUCTS 2019; 82:539-549. [PMID: 30839211 DOI: 10.1021/acs.jnatprod.8b00924] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ten new (1-10) and six known (11-16) fusicoccane diterpenes were isolated from the roots of Hypoestes forsskaolii. The structural characterization of 1-10 was performed by spectroscopic analysis, including 1D and 2D NMR, ECD, and HRESIMS experiments. From a perspective of obtaining potential Hsp90α inhibitors, the isolates were screened by surface plasmon resonance measurements and their cytotoxic activity was assayed using Jurkat and HeLa cancer cells. Compound 6, 18-hydroxyhypoestenone, was shown to be the most active compound against Hsp90, and its interactions were studied also by biochemical and cellular assays and by molecular docking.
Collapse
Affiliation(s)
- Massimiliano D'Ambola
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Lorenzo Fiengo
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Maria Giovanna Chini
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Roberta Cotugno
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Giuseppe Bifulco
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Alessandra Braca
- Dipartimento di Farmacia , Università di Pisa , Via Bonanno 33 , 56126 Pisa , Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" , Università di Pisa , Via del Borghetto 80 , 56124 Pisa , Italy
| | - Nunziatina De Tommasi
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| | - Fabrizio Dal Piaz
- Dipartimento di Farmacia , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana" , Università degli Studi di Salerno , Via Giovanni Paolo II 132 , 84084 Fisciano ( SA ), Italy
| |
Collapse
|
209
|
Mercier R, Wolmarans A, Schubert J, Neuweiler H, Johnson JL, LaPointe P. The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation. Nat Commun 2019; 10:1273. [PMID: 30894538 PMCID: PMC6426937 DOI: 10.1038/s41467-019-09299-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/01/2019] [Indexed: 01/19/2023] Open
Abstract
Hsp90 is a dimeric molecular chaperone that is essential for the folding and activation of hundreds of client proteins. Co-chaperone proteins regulate the ATP-driven Hsp90 client activation cycle. Aha-type co-chaperones are the most potent stimulators of the Hsp90 ATPase activity but the relationship between ATPase regulation and in vivo activity is poorly understood. We report here that the most strongly conserved region of Aha-type co-chaperones, the N terminal NxNNWHW motif, modulates the apparent affinity of Hsp90 for nucleotide substrates. The ability of yeast Aha-type co-chaperones to act in vivo is ablated when the N terminal NxNNWHW motif is removed. This work suggests that nucleotide exchange during the Hsp90 functional cycle may be more important than rate of catalysis.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Annemarie Wolmarans
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jonathan Schubert
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, 97074, Germany
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, 97074, Germany
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844, USA
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
210
|
Dai J, Chen A, Zhu M, Qi X, Tang W, Liu M, Li D, Gu Q, Li J. Penicisulfuranol A, a novel C-terminal inhibitor disrupting molecular chaperone function of Hsp90 independent of ATP binding domain. Biochem Pharmacol 2019; 163:404-415. [PMID: 30857829 DOI: 10.1016/j.bcp.2019.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022]
Abstract
The goal of this study is to explore the mechanism of a heat shock protein 90 (Hsp90) C-terminal inhibitor, Penicisulfuranol A (PEN-A), for cancer therapy. PEN-A was produced by a mangrove endophytic fungus Penicillium janthinellum and had a new structure with a rare 3H-spiro [benzofuran-2, 2'-piperazine] ring system. PEN-A caused depletion of multiple Hsp90 client proteins without induction of heat shock protein 70 (Hsp70). Subsequently, it induced apoptosis and inhibited xerograph tumor growth of HCT116 cells in vitro and in vivo. Mechanism studies showed that PEN-A was bound to C-terminus of Hsp90 at the binding site different from ATP binding domain. Therefore, it inhibited dimerization of Hsp90 C-terminus, depolymerization of ADH protein by C-terminus of Hsp90, and interaction of co-chaperones with Hsp90. These inhibitory effects of PEN-A were similar to those of novobiocin, an inhibitor binding to interaction site for ATP of C-terminus of Hsp90. Furthermore, our study revealed that disulfide bond was essential moiety for inhibition activity of PEN-A on Hsp90. This suggested that PEN-A may be bound to cysteine residues near amino acid region which was responsible for dimerization of Hsp90. All results indicate that PEN-A is a novel C-terminal inhibitor of Hsp90 and worthy for further study in the future not only for drug development but also for unraveling the bioactivities of Hsp90.
Collapse
Affiliation(s)
- Jiajia Dai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ao Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Meilin Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Wei Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, PR China.
| |
Collapse
|
211
|
Bassanini I, D'Annessa I, Costa M, Monti D, Colombo G, Riva S. Chemo-enzymatic synthesis of (E)-2,3-diaryl-5-styryl-trans-2,3-dihydrobenzofuran-based scaffolds and their in vitro and in silico evaluation as a novel sub-family of potential allosteric modulators of the 90 kDa heat shock protein (Hsp90). Org Biomol Chem 2019; 16:3741-3753. [PMID: 29722782 DOI: 10.1039/c8ob00644j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we propose a facile, versatile and selective chemo-enzymatic synthesis of substituted (E)-2,3-diaryl-5-styryl-trans-2,3-dihydrobenzofurans based on the exploitation of the laccase-mediated oxidative (homo)coupling of (E)-4-styrylphenols. Thanks to this novel synthetic strategy, a library of benzofuran-based potential allosteric activators of the Heat shock protein 90 (Hsp90) was easily prepared. Moreover, considering their structural analogies to previously reported allosteric modulators, the sixteen new compounds synthesized in this work were tested in vitro for their potential stimulatory action on the ATPase activity of the molecular chaperone Hsp90. Combining experimental and computational results, we propose a mechanism of action for these compounds, and expand the structure-activity relationship (SAR) information available for benzofuran-based Hsp90 activators.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, 20131, Italy.
| | | | | | | | | | | |
Collapse
|
212
|
Hsieh CC, Shen CH. The Potential of Targeting P53 and HSP90 Overcoming Acquired MAPKi-Resistant Melanoma. Curr Treat Options Oncol 2019; 20:22. [PMID: 30778775 DOI: 10.1007/s11864-019-0622-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OPINION STATEMENT Melanoma is the deadliest form of skin cancer worldwide. The rising melanoma incidence and mortality, along with its high propensity for metastasis highlights the urgency to identify more effective therapeutic targets. Approximately, one half of advanced melanoma bears a mutation in the BRAF gene that makes BRAF as an important therapeutic target. Significant clinical benefit is associated with BRAF and MEK inhibitors (MAPKi) on targeting patients with BRAF V600 mutations. However, the frequent and rapid development of acquired resistance still is the major challenge facing the melanoma. Several mechanisms by which melanoma passes the inhibitory effects of MAPKi have been characterized and clinically translated, but additional alternations of genetic and epigenetic regulators outside of MAPK and/or AKT networks occurs in a quarter of patients with acquired MAPKi resistance. These studies implicate that targeting signaling networks external MAPK or AKT pathways is critical. In this review, we will focus on two approaches that are under evaluating for targeting melanoma: (1) against genome instability by p53 network restoration and (2) disrupt cancer proteome by chaperone inhibition.
Collapse
Affiliation(s)
- Chi-Che Hsieh
- National Institute of Cancer Research, National Health Research Institutes, No.367, Sheng-Li Rd., North Dist., 70456, Tainan, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, No.367, Sheng-Li Rd., North Dist., 70456, Tainan, Taiwan.
| |
Collapse
|
213
|
Nanometer-accuracy distance measurements between fluorophores at the single-molecule level. Proc Natl Acad Sci U S A 2019; 116:4275-4284. [PMID: 30770448 PMCID: PMC6410877 DOI: 10.1073/pnas.1815826116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Measurements of macromolecular shapes provide insight into the mechanism of molecular machines. Distance measurements at the scale of biological macromolecules are often pursued by single-molecule fluorescence techniques. However, while single-molecule Förster resonance energy transfer can estimate distances of less than 8 nm, distances on the scale of 8 to 25 nm are difficult to determine. Here, we report two-color fluorescent distance measurement techniques capable of determining distances with ∼1-nm accuracy over a wide range of length scales. These methods can be implemented in high throughput on commonly available microscopes. As an example of their utility, we used our methods to uncover an unexpected conformational change in the antiparallel coiled-coil stalk of the dynein motor domain in different nucleotide states. Light microscopy is a powerful tool for probing the conformations of molecular machines at the single-molecule level. Single-molecule Förster resonance energy transfer can measure intramolecular distance changes of single molecules in the range of 2 to 8 nm. However, current superresolution measurements become error-prone below 25 nm. Thus, new single-molecule methods are needed for measuring distances in the 8- to 25-nm range. Here, we describe methods that utilize information about localization and imaging errors to measure distances between two different color fluorophores with ∼1-nm accuracy at distances >2 nm. These techniques can be implemented in high throughput using a standard total internal reflection fluorescence microscope and open-source software. We applied our two-color localization method to uncover an unexpected ∼4-nm nucleotide-dependent conformational change in the coiled-coil “stalk” of the motor protein dynein. We anticipate that these methods will be useful for high-accuracy distance measurements of single molecules over a wide range of length scales.
Collapse
|
214
|
Modulation of Human Hsp90α Conformational Dynamics by Allosteric Ligand Interaction at the C-Terminal Domain. Sci Rep 2019; 9:1600. [PMID: 30733455 PMCID: PMC6367426 DOI: 10.1038/s41598-018-35835-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Recent years have seen heat shock protein 90 kDa (Hsp90) attract significant interest as a viable drug target, particularly for cancer. To date, designed inhibitors that target the ATPase domain demonstrate potent anti-proliferative effects, but have failed clinical trials due to high levels of associated toxicity. To circumvent this, the focus has shifted away from the ATPase domain. One option involves modulation of the protein through allosteric activation/inhibition. Here, we propose a novel approach: we use previously obtained information via residue perturbation scanning coupled with dynamic residue network analysis to identify allosteric drug targeting sites for inhibitor docking. We probe the open conformation of human Hsp90α for druggable sites that overlap with these allosteric control elements, and identify three putative natural compound allosteric modulators: Cephalostatin 17, 20(29)-Lupene-3β-isoferulate and 3'-Bromorubrolide F. We assess the allosteric potential of these ligands by examining their effect on the conformational dynamics of the protein. We find evidence for the selective allosteric activation and inhibition of Hsp90's conformational transition toward the closed state in response to ligand binding and shed valuable insight to further the understanding of allosteric drug design and Hsp90's complex allosteric mechanism of action.
Collapse
|
215
|
Li P, Wang J, Zou Y, Sun Z, Zhang M, Geng Z, Xu W, Wang D. Interaction of Hsp90AA1 with phospholipids stabilizes membranes under stress conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:457-465. [DOI: 10.1016/j.bbamem.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 01/29/2023]
|
216
|
Hiller S. Chaperone-Bound Clients: The Importance of Being Dynamic. Trends Biochem Sci 2019; 44:517-527. [PMID: 30611607 DOI: 10.1016/j.tibs.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
Several recent atomic-resolution studies have resolved how chaperones interact with their client proteins. In some cases, molecular chaperones recognize and bind their clients in conformational ensembles that are locally highly dynamic and interconvert, while in other cases clients bind in unique conformations. The presence of a locally dynamic client ensemble state has important consequences, both for the interpretation of experimental data and for the functionality of chaperones, as local dynamics facilitate rapid client release, folding on and from the chaperone surface, and client recognition without shape complementarity. Facilitated by the local dynamics, at least some chaperones appear to specifically recognize energetically frustrated sites of partially folded client proteins, such that the release of frustration contributes to the interaction affinity.
Collapse
|
217
|
Ghosh A, Stuehr DJ. Hsp90 and Its Role in Heme-Maturation of Client Proteins: Implications for Human Diseases. HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
218
|
Galigniana MD. HSP90-Based Heterocomplex as Essential Regulator for Cancer Disease. HEAT SHOCK PROTEINS 2019:19-45. [DOI: 10.1007/978-3-030-23158-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
219
|
Synoradzki K, Miszta P, Kazlauskas E, Mickevičiūtė A, Michailovienė V, Matulis D, Filipek S, Bieganowski P. Interaction of the middle domains stabilizes Hsp90α dimer in a closed conformation with high affinity for p23. Biol Chem 2018; 399:337-345. [PMID: 29337688 DOI: 10.1515/hsz-2017-0172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/14/2017] [Indexed: 01/10/2023]
Abstract
The human genome encodes two highly similar cytosolic Hsp90 proteins called isoforms Hsp90α and Hsp90β. Of the 300 client proteins for Hsp90 identified so far only a handful interact specifically with one Hsp90 isoform. Here we report for the first time that Hsp90 cochaperone p23 binds preferentially to Hsp90α and that this interaction is mediated by the middle domain of Hsp90α. Based on the homology modeling, we infer that the middle domains in the Hsp90α dimer bind stronger with each other than in the Hsp90β dimer. Therefore, compared to Hsp90β, Hsp90α may adopt closed conformation more easily. Hsp90 interacts with p23 in the closed conformation. Hsp90α binds human recombinant p23 about three times stronger than Hsp90β but with significantly smaller exothermic enthalpy as determined by isothermal titration calorimetry of direct binding between the purified proteins. As p23 binds to Hsp90 in a closed conformation, stabilization of the Hsp90α dimer in the closed conformation by its middle domains explains preference of p23 to this Hsp90 isoform.
Collapse
Affiliation(s)
- Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland
| | - Przemyslaw Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio Al. 7, 10257 Vilnius, Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio Al. 7, 10257 Vilnius, Lithuania
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio Al. 7, 10257 Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio Al. 7, 10257 Vilnius, Lithuania
| | - Slawomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Pawel Bieganowski
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland
| |
Collapse
|
220
|
Chen YC, Jiang PH, Chen HM, Chen CH, Wang YT, Chen YJ, Yu CJ, Teng SC. Glucose intake hampers PKA-regulated HSP90 chaperone activity. eLife 2018; 7:39925. [PMID: 30516470 PMCID: PMC6281317 DOI: 10.7554/elife.39925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is an intricate phenomenon associated with the gradual loss of physiological functions, and both nutrient sensing and proteostasis control lifespan. Although multiple approaches have facilitated the identification of candidate genes that govern longevity, the molecular mechanisms that link aging pathways are still elusive. Here, we conducted a quantitative mass spectrometry screen and identified all phosphorylation/dephosphorylation sites on yeast proteins that significantly responded to calorie restriction, a well-established approach to extend lifespan. Functional screening of 135 potential regulators uncovered that Ids2 is activated by PP2C under CR and inactivated by PKA under glucose intake. ids2Δ or ids2 phosphomimetic cells displayed heat sensitivity and lifespan shortening. Ids2 serves as a co-chaperone to form a complex with Hsc82 or the redundant Hsp82, and phosphorylation impedes its association with chaperone HSP90. Thus, PP2C and PKA may orchestrate glucose sensing and protein folding to enable cells to maintain protein quality for sustained longevity.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Heng Jiang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Ming Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chang-Han Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
221
|
Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:1-60. [PMID: 30635079 DOI: 10.1016/bs.apcsb.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To be able to perform their biological function, a protein needs to be correctly folded into its three dimensional structure. The protein folding process is spontaneous and does not require the input of energy. However, in the crowded cellular environment where there is high risk of inter-molecular interactions that may lead to protein molecules sticking to each other, hence forming aggregates, protein folding is assisted. Cells have evolved robust machinery called molecular chaperones to deal with the protein folding problem and to maintain proteins in their functional state. Molecular chaperones promote efficient folding of newly synthesized proteins, prevent their aggregation and ensure protein homeostasis in cells. There are different classes of molecular chaperones functioning in a complex interplay. In this review, we discuss the principal characteristics of different classes of molecular chaperones, their structure-function relationships, their mode of regulation and their involvement in human disorders.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
222
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
223
|
Morán Luengo T, Mayer MP, Rüdiger SGD. The Hsp70-Hsp90 Chaperone Cascade in Protein Folding. Trends Cell Biol 2018; 29:164-177. [PMID: 30502916 DOI: 10.1016/j.tcb.2018.10.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Conserved families of molecular chaperones assist protein folding in the cell. Here we review the conceptual advances on three major folding routes: (i) spontaneous, chaperone-independent folding; (ii) folding assisted by repetitive Hsp70 cycles; and (iii) folding by the Hsp70-Hsp90 cascades. These chaperones prepare their protein clients for folding on their own, without altering their folding path. A particularly interesting role is reserved for Hsp90. The function of Hsp90 in folding is its ancient function downstream of Hsp70, free of cochaperone regulation and present in all kingdoms of life. Eukaryotic signalling networks, however, embrace Hsp90 by a plethora of cochaperones, transforming the profolding machinery to a folding-on-demand factor. We discuss implications for biology and molecular medicine.
Collapse
Affiliation(s)
- Tania Morán Luengo
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
224
|
Fernández-Higuero JÁ, Betancor-Fernández I, Mesa-Torres N, Muga A, Salido E, Pey AL. Structural and functional insights on the roles of molecular chaperones in the mistargeting and aggregation phenotypes associated with primary hyperoxaluria type I. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:119-152. [PMID: 30635080 DOI: 10.1016/bs.apcsb.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To carry out their biological function in cells, proteins must be folded and targeted to the appropriate subcellular location. These processes are controlled by a vast collection of interacting proteins collectively known as the protein homeostasis network, in which molecular chaperones play a prominent role. Protein homeostasis can be impaired by inherited mutations leading to genetic diseases. In this chapter, we focus on a particular disease, primary hyperoxaluria type 1 (PH1), in which disease-associated mutations exacerbate protein aggregation in the cell and mistarget the peroxisomal alanine:glyoxylate aminotransferase (AGT) protein to mitochondria, in part due to native state destabilization and enhanced interaction with Hsp60, 70 and 90 chaperone systems. After a general introduction of molecular chaperones and PH1, we review our current knowledge on the structural and energetic features of PH1-causing mutants that lead to these particular pathogenic mechanisms. From this perspective, and in the context of the key role of molecular chaperones in PH1 pathogenesis, we present and discuss current and future perspectives for pharmacological treatments for this disease.
Collapse
Affiliation(s)
- José Ángel Fernández-Higuero
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Arturo Muga
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain.
| |
Collapse
|
225
|
Schmid S, Hugel T. Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties. J Chem Phys 2018; 148:123312. [PMID: 29604821 DOI: 10.1063/1.5006604] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings-such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.
Collapse
Affiliation(s)
- Sonja Schmid
- Institute of Physical Chemistry II, University of Freiburg, Albertstr. 23 a, 79104 Freiburg, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry II, University of Freiburg, Albertstr. 23 a, 79104 Freiburg, Germany
| |
Collapse
|
226
|
Lepvrier E, Thomas D, Garnier C. Hsp90 Quaternary Structures and the Chaperone Cycle: Highly Flexible Dimeric and Oligomeric Structures and Their Regulation by Co-Chaperones. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180522095147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proposed models of the function of Hsp90 are characterised by high flexibility of the dimeric
state and conformational changes regulated by both nucleotide binding and hydrolysis, and by
co-chaperone interactions. In addition to its dimeric state, Hsp90 self-associates upon particular stimuli.
The Hsp90 dimer is the building block up to the hexamer that we named “cosy nest”, and the dodecamer
results from the association of two hexamers. Oligomers exhibit chaperone activity, but their
exact mechanism of action has not yet been determined. One of the best ways to elucidate how oligomers
might operate is to study their interactions with co-chaperone proteins known to regulate the
Hsp90 chaperone cycle, such as p23 and Aha1. In this review, we summarise recent results and conclude
that Hsp90 oligomers are key players in the chaperone cycle. Crucible-shaped quaternary structures
likely provide an ideal environment for client protein accommodation and folding, as is the case
for other Hsp families. Confirmation of the involvement of Hsp90 oligomers in the chaperone cycle
and a better understanding of their functionality will allow us to address some of the more enigmatic
aspects of Hsp90 activity. Utilising this knowledge, future work will highlight how Hsp90 oligomers
and co-chaperones cooperate to build the structures required to fold or refold numerous different client
proteins.
Collapse
Affiliation(s)
- Eléonore Lepvrier
- Structure et Dynamique des Macromolecules, UMR-CNRS 6026, Interactions Cellulaires et Moleculaires, Universite de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex, France
| | - Daniel Thomas
- Structure et Dynamique des Macromolecules, UMR-CNRS 6026, Interactions Cellulaires et Moleculaires, Universite de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex, France
| | - Cyrille Garnier
- Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France
| |
Collapse
|
227
|
Ma R, Meng H, Wiebelhaus N, Fitzgerald MC. Chemo-Selection Strategy for Limited Proteolysis Experiments on the Proteomic Scale. Anal Chem 2018; 90:14039-14047. [PMID: 30403842 DOI: 10.1021/acs.analchem.8b04122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Described here is a chemo-selective enrichment strategy, termed the semitryptic peptide enrichment strategy for proteolysis procedures (STEPP), to isolate the semitryptic peptides generated in mass spectrometry-based proteome-wide applications of limited proteolysis methods. The strategy involves reacting the ε-amino groups of lysine side chains and any N-termini created in the limited proteolysis reaction with isobaric mass tags. A subsequent digestion of the sample with trypsin and the chemo-selective reaction of the newly exposed N-termini of the tryptic peptides with N-hydroxysuccinimide (NHS)-activated agarose resin removes the tryptic peptides from solution, leaving only the semitryptic peptides with one nontryptic cleavage site generated in the limited proteolysis reaction for subsequent LC-MS/MS analysis. As part of this work, the STEPP technique is interfaced with two different proteolysis methods, including the pulse proteolysis (PP) and limited proteolysis (LiP) methods. The STEPP-PP workflow is evaluated in two proof-of-principle experiments involving the proteins in a yeast cell lysate and two well-studied drugs, cyclosporin A and geldanamycin. The STEPP-LiP workflow is evaluated in a proof-of-principle experiment involving the proteins in two cell culture models of human breast cancer, MCF-7 and MCF-10A cell lines. The STEPP protocol increased the number of semitryptic peptides detected in the LiP and PP experiments by 5- to 10-fold. The STEPP protocol not only increases the proteomic coverage, but also increases the amount of structural information that can be gleaned from limited proteolysis experiments. Moreover, the protocol also enables the quantitative determination of ligand binding affinities.
Collapse
Affiliation(s)
- Renze Ma
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - He Meng
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Nancy Wiebelhaus
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Michael C Fitzgerald
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
228
|
Bernadotte A, Kumar R, Winblad B, Pavlov PF. In silico identification and biochemical characterization of the human dicarboxylate clamp TPR protein interaction network. FEBS Open Bio 2018; 8:1830-1843. [PMID: 30410862 PMCID: PMC6212638 DOI: 10.1002/2211-5463.12521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022] Open
Abstract
Dicarboxylate clamp tetratricopeptide repeat (dcTPR) motif‐containing proteins are well‐known partners of the heat shock protein (Hsp) 70 and Hsp90 molecular chaperones. Together, they facilitate a variety of intracellular processes, including protein folding and maturation, protein targeting, and protein degradation. An extreme C‐terminal sequence, the EEVD motif, is identical in Hsp70 and Hsp90, and is indispensable for their interaction with dcTPR proteins. However, almost no information is available on the existence of other potential dcTPR‐interacting proteins. We searched the human protein database for proteins with C‐terminal sequences similar to that of Hsp70/Hsp90 to identify potential partners of dcTPR proteins. The search identified 112 proteins containing a Hsp70/Hsp90‐like signature at their C termini. Gene Ontology enrichment analysis of identified proteins revealed enrichment of distinct protein classes, such as molecular chaperones and proteins of the ubiquitin–proteasome system, highlighting the possibility of functional specialization of proteins containing a Hsp70/Hsp90‐like signature. We confirmed interactions of selected proteins containing Hsp70/Hsp90‐like C termini with dcTPR proteins both in vitro and in situ. Analysis of interactions of 10‐amino‐acid peptides corresponding to the C termini of identified proteins with dcTPR proteins revealed significant differences in binding strength between various peptides. We propose a hierarchical mode of interaction within the dcTPR protein network. These findings describe a novel dcTPR protein interaction networks and provide a rationale for selective regulation of protein–protein interactions within this network.
Collapse
Affiliation(s)
- Alexandra Bernadotte
- Department of Molecular Biochemistry and Biophysics Karolinska Institutet Solna Sweden.,Faculty of Mechanics and Mathematics Lomonosov Moscow State University Russia
| | - Rajnish Kumar
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden.,Memory Clinic Theme Aging Karolinska University Hospital Huddinge Sweden
| | - Pavel F Pavlov
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden.,Memory Clinic Theme Aging Karolinska University Hospital Huddinge Sweden
| |
Collapse
|
229
|
Genest O, Wickner S, Doyle SM. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. J Biol Chem 2018; 294:2109-2120. [PMID: 30401745 DOI: 10.1074/jbc.rev118.002806] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heat shock proteins 90 (Hsp90) and 70 (Hsp70) are two families of highly conserved ATP-dependent molecular chaperones that fold and remodel proteins. Both are important components of the cellular machinery involved in protein homeostasis and participate in nearly every cellular process. Although Hsp90 and Hsp70 each carry out some chaperone activities independently, they collaborate in other cellular remodeling reactions. In eukaryotes, both Hsp90 and Hsp70 function with numerous Hsp90 and Hsp70 co-chaperones. In contrast, bacterial Hsp90 and Hsp70 are less complex; Hsp90 acts independently of co-chaperones, and Hsp70 uses two co-chaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70, with an emphasis on bacterial chaperones. We describe the structure and conformational dynamics of these chaperones and their interactions with each other and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide the groundwork for understanding the more complex eukaryotic Hsp90 system and its modulation by Hsp90 co-chaperones.
Collapse
Affiliation(s)
- Olivier Genest
- From the Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, 13402 Marseille, France and
| | - Sue Wickner
- the Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Shannon M Doyle
- the Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
230
|
Oroz J, Chang BJ, Wysoczanski P, Lee CT, Pérez-Lara Á, Chakraborty P, Hofele RV, Baker JD, Blair LJ, Biernat J, Urlaub H, Mandelkow E, Dickey CA, Zweckstetter M. Structure and pro-toxic mechanism of the human Hsp90/PPIase/Tau complex. Nat Commun 2018; 9:4532. [PMID: 30382094 PMCID: PMC6208366 DOI: 10.1038/s41467-018-06880-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/03/2018] [Indexed: 02/01/2023] Open
Abstract
The molecular chaperone Hsp90 is critical for the maintenance of cellular homeostasis and represents a promising drug target. Despite increasing knowledge on the structure of Hsp90, the molecular basis of substrate recognition and pro-folding by Hsp90/co-chaperone complexes remains unknown. Here, we report the solution structures of human full-length Hsp90 in complex with the PPIase FKBP51, as well as the 280 kDa Hsp90/FKBP51 complex bound to the Alzheimer’s disease-related protein Tau. We reveal that the FKBP51/Hsp90 complex, which synergizes to promote toxic Tau oligomers in vivo, is highly dynamic and stabilizes the extended conformation of the Hsp90 dimer resulting in decreased Hsp90 ATPase activity. Within the ternary Hsp90/FKBP51/Tau complex, Hsp90 serves as a scaffold that traps the PPIase and nucleates multiple conformations of Tau’s proline-rich region next to the PPIase catalytic pocket in a phosphorylation-dependent manner. Our study defines a conceptual model for dynamic Hsp90/co-chaperone/client recognition. The chaperone Hsp90 plays a key role in maintaining cellular homeostasis. Here the authors provide structural insights into substrate recognition and the pro-folding mechanism of Hsp90/co-chaperone complexes by studying the complex of Hsp90 with its co-chaperone FKBP51 and the substrate Tau bound Hsp90/FKBP51 ternary complex using a NMR based integrative approach.
Collapse
Affiliation(s)
- Javier Oroz
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Straße 3a, 37075, Göttingen, Germany.,Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, 28006, Madrid, Spain
| | - Bliss J Chang
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Piotr Wysoczanski
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Straße 3a, 37075, Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Chung-Tien Lee
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Ángel Pérez-Lara
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Pijush Chakraborty
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Straße 3a, 37075, Göttingen, Germany
| | - Romina V Hofele
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Jeremy D Baker
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Laura J Blair
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Jacek Biernat
- DZNE, CAESAR Research Center, Ludwig-Erhard-Alle 2, 53175, Bonn, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Eckhard Mandelkow
- DZNE, CAESAR Research Center, Ludwig-Erhard-Alle 2, 53175, Bonn, Germany
| | - Chad A Dickey
- Department of Molecular Medicine, Morsani College of Medicine, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Straße 3a, 37075, Göttingen, Germany. .,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
231
|
Hellenkamp B, Thurn J, Stadlmeier M, Hugel T. Kinetics of Transient Protein Complexes Determined via Diffusion-Independent Microfluidic Mixing and Fluorescence Stoichiometry. J Phys Chem B 2018; 122:11554-11560. [PMID: 30351113 DOI: 10.1021/acs.jpcb.8b07437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Low-affinity protein complexes and their transient states are difficult to measure in single-molecule experiments because of their low population at low concentrations. A prominent solution to this problem is the use of microfluidic mixing devices, which rely on diffusion-based mixing. This is not ideal for multiprotein complexes, as the single-molecule fluorescence signal is dominated by the already dissociated species. Here, we designed a microfluidic device with mixing structures for fast and homogeneous mixing of components with varying diffusion coefficients and for fluorescence measurements at a defined single-molecule concentration. This enables direct measurement of dissociation rates at a broad range of timescales from a few milliseconds to several minutes. This further allows us to measure structural properties and stoichiometries of protein complexes with large equilibrium dissociation constants ( KD's) of 5 μM and above. We used the platform to measure structural properties and dissociation rates of heat shock protein 90 (Hsp90) dimers and found at least two dissociation rates which depend on the nucleotide state. Finally, we demonstrate the capability for measuring also equilibrium dissociation constants, resulting in the determination of both the kinetics and thermodynamics of the system under investigation.
Collapse
Affiliation(s)
- Björn Hellenkamp
- Columbia University , Engineering and Applied Science , New York , New York , United States
| | - Johann Thurn
- Institute of Physical Chemistry , University of Freiburg , Albertstr. 23a , 79104 Freiburg , Germany
| | - Martina Stadlmeier
- Bildungsakademie Inn-Salzach, InfraServ GmbH & Co. Gendorf KG, Alte-Haupttor-Straße 2 , 84508 Burgkirchen a.d. Alz , Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry , University of Freiburg , Albertstr. 23a , 79104 Freiburg , Germany
| |
Collapse
|
232
|
Ye W, Götz M, Celiksoy S, Tüting L, Ratzke C, Prasad J, Ricken J, Wegner SV, Ahijado-Guzmán R, Hugel T, Sönnichsen C. Conformational Dynamics of a Single Protein Monitored for 24 h at Video Rate. NANO LETTERS 2018; 18:6633-6637. [PMID: 30251862 PMCID: PMC6187522 DOI: 10.1021/acs.nanolett.8b03342] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We use plasmon rulers to follow the conformational dynamics of a single protein for up to 24 h at a video rate. The plasmon ruler consists of two gold nanospheres connected by a single protein linker. In our experiment, we follow the dynamics of the molecular chaperone heat shock protein 90 (Hsp90), which is known to show "open" and "closed" conformations. Our measurements confirm the previously known conformational dynamics with transition times in the second to minute time scale and reveals new dynamics on the time scale of minutes to hours. Plasmon rulers thus extend the observation bandwidth 3-4 orders of magnitude with respect to single-molecule fluorescence resonance energy transfer and enable the study of molecular dynamics with unprecedented precision.
Collapse
Affiliation(s)
- Weixiang Ye
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate
School of Excellence Materials Science in Mainz (MAINZ), Staudinger Weg 9, D-55128 Mainz, Germany
| | - Markus Götz
- Institute of Physical Chemistry and BIOSS Centre for
Biological Signaling Studies, University
of Freiburg, Albertstraße
23a, D-79104 Freiburg, Germany
| | - Sirin Celiksoy
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Laura Tüting
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate
School of Excellence Materials Science in Mainz (MAINZ), Staudinger Weg 9, D-55128 Mainz, Germany
| | - Christoph Ratzke
- Institute of Physical Chemistry and BIOSS Centre for
Biological Signaling Studies, University
of Freiburg, Albertstraße
23a, D-79104 Freiburg, Germany
| | - Janak Prasad
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate
School of Excellence Materials Science in Mainz (MAINZ), Staudinger Weg 9, D-55128 Mainz, Germany
| | - Julia Ricken
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Seraphine V. Wegner
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rubén Ahijado-Guzmán
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry and BIOSS Centre for
Biological Signaling Studies, University
of Freiburg, Albertstraße
23a, D-79104 Freiburg, Germany
- E-mail:
| | - Carsten Sönnichsen
- Institute
of Physical Chemistry, University of Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- E-mail:
| |
Collapse
|
233
|
Tych KM, Jahn M, Gegenfurtner F, Hechtl VK, Buchner J, Hugel T, Rief M. Nucleotide-Dependent Dimer Association and Dissociation of the Chaperone Hsp90. J Phys Chem B 2018; 122:11373-11380. [PMID: 30179494 DOI: 10.1021/acs.jpcb.8b07301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hsp90 is an essential molecular chaperone, which has to be in a dimeric form for its correct function. While the affinity of the dimer has previously been measured, little is known about how it associates and dissociates and the factors that influence this. We perform an in-depth single molecule characterization of the C-terminal association and dissociation of Hsp90. We find more than one dissociation rate, indicating that the dimer has a stable and an unstable state. Furthermore, we find that the stability of the C-terminal association is dependent on the presence of ATP, despite the C-terminal dimerization interface being distal to the catalytic site.
Collapse
Affiliation(s)
| | | | | | | | | | - Thorsten Hugel
- Institute of Physical Chemistry , University of Freiburg , Freiburg , Baden-Württemberg 79104 , Germany
| | | |
Collapse
|
234
|
Hoter A, El-Sabban ME, Naim HY. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2018; 19:E2560. [PMID: 30158430 PMCID: PMC6164434 DOI: 10.3390/ijms19092560] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The mammalian HSP90 family of proteins is a cluster of highly conserved molecules that are involved in myriad cellular processes. Their distribution in various cellular compartments underlines their essential roles in cellular homeostasis. HSP90 and its co-chaperones orchestrate crucial physiological processes such as cell survival, cell cycle control, hormone signaling, and apoptosis. Conversely, HSP90, and its secreted forms, contribute to the development and progress of serious pathologies, including cancer and neurodegenerative diseases. Therefore, targeting HSP90 is an attractive strategy for the treatment of neoplasms and other diseases. This manuscript will review the general structure, regulation and function of HSP90 family and their potential role in pathophysiology.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Marwan E El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| |
Collapse
|
235
|
Ménade M, Kozlov G, Trempe JF, Pande H, Shenker S, Wickremasinghe S, Li X, Hojjat H, Dicaire MJ, Brais B, McPherson PS, Wong MJH, Young JC, Gehring K. Structures of ubiquitin-like (Ubl) and Hsp90-like domains of sacsin provide insight into pathological mutations. J Biol Chem 2018; 293:12832-12842. [PMID: 29945973 PMCID: PMC6102131 DOI: 10.1074/jbc.ra118.003939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Indexed: 01/07/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disease that is caused by mutations in the SACS gene. The product of this gene is a very large 520-kDa cytoplasmic protein, sacsin, with a ubiquitin-like (Ubl) domain at the N terminus followed by three large sacsin internal repeat (SIRPT) supradomains and C-terminal J and HEPN domains. The SIRPTs are predicted to contain Hsp90-like domains, suggesting a potential chaperone activity. In this work, we report the structures of the Hsp90-like Sr1 domain of SIRPT1 and the N-terminal Ubl domain determined at 1.55- and 2.1-Å resolutions, respectively. The Ubl domain crystallized as a swapped dimer that could be relevant in the context of full-length protein. The Sr1 domain displays the Bergerat protein fold with a characteristic nucleotide-binding pocket, although it binds nucleotides with very low affinity. The Sr1 structure reveals that ARSACS-causing missense mutations (R272H, R272C, and T201K) disrupt protein folding, most likely leading to sacsin degradation. This work lends structural support to the view of sacsin as a molecular chaperone and provides a framework for future studies of this protein.
Collapse
Affiliation(s)
- Marie Ménade
- From the Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Guennadi Kozlov
- From the Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Jean-François Trempe
- From the Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Harshit Pande
- From the Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Solomon Shenker
- From the Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Sihara Wickremasinghe
- From the Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Xinlu Li
- From the Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Hamed Hojjat
- From the Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Michael J. H. Wong
- From the Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Jason C. Young
- From the Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and
| | - Kalle Gehring
- From the Department of Biochemistry, McGill Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada and , To whom correspondence should be addressed:
Dept. of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Rm. 473, Montreal, Quebec H3G 0B1, Canada. Tel.:
514-398-7287; E-mail:
| |
Collapse
|
236
|
Kumar Mv V, Ebna Noor R, Davis RE, Zhang Z, Sipavicius E, Keramisanou D, Blagg BSJ, Gelis I. Molecular insights into the interaction of Hsp90 with allosteric inhibitors targeting the C-terminal domain. MEDCHEMCOMM 2018; 9:1323-1331. [PMID: 30151087 PMCID: PMC6097425 DOI: 10.1039/c8md00151k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Abstract
Unique to targeting the C-terminal domain of Hsp90 (C-Hsp90) is the ability to uncouple the cytotoxic and cytoprotective outcomes of Hsp90 modulation. After the identification of novobiocin as a C-Hsp90 interacting ligand a diverse gamut of novologues emerged, from which KU-32 and KU-596 exhibited strong neuroprotective activity. However, further development of these ligands is hampered by the difficulty to obtain structural information on their complexes with Hsp90. Using saturation transfer difference (STD) NMR spectroscopy, we found that the primary binding epitopes of KU-32 and KU596 map at the ring systems of the ligands and specifically the coumarin and biphenyl structures, respectively. Based on both relative and absolute STD effects, we identified KU-596 sites that can be explored to design novel third-generation novologues. In addition, chemical shift perturbations obtained by methyl-TROSY reveal that novologues bind at the cryptic, C-Hsp90 ATP-binding pocket and produce global, long-range structural rearrangements to dimeric Hsp90.
Collapse
Affiliation(s)
- Vasantha Kumar Mv
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA .
| | - Radwan Ebna Noor
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA .
| | - Rachel E Davis
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46545 , USA
| | - Zheng Zhang
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46545 , USA
| | - Edvinas Sipavicius
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA .
| | - Dimitra Keramisanou
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA .
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46545 , USA
| | - Ioannis Gelis
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA .
| |
Collapse
|
237
|
Ferraro M, D’Annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, Compostella F, Colombo G. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. J Med Chem 2018; 62:60-87. [DOI: 10.1021/acs.jmedchem.8b00825] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Ilda D’Annessa
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | | | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini, 50, 20133 Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
238
|
Bhatia S, Diedrich D, Frieg B, Ahlert H, Stein S, Bopp B, Lang F, Zang T, Kröger T, Ernst T, Kögler G, Krieg A, Lüdeke S, Kunkel H, Rodrigues Moita AJ, Kassack MU, Marquardt V, Opitz FV, Oldenburg M, Remke M, Babor F, Grez M, Hochhaus A, Borkhardt A, Groth G, Nagel-Steger L, Jose J, Kurz T, Gohlke H, Hansen FK, Hauer J. Targeting HSP90 dimerization via the C terminus is effective in imatinib-resistant CML and lacks the heat shock response. Blood 2018; 132:307-320. [PMID: 29724897 PMCID: PMC6225350 DOI: 10.1182/blood-2017-10-810986] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 90 (HSP90) stabilizes many client proteins, including the BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of chronic myeloid leukemia (CML) in which treatment-free remission (TFR) is limited, with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics that synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain of HSP90 are under investigation, but side effects such as induction of the heat shock response (HSR) and toxicity have so far precluded their US Food and Drug Administration approval. We have developed a novel inhibitor (aminoxyrone [AX]) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain. This was achieved by structure-based molecular design, chemical synthesis, and functional preclinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. AX is a promising potential candidate that induces apoptosis in the leukemic stem cell fraction (CD34+CD38-) as well as the leukemic bulk (CD34+CD38+) of primary CML and in tyrosine kinase inhibitor (TKI)-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated, and targeting the HSP90 C terminus by AX does not induce the HSR in vitro and in vivo. We also probed the potential of AX in other therapy-refractory leukemias. Therefore, AX is the first peptidomimetic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI-sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other types of therapy-refractory leukemia because of its low toxicity profile and lack of HSR.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Binding Sites
- Biomarkers, Tumor
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/chemistry
- HSP90 Heat-Shock Proteins/metabolism
- Heat-Shock Response/drug effects
- Humans
- Imatinib Mesylate/chemistry
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Models, Molecular
- Molecular Conformation
- Molecular Structure
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Multimerization/drug effects
- Spectrum Analysis
- Structure-Activity Relationship
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Daniela Diedrich
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Benedikt Frieg
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Heinz Ahlert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Stefan Stein
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Bertan Bopp
- Institute for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster, Germany
| | - Franziska Lang
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Tao Zang
- Institute for Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tobias Kröger
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Ernst
- Hematology/Oncology, Internal Medicine II, Jena University Hospital, Jena, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics and
| | - Andreas Krieg
- Department of Surgery (A), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Hana Kunkel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Ana J Rodrigues Moita
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Viktoria Marquardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Consortium, partner site University Hospital Düsseldorf, Düsseldorf, Germany
| | - Friederike V Opitz
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Marina Oldenburg
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Consortium, partner site University Hospital Düsseldorf, Düsseldorf, Germany
| | - Florian Babor
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Andreas Hochhaus
- Hematology/Oncology, Internal Medicine II, Jena University Hospital, Jena, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| | - Georg Groth
- Institute for Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; and
| | - Luitgard Nagel-Steger
- Institute for Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Joachim Jose
- Institute for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster, Germany
| | - Thomas Kurz
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Finn K Hansen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Leipzig University, Leipzig, Germany
| | - Julia Hauer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, and
| |
Collapse
|
239
|
Schmid S, Götz M, Hugel T. Effects of Inhibitors on Hsp90's Conformational Dynamics, Cochaperone and Client Interactions. Chemphyschem 2018; 19:1716-1721. [PMID: 29677383 PMCID: PMC6525096 DOI: 10.1002/cphc.201800342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Indexed: 01/24/2023]
Abstract
The molecular chaperone and heat-shock protein Hsp90 has become a central target in anti-cancer therapy. Nevertheless, the effect of Hsp90 inhibition is still not understood at the molecular level, preventing a truly rational drug design. Here we report on the effect of the most prominent drug candidates, namely, radicicol, geldanamycin, derivatives of purine, and novobiocin, on Hsp90's characteristic conformational dynamics and the binding of three interaction partners. Unexpectedly, the global opening and closing transitions are hardly affected by Hsp90 inhibitors. Moreover, we find no significant changes in the binding of the cochaperones Aha1 and p23 nor of the model substrate Δ131Δ. This holds true for competitive and allosteric inhibitors. Therefore, direct inhibition mechanisms affecting only one molecular interaction are unlikely. We suggest that the inhibitory action observed in vivo is caused by a combination of subtle effects, which can be used in the search for novel Hsp90 inhibition mechanisms.
Collapse
Affiliation(s)
- Sonja Schmid
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 23a, 79104 Freiburg (Germany)
| | - Markus Götz
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 23a, 79104 Freiburg (Germany)
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 23a, 79104 Freiburg (Germany)
| |
Collapse
|
240
|
Gaziano R, Campione E, Iacovelli F, Marino D, Pica F, Di Francesco P, Aquaro S, Menichini F, Falconi M, Bianchi L. Antifungal activity of Cardiospermum halicacabum L. (Sapindaceae) against Trichophyton rubrum occurs through molecular interaction with fungal Hsp90. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2185-2193. [PMID: 30034223 PMCID: PMC6047602 DOI: 10.2147/dddt.s155610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction Dermatophytosis is a superficial fungal infection limited to the stratum corneum of the epidermis, or to the hair and nails, and constitutes an important public health problem because of its high prevalence and associated morbidity. Dermatophyte fungi, especially 2 species, Trichophyton rubrum and Trichophyton mentagrophytes, are the predominant pathogens. Topical antifungal drugs, mainly azoles or allyamines, are currently used for the treatment of dermatophytoses, although in some cases, such as in nail and hair involvement, systemic treatment is required. However, therapeutic efficacy of current antifungal agents can be limited by their side effects, costs, and the emergence of drug resistance among fungi. Plant extracts represent a potential source of active antimicrobial agents, due to the presence of a variety of chemical bioactive compounds. In the present work, we evaluated in silico and in vitro the antifungal activity of an extract of the medicinal plant Cardiospermum halicacabum against T. rubrum suggesting a potential interaction with Hsp90 as playing an important role in both pathogenicity and drug susceptibility of T. rubrum. Methods We investigated in vitro the effect of different concentrations of C. halicacabum (from 500 to 31.25 µg) against a clinical isolate of T. rubrum. Furthermore, using a computational assessment, the interaction between different C. halicacabum active compounds and the fungal Hsp90 was also investigated. Results Our results indicate a clear-cut antifungal activity of the total plant extract at the highest concentrations (500 and 250 µg). Among all tested C. halicacabum compounds, the luteolin and rutin molecules have been identified in silico as the most important potential inhibitors of Hsp90. Based on these data, luteolin and rutin were also individually assessed for their antifungal activity. Results demonstrate that both substances display an antifungal effect, even if lower than that of the total plant extract. Conclusion Our data indicate a strong fungistatic effect of C. halicacabum against T. rubrum, suggesting its potential therapeutic efficacy in the treatment of dermatophytoses. Additionally, C. halicacabum compounds, and particularly luteolin and rutin, are all possible Hsp90 interactors, explaining their fungistatic activity.
Collapse
Affiliation(s)
- Roberta Gaziano
- Microbiology Section, Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Elena Campione
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy,
| | | | - Daniele Marino
- Microbiology Section, Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesca Pica
- Microbiology Section, Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Paolo Di Francesco
- Microbiology Section, Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesco Menichini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy,
| | - Luca Bianchi
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy,
| |
Collapse
|
241
|
Vishwakarma H, Junaid A, Manjhi J, Singh GP, Gaikwad K, Padaria JC. Heat stress transcripts, differential expression, and profiling of heat stress tolerant gene TaHsp90 in Indian wheat (Triticum aestivum L.) cv C306. PLoS One 2018; 13:e0198293. [PMID: 29939987 PMCID: PMC6016904 DOI: 10.1371/journal.pone.0198293] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
To generate a genetic resource of heat stress responsive genes/ESTs, suppression subtractive hybridization (SSH) library was constructed in a heat and drought stress tolerant Indian bread wheat cultivar C306. Ninety three days old plants during grain filling stage were subjected to heat stress at an elevated temperature of 37°C and 42°C for different time intervals (30 min, 1h, 2h, 4h, and 6h). Two subtractive cDNA libraries were prepared with RNA isolated from leaf samples at 37°C and 42°C heat stress. The ESTs obtained were reconfirmed by reverse northern dot blot hybridization. A total of 175 contigs and 403 singlets were obtained from 1728 ESTs by gene ontology analysis. Differential expression under heat stress was validated for a few selected genes (10) by qRT-PCR. A transcript showing homology to Hsp90 was observed to be upregulated (7.6 fold) under heat stress in cv. C306. CDS of TaHsp90 (Accession no. MF383197) was isolated from cv. C306 and characterized. Heterologous expression of TaHsp90 was validated in E. coli BL21 and confirmed by protein gel blot and MALDI-TOF analysis. Computational based analysis was carried out to understand the molecular functioning of TaHsp90. The heat stress responsive SSH library developed led to identification of a number of heat responsive genes/ESTs, which can be utilized for unravelling the heat tolerance mechanism in wheat. Gene TaHsp90 isolated and characterized in the present study can be utilized for developing heat tolerant transgenic crops.
Collapse
Affiliation(s)
| | - Alim Junaid
- National Research Centre on Plant Biotechnology, Pusa campus, New Delhi, India
| | | | | | - Kishor Gaikwad
- National Research Centre on Plant Biotechnology, Pusa campus, New Delhi, India
| | | |
Collapse
|
242
|
Roy SS, Kapoor M. In silico identification and analysis of the binding site for aminocoumarin type inhibitors in the C-terminal domain of Hsp90. J Mol Graph Model 2018; 84:215-235. [PMID: 30031951 DOI: 10.1016/j.jmgm.2018.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 11/15/2022]
Abstract
Hsp90 contains two Nucleotide Binding Sites (NBS): one each in its N-terminal domain (NTD) and C-terminal domain (CTD), respectively. Previously we used computational techniques to locate a nucleotide-binding site in the CTD. Nucleotide binding at this site stabilized the structurally labile region within this domain, thus providing a rationale for increased resistance to thermal denaturation and proteolysis. A scan for ligand-binding sites in CTD revealed four potential sites with the requisite volume to accommodate aminocoumarins and -derived inhibitors. Only one of these reproducibly formed docked complexes with inhibitors and showed excellent interactions with residues lining the site. Fortuitously, it was identical to the aforementioned nucleotide-binding site thus providing an explanation for the reported direct competition between inhibitors and nucleotides. Further studies with carefully chosen inhibitors and some inactive analogues provided an explanation for the known Structure-Activity Relationships (SAR) of aminocoumarin and -derived inhibitors. We also performed similar studies of the NTD to discern the reason(s) for its inability to bind aminocoumarins, given the family resemblance to prokaryotic Top-IV and Gyr-B. Our studies permitted the identification of the putative inhibitor binding site in the CTD, an explanation for increased resistance to thermal denaturation and proteolysis upon inhibitor binding as well as direct competition with ATP.
Collapse
Affiliation(s)
- Samir S Roy
- Department of Biological Sciences, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Manju Kapoor
- Department of Biological Sciences, The University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
243
|
Dual Roles for Yeast Sti1/Hop in Regulating the Hsp90 Chaperone Cycle. Genetics 2018; 209:1139-1154. [PMID: 29930177 DOI: 10.1534/genetics.118.301178] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
The Hsp90 chaperone is regulated by many cochaperones that tune its activities, but how they act to coordinate various steps in the reaction cycle is unclear. The primary role of Saccharomyces cerevisiae Hsp70/Hsp90 cochaperone Sti1 (Hop in mammals) is to bridge Hsp70 and Hsp90 to facilitate client transfer. Sti1 is not essential, so Hsp90 can interact with Hsp70 in vivo without Sti1. Nevertheless, many Hsp90 mutations make Sti1 necessary. We noted that Sti1-dependent mutations cluster in regions proximal to N-terminal domains (SdN) or C-terminal domains (SdC), which are known to be important for interaction with Hsp70 or clients, respectively. To uncover mechanistic details of Sti1-Hsp90 cooperation, we identified intramolecular suppressors of the Hsp90 mutants and assessed their physical, functional, and genetic interactions with Hsp70, Sti1, and other cochaperones. Our findings suggest Hsp90 SdN and SdC mutants depend on the same interaction with Sti1, but for different reasons. Sti1 promoted an essential Hsp70 interaction in the SdN region and supported SdC-region function by establishing an Hsp90 conformation crucial for capturing clients and progressing through the reaction cycle. We find the Hsp70 interaction and relationship with Sti1/Hop is conserved in the human Hsp90 system. Our work consolidates and clarifies much structural, biochemical, and computational data to define in vivo roles of Sti1/Hop in coordinating Hsp70 binding and client transfer with progression of the Hsp90 reaction cycle.
Collapse
|
244
|
Roe MS, Wahab B, Török Z, Horváth I, Vigh L, Prodromou C. Dihydropyridines Allosterically Modulate Hsp90 Providing a Novel Mechanism for Heat Shock Protein Co-induction and Neuroprotection. Front Mol Biosci 2018; 5:51. [PMID: 29930942 PMCID: PMC6000670 DOI: 10.3389/fmolb.2018.00051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Chaperones play a pivotal role in protein homeostasis, but with age their ability to clear aggregated and damaged protein from cells declines. Tau pathology is a driver of a variety of neurodegenerative disease and in Alzheimer's disease (AD) it appears to be precipitated by the formation of amyloid-β (Aβ) aggregates. Aβ-peptide appears to trigger Tau hyperphosphorylation, formation of neurofibrillary tangles and neurotoxicity. Recently, dihydropyridine derivatives were shown to upregulate the heat shock response (HSR) and provide a neuroprotective effect in an APPxPS1 AD mouse model. The HSR response was only seen in diseased cells and consequently these compounds were defined as co-inducers since they upregulate chaperones and co-chaperones only when a pathological state is present. We show for compounds tested herein, that they target predominantly the C-terminal domain of Hsp90, but show some requirement for its middle-domain, and that binding stimulates the chaperones ATPase activity. We identify the site for LA1011 binding and confirm its identification by mutagenesis. We conclude, that binding compromises Hsp90's ability to chaperone, by modulating its ATPase activity, which consequently induces the HSR in diseased cells. Collectively, this represents the mechanism by which the normalization of neurofibrillary tangles, preservation of neurons, reduced tau pathology, reduced amyloid plaque, and increased dendritic spine density in the APPxPS1 Alzheimer's mouse model is initiated. Such dihydropyridine derivatives therefore represent potential pharmaceutical candidates for the therapy of neurodegenerative disease, such as AD.
Collapse
Affiliation(s)
- Mark S Roe
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Ben Wahab
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences (HAS), Szeged, Hungary
| | | |
Collapse
|
245
|
Structural and Functional Analysis of GRP94 in the Closed State Reveals an Essential Role for the Pre-N Domain and a Potential Client-Binding Site. Cell Rep 2018; 20:2800-2809. [PMID: 28930677 DOI: 10.1016/j.celrep.2017.08.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/28/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
Hsp90 chaperones undergo ATP-driven conformational changes during the maturation of client proteins, populating a closed state upon ATP binding in which the N-terminal domains of the homodimer form a second inter-protomer dimer interface. A structure of GRP94, the endoplasmic reticulum hsp90, in a closed conformation has not been described, and the determinants that regulate closure are not well understood. Here, we determined the 2.6-Å structure of AMPPNP-bound GRP94 in the closed dimer conformation. The structure includes the pre-N domain, a region preceding the N-terminal domain that is highly conserved in GRP94, but not in other hsp90s. We show that the GRP94 pre-N domain is essential for client maturation, and we identify the pre-N domain as an important regulator of ATPase rates and dimer closure. The structure also reveals a GRP94:polypeptide interaction that partially mimics a client-bound state. The results provide structural insight into the ATP-dependent client maturation process of GRP94.
Collapse
|
246
|
Kudo I, Hosaka M, Haga A, Tsuji N, Nagata Y, Okada H, Fukuda K, Kakizaki Y, Okamoto T, Grave E, Itoh H. The regulation mechanisms of AhR by molecular chaperone complex. J Biochem 2018; 163:223-232. [PMID: 29092071 DOI: 10.1093/jb/mvx074] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/14/2017] [Indexed: 11/13/2022] Open
Abstract
The AhR, so called the dioxin receptor, is a member of the nuclear receptor superfamily. The ligand-free AhR forms a cytosolic protein complex with the molecular chaperone HSP90, co-chaperone p23, and XAP2 in the cytoplasm. Following ligand binding like 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), the AhR translocates into the nucleus. Although it has been reported that HSP90 regulates the translocation of the AhR to the nucleus, the precise activation mechanisms of the AhR have not yet been fully understood. AhR consists of the N-terminal bHLH domain containing NLS and NES, the middle PAS domain and the C-terminal transactivation domain. The PAS domain is familiar as a ligand and HSP90 binding domain. In this study, we focused on the bHLH domain that was thought to be a HSP90 binding domain. We investigated the binding properties of bHLH to HSP90. We analyzed the direct interaction of bHLH with HSP90, p23 and XAP2 using purified proteins. We found that not only the PAS domain but also the bHLH domain bound to HSP90. The bHLH domain forms complex with HSP90, p23 and XAP2. We also determined the bHLH binding domain was HSP90 N-domain. The bHLH domain makes a complex with HSP90, p23 and XAP2 via the HSP90 N-domain. Although the NLS is closed in the absence of a ligand, the structure of AhR will be changed in the presence of a ligand, which leads to NLS open, result in the nuclear translocation of AhR.
Collapse
Affiliation(s)
- Ikuru Kudo
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuen Town, Akita 010-8502, Japan
| | - Miki Hosaka
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuen Town, Akita 010-8502, Japan
| | - Asami Haga
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuen Town, Akita 010-8502, Japan
| | - Noriko Tsuji
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuen Town, Akita 010-8502, Japan
| | - Yuhtaroh Nagata
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuen Town, Akita 010-8502, Japan
| | - Hirotaka Okada
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuen Town, Akita 010-8502, Japan
| | - Kana Fukuda
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuen Town, Akita 010-8502, Japan
| | - Yuka Kakizaki
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuen Town, Akita 010-8502, Japan
| | - Tomoya Okamoto
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuen Town, Akita 010-8502, Japan
| | - Ewa Grave
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuen Town, Akita 010-8502, Japan
| | - Hideaki Itoh
- Department of Life Science, Graduate School and Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuen Town, Akita 010-8502, Japan
| |
Collapse
|
247
|
Wang Z, Guo LM, Wang Y, Zhou HK, Wang SC, Chen D, Huang JF, Xiong K. Inhibition of HSP90α protects cultured neurons from oxygen-glucose deprivation induced necroptosis by decreasing RIP3 expression. J Cell Physiol 2018; 233:4864-4884. [PMID: 29334122 DOI: 10.1002/jcp.26294] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/14/2017] [Indexed: 01/03/2023]
Abstract
Heat shock protein 90α (HSP90α) maintains cell stabilization and regulates cell death, respectively. Recent studies have shown that HSP90α is involved in receptor interacting protein 3 (RIP3)-mediated necroptosis in HT29 cells. It is known that oxygen and glucose deprivation (OGD) can induce necroptosis, which is regulated by RIP3 in neurons. However, it is still unclear whether HSP90α participates in the process of OGD-induced necroptosis in cultured neurons via the regulation of RIP3. Our study found that necroptosis occurs in primary cultured cortical neurons and PC-12 cells following exposure to OGD insult. Additionally, the expression of RIP3/p-RIP3, MLKL/p-MLKL, and the RIP1/RIP3 complex (necrosome) significantly increased following OGD, as measured through immunofluorescence (IF) staining, Western blotting (WB), and immunoprecipitation (IP) assay. Additionally, data from computer simulations and IP assays showed that HSP90α interacts with RIP3. In addition, HSP90α was overexpressed following OGD in cultured neurons, as measured through WB and IF staining. Inhibition of HSP90α in cultured neurons, using the specific inhibitor, geldanamycin (GA), and siRNA/shRNA of HSP90α, protected cultured neurons from necrosis. Our study showed that the inhibitor of HSP90α, GA, rescued cultured neurons not only by decreasing the expression of total RIP3/MLKL, but also by decreasing the expression of p-RIP3/p-MLKL and the RIP1/RIP3 necrosome. In this study, we reveal that inhibition of HSP90α protects primary cultured cortical neurons and PC-12 cells from OGD-induced necroptosis through the modulation of RIP3 expression.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Li-Min Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Hong-Kang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shu-Chao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
248
|
Radli M, Rüdiger SGD. Dancing with the Diva: Hsp90-Client Interactions. J Mol Biol 2018; 430:3029-3040. [PMID: 29782836 DOI: 10.1016/j.jmb.2018.05.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022]
Abstract
The molecular chaperone Hsp90 is involved in the folding, maturation, and degradation of a large number structurally and sequentially unrelated clients, often connected to serious diseases. Elucidating the principles of how Hsp90 recognizes this large variety of substrates is essential for comprehending the mechanism of this chaperone machinery, as well as it is a prerequisite for the design of client specific drugs targeting Hsp90. Here, we discuss the recent progress in understanding the substrate recognition principles of Hsp90 and its implications for the role of Hsp90 in the lifecycle of proteins. Hsp90 acts downstream of the chaperone Hsp70, which exposes its substrate to a short and highly hydrophobic cleft. The subsequently acting Hsp90 has an extended client-binding interface that enables a large number of low-affinity contacts. Structural studies show interaction modes of Hsp90 with the intrinsically disordered Alzheimer's disease-causing protein Tau, the kinase Cdk4 in a partially unfolded state and the folded ligand-binding domain of a steroid receptor. Comparing the features shared by these different proteins provides a picture of the substrate-binding principles of Hsp90.
Collapse
Affiliation(s)
- Martina Radli
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands; Science for Life, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
249
|
Stetz G, Tse A, Verkhivker GM. Dissecting Structure-Encoded Determinants of Allosteric Cross-Talk between Post-Translational Modification Sites in the Hsp90 Chaperones. Sci Rep 2018; 8:6899. [PMID: 29720613 PMCID: PMC5932063 DOI: 10.1038/s41598-018-25329-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 01/19/2023] Open
Abstract
Post-translational modifications (PTMs) represent an important regulatory instrument that modulates structure, dynamics and function of proteins. The large number of PTM sites in the Hsp90 proteins that are scattered throughout different domains indicated that synchronization of multiple PTMs through a combinatorial code can be invoked as an important mechanism to orchestrate diverse chaperone functions and recognize multiple client proteins. In this study, we have combined structural and coevolutionary analysis with molecular simulations and perturbation response scanning analysis of the Hsp90 structures to characterize functional role of PTM sites in allosteric regulation. The results reveal a small group of conserved PTMs that act as global mediators of collective dynamics and allosteric communications in the Hsp90 structures, while the majority of flexible PTM sites serve as sensors and carriers of the allosteric structural changes. This study provides a comprehensive structural, dynamic and network analysis of PTM sites across Hsp90 proteins, identifying specific role of regulatory PTM hotspots in the allosteric mechanism of the Hsp90 cycle. We argue that plasticity of a combinatorial PTM code in the Hsp90 may be enacted through allosteric coupling between effector and sensor PTM residues, which would allow for timely response to structural requirements of multiple modified enzymes.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Amanda Tse
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America.
- Chapman University School of Pharmacy, Irvine, California, United States of America.
| |
Collapse
|
250
|
Verkhivker GM. Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:899-912. [PMID: 29684503 DOI: 10.1016/j.bbapap.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/29/2023]
Abstract
Allosteric interactions of the Hsp90 chaperones with cochaperones and diverse protein clients can often exhibit distinct asymmetric features that determine regulatory mechanisms and cellular functions in many signaling networks. The recent crystal structures of the mitochondrial Hsp90 isoform TRAP1 in complexes with ATP analogs have provided first evidence of significant asymmetry in the closed dimerized state that triggers independent activity of the chaperone protomers, whereby preferential hydrolysis of the buckled protomer is followed by conformational flipping between protomers and hydrolysis of the second protomer. Despite significant insights in structural characterizations of the TRAP1 chaperone, the atomistic details and mechanics of allosteric interactions that couple sequential ATP hydrolysis with asymmetric conformational switching in the TRAP1 protomers remain largely unknown. In this work, we explored atomistic and coarse-grained simulations of the TRAP1 dimer structures in combination with the ensemble-based network modeling and perturbation response scanning of residue interaction networks to probe salient features underlying allosteric signaling mechanism. This study has revealed that key effector sites that orchestrate allosteric interactions occupy the ATP binding region and N-terminal interface of the buckled protomer, whereas the main sensors of allosteric signals that drive functional conformational changes during ATPase cycle are consolidated near the client binding region of the straight protomer, channeling the energy of ATP hydrolysis for client remodeling. The community decomposition analysis of the interaction networks and reconstruction of allosteric communication pathways in the TRAP1 structures have quantified mechanism of allosteric regulation, revealing control points and interactions that coordinate asymmetric switching during ATP hydrolysis.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, United States; Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States.
| |
Collapse
|