201
|
Chondrogenic Differentiation of Pluripotent Stem Cells under Controllable Serum-Free Conditions. Int J Mol Sci 2019; 20:ijms20112711. [PMID: 31159483 PMCID: PMC6600514 DOI: 10.3390/ijms20112711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 01/15/2023] Open
Abstract
The repair of damaged articular cartilage using currently available implantation techniques is not sufficient for the full recovery of patients. Pluripotent stem cells (iPSC)-based therapies could bring new perspectives in the treatment of joint diseases. A number of protocols of in vitro differentiation of iPSC in chondrocytes for regenerative purposes have been recently described. However, in order to use these cells in clinics, the elimination of animal serum and feeder cells is essential. In our study, a strictly defined and controllable protocol was designed for the differentiation of pluripotent stem cells (BG01V, ND 41658*H, GPCCi001-A) in chondrocyte-like cells in serum- and a feeder cell-free system, using the embryoid bodies step. The extension of the protocol and culture conditions (monolayer versus 3D culture) was also tested after the initial 21 days of chondrogenic differentiation. Promotion of the chondrogenic differentiation in 3D culture via the elevated expression of genes related to chondrogenesis was achieved. Using immunofluorescence and immunohistochemistry staining techniques, the increased deposition of the specific extracellular matrix was indicated. As a result, chondrocyte-like cells in the early stages of their differentiation using pellet culture under fully controlled and defined conditions were obtained.
Collapse
|
202
|
Zhang T, Li F, Xu Q, Wang Q, Jiang X, Liang Z, Liao H, Kong X, Liu J, Wu H, Zhang D, An C, Dong L, Lu Y, Cao H, Kim D, Sun J, Hyeon T, Gao J, Ling D. Ferrimagnetic Nanochains‐Based Mesenchymal Stem Cell Engineering for Highly Efficient Post‐Stroke Recovery. ADVANCED FUNCTIONAL MATERIALS 2019; 29. [DOI: 10.1002/adfm.201900603] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 03/10/2025]
Abstract
AbstractUnsatisfactory post‐stroke recovery has long been a negative factor in the prognosis of ischemic stroke due to the lack of pharmacological treatments. Mesenchymal stem cells (MSCs)‐based therapy has recently emerged as a promising strategy redefining stroke treatment; however, its effectiveness has been largely restricted by insufficient therapeutic gene expression and inadequate cell numbers in the ischemic cerebrum. Herein, a non‐viral and magnetic field‐independent gene transfection approach is reported, using magnetosome‐like ferrimagnetic iron oxide nanochains (MFIONs), to genetically engineer MSCs for highly efficient post‐stroke recovery. The 1D MFIONs show efficient cellular uptake by MSCs, which results in highly efficient genetic engineering of MSCs to overexpress brain‐derived neurotrophic factor for treating ischemic cerebrum. Moreover, the internalized MFIONs promote the homing of MSCs to the ischemic cerebrum by upregulating CXCR4. Consequently, a pronounced recovery from ischemic stroke is achieved using MFION‐engineered MSCs in a mouse model.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University Hangzhou 310058 China
| | - Fangyuan Li
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Qianhao Xu
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Qiyue Wang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Xinchi Jiang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Zeyu Liang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Hongwei Liao
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Xianglei Kong
- Department of Radiology Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Jianan Liu
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Honghui Wu
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Danping Zhang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Changhua An
- School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
| | - Liang Dong
- Division of Nanomaterials and Chemistry Hefei National Research Centre for Physical Sciences at the Microscale Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Yang Lu
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases the First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310003 China
| | - Dokyoon Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Jihong Sun
- Department of Radiology Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Jianqing Gao
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University Hangzhou 310058 China
| | - Daishun Ling
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Key Laboratory of Biomedical Engineering of the Ministry of Education College of Biomedical Engineering & Instrument Science Zhejiang University Hangzhou 310027 China
- Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310012 China
| |
Collapse
|
203
|
Grace HE, Galdun P, Lesnefsky EJ, West FD, Iyer S. mRNA Reprogramming of T8993G Leigh's Syndrome Fibroblast Cells to Create Induced Pluripotent Stem Cell Models for Mitochondrial Disorders. Stem Cells Dev 2019; 28:846-859. [PMID: 31017045 DOI: 10.1089/scd.2019.0045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early molecular and developmental events impacting many incurable mitochondrial disorders are not fully understood and require generation of relevant patient- and disease-specific stem cell models. In this study, we focus on the ability of a nonviral and integration-free reprogramming method for deriving clinical-grade induced pluripotent stem cells (iPSCs) specific to Leigh's syndrome (LS), a fatal neurodegenerative mitochondrial disorder of infants. The cause of fatality could be due to the presence of high abundance of mutant mitochondrial DNA (mtDNA) or decline in respiration levels, thus affecting early molecular and developmental events in energy-intensive tissues. LS patient fibroblasts (designated LS1 in this study), carrying a high percentage of mutant T8993G mtDNA, were reprogrammed using a combined mRNA-miRNA nonviral approach to generate human iPSCs (hiPSCs). The LS1-hiPSCs were evaluated for their self-renewal, embryoid body (EB) formation, and differentiation potential, using immunocytochemistry and gene expression profiling methods. Sanger sequencing and next-generation sequencing approaches were used to detect the mutation and quantify the percentage of mutant mtDNA in the LS1-hiPSCs and differentiated derivatives. Reprogrammed LS-hiPSCs expressed pluripotent stem cell markers including transcription factors OCT4, NANOG, and SOX2 and cell surface markers SSEA4, TRA-1-60, and TRA-1-81 at the RNA and protein level. LS1-hiPSCs also demonstrated the capacity for self-renewal and multilineage differentiation into all three embryonic germ layers. EB analysis demonstrated impaired differentiation potential in cells carrying high percentage of mutant mtDNA. Next-generation sequencing analysis confirmed the presence of high abundance of T8993G mutant mtDNA in the patient fibroblasts and their reprogrammed and differentiated derivatives. These results represent for the first time the derivation and characterization of a stable nonviral hiPSC line reprogrammed from a LS patient fibroblast carrying a high abundance of mutant mtDNA. These outcomes are important steps toward understanding disease origins and developing personalized therapies for patients suffering from mitochondrial diseases.
Collapse
Affiliation(s)
- Harrison E Grace
- 1 Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,2 Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Patrick Galdun
- 3 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- 3 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.,4 Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia.,5 Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia.,6 Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Franklin D West
- 1 Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,2 Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Shilpa Iyer
- 7 Department of Biological Sciences, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
204
|
The Use and Delivery of Stem Cells in Nerve Regeneration: Preclinical Evidence and Regulatory Considerations. Ann Plast Surg 2019; 80:448-456. [PMID: 29166311 DOI: 10.1097/sap.0000000000001259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Outcomes following peripheral nerve injury remain poor despite the regenerative capacity displayed by the peripheral nervous system. Current therapies are limited and do not provide satisfactory functional recovery in a multitude of cases. Biomaterials have decreased the need for nerve autograft across small nerve gaps in small-caliber nerves, but the lack of a cellular substrate presents a limiting factor to the effectiveness of this therapy. Schwann cells are the supportive cells in the peripheral nervous system and play an integral role in the physiological response and regeneration following nerve injury. Limitations to autologous Schwann cells include donor site morbidity during harvesting, limited expansion capability, and finite source. Stem cells are multipotent or pluripotent cells with self-renewing capabilities that show promise to improve functional recovery following nerve injury. Differentiation of stem cells into supportive Schwann cells could provide additional trophic support without the disadvantages of autologous Schwann cells, providing an avenue to improve existing therapies. A variety of stem cells have been evaluated in animal models for this clinical application; the current options, along with their clinical feasibility, are summarized in this article.
Collapse
|
205
|
Greuel S, Hanci G, Böhme M, Miki T, Schubert F, Sittinger M, Mandenius CF, Zeilinger K, Freyer N. Effect of inoculum density on human-induced pluripotent stem cell expansion in 3D bioreactors. Cell Prolif 2019; 52:e12604. [PMID: 31069891 PMCID: PMC6668975 DOI: 10.1111/cpr.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Objective For optimized expansion of human‐induced pluripotent stem cells (hiPSCs) with regards to clinical applications, we investigated the influence of the inoculum density on the expansion procedure in 3D hollow‐fibre bioreactors. Materials and Methods Analytical‐scale bioreactors with a cell compartment volume of 3 mL or a large‐scale bioreactor with a cell compartment volume of 17 mL were used and inoculated with either 10 × 106 or 50 × 106 hiPSCs. Cells were cultured in bioreactors over 15 days; daily measurements of biochemical parameters were performed. At the end of the experiment, the CellTiter‐Blue® Assay was used for culture activity evaluation and cell quantification. Also, cell compartment sections were removed for gene expression and immunohistochemistry analysis. Results The results revealed significantly higher values for cell metabolism, cell activity and cell yields when using the higher inoculation number, but also a more distinct differentiation. As large inoculation numbers require cost and time‐extensive pre‐expansion, low inoculation numbers may be used preferably for long‐term expansion of hiPSCs. Expansion of hiPSCs in the large‐scale bioreactor led to a successful production of 5.4 × 109 hiPSCs, thereby achieving sufficient cell amounts for clinical applications. Conclusions In conclusion, the results show a significant effect of the inoculum density on cell expansion, differentiation and production of hiPSCs, emphasizing the importance of the inoculum density for downstream applications of hiPSCs. Furthermore, the bioreactor technology was successfully applied for controlled and scalable production of hiPSCs for clinical use.
Collapse
Affiliation(s)
- Selina Greuel
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Güngör Hanci
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mike Böhme
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Toshio Miki
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Michael Sittinger
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carl-Fredrik Mandenius
- Division of Biotechnology, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nora Freyer
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
206
|
Abdal Dayem A, Lee SB, Kim K, Lim KM, Jeon TI, Seok J, Cho ASG. Production of Mesenchymal Stem Cells Through Stem Cell Reprogramming. Int J Mol Sci 2019; 20:ijms20081922. [PMID: 31003536 PMCID: PMC6514654 DOI: 10.3390/ijms20081922] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess a broad spectrum of therapeutic applications and have been used in clinical trials. MSCs are mainly retrieved from adult or fetal tissues. However, there are many obstacles with the use of tissue-derived MSCs, such as shortages of tissue sources, difficult and invasive retrieval methods, cell population heterogeneity, low purity, cell senescence, and loss of pluripotency and proliferative capacities over continuous passages. Therefore, other methods to obtain high-quality MSCs need to be developed to overcome the limitations of tissue-derived MSCs. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are considered potent sources for the derivation of MSCs. PSC-derived MSCs (PSC-MSCs) may surpass tissue-derived MSCs in proliferation capacity, immunomodulatory activity, and in vivo therapeutic applications. In this review, we will discuss basic as well as recent protocols for the production of PSC-MSCs and their in vitro and in vivo therapeutic efficacies. A better understanding of the current advances in the production of PSC-MSCs will inspire scientists to devise more efficient differentiation methods that will be a breakthrough in the clinical application of PSC-MSCs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | | | | | | | | | | | | |
Collapse
|
207
|
Seruggia D, Oti M, Tripathi P, Canver MC, LeBlanc L, Di Giammartino DC, Bullen MJ, Nefzger CM, Sun YBY, Farouni R, Polo JM, Pinello L, Apostolou E, Kim J, Orkin SH, Das PP. TAF5L and TAF6L Maintain Self-Renewal of Embryonic Stem Cells via the MYC Regulatory Network. Mol Cell 2019; 74:1148-1163.e7. [PMID: 31005419 DOI: 10.1016/j.molcel.2019.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/24/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
Self-renewal and pluripotency of the embryonic stem cell (ESC) state are established and maintained by multiple regulatory networks that comprise transcription factors and epigenetic regulators. While much has been learned regarding transcription factors, the function of epigenetic regulators in these networks is less well defined. We conducted a CRISPR-Cas9-mediated loss-of-function genetic screen that identified two epigenetic regulators, TAF5L and TAF6L, components or co-activators of the GNAT-HAT complexes for the mouse ESC (mESC) state. Detailed molecular studies demonstrate that TAF5L/TAF6L transcriptionally activate c-Myc and Oct4 and their corresponding MYC and CORE regulatory networks. Besides, TAF5L/TAF6L predominantly regulate their target genes through H3K9ac deposition and c-MYC recruitment that eventually activate the MYC regulatory network for self-renewal of mESCs. Thus, our findings uncover a role of TAF5L/TAF6L in directing the MYC regulatory network that orchestrates gene expression programs to control self-renewal for the maintenance of mESC state.
Collapse
Affiliation(s)
- Davide Seruggia
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Oti
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia
| | - Pratibha Tripathi
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia
| | - Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lucy LeBlanc
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Dafne C Di Giammartino
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Michael J Bullen
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Yu Bo Yang Sun
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Rick Farouni
- Molecular Pathology & Cancer Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Luca Pinello
- Molecular Pathology & Cancer Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Partha Pratim Das
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia.
| |
Collapse
|
208
|
Tarnawski L, Eugster E, DeCamp L, Jovinge S. The Efficacy and Safety ofSendaiViral Reprograming of Mouse Primary Cells Using Human Vectors. Cell Reprogram 2019; 21:78-88. [DOI: 10.1089/cell.2018.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Laura Tarnawski
- Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Solna, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Stefan Jovinge
- Van Andel Institute, Grand Rapids, Michigan
- DeVos Cardiovascular Research Program of Spectrum Health, Grand Rapids, Michigan
- Cardiovascular Institute, Stanford University, Palo Alto, California
- Spectrum Health Frederik Meijer Heart and Vascular Institute, Grand Rapids, Michigan
| |
Collapse
|
209
|
Lu M, Peng L, Ming X, Wang X, Cui A, Li Y, Wang X, Meng D, Sun N, Xiang M, Chen S. Enhanced wound healing promotion by immune response-free monkey autologous iPSCs and exosomes vs. their allogeneic counterparts. EBioMedicine 2019; 42:443-457. [PMID: 30926422 PMCID: PMC6491387 DOI: 10.1016/j.ebiom.2019.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/08/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Background Comparing non-inbred autologous and allogeneic induced pluripotent stem cells (iPSCs) and their secreted subcellular products among non-human primates is critical for choosing optimal iPSC products for human clinical trials. Methods iPSCs were induced from skin fibroblastic cells of adult male rhesus macaques belonging to four unrelated consanguineous families. Teratoma generativity, host immune response, and skin wound healing promotion were evaluated subsequently. Findings All autologous, but no allogeneic, iPSCs formed teratomas, whereas all allogeneic, but no autologous, iPSCs caused lymphocyte infiltration. Macrophages were not detectable in any wound. iPSCs expressed significantly more MAMU A and E of the major histocompatibility complex (MHC) class I but not more other MHC genetic alleles than parental fibroblastic cells. All topically disseminated autologous and allogeneic iPSCs, and their exosomes accelerated skin wound healing, as demonstrated by wound closure, epithelial coverage, collagen deposition, and angiogenesis. Allogeneic iPSCs and their exosomes were less effective and viable than their autologous counterparts. Some iPSCs differentiated into new endothelial cells and all iPSCs lost their pluripotency in 14 days. Exosomes increased cell viability of injured epidermal, endothelial, and fibroblastic cells in vitro. Although exosomes contained some mRNAs of pluripotent factors, they did not impart pluripotency to host cells. Interpretation Although all of the autologous and allogeneic iPSCs and exosomes accelerated wound healing, allogeneic iPSC exosomes were the preferred choice for “off-the shelf” iPSC products, owing to their mass-production, with no concern of teratoma formation. Fund National Natural Science Foundation of China and National Key R&D Program of China. Autologous but not allogeneic rhesus macaque iPSCs generate teratomas. Non-inbred allogeneic but not autologous iPSCs attract lymphocytes. Both autologous and allogeneic iPSCs and their exosomes promote wound healing. Both autologous iPSCs and exosomes promote better wound healing than their allogeneic counterparts. iPSCs lost their pluripotency in vivo. Exosomes did not impart pluripotency to host cells.
Collapse
Affiliation(s)
- Meng Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Peng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xu Ming
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaokai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Anfeng Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yijun Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meng Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
210
|
Ramotowski C, Qu X, Villa-Diaz LG. Progress in the Use of Induced Pluripotent Stem Cell-Derived Neural Cells for Traumatic Spinal Cord Injuries in Animal Populations: Meta-Analysis and Review. Stem Cells Transl Med 2019; 8:681-693. [PMID: 30903654 PMCID: PMC6591555 DOI: 10.1002/sctm.18-0225] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are cells genetically reprogrammed from somatic cells, which can be differentiated into neurological lineages with the aim to replace or assist damaged neurons in the treatment of spinal cord injuries (SCIs) caused by physical trauma. Here, we review studies addressing the functional use of iPSC‐derived neural cells in SCIs and perform a meta‐analysis to determine if significant motor improvement is restored after treatment with iPSC‐derived neural cells compared with treatments using embryonic stem cell (ESC)‐derived counterpart cells and control treatments. Overall, based on locomotion scales in rodents and monkeys, our meta‐analysis indicates a therapeutic benefit for SCI treatment using neural cells derived from either iPSCs or ESCs, being this of importance due to existing ethical and immunological complications using ESCs. Results from these studies are evidence of the successes and limitations of iPSC‐derived neural cells in the recovery of motor capacity. stem cells translational medicine2019;8:681&693
Collapse
Affiliation(s)
| | - Xianggui Qu
- Department of Mathematics and Statistics, Oakland University College of Arts and Sciences, Rochester, Michigan, USA
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University College of Arts and Sciences, Rochester, Michigan, USA
| |
Collapse
|
211
|
Rajab TK, Tchantchaleishvili V. Can tissue engineering produce bioartificial organs for transplantation? Artif Organs 2019; 43:536-541. [PMID: 30891801 DOI: 10.1111/aor.13443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Taufiek Konrad Rajab
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
212
|
Chua MWJ, Yildirim ED, Tan JHE, Chua YJB, Low SMC, Ding SLS, Li CW, Jiang Z, Teh BT, Yu K, Shyh-Chang N. Assessment of different strategies for scalable production and proliferation of human myoblasts. Cell Prolif 2019; 52:e12602. [PMID: 30891802 PMCID: PMC6536385 DOI: 10.1111/cpr.12602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Myoblast transfer therapy (MTT) is a technique to replace muscle satellite cells with genetically repaired or healthy myoblasts, to treat muscular dystrophies. However, clinical trials with human myoblasts were ineffective, showing almost no benefit with MTT. One important obstacle is the rapid senescence of human myoblasts. The main purpose of our study was to compare the various methods for scalable generation of proliferative human myoblasts. METHODS We compared the immortalization of primary myoblasts with hTERT, cyclin D1 and CDK4R24C , two chemically defined methods for deriving myoblasts from pluripotent human embryonic stem cells (hESCs), and introduction of viral MyoD into hESC-myoblasts. RESULTS Our results show that, while all the strategies above are suboptimal at generating bona fide human myoblasts that can both proliferate and differentiate robustly, chemically defined hESC-monolayer-myoblasts show the most promise in differentiation potential. CONCLUSIONS Further efforts to optimize the chemically defined differentiation of hESC-monolayer-myoblasts would be the most promising strategy for the scalable generation of human myoblasts, for applications in MTT and high-throughput drug screening.
Collapse
Affiliation(s)
- Min-Wen Jason Chua
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore.,Stem Cell & Regenerative Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore City, Singapore.,Laboratory of Cancer Therapeutics, Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore City, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore City, Singapore.,Division of Medical Science, Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore City, Singapore
| | - Ege Deniz Yildirim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Jun-Hao Elwin Tan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore.,Stem Cell & Regenerative Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore City, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore City, Singapore.,Division of Medical Science, Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore City, Singapore
| | - Yan-Jiang Benjamin Chua
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore.,Stem Cell & Regenerative Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore City, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore City, Singapore.,Division of Medical Science, Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore City, Singapore
| | - Suet-Mei Crystal Low
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore City, Singapore
| | - Suet Lee Shirley Ding
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore City, Singapore
| | - Chun-Wei Li
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Bin Tean Teh
- Laboratory of Cancer Therapeutics, Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore City, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore City, Singapore.,Division of Medical Science, Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore City, Singapore
| | - Kang Yu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
213
|
Wang H, Li D, Zhai Z, Zhang X, Huang W, Chen X, Huang L, Liu H, Sun J, Zou Z, Fan Y, Ke Q, Lai X, Wang T, Li X, Shen H, Xiang AP, Li W. Characterization and Therapeutic Application of Mesenchymal Stem Cells with Neuromesodermal Origin from Human Pluripotent Stem Cells. Am J Cancer Res 2019; 9:1683-1697. [PMID: 31037131 PMCID: PMC6485183 DOI: 10.7150/thno.30487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/02/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: Mesenchymal stem cells (MSC) hold great promise in the treatment of various diseases including autoimmune diseases, inflammatory diseases, etc., due to their pleiotropic properties. However, largely incongruent data were obtained from different MSC-based clinical trials, which may be partially due to functional heterogeneity among MSC. Here, we attempt to derive homogeneous mesenchymal stem cells with neuromesodermal origin from human pluripotent stem cells (hPSC) and evaluate their functional properties. Methods: Growth factors and/or small molecules were used for the differentiation of human pluripotent stem cells (hPSC) into neuromesodermal progenitors (NMP), which were then cultured in animal component-free and serum-free induction medium for the derivation and long-term expansion of MSC. The resulted NMP-MSC were detailed characterized by analyzing their surface marker expression, proliferation, migration, multipotency, immunomodulatory activity and global gene expression profile. Moreover, the in vivo therapeutic potential of NMP-MSC was detected in a mouse model of contact hypersensitivity (CHS). Results: We demonstrate that NMP-MSC express posterior HOX genes and exhibit characteristics similar to those of bone marrow MSC (BMSC), and NMP-MSC derived from different hPSC lines show high level of similarity in global gene expression profiles. More importantly, NMP-MSC display much stronger immunomodulatory activity than BMSC in vitro and in vivo, as revealed by decreased inflammatory cell infiltration and diminished production of pro-inflammatory cytokines in inflamed tissue of CHS models. Conclusion: Our results identify NMP as a new source of MSC and suggest that functional and homogeneous NMP-MSC could serve as a candidate for MSC-based therapies.
Collapse
|
214
|
Phakdeedindan P, Setthawong P, Tiptanavattana N, Rungarunlert S, Ingrungruanglert P, Israsena N, Techakumphu M, Tharasanit T. Rabbit induced pluripotent stem cells retain capability of in vitro cardiac differentiation. Exp Anim 2019; 68:35-47. [PMID: 30089733 PMCID: PMC6389514 DOI: 10.1538/expanim.18-0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Stem cells are promising cell source for treatment of multiple diseases as well as myocardial infarction. Rabbit model has essentially used for cardiovascular diseases and regeneration but information on establishment of induced pluripotent stem cells (iPSCs) and differentiation potential is fairly limited. In addition, there is no report of cardiac differentiation from iPSCs in the rabbit model. In this study, we generated rabbit iPSCs by reprogramming rabbit fibroblasts using the 4 transcription factors (OCT3/4, SOX2, KLF4, and c-Myc). Three iPSC lines were established. The iPSCs from all cell lines expressed genes (OCT3/4, SOX2, KLF4 and NANOG) and proteins (alkaline phosphatase, OCT-3/4 and SSEA-4) essentially described for pluripotency (in vivo and in vitro differentiation). Furthermore, they also had ability to form embryoid body (EB) resulting in three-germ layer differentiation. However, ability of particular cell lines and cell numbers at seeding markedly influenced on EB formation and also their diameters. The cell density at 20,000 cells per EB was selected for cardiac differentiation. After plating, the EBs attached and cardiac-like beating areas were seen as soon as 11 days of culture. The differentiated cells expressed cardiac progenitor marker FLK1 (51 ± 1.48%) on day 5 and cardiac troponin-T protein (10.29 ± 1.37%) on day 14. Other cardiac marker genes (cardiac ryanodine receptors (RYR2), α-actinin and PECAM1) were also expressed. This study concluded that rabbit iPSCs remained their in vitro pluripotency with capability of differentiation into mature-phenotype cardiomyocytes. However, the efficiency of cardiac differentiation is still restricted.
Collapse
Affiliation(s)
- Praopilas Phakdeedindan
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Piyathip Setthawong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Narong Tiptanavattana
- Faculty of Veterinary Science, Prince of Songkla University, 15 Kanjanavanich Road, Hat Yai Songkhla 90110, Thailand
| | - Sasitorn Rungarunlert
- Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4 Road, Nakhonpathom, 73170, Thailand
| | - Praewphan Ingrungruanglert
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, 1873 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Nipan Israsena
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, 1873 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
- The Research and Development Center for Livestock Production Technology at the Faculty of Veterinary Science, Chulalongkorn University, Thailand
| |
Collapse
|
215
|
Establishment of an induced pluripotent stem cell model of Hirschsrpung disease, a congenital condition of the enteric nervous system, from a patient carrying a novel RET mutation. Neuroreport 2019; 29:975-980. [PMID: 29965875 DOI: 10.1097/wnr.0000000000001070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hirschsprung disease (HSCR) is a complex genetic disorder of the enteric nervous system that is characterized by a complete loss of the neuronal ganglion cells in the intestinal tract. It is one of the most frequent causes of congenital intestinal obstruction and more than 80% of the causative mutations are in RET. Here, we identified a new RET mutation in a patient and established a cell model that can be used to elucidate the pathogenesis of HSCR. Peripheral blood was collected from a patient who was clinically and pathologically diagnosed with HSCR with a heterozygous deletion mutation (c.180delT; p.Glu61ArgfsX163) in exon 2 of RET. Patient-derived induced pluripotent stem cell (iPSC) lines were generated from dermal fibroblasts. Using immunofluorescence staining and RT-PCR, we showed that the generated iPSCs expressed the pluripotency markers OCT4, SSEA4, SOX2, TRA-1-60, and NANOG. We also showed that the HSCR-iPSCs could differentiate into cells from all three germ layers by spontaneous in-vitro differentiation. In addition, 3 months after the administration of a subcutaneous injection of these iPSCs into nude mice, teratomas with all three germ layers were observed. We identified a new RET gene mutation causing HSCR and successfully established a human iPSC line from an HSCR patient carrying this novel RET mutation, which could be useful in pathogenesis studies of HSCR.
Collapse
|
216
|
Park SJ, Lee JH, Lee SG, Lee JE, Seo J, Choi JJ, Jung TH, Chung EB, Kim HN, Ju J, Song YH, Chung HM, Lee DR, Moon SH. Functional Equivalency in Human Somatic Cell Nuclear Transfer-Derived Endothelial Cells. Stem Cells 2019; 37:623-630. [PMID: 30721559 DOI: 10.1002/stem.2986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/24/2018] [Accepted: 01/05/2019] [Indexed: 01/23/2023]
Abstract
The derivation of human embryonic stem cells (hESCs) by somatic cell nuclear transfer (SCNT) has prompted a re-emerging interest in using such cells for therapeutic cloning. Despite recent advancements in derivation protocols, the functional potential of CHA-NT4 derived cells is yet to be elucidated. For this reason, this study sought to differentiate CHA-NT4 cells toward an endothelial lineage in order to evaluate in vitro and in vivo functionality. To initial differentiation, embryoid body formation of CHA-NT4 was mediated by concave microwell system which was optimized for hESC-endothelial cell (EC) differentiation. The isolated CD31+ cells exhibited hallmark endothelial characteristics in terms of morphology, tubule formation, and ac-LDL uptake. Furthermore, CHA-NT4-derived EC (human nuclear transfer [hNT]-ESC-EC) transplantation in hind limb ischemic mice rescued the hind limb and restored blood perfusion. These findings suggest that hNT-ESC-EC are functionally equivalent to hESC-ECs, warranting further study of CHA-NT4 derivatives in comparison to other well established pluripotent stem cell lines. This revival of human SCNT-ESC research may lead to interesting insights into cellular behavior in relation to donor profile, mitochondrial DNA, and oocyte quality. Stem Cells 2019;37:623-630.
Collapse
Affiliation(s)
- Soon-Jung Park
- Department of Stem Cell Biology, Konkuk University, School of Medicine, Seoul, Republic of Korea
| | - Ji-Heon Lee
- Department of Stem Cell Biology, Konkuk University, School of Medicine, Seoul, Republic of Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, Konkuk University, School of Medicine, Seoul, Republic of Korea
| | - Jeoung Eun Lee
- CHA Stem Cell Institute, CHA University, Seongnam, Republic of Korea
| | - Joseph Seo
- Department of Stem Cell Biology, Konkuk University, School of Medicine, Seoul, Republic of Korea
| | - Jong Jin Choi
- Department of Stem Cell Biology, Konkuk University, School of Medicine, Seoul, Republic of Korea.,Division of research, BYON Co. Ltd., Stem Cell Research Center, Seoul, Republic of Korea
| | - Taek-Hee Jung
- Division of research, BYON Co. Ltd., Stem Cell Research Center, Seoul, Republic of Korea
| | - Eun-Bin Chung
- Division of research, BYON Co. Ltd., Stem Cell Research Center, Seoul, Republic of Korea
| | - Ha Na Kim
- Department of Stem Cell Biology, Konkuk University, School of Medicine, Seoul, Republic of Korea
| | - Jongil Ju
- Department of R&D, Advanced Bio Micro (ABM) Scientific Co., Cheonan, Republic of Korea
| | - Yun-Ho Song
- Department of Stem Cell Biology, Konkuk University, School of Medicine, Seoul, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, Konkuk University, School of Medicine, Seoul, Republic of Korea
| | - Dong Ryul Lee
- CHA Stem Cell Institute, CHA University, Seongnam, Republic of Korea.,Research Institute for Stem Cell Research, CHA Health Systems, Los Angeles, California, USA.,Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Sung-Hwan Moon
- Department of Stem Cell Biology, Konkuk University, School of Medicine, Seoul, Republic of Korea.,Department of Stem Cell Biology, Research Institute, T&R Biofab Co. Ltd., Siheung, Republic of Korea
| |
Collapse
|
217
|
Vigilante A, Laddach A, Moens N, Meleckyte R, Leha A, Ghahramani A, Culley OJ, Kathuria A, Hurling C, Vickers A, Wiseman E, Tewary M, Zandstra PW, Durbin R, Fraternali F, Stegle O, Birney E, Luscombe NM, Danovi D, Watt FM. Identifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors. Cell Rep 2019; 26:2078-2087.e3. [PMID: 30784590 PMCID: PMC6381787 DOI: 10.1016/j.celrep.2019.01.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/11/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
Large cohorts of human induced pluripotent stem cells (iPSCs) from healthy donors are a potentially powerful tool for investigating the relationship between genetic variants and cellular behavior. Here, we integrate high content imaging of cell shape, proliferation, and other phenotypes with gene expression and DNA sequence datasets from over 100 human iPSC lines. By applying a dimensionality reduction approach, Probabilistic Estimation of Expression Residuals (PEER), we extracted factors that captured the effects of intrinsic (genetic concordance between different cell lines from the same donor) and extrinsic (cell responses to different fibronectin concentrations) conditions. We identify genes that correlate in expression with intrinsic and extrinsic PEER factors and associate outlier cell behavior with genes containing rare deleterious non-synonymous SNVs. Our study, thus, establishes a strategy for examining the genetic basis of inter-individual variability in cell behavior.
Collapse
Affiliation(s)
- Alessandra Vigilante
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Anna Laddach
- Randall Division, King's College London, New Hunts House, Great Maze Pond, London SE1 9RT, UK
| | - Nathalie Moens
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Ruta Meleckyte
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Andreas Leha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Arsham Ghahramani
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Oliver J Culley
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Annie Kathuria
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Chloe Hurling
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Alice Vickers
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Erika Wiseman
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Mukul Tewary
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Peter W Zandstra
- School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Richard Durbin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Franca Fraternali
- Randall Division, King's College London, New Hunts House, Great Maze Pond, London SE1 9RT, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Davide Danovi
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
218
|
Nawroth JC, Barrile R, Conegliano D, van Riet S, Hiemstra PS, Villenave R. Stem cell-based Lung-on-Chips: The best of both worlds? Adv Drug Deliv Rev 2019; 140:12-32. [PMID: 30009883 PMCID: PMC7172977 DOI: 10.1016/j.addr.2018.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Pathologies of the respiratory system such as lung infections, chronic inflammatory lung diseases, and lung cancer are among the leading causes of morbidity and mortality, killing one in six people worldwide. Development of more effective treatments is hindered by the lack of preclinical models of the human lung that can capture the disease complexity, highly heterogeneous disease phenotypes, and pharmacokinetics and pharmacodynamics observed in patients. The merger of two novel technologies, Organs-on-Chips and human stem cell engineering, has the potential to deliver such urgently needed models. Organs-on-Chips, which are microengineered bioinspired tissue systems, recapitulate the mechanochemical environment and physiological functions of human organs while concurrent advances in generating and differentiating human stem cells promise a renewable supply of patient-specific cells for personalized and precision medicine. Here, we discuss the challenges of modeling human lung pathophysiology in vitro, evaluate past and current models including Organs-on-Chips, review the current status of lung tissue modeling using human pluripotent stem cells, explore in depth how stem-cell based Lung-on-Chips may advance disease modeling and drug testing, and summarize practical consideration for the design of Lung-on-Chips for academic and industry applications.
Collapse
Affiliation(s)
| | | | | | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | | |
Collapse
|
219
|
Maintenance of an undifferentiated state of human-induced pluripotent stem cells through botulinum hemagglutinin-mediated regulation of cell behavior. J Biosci Bioeng 2019; 127:744-751. [PMID: 30660482 DOI: 10.1016/j.jbiosc.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/14/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023]
Abstract
Applications of human induced pluripotent stem cell (hiPSC) culture are impaired by problems with long term maintenance of pluripotency. In this study, we report that exposure to botulinum hemagglutinin (HA), an E-cadherin function-blocking agent, suppressed deviation from an undifferentiated state in hiPSC colonies. Time-lapse imaging of live cells revealed that cells in central regions of colonies moved slowly and underwent a morphological change to a cobblestone-like shape via interaction between contacting cells, forming dense, multiple layers. Staining and migration analysis showed that actin stress fibers and paxillin spots were diminished in colony central regions, and this was associated with alteration of cellular morphology and migratory behavior. However, in culture with HA exposure, cells in the central and peripheral regions of hiPSC colonies were migratory and arranged in loose monolayers, resulting in relatively uniform dispersion of cells in colonies. We also found that a well-organized network of actin stress fibers was of significance in the central and peripheral regions of a colony, resulting in activation of paxillin and E-cadherin expression in hiPSCs. After routine application of HA for serial passages, hiPSCs remained pluripotent and capable of differentiating into all three germ layers. These observations indicate that relaxation of cell-cell junctions by HA induced rearrangements of the cytoskeleton and cell adhesion in hiPSC colonies by promoting migratory behaviors. These results suggest that this simple and readily reproducible culture strategy is a potentially useful tool for improving the robust and scalable maintenance of undifferentiated hiPSC cultures.
Collapse
|
220
|
LRP5 controls cardiac QT interval by modulating the metabolic homeostasis of L-type calcium channel. Int J Cardiol 2019; 275:120-128. [PMID: 30309679 DOI: 10.1016/j.ijcard.2018.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 5 (LRP5) has been intensively studied as a co-receptor for β-catenin-dependent Wnt signaling. Emerging evidences have demonstrated β-catenin-independent functions of LRP5. However, the biological role of LRP5 in the mammalian heart is largely unknown. METHODS AND RESULTS Conditional cardiac-specific Lrp5 knockout (Lrp5-CKO) mice were generated by crossing Lrp5flox/flox mice with αMHC/MerCreMer mice. Lrp5-CKO mice consistently displayed normal cardiac structure and function. Telemetric electrocardiogram recordings revealed a short QT interval in Lrp5-CKO mice, which was tightly linked to the striking abbreviation of action potential duration (APD) in ventricular myocytes. The analysis of whole-cell currents indicated that a reduction in activity and protein expression of L-type calcium channel (LTCC), rather than other ion channels, contributed to the abnormality in APD. Furthermore, we showed that Lrp5 ablation induced a significant convergence of CaV1.2α1c proteins to the endoplasmic reticulum. Consequently, increased proteasomal degradation of these proteins was observed, which was independent of the Wnt/β-catenin signaling pathway. CONCLUSIONS LRP5 directly modulates the degradation of LTCC to control cardiac QT interval. These findings provide compelling evidence for the potential role of LRPs in cardiac electrophysiology.
Collapse
|
221
|
Danter WR. DeepNEU: cellular reprogramming comes of age - a machine learning platform with application to rare diseases research. Orphanet J Rare Dis 2019; 14:13. [PMID: 30630505 PMCID: PMC6327463 DOI: 10.1186/s13023-018-0983-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Conversion of human somatic cells into induced pluripotent stem cells (iPSCs) is often an inefficient, time consuming and expensive process. Also, the tendency of iPSCs to revert to their original somatic cell type over time continues to be problematic. A computational model of iPSCs identifying genes/molecules necessary for iPSC generation and maintenance could represent a crucial step forward for improved stem cell research. The combination of substantial genetic relationship data, advanced computing hardware and powerful nonlinear modeling software could make the possibility of artificially-induced pluripotent stem cells (aiPSC) a reality. We have developed an unsupervised deep machine learning technology, called DeepNEU that is based on a fully-connected recurrent neural network architecture with one network processing layer for each input. DeepNEU was used to simulate aiPSC systems using a defined set of reprogramming transcription factors. Genes/proteins that were reported to be essential in human pluripotent stem cells (hPSC) were used for system modelling. RESULTS The Mean Squared Error (MSE) function was used to assess system learning. System convergence was defined at MSE < 0.001. The markers of human iPSC pluripotency (N = 15) were all upregulated in the aiPSC final model. These upregulated/expressed genes in the aiPSC system were entirely consistent with results obtained for iPSCs. CONCLUSION This research introduces and validates the potential use of aiPSCs as computer models of human pluripotent stem cell systems. Disease-specific aiPSCs have the potential to improve disease modeling, prototyping of wet lab experiments, and prediction of genes relevant and necessary for aiPSC production and maintenance for both common and rare diseases in a cost-effective manner.
Collapse
Affiliation(s)
- Wayne R Danter
- 123Genetix, 147 Chesham Ave, London, ON, N6G 3V2, Canada.
| |
Collapse
|
222
|
Xiang M, Lu M, Quan J, Xu M, Meng D, Cui A, Li N, Liu Y, Lu P, Kang X, Wang X, Sun N, Zhao M, Liang Q, Le L, Wang X, Zhang J, Chen S. Direct in vivo application of induced pluripotent stem cells is feasible and can be safe. Am J Cancer Res 2019; 9:290-310. [PMID: 30662568 PMCID: PMC6332789 DOI: 10.7150/thno.28671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/28/2018] [Indexed: 01/17/2023] Open
Abstract
Increasing evidence suggests the consensus that direct in vivo application of induced pluripotent stem cells (iPSCs) is infeasible may not be true. Methods: Teratoma formation and fate were examined in 53 normal and disease conditions involving brain, lung, liver, kidney, islet, skin, hind limb, and arteries. Results: Using classic teratoma generation assays, which require iPSCs to be congregated and confined, all mouse, human, and individualized autologous monkey iPSCs tested formed teratoma, while iPSC-derived cells did not. Intravenously or topically-disseminated iPSCs did not form teratomas with doses up to 2.5×108 iPSCs/kg and observation times up to 18 months, regardless of host tissue type; autologous, syngeneic, or immune-deficient host animals; presence or absence of disease; disease type; iPSC induction method; commercial or self-induced iPSCs; mouse, human, or monkey iPSCs; frequency of delivery; and sex. Matrigel-confined, but not PBS-suspended, syngeneic iPSCs delivered into the peritoneal cavity or renal capsule formed teratomas. Intravenously administered iPSCs were therapeutic with a dose as low as 5×106/kg and some iPSCs differentiated into somatic cells in injured organs. Disseminated iPSCs trafficked into injured tissue and survived significantly longer in injured than uninjured organs. In disease-free animals, no intravenously administered cell differentiated into an unwanted long-lasting cell or survived as a quiescent stem cell. In coculture, the stem cell medium and dominant cell-type status were critical for iPSCs to form cell masses. Conclusion: Teratoma can be easily and completely avoided by disseminating the cells. Direct in vivo iPSC application is feasible and can be safe.
Collapse
|
223
|
Liu X, Chen J, Firas J, Paynter JM, Nefzger CM, Polo JM. Generation of Mouse-Induced Pluripotent Stem Cells by Lentiviral Transduction. Methods Mol Biol 2019; 1940:63-76. [PMID: 30788818 DOI: 10.1007/978-1-4939-9086-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Terminally differentiated somatic cells can be reprogrammed into an embryonic stem cell-like state by the forced expression of four transcription factors: Oct4, Klf4, Sox2, and c-Myc (OKSM). These so-called induced pluripotent stem (iPS) cells can give rise to any cell type of the body and thus have tremendous potential for many applications in research and regenerative medicine. Herein, we describe (1) a protocol for the generation of iPS cells from mouse embryonic fibroblasts (MEFs) using a doxycycline (Dox)-inducible lentiviral transduction system; (2) the derivation of clonal iPS cell lines; and (3) the characterization of the pluripotent potential of iPS cell lines using alkaline phosphatase staining, flow cytometry, and the teratoma formation assays.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Jaber Firas
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Jacob M Paynter
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
224
|
Abstract
The discovery of induced pluripotent stem cells (iPSCs) by Dr. Shinya Yamanaka and his team has opened up many avenues of research. This includes medical initiatives such as the Precision Medicine and Personalized Medicine initiatives to use patient-specific stem cells to guide medical professionals on the base courses of treatment for various disorders based on the patient's own genetic background, i.e., targeting the best treatment for the individual patient. However iPSC technology has greater potential than disease modeling and regenerative medicine therapies. In this chapter, we will outline how to culture and maintain human iPSCs, differentiate human iPSCs into neurons, and discuss how iPSCs can be utilized for developmental toxicology studies. Furthermore, this chapter will highlight a burgeoning field using iPSCs to examine personalized exposure risks.
Collapse
Affiliation(s)
- Charles A Easley
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, USA.
| |
Collapse
|
225
|
Haake K, Ackermann M, Lachmann N. Concise Review: Towards the Clinical Translation of Induced Pluripotent Stem Cell-Derived Blood Cells-Ready for Take-Off. Stem Cells Transl Med 2018; 8:332-339. [PMID: 30585439 PMCID: PMC6431684 DOI: 10.1002/sctm.18-0134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have opened up a world of possibilities for regenerative medicine and novel cell‐based therapeutics. Now, over a decade later, robust reprogramming and expansion and differentiation protocols have been developed, and iPSC‐derived cells have been used in a wide variety of small and large animal models to treat many different diseases. Furthermore, the first iPSC derivatives are on their way into clinical trials. In this line, (i) GMP‐compliant generation, cultivation, and differentiation, (ii) preclinical efficacy and safety, as well as (iii) ethical and regulatory compliance of stem cell research represent important aspects that need to be evaluated for proper clinical translation of iPSCs and their derivatives. In this review article, we provide an overview of the current advances and challenges of the clinical translation of iPSC‐derived blood cells and highlight the most pressing problems that have to be overcome in the next years. stem cells translational medicine2019;8:332–339
Collapse
Affiliation(s)
- Kathrin Haake
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
226
|
Establishment and Identification of a CiPSC Lineage Reprogrammed from FSP-tdTomato Mouse Embryonic Fibroblasts (MEFs). Stem Cells Int 2018; 2018:5965727. [PMID: 30675169 PMCID: PMC6323470 DOI: 10.1155/2018/5965727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022] Open
Abstract
Safety issues associated with transcription factors or viruses may be avoided with the use of chemically induced pluripotent stem cells (CiPSCs), thus promoting their clinical application. Previously, we had successfully developed and standardized an induction method using small-molecule compound, with simple operation, uniform induction conditions, and clear constituents. In order to verify that the CiPSCs were indeed reprogrammed from mouse embryonic fibroblasts (MEFs), and further explore the underlying mechanisms, FSP-tdTomato mice were used to construct a fluorescent protein-tracking system of MEFs, for revealing the process of CiPSC reprogramming. CiPSCs were identified by morphological analysis, mRNA, and protein expression of pluripotency genes, as well as teratoma formation experiments. Results showed that after 40-day treatment of tdTomato-MEFs with small-molecule compounds, the cells were presented with prominent nucleoli, high core-to-cytoplasmic ratio, round shape, group and mass arrangement, and high expression of pluripotency gene. These cells could differentiate into three germ layer tissues in vivo. As indicated by the above results, tdTomato-MEFs could be reprogrammed into CiPSCs, a lineage that possesses pluripotency similar to mouse embryonic stem cells (mESCs), with the use of small-molecule compounds. The establishment of CiPSC lineage, tracked by fluorescent protein, would benefit further studies exploring its underlying mechanisms. With continuous expression of fluorescent proteins during cellular differentiation, this cell lineage could be used for tracking CiPSC transplantation and differentiation into functional cells.
Collapse
|
227
|
Setthawong P, Phakdeedindan P, Tiptanavattana N, Rungarunlert S, Techakumphu M, Tharasanit T. Generation of porcine induced-pluripotent stem cells from Sertoli cells. Theriogenology 2018; 127:32-40. [PMID: 30639694 DOI: 10.1016/j.theriogenology.2018.12.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/04/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are generated by reprogramming of somatic cells using four transcription factors: OCT4, SOX2, KLF-4, and c-MYC (OSKM). However, reprogramming efficiency of iPSCs is currently poor. In this study, we used the Sertoli line as a novel cell source for somatic cell reprogramming. Neonatal testes were collected from 1-week-old piglets. The testes were digested by a two-step enzymatic method to isolate Sertoli cells. The latter were transfected with retroviral vectors expressing OSKM. The Sertoli iPSC-like colonies were subjected to morphological analysis, alkaline phosphatase staining, RT-PCR, G-banding karyotyping, in vitro differentiation, and in vivo differentiation. Primary Sertoli cells had polygon-shaped morphology and manifested phagocytic activity as determined by a fluorescent bead assay. Sertoli cells also expressed the anti-Müllerian hormone protein in the cytoplasm. According to RT-PCR results, these cells expressed Sertoli cell markers (FSHR, KRT18, and GATA6) and endogenous transcription factors genes (KLF4 and c-MYC). A total of 240 colonies (0.3% efficiency) were detected by day 7 after viral transduction of 72500 cells. The Sertoli iPSC-like colonies contained small cells with a high nucleus-to-cytoplasm ratio. These colonies tested positive for alkaline phosphatase staining, expressed endogenous pluripotency genes, and had a normal karyotype. All these cell lines could form in vitro three-dimensional aggregates that represented three germ layers of embryonic-like cells. A total of two cell lines used for in vivo differentiation produced high-efficiency teratoma. In conclusion, Sertoli cells can efficiently serve as a novel cell source for iPSC reprogramming.
Collapse
Affiliation(s)
- Piyathip Setthawong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Praopilas Phakdeedindan
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narong Tiptanavattana
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sasitorn Rungarunlert
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73710, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
228
|
Mahabadi JA, Sabzalipoor H, Nikzad H, Seyedhosseini E, Enderami SE, Gheibi Hayat SM, Sahebkar A. The role of microRNAs in embryonic stem cell and induced pluripotent stem cell differentiation in male germ cells. J Cell Physiol 2018; 234:12278-12289. [PMID: 30536380 DOI: 10.1002/jcp.27990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
New perspectives have been opened by advances in stem cell research for reproductive and regenerative medicine. Several different cell types can be differentiated from stem cells (SCs) under suitable in vitro and in vivo conditions. The differentiation of SCs into male germ cells has been reported by many groups. Due to their unlimited pluripotency and self-renewal, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be used as valuable tools for drug delivery, disease modeling, developmental studies, and cell-based therapies in regenerative medicine. The unique features of SCs are controlled by a dynamic interplay between extrinsic signaling pathways, and regulations at epigenetic, transcriptional and posttranscriptional levels. In recent years, significant progress has been made toward better understanding of the functions and expression of specific microRNAs (miRNAs) in the maintenance of SC pluripotency. miRNAs are short noncoding molecules, which play a functional role in the regulation of gene expression. In addition, the important regulatory role of miRNAs in differentiation and dedifferentiation has been recently demonstrated. A balance between differentiation and pluripotency is maintained by miRNAs in the embryo and stem cells. This review summarizes the recent findings about the role of miRNAs in the regulation of self-renewal and pluripotency of iPSCs and ESCs, as well as their impact on cellular reprogramming and stem cell differentiation into male germ cells.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyedhosseini
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
229
|
Wang Y, Wang H, Deng P, Chen W, Guo Y, Tao T, Qin J. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. LAB ON A CHIP 2018; 18:3606-3616. [PMID: 30357207 DOI: 10.1039/c8lc00869h] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Liver organoids derived from human pluripotent stem cells (PSCs) represent a new type of in vitro liver model for understanding organ development, disease mechanism and drug testing. However, engineering liver organoids with favorable functions in a controlled cellular microenvironment remains challenging. In this work, we present a new strategy for engineering liver organoids derived from human induced PSCs (hiPSCs) in a 3D perfusable chip system by combining stem cell biology with microengineering technology. This approach enabled formation of hiPSC-based embryoid bodies (EBs), in situ hepatic differentiation, long-term 3D culture and generation of liver organoids in a perfusable micropillar chip. The generated liver organoids exhibited favorable growth and differentiation of hepatocytes and cholangiocytes, recapitulating the key features of human liver formation with cellular heterogeneity. The liver organoids in perfused cultures displayed improved cell viability and higher expression of endodermal genes (SOX17 and FOXA2) and mature hepatic genes (ALB and CYP3A4) under perfused culture conditions. In addition, the liver organoids showed a marked enhancement of hepatic-specific functions, including albumin and urea production and metabolic capabilities, indicating the role of mechanical fluid flow in promoting the functions of the liver organoids. Moreover, the liver organoids exhibited hepatotoxic response after exposure to acetaminophen (APAP) in a dose- and time-dependent manner. The established liver organoid-on-a-chip system may provide a promising platform for engineering stem cell-based organoids with applications in regenerative medicine, disease modeling and drug testing.
Collapse
Affiliation(s)
- Yaqing Wang
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Pengwei Deng
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Wenwen Chen
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Yaqiong Guo
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Tao
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Qin
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
230
|
Ma Y, Lin M, Huang G, Li Y, Wang S, Bai G, Lu TJ, Xu F. 3D Spatiotemporal Mechanical Microenvironment: A Hydrogel-Based Platform for Guiding Stem Cell Fate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705911. [PMID: 30063260 DOI: 10.1002/adma.201705911] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/05/2018] [Indexed: 05/06/2023]
Abstract
Stem cells hold great promise for widespread biomedical applications, for which stem cell fate needs to be well tailored. Besides biochemical cues, accumulating evidence has demonstrated that spatiotemporal biophysical cues (especially mechanical cues) imposed by cell microenvironments also critically impact on the stem cell fate. As such, various biomaterials, especially hydrogels due to their tunable physicochemical properties and advanced fabrication approaches, are developed to spatiotemporally manipulate biophysical cues in vitro so as to recapitulate the 3D mechanical microenvironment where stem cells reside in vivo. Here, the main mechanical cues that stem cells experience in their native microenvironment are summarized. Then, recent advances in the design of hydrogel materials with spatiotemporally tunable mechanical properties for engineering 3D the spatiotemporal mechanical microenvironment of stem cells are highlighted. These in vitro engineered spatiotemporal mechanical microenvironments are crucial for guiding stem cell fate and their potential biomedical applications are subsequently discussed. Finally, the challenges and future perspectives are presented.
Collapse
Affiliation(s)
- Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shuqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, P. R. China
- Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, P. R. China
| | - Guiqin Bai
- Department of Gynaecology and Obstetrics, First Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
231
|
Bucan V, Fliess M, Schnabel R, Peck CT, Vaslaitis D, Fülbier A, Reimers K, Strauss S, Vogt PM, Radtke C. In vitro enhancement and functional characterization of neurite outgrowth by undifferentiated adipose-derived stem cells. Int J Mol Med 2018; 43:593-602. [PMID: 30431135 DOI: 10.3892/ijmm.2018.3979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/22/2018] [Indexed: 11/05/2022] Open
Abstract
Adipose‑derived stem cells (ASCs) can easily be obtained and expanded in vitro for use in autologous cell therapy. Via their production of cytokines and neurotrophic factors, transplanted ASCs provide neuroprotection, neovascularization and induction of axonal sprouting. However, the influencing mechanism of undifferentiated ASCs on nerve regeneration is currently only partially understood. In the present study, undifferentiated ASCs and cutaneous primary afferent dorsal root ganglion (DRG) neurons were co‑cultured in order to investigate their interaction. ASCs were isolated from adult rat fat tissue. The presence of characteristic stem cell markers was determined by flow cytometry in three subsequent passages. Adipogenic, osteogenic, chondrogenic and glial differentiation was performed in order to evaluate their differentiation capacity. A direct co‑culture system with DRG cells was established to determine the effect of undifferentiated pluripotent ASCs on neurite elongation. Neurite outgrowth, length and number was examined in the co‑culture and compared with single‑culture cells and cells stimulated with nerve growth factor (NGF). In ASC cultures, NGF expression was assessed by ELISA. The present results demonstrated that the specific mesenchymal stem cell surface markers CD44, CD73 and CD90 were detected in all three subsequent passages of the isolated ASCs. In accordance, ASC differentiation into adipogenic, osteogenic, chondrogenic and Schwann cell phenotype was conducted successfully. Neurite outgrowth of DRG neurons was enhanced following co‑culture with ASCs, resulting in increased neurite length after 24 h of cultivation. Furthermore, neurite outgrowth of DRG neurons was directed towards the undifferentiated ASC and direct cell‑to‑cell contact was observed. In summary, the results of the present study revealed an interaction between the two cell types with guidance of neurite growth towards the undifferentiated ASC. These findings suggest that the use of undifferentiated ASC optimizing tissue‑engineered constructs may be promising for peripheral nerve repair.
Collapse
Affiliation(s)
- Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Malte Fliess
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Reinhild Schnabel
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Claas-Tido Peck
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Desiree Vaslaitis
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Angela Fülbier
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Kerstin Reimers
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Sarah Strauss
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| | - Christine Radtke
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, D‑30625 Hannover, Germany
| |
Collapse
|
232
|
Jing R, Corbett JL, Cai J, Beeson GC, Beeson CC, Chan SS, Dimmock DP, Lazcares L, Geurts AM, Lemasters JJ, Duncan SA. A Screen Using iPSC-Derived Hepatocytes Reveals NAD + as a Potential Treatment for mtDNA Depletion Syndrome. Cell Rep 2018; 25:1469-1484.e5. [PMID: 30404003 PMCID: PMC6289059 DOI: 10.1016/j.celrep.2018.10.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Patients with mtDNA depletion syndrome 3 (MTDPS3) often die as children from liver failure caused by severe reduction in mtDNA content. The identification of treatments has been impeded by an inability to culture and manipulate MTDPS3 primary hepatocytes. Here we generated DGUOK-deficient hepatocyte-like cells using induced pluripotent stem cells (iPSCs) and used them to identify drugs that could improve mitochondrial ATP production and mitochondrial function. Nicotinamide adenine dinucleotide (NAD) was found to improve mitochondrial function in DGUOK-deficient hepatocyte-like cells by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). NAD treatment also improved ATP production in MTDPS3-null rats and in hepatocyte-like cells that were deficient in ribonucleoside-diphosphate reductase subunit M2B (RRM2B), suggesting that it could be broadly effective. Our studies reveal that DGUOK-deficient iPSC-derived hepatocytes recapitulate the pathophysiology of MTDPS3 in culture and can be used to identify therapeutics for mtDNA depletion syndromes.
Collapse
Affiliation(s)
- Ran Jing
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - James L Corbett
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Jun Cai
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Gyda C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Sherine S Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - David P Dimmock
- Human Molecular Genetics Center and Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Rady Children's Institute for Genomic Medicine, 3020 Children's Way, San Diego, CA 92123, USA
| | - Lynn Lazcares
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
233
|
Wang L, Neumann M, Fu T, Li W, Cheng X, Su BL. Porous and responsive hydrogels for cell therapy. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
234
|
Cell-Based Therapies for Cardiac Regeneration: A Comprehensive Review of Past and Ongoing Strategies. Int J Mol Sci 2018; 19:ijms19103194. [PMID: 30332812 PMCID: PMC6214096 DOI: 10.3390/ijms19103194] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022] Open
Abstract
Despite considerable improvements in the treatment of cardiovascular diseases, heart failure (HF) still represents one of the leading causes of death worldwide. Poor prognosis is mostly due to the limited regenerative capacity of the adult human heart, which ultimately leads to left ventricular dysfunction. As a consequence, heart transplantation is virtually the only alternative for many patients. Therefore, novel regenerative approaches are extremely needed, and several attempts have been performed to improve HF patients’ clinical conditions by promoting the replacement of the lost cardiomyocytes and by activating cardiac repair. In particular, cell-based therapies have been shown to possess a great potential for cardiac regeneration. Different cell types have been extensively tested in clinical trials, demonstrating consistent safety results. However, heterogeneous efficacy data have been reported, probably because precise end-points still need to be clearly defined. Moreover, the principal mechanism responsible for these beneficial effects seems to be the paracrine release of antiapoptotic and immunomodulatory molecules from the injected cells. This review covers past and state-of-the-art strategies in cell-based heart regeneration, highlighting the advantages, challenges, and limitations of each approach.
Collapse
|
235
|
Chen G, Zhang Y, Li C, Huang D, Wang Q, Wang Q. Recent Advances in Tracking the Transplanted Stem Cells Using Near-Infrared Fluorescent Nanoprobes: Turning from the First to the Second Near-Infrared Window. Adv Healthc Mater 2018; 7:e1800497. [PMID: 30019509 DOI: 10.1002/adhm.201800497] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/22/2018] [Indexed: 12/29/2022]
Abstract
Stem cell-based regenerative medicine has attracted tremendous attention for its great potential to treat numerous incurable diseases. Tracking and understanding the fate and regenerative capabilities of transplanted stem cells is vital for improving the safety and therapeutic efficacy of stem cell-based therapy, therefore accelerating the clinical application of stem cells. Fluorescent nanoparticles (NPs) have been widely used for in vivo tracking of the transplanted stem cells. Among these fluorescent NPs, near-infrared (NIR) NPs have greatly improved the sensitivity, tissue penetration depth, spatial and temporal resolutions of the fluorescence imaging-based stem cell tracking technologies due to the reduced absorption, scattering, and autofluorescence of NIR fluorescence in tissues. Here, this review summarizes the recent studies regarding the tracking of transplanted stem cells using NIR NPs and emphasizes the recent advances of fluorescence imaging in the second NIR window (NIR-II, 1000-1700 nm). Furthermore, the challenges and future prospects of the NIR NP-based technologies are also discussed.
Collapse
Affiliation(s)
- Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine and i -Lab; CAS Center for Excellence in Brain Science; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine and i -Lab; CAS Center for Excellence in Brain Science; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine and i -Lab; CAS Center for Excellence in Brain Science; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
| | - Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine and i -Lab; CAS Center for Excellence in Brain Science; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
- School of Nano Technology and Nano Bionics; University of Science and Technology of China; Hefei 230026 China
| | - Qianwu Wang
- College of Materials Sciences and Opto-Electronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface; Division of Nanobiomedicine and i -Lab; CAS Center for Excellence in Brain Science; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 China
- School of Nano Technology and Nano Bionics; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
236
|
Durbin MD, Cadar AG, Chun YW, Hong CC. Investigating pediatric disorders with induced pluripotent stem cells. Pediatr Res 2018; 84:499-508. [PMID: 30065271 PMCID: PMC6265074 DOI: 10.1038/s41390-018-0064-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
The study of disease pathophysiology has long relied on model systems, including animal models and cultured cells. In 2006, Shinya Yamanaka achieved a breakthrough by reprogramming somatic cells into induced pluripotent stem cells (iPSCs). This revolutionary discovery provided new opportunities for disease modeling and therapeutic intervention. With established protocols, investigators can generate iPSC lines from patient blood, urine, and tissue samples. These iPSCs retain ability to differentiate into every human cell type. Advances in differentiation and organogenesis move cellular in vitro modeling to a multicellular model capable of recapitulating physiology and disease. Here, we discuss limitations of traditional animal and tissue culture models, as well as the application of iPSC models. We highlight various techniques, including reprogramming strategies, directed differentiation, tissue engineering, organoid developments, and genome editing. We extensively summarize current established iPSC disease models that utilize these techniques. Confluence of these technologies will advance our understanding of pediatric diseases and help usher in new personalized therapies for patients.
Collapse
Affiliation(s)
- Matthew D. Durbin
- Department of Pediatrics – Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Adrian G. Cadar
- Departments of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Young W. Chun
- Department of Medicine - Cardiovascular Medicine Division University of Maryland School of Medicine, Baltimore, MD 21201
| | - Charles C. Hong
- Department of Medicine - Cardiovascular Medicine Division University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
237
|
Ladstätter S, Tachibana K. Genomic insights into chromatin reprogramming to totipotency in embryos. J Cell Biol 2018; 218:70-82. [PMID: 30257850 PMCID: PMC6314560 DOI: 10.1083/jcb.201807044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Ladstätter and Tachibana discuss changes in DNA methylation, chromatin accessibility, and topological architecture occurring during the reprogramming to totipotency in the early embryo. The early embryo is the natural prototype for the acquisition of totipotency, which is the potential of a cell to produce a whole organism. Generation of a totipotent embryo involves chromatin reorganization and epigenetic reprogramming that alter DNA and histone modifications. Understanding embryonic chromatin architecture and how this is related to the epigenome and transcriptome will provide invaluable insights into cell fate decisions. Recently emerging low-input genomic assays allow the exploration of regulatory networks in the sparsely available mammalian embryo. Thus, the field of developmental biology is transitioning from microscopy to genome-wide chromatin descriptions. Ultimately, the prototype becomes a unique model for studying fundamental principles of development, epigenetic reprogramming, and cellular plasticity. In this review, we discuss chromatin reprogramming in the early mouse embryo, focusing on DNA methylation, chromatin accessibility, and higher-order chromatin structure.
Collapse
Affiliation(s)
- Sabrina Ladstätter
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
238
|
Kim JA, Choi HJ, Kim CM, Jin HK, Bae JS, Kim GM. Enhancement of Virus Infection Using Dynamic Cell Culture in a Microchannel. MICROMACHINES 2018; 9:mi9100482. [PMID: 30424415 PMCID: PMC6215236 DOI: 10.3390/mi9100482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/30/2023]
Abstract
With increasing interest in induced pluripotent stem cells (iPSCs) in the field of stem cell research, highly efficient infection of somatic cells with virus factors is gaining importance. This paper presents a method of employing microfluidic devices for dynamic cell culture and virus infection in a microchannel. The closed space in the microchannel provided a better environment for viruses to diffuse and contact cell surfaces to infect cells. The microfluidic devices were fabricated by photolithography and soft lithography. NIH/3T3 fibroblast cells were cultured in the microfluidic device in static and dynamic conditions and compared with the conventional culture method of using Petri dishes. Virus infection was evaluated using an enhanced green fluorescent protein virus as a model. Dynamic culture in the microchannel showed similar growth of cells to that in Petri dish culture, but the virus infection efficiency was four-times higher. The proposed dynamic culture system could be useful in iPSC research by providing efficient virus infection tools.
Collapse
Affiliation(s)
- Jeong A Kim
- School of Mechanical Engineering, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea.
- Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si, Chungbuk 28160, Korea.
| | - Hye Jin Choi
- School of Mechanical Engineering, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea.
| | - Chul Min Kim
- School of Mechanical Engineering, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea.
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea.
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea.
| | - Jae-Sung Bae
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-Gu, Daegu 41944, Korea.
| | - Gyu Man Kim
- School of Mechanical Engineering, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea.
| |
Collapse
|
239
|
Identification of protein kinase inhibitors to reprogram breast cancer cells. Cell Death Dis 2018; 9:915. [PMID: 30206213 PMCID: PMC6133942 DOI: 10.1038/s41419-018-1002-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022]
Abstract
Direct reversion of cancers into normal-like tissues is an ideal strategy for cancer treatment. Recent reports have showed that defined transcription factors can induce reprogramming of cancer cells into pluripotent stem cells, supporting this notion. Here, we have developed a reprogramming method that uses a conceptually unique strategy for breast cancer cell treatment. We have screened a kinase inhibitor library and found that Rho-associated protein kinase (ROCK) and mammalian target of rapamycin (mTOR) kinase inhibitors can substitute for all transcription factors to be sufficient to reprogram breast cancer cells into progenitor cells. Furthermore, ROCK–mTOR inhibitors could reprogram breast cancer cells to another terminal lineage-adipogenic cells. Genome-wide transcriptional analysis shows that the induced fat-like cells have a profile different from breast cancer cells and similar to that of normal adipocytes. In vitro and in vivo tumorigenesis assays have shown that induced fat-like cells lose proliferation and tumorigenicity. Moreover, reprogramming treatment with ROCK–mTOR inhibitors prevents breast cancer local recurrence in mice. Currently, ROCK–mTOR inhibitors are already used as antitumor drugs in patients, thus, this reprogramming strategy has significant potential to move rapidly toward clinical trials for breast cancer treatment.
Collapse
|
240
|
Mashimo Y, Yoshioka M, Tokunaga Y, Fockenberg C, Terada S, Koyama Y, Shibata-Seki T, Yoshimoto K, Sakai R, Hakariya H, Liu L, Akaike T, Kobatake E, How SE, Uesugi M, Chen Y, Kamei KI. Fabrication of a Multiplexed Artificial Cellular MicroEnvironment Array. J Vis Exp 2018. [PMID: 30247461 DOI: 10.3791/57377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular microenvironments consist of a variety of cues, such as growth factors, extracellular matrices, and intercellular interactions. These cues are well orchestrated and are crucial in regulating cell functions in a living system. Although a number of researchers have attempted to investigate the correlation between environmental factors and desired cellular functions, much remains unknown. This is largely due to the lack of a proper methodology to mimic such environmental cues in vitro, and simultaneously test different environmental cues on cells. Here, we report an integrated platform of microfluidic channels and a nanofiber array, followed by high-content single-cell analysis, to examine stem cell phenotypes altered by distinct environmental factors. To demonstrate the application of this platform, this study focuses on the phenotypes of self-renewing human pluripotent stem cells (hPSCs). Here, we present the preparation procedures for a nanofiber array and the microfluidic structure in the fabrication of a Multiplexed Artificial Cellular MicroEnvironment (MACME) array. Moreover, overall steps of the single-cell profiling, cell staining with multiple fluorescent markers, multiple fluorescence imaging, and statistical analyses, are described.
Collapse
Affiliation(s)
- Yasumasa Mashimo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | | | - Shiho Terada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Teiko Shibata-Seki
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
| | - Koki Yoshimoto
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Risako Sakai
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Hayase Hakariya
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Li Liu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology
| | - Siew-Eng How
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University; Institute for Chemical Research, Kyoto University
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University; Ecole Normale Supérieure
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University;
| |
Collapse
|
241
|
Wang Y, Lei T, Dai Q, Ding P, Qiu T, Fang Y. Identification of Potential Molecular Determinants of Murine Embryonic Stem Cell Differentiation by a Transposon-Based Approach. Mol Biotechnol 2018; 60:791-798. [PMID: 30171517 DOI: 10.1007/s12033-018-0110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Embryonic stem cells (ESCs) are self-renewing pluripotent cells, capable of differentiating into all somatic cell types. The molecular control of self-renewal is relatively well-characterized, whereas how ESCs exit pluripotent state to differentiate is poorly understood. Here we identify two genes are required for differentiation and dozens of intergenic regions that potentially regulate ESC differentiation. We used PiggyBac (PB) transposon-based approach to randomly mutate the genome of ESCs, and generated hundreds of clones that resisted differentiation signals. Each clone was sequenced to determine genomic regions mutated by PB insertion. Intriguingly, many mutations were localized among intergenic regions and we identified two genes are required for differentiation. This study should facilitate further exploration of novel molecular determinants of embryonic stem cell differentiation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tingjun Lei
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Center of Growth, Metabolism, and Aging, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qian Dai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ping Ding
- Sichuan Cunde Therapeutics, Chengdu, 610093, China
| | - Tong Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yin Fang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
242
|
Grainger AI, King MC, Nagel DA, Parri HR, Coleman MD, Hill EJ. In vitro Models for Seizure-Liability Testing Using Induced Pluripotent Stem Cells. Front Neurosci 2018; 12:590. [PMID: 30233290 PMCID: PMC6127295 DOI: 10.3389/fnins.2018.00590] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. The effects of prospective therapeutic entities on the brain and central nervous system (CNS) may potentially cause significant injury, hence, CNS toxicity testing forms part of the “core battery” of safety pharmacology studies. Drug-induced seizure is a major reason for compound attrition during drug development. Currently, the rat ex vivo hippocampal slice assay is the standard option for seizure-liability studies, followed by primary rodent cultures. These models can respond to diverse agents and predict seizure outcome, yet controversy over the relevance, efficacy, and cost of these animal-based methods has led to interest in the development of human-derived models. Existing platforms often utilize rodents, and so lack human receptors and other drug targets, which may produce misleading data, with difficulties in inter-species extrapolation. Current electrophysiological approaches are typically used in a low-throughput capacity and network function may be overlooked. Human-derived induced pluripotent stem cells (iPSCs) are a promising avenue for neurotoxicity testing, increasingly utilized in drug screening and disease modeling. Furthermore, the combination of iPSC-derived models with functional techniques such as multi-electrode array (MEA) analysis can provide information on neuronal network function, with increased sensitivity to neurotoxic effects which disrupt different pathways. The use of an in vitro human iPSC-derived neural model for neurotoxicity studies, combined with high-throughput techniques such as MEA recordings, could be a suitable addition to existing pre-clinical seizure-liability testing strategies.
Collapse
Affiliation(s)
| | - Marianne C King
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - David A Nagel
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - H Rheinallt Parri
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Michael D Coleman
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Eric J Hill
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
243
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
244
|
Liu XY, Zhou CB, Fang C. Nanomaterial-involved neural stem cell research: Disease treatment, cell labeling, and growth regulation. Biomed Pharmacother 2018; 107:583-597. [PMID: 30114642 DOI: 10.1016/j.biopha.2018.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells (NSCs) have been widely investigated for their potential in the treatment of various diseases and transplantation therapy. However, NSC growth regulation, labeling, and its application to disease diagnosis and treatment are outstanding challenges. Recently, nanomaterials have shown promise for various applications including genetic modification, imaging, and controlled drug release. Here we summarize the recent progress in the use of nanomaterials in combination with NSCs for disease treatment and diagnosis, cell labeling, and NSC growth regulation. The toxicity of nanomaterials to NSCs is also discussed.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Cheng-Bin Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
245
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
246
|
Yuan J, Zhang F, Hallahan D, Zhang Z, He L, Wu LG, You M, Yang Q. Reprogramming glioblastoma multiforme cells into neurons by protein kinase inhibitors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:181. [PMID: 30071868 PMCID: PMC6090992 DOI: 10.1186/s13046-018-0857-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
Abstract
Background Reprogramming of cancers into normal-like tissues is an innovative strategy for cancer treatment. Recent reports demonstrate that defined factors can reprogram cancer cells into pluripotent stem cells. Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor in humans. Despite multimodal therapy, the outcome for patients with GBM is still poor. Therefore, developing novel therapeutic strategy is a critical requirement. Methods We have developed a novel reprogramming method that uses a conceptually unique strategy for GBM treatment. We screened a kinase inhibitor library to find which candidate inhibitors under reprogramming condition can reprogram GBM cells into neurons. The induced neurons are identified whether functional and loss of tumorigenicity. Results We have found that mTOR and ROCK kinase inhibitors are sufficient to reprogram GBM cells into neural-like cells and “normal” neurons. The induced neurons expressed neuron-specific proteins, generated action potentials and neurotransmitter receptor-mediated currents. Genome-wide transcriptional analysis showed that the induced neurons had a profile different from GBM cells and were similar to that of control neurons induced by established methods. In vitro and in vivo tumorigenesis assays showed that induced neurons lost their proliferation ability and tumorigenicity. Moreover, reprogramming treatment with ROCK-mTOR inhibitors prevented GBM local recurrence in mice. Conclusion This study indicates that ROCK and mTOR inhibitors-based reprogramming treatment prevents GBM local recurrence. Currently ROCK-mTOR inhibitors are used as anti-tumor drugs in patients, so this reprogramming strategy has significant potential to move rapidly toward clinical trials. Electronic supplementary material The online version of this article (10.1186/s13046-018-0857-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Yuan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO, 63108, USA.,Medical Center of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,School of Stomatology, Jinan University, Guangzhou, 510630, China
| | - Fan Zhang
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO, 63108, USA
| | - Dennis Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO, 63108, USA
| | - Zhen Zhang
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Liming He
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Meng You
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO, 63108, USA
| | - Qin Yang
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, St. Louis, MO, 63108, USA.
| |
Collapse
|
247
|
Sang YL, Cheng ZJ, Zhang XS. iPSCs: A Comparison between Animals and Plants. TRENDS IN PLANT SCIENCE 2018; 23:660-666. [PMID: 29880405 DOI: 10.1016/j.tplants.2018.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 05/12/2023]
Abstract
Pluripotent stem cells (PSCs) are self-renewable cells with the potential to differentiate into all the cell types within an organism. PSCs exist transiently in early-stage mammalian embryos during ontogeny and are maintained in apical meristems of higher plants throughout postembryonic development. Through proper in vitro culture, somatic cells of both mammals and plants can be reprogrammed to generate induced PSCs (iPSCs). Recent studies have deciphered mechanisms underlying pluripotency gene activation and cell fate transition during plant iPSC generation. Here, we compare these mechanisms with those of their animal counterparts in the hope that this may trigger mutual learning of researchers from both fields, leading to advances and independent breakthroughs in this important area.
Collapse
Affiliation(s)
- Ya Lin Sang
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China; These authors contributed equally to this work
| | - Zhi Juan Cheng
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China; These authors contributed equally to this work
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
248
|
Glicksman MA. Induced Pluripotent Stem Cells: The Most Versatile Source for Stem Cell Therapy. Clin Ther 2018; 40:1060-1065. [PMID: 30049501 DOI: 10.1016/j.clinthera.2018.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
Cell therapy has existed since the first bone marrow transplant in the 1950s involving identical twins. The blood-forming stem cells were used to restore healthy blood cells for the twin with leukemia. It was not until 1968 that genetic matching (known as human leukocyte antigen matching) was known to be important, and not until 1973 that bone marrow transplants were performed from non-twin-related and nonrelated donors. The most important application of human stem cells is for the generation of cells and tissues for cell-based therapies. Currently, donated organs and tissues are often the only option to replace diseased, injured, or destroyed tissue. The availability for these transplantable tissues and organs is very limited, however. To satisfy the demand for a source for these cells and tissues, induced pluripotent stem cells that have been differentiated into specific cell types can serve as a renewable source of replacement cells and tissues. A bank of suitable human leukocyte antigen-matched cells will be an important source providing immediate availability of cells that are readily scalable, economical, and well characterized. Areas of active pursuit with stem cell therapy is being investigated for treating diseases such as macular degeneration, spinal cord injury, stroke, burns, heart disease, diabetes, osteoarthritis, rheumatoid arthritis, and neurodegenerative diseases. This article describes the advantages and hurdles for the use of induced pluripotent cells as the starting material for a source of replacement cells for regenerative medicine.
Collapse
|
249
|
Lach MS, Kulcenty K, Jankowska K, Trzeciak T, Richter M, Suchorska WM. Effect of cellular mass on chondrogenic differentiation during embryoid body formation. Mol Med Rep 2018; 18:2705-2714. [PMID: 30015965 PMCID: PMC6102628 DOI: 10.3892/mmr.2018.9272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
One approach to cell differentiation is to use the natural capacity of pluripotent stem cells to form three germ layers via embryoid bodies (EB). However, unification of this process during in vitro culture remains challenging and many microenvironmental factors including the number of cells in the culture can influence differentiation patterns. The number of cells serves a crucial role as it determines access to nutrients, the distribution of oxygen concentration and cellular interactions, all of which influence the fate of the differentiated cells. The influence of EBs derived from human pluripotent cells on the chondrogenic potential of such cells is not well understood. For this reason, the present study sought to determine the effect of varying amounts of cells on the properties of EBs derived from human embryonic stem cells (BG01V cell line). In the present study, 500–2,000 cells per well were cultivated from 5 to 15 days in suspension cell culture. Expression of pluripotency genes and germ layer markers were evaluated in order to determine the EBs with the greatest and least mesodermal properties. Genes associated with pluripotency and chondrogenesis were also evaluated to assess the influence of suspension culture duration and EB size on chondrogenic differentiation. Immunofluorescence staining for pluripotent and chondrocyte-associated proteins confirmed successful differentiation into chondrocyte-like cells. Alcian blue staining confirmed deposition of proteoglycans. These results suggested that EBs formed in 500-cell wells possess the highest mesodermal and prochondrogenic properties. Differentiation of EBs into chondrocytes on day 5 in 500-cell wells was more efficient than in that observed in larger and older EBs.
Collapse
Affiliation(s)
| | | | | | - Tomasz Trzeciak
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 61‑545 Poznan, Poland
| | - Magdalena Richter
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 61‑545 Poznan, Poland
| | | |
Collapse
|
250
|
Okolie O, Irvin DM, Bago JR, Sheets K, Satterlee A, Carey-Ewend AG, Lettry V, Dumitru R, Elton S, Ewend MG, Miller CR, Hingtgen SD. Intra-cavity stem cell therapy inhibits tumor progression in a novel murine model of medulloblastoma surgical resection. PLoS One 2018; 13:e0198596. [PMID: 29990322 PMCID: PMC6038981 DOI: 10.1371/journal.pone.0198596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 05/22/2018] [Indexed: 12/02/2022] Open
Abstract
Background Cytotoxic neural stem cells (NSCs) have emerged as a promising treatment for Medulloblastoma (MB), the most common malignant primary pediatric brain tumor. The lack of accurate pre-clinical models incorporating surgical resection and tumor recurrence limits advancement in post-surgical MB treatments. Using cell lines from two of the 5 distinct MB molecular sub-groups, in this study, we developed an image-guided mouse model of MB surgical resection and investigate intra-cavity NSC therapy for post-operative MB. Methods Using D283 and Daoy human MB cells engineered to express multi-modality optical reporters, we created the first image-guided resection model of orthotopic MB. Brain-derived NSCs and novel induced NSCs (iNSCs) generated from pediatric skin were engineered to express the pro-drug/enzyme therapy thymidine kinase/ganciclovir, seeded into the post-operative cavity, and used to investigate intra-cavity therapy for post-surgical MB. Results We found that surgery reduced MB volumes by 92%, and the rate of post-operative MB regrowth increased 3-fold compared to pre-resection growth. Real-time imaging showed NSCs rapidly homed to MB, migrating 1.6-fold faster and 2-fold farther in the presence of tumors, and co-localized with MB present in the contra-lateral hemisphere. Seeding of cytotoxic NSCs into the post-operative surgical cavity decreased MB volumes 15-fold and extended median survival 133%. As an initial step towards novel autologous therapy in human MB patients, we found skin-derived iNSCs homed to MB cells, while intra-cavity iNSC therapy suppressed post-surgical tumor growth and prolonged survival of MB-bearing mice by 123%. Conclusions We report a novel image-guided model of MB resection/recurrence and provide new evidence of cytotoxic NSCs/iNSCs delivered into the surgical cavity effectively target residual MB foci.
Collapse
Affiliation(s)
- Onyinyechukwu Okolie
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Irvin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Juli R. Bago
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Andrew Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Abigail G. Carey-Ewend
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vivien Lettry
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raluca Dumitru
- UNC Human Pluripotent Stem Cell Core, Genetics Department, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Scott Elton
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Matthew G. Ewend
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - C. Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shawn D. Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|