201
|
Zanotta S, Galati D, De Filippi R, Pinto A. Enhancing Dendritic Cell Cancer Vaccination: The Synergy of Immune Checkpoint Inhibitors in Combined Therapies. Int J Mol Sci 2024; 25:7509. [PMID: 39062753 PMCID: PMC11277144 DOI: 10.3390/ijms25147509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Dendritic cell (DC) cancer vaccines are a promising therapeutic approach, leveraging the immune system to fight tumors. These vaccines utilize DCs' ability to present tumor-associated antigens to T cells, triggering a robust immune response. DC vaccine development has progressed through three generations. The first generation involved priming DCs with tumor-associated antigens or messenger RNA outside the body, showing limited clinical success. The second generation improved efficacy by using cytokine mixtures and specialized DC subsets to enhance immunogenicity. The third generation used blood-derived DCs to elicit a stronger immune response. Clinical trials indicate that cancer vaccines have lower toxicity than traditional cytotoxic treatments. However, achieving significant clinical responses with DC immunotherapy remains challenging. Combining DC vaccines with immune checkpoint inhibitors (ICIs), such as anticytotoxic T-lymphocyte Antigen 4 and antiprogrammed death-1 antibodies, has shown promise by enhancing T-cell responses and improving clinical outcomes. These combinations can transform non-inflamed tumors into inflamed ones, boosting ICIs' efficacy. Current research is exploring new checkpoint targets like LAG-3, TIM-3, and TIGIT, considering their potential with DC vaccines. Additionally, engineering T cells with chimeric antigen receptors or T-cell receptors could further augment the antitumor response. This comprehensive strategy aims to enhance cancer immunotherapy, focusing on increased efficacy and improved patient survival rates.
Collapse
Affiliation(s)
- Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | - Antonio Pinto
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| |
Collapse
|
202
|
Wei J, Wang M, Wu Y. A disulfidptosis-related lncRNAs cluster to forecast the prognosis and immune landscapes of ovarian cancer. Front Genet 2024; 15:1397011. [PMID: 39045330 PMCID: PMC11263023 DOI: 10.3389/fgene.2024.1397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Objective Disulfidptosis is a newly recognized form of regulated cell death that has been linked to cancer progression and prognosis. Despite this association, the prognostic significance, immunological characteristics and treatment response of disulfidptosis-related lncRNAs (DRLs) in ovarian cancer have not yet been elucidated. Methods The lncRNA data and clinical information for ovarian cancer and normal samples were obtained from the UCSC XENA. Differential expression analysis and Pearson analysis were utilized to identify core DRLs, followed by LASSO algorithm. Random Survival Forest was used to construct a prognostic model. The relationships between risk scores, RNA methylation, immune cell infiltration, mutation, responses to immunotherapy and drug sensitivity analysis were further examined. Additionally, qRT-PCR experiments were conducted to validate the expression of the core DRLs in human ovarian cancer cells and normal ovarian cells and the scRNA-seq data of the core DRLs were obtained from the GEO dataset, available in the TISCH database. Results A total of 8 core DRLs were obtained to construct a prognostic model for ovarian cancer, categorizing all patients into low-risk and high-risk groups using an optimal cutoff value. The AUC values for 1-year, 3-year and 5-year OS in the TCGA cohort were 0.785, 0.810 and 0.863 respectively, proving a strong predictive capability of the model. The model revealed the high-risk group patients exhibited lower overall survival rates, higher TIDE scores and lower TMB levels compared to the low-risk group. Variations in immune cell infiltration and responses to therapeutic drugs were observed between the high-risk and low-risk groups. Besides, our study verified the correlations between the DRLs and RNA methylation. Additionally, qRT-PCR experiments and single-cell RNA sequencing data analysis were conducted to confirm the significance of the core DRLs at both cellular and scRNA-seq levels. Conclusion We constructed a reliable and novel prognostic model with a DRLs cluster for ovarian cancer, providing a foundation for further researches in the management of this disease.
Collapse
|
203
|
Azzi L, Celesti F, Chiaravalli AM, Shaik AKB, Shallak M, Gatta A, Battaglia P, La Rosa S, Tagliabue A, Accolla RS, Forlani G. Novel vaccination strategies based on optimal stimulation of CD4 + T helper cells for the treatment of oral squamous cell carcinoma. Front Immunol 2024; 15:1387835. [PMID: 39035008 PMCID: PMC11257872 DOI: 10.3389/fimmu.2024.1387835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common malignant tumor of the oral cavity. Despite recent advances in the field of oral cancer therapy, including the introduction of immunotherapeutic approaches, the 5-year survival rate remains steadily assessed around 50%. Thus, there is an urgent need for new therapeutic strategies. After the characterization of the immune phenotype of three human OSCC cell lines (CAL-27, SCC-25, and SCC-4) and one mouse OSCC cell line (MOC2) showing their similarities to resected patient tumors, we explored for the first time an experimental preclinical model of therapeutic vaccination with mouse OSCC MOC2 cell line stably expressing MHC class II antigens after CIITA gene transfection (MOC2-CIITA). Mice injected with MOC2-CIITA reject or strongly retard tumor growth; more importantly, vaccinated animals that fully reject MOC2-CIITA tumors display anti-tumor immunological memory protective against challenge with parental MOC2 tumor cells. Further experiments of adoptive cell transfer or in vivo cell depletion show that both CD4+ and CD8+ T lymphocytes prove fundamental in tumor rejection. This unprecedented approach for oral cancer opens the way for possible future translation of novel immunotherapeutic strategies to the human setting for the treatment of this tumor.
Collapse
Affiliation(s)
- Lorenzo Azzi
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Azienda Socio-Sanitaria Territoriale (ASST) dei Sette Laghi, Varese, Italy
| | - Fabrizio Celesti
- Center for Immuno-Oncology, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | | | | | - Mariam Shallak
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Andrea Gatta
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Paolo Battaglia
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Azienda Socio-Sanitaria Territoriale (ASST) Lariana, San Fermo della Battaglia, CO, Italy
| | - Stefano La Rosa
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Azienda Socio-Sanitaria Territoriale (ASST) dei Sette Laghi, Varese, Italy
| | - Angelo Tagliabue
- Azienda Socio-Sanitaria Territoriale (ASST) dei Sette Laghi, Varese, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Roberto Sergio Accolla
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Greta Forlani
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| |
Collapse
|
204
|
Guo F, Kong W, Li D, Zhao G, Anwar M, Xia F, Zhang Y, Ma C, Ma X. M2-type tumor-associated macrophages upregulated PD-L1 expression in cervical cancer via the PI3K/AKT pathway. Eur J Med Res 2024; 29:357. [PMID: 38970071 PMCID: PMC11225336 DOI: 10.1186/s40001-024-01897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND AND PURPOSE PD-1/PD-L1 inhibitors have become a promising therapy. However, the response rate is lower than 30% in patients with cervical cancer (CC), which is related to immunosuppressive components in tumor microenvironment (TME). Tumor-associated macrophages (TAMs), as one of the most important immune cells, are involved in the formation of tumor suppressive microenvironment. Therefore, it will provide a theoretical basis for curative effect improvement about the regulatory mechanism of TAMs on PD-L1 expression. METHODS The clinical data and pathological tissues of CC patients were collected, and the expressions of PD-L1, CD68 and CD163 were detected by immunohistochemistry. Bioinformatics was used to analyze the macrophage subtypes involved in PD-L1 regulation. A co-culture model was established to observe the effects of TAMs on the morphology, migration and invasion function of CC cells, and the regulatory mechanism of TAMs on PD-L1. RESULTS PD-L1 expression on tumor cells could predict the poor prognosis of patients. And there was a strong correlation between PD-L1 expression with CD163+TAMs infiltration. Similarly, PD-L1 expression was associated with M1/M2-type TAMs infiltration in bioinformatics analysis. The results of cell co-culture showed that M1/M2-type TAMs could upregulate PD-L1 expression, especially M2-type TAMs may elevate the PD-L1 expression via PI3K/AKT pathway. Meanwhile, M1/M2-type TAMs can affect the morphological changes, and enhance migration and invasion abilities of CC cells. CONCLUSIONS PD-L1 expression in tumor cells can be used as a prognostic factor and is closely related to CD163+TAMs infiltration. In addition, M2-type TAMs can upregulate PD-L1 expression in CC cells through PI3K/AKT pathway, enhance the migration and invasion capabilities, and affect the tumor progression.
Collapse
Affiliation(s)
- Fan Guo
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
- Postdoctoral Research Workstation of Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weina Kong
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, The People's Hospital of the Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Gang Zhao
- Department of Blood Transfusion, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Miyessar Anwar
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Feifei Xia
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Yuanming Zhang
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, 137 Li Yu Shan South Road, Urumqi, 830054, Xinjiang, China.
| | - Xiumin Ma
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
205
|
Liu W, Zhang F, Quan B, Yao F, Chen R, Ren Z, Dong L, Yin X. DDR2/STAT3 Positive Feedback Loop Mediates the Immunosuppressive Microenvironment by Upregulating PD-L1 and Recruiting MDSCs in Oxaliplatin-Resistant HCC. Cell Mol Gastroenterol Hepatol 2024; 18:101377. [PMID: 38969205 PMCID: PMC11386308 DOI: 10.1016/j.jcmgh.2024.101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND AND AIMS Transcriptome sequencing revealed high expression of DDR2 in oxaliplatin-resistant hepatocellular carcinoma (HCC). This study aimed to explore the role of DDR2 in oxaliplatin resistance and immune evasion in HCC. METHODS Oxaliplatin-resistant HCC cell lines were established. The interaction between DDR2 and STAT3 was investigated, along with the mechanisms involved in DDR2/STAT3-mediated PD-L1 upregulation and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) accumulation both in vitro and in vivo. RESULTS DDR2 was found to induce the phosphorylation of STAT3, leading to its nuclear translocation. Conversely, the activation of STAT3 enhanced DDR2 expression. A positive feedback loop involving DDR2/STAT3 was identified in oxaliplatin-resistant HCC, which was associated with PD-L1 upregulation and PMN-MDSCs accumulation. Knockdown of DDR2 and STAT3 sensitized oxaliplatin-resistant HCC cells to oxaliplatin and resulted in decreased PMN-MDSCs and increased CD8+ T cells in the tumor microenvironment. Enzyme-linked immunosorbent array and MDSC transwell migration assays indicated that oxaliplatin-resistant HCC cells recruited PMN-MDSCs through CCL20. Dual luciferase reporter assays demonstrated that STAT3 can directly enhance the transcription of PD-L1 and CCL20. Furthermore, treatment with a PD-L1 antibody in combination with CCL20 blockade had significant antitumor effects on oxaliplatin-resistant HCC. CONCLUSIONS Our findings revealed a positive feedback mechanism involving DDR2 and STAT3 that mediates the immunosuppressive microenvironment and promotes oxaliplatin resistance and immune evasion via PD-L1 upregulation and PMN-MDSC recruitment. Targeting the DDR2/STAT3 pathway may be a promising therapeutic strategy to overcome immune escape and chemoresistance in HCC.
Collapse
Affiliation(s)
- Wenfeng Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Bing Quan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Fan Yao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
206
|
Tang M, Xu M, Wang J, Liu Y, Liang K, Jin Y, Duan W, Xia S, Li G, Chu H, Liu W, Wang Q. Brain Metastasis from EGFR-Mutated Non-Small Cell Lung Cancer: Secretion of IL11 from Astrocytes Up-Regulates PDL1 and Promotes Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306348. [PMID: 38696655 PMCID: PMC11234401 DOI: 10.1002/advs.202306348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/24/2024] [Indexed: 05/04/2024]
Abstract
Patients who have non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations are more prone to brain metastasis (BM) and poor prognosis. Previous studies showed that the tumor microenvironment of BM in these patients is immunosuppressed, as indicated by reduced T-cell abundance and activity, although the mechanism of this immunosuppression requires further study. This study shows that reactive astrocytes play a critical role in promoting the immune escape of BM from EGFR-mutated NSCLC by increasing the apoptosis of CD8+ T lymphocytes. The increased secretion of interleukin 11(IL11) by astrocytes promotes the expression of PDL1 in BM, and this is responsible for the increased apoptosis of T lymphocytes. IL11 functions as a ligand of EGFR, and this binding activates EGFR and downstream signaling to increase the expression of PDL1, culminating in the immune escape of tumor cells. IL11 also promotes immune escape by binding to its intrinsic receptor (IL11Rα/glycoprotein 130 [gp130]). Additional in vivo studies show that the targeted inhibition of gp130 and EGFR suppresses the growth of BM and prolongs the survival time of mice. These results suggest a novel therapeutic strategy for treatment of NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Mengyi Tang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Mingxin Xu
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Jian Wang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Ye Liu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Kun Liang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Yinuo Jin
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Wenzhe Duan
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Shengkai Xia
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenwen Liu
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian, Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Qi Wang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| |
Collapse
|
207
|
Makita K, Hamamoto Y, Kanzaki H, Nagasaki K, Matsuki H, Inoue K, Kozuki T. Association between tumor cell in air space and treatment outcomes in early-stage lung cancer treated with stereotactic body radiation therapy. Clin Transl Radiat Oncol 2024; 47:100795. [PMID: 38783905 PMCID: PMC11111827 DOI: 10.1016/j.ctro.2024.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Background and purpose Spread-through air space (STAS) is an unfavorable factor in patients with lung cancer treated with surgery. However, the relationship between the treatment outcomes of stereotactic body radiation therapy (SBRT) for lung cancer and STAS has not been adequately investigated. This study aimed to evaluate the impact of tumor cells in the air space (TCIAS), which show a STAS burden, on treatment outcomes in patients with early-stage lung cancer treated with SBRT. Materials and methods Data of patients who underwent SBRT for early-stage lung cancer treated with SBRT were retrospectively reviewed. The influence of the TCIAS status on local progression-free (LPF), regional failure-free (RFF), distant failure-free (DFF), progression-free survival (PFS), and overall survival (OS) rates was assessed using univariate and multivariate analyses. Results Overall, 68 patients were included. The median follow-up time was 24.3 months. For patients positive/negative for TCIAS, the 2-year LPF, RFF, DFF, PFS, and OS rates were 81.4 %/91.1 %, 73.7 %/96.2 %, 55.9 %/75.3 %, 55.0 %/84.6 %, and 67.8 %/92.2 %, respectively. In the multivariate analysis, TCIAS-positive was a significant unfavorable factor for RFF (hazard ratio [HR]: 4.10; 95 % confidence interval [CI]: 1.04-16.16, p = 0.04), DFF (HR: 2.61, 95 % CI: 1.03-6.57, p = 0.04), and PFS (HR: 2.36; 95 % CI: 1.05-5.30, p = 0.04). By contrast, TCIAS-positive was not a significant risk factor for LPF and OS. Conclusion TCIAS-positive is an unfavorable factor for regional and distant failure after SBRT. TCIAS status may be useful in predicting the treatment outcome of SBRT for early-stage lung cancer.
Collapse
Affiliation(s)
- Kenji Makita
- Department of Radiology, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790‐0024, Japan
- Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Yasushi Hamamoto
- Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
| | - Hiromitsu Kanzaki
- Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
| | - Kei Nagasaki
- Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
| | - Hirokazu Matsuki
- Department of Radiology, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790‐0024, Japan
| | - Koji Inoue
- Department of Respirology, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790‐0024, Japan
| | - Toshiyuki Kozuki
- Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
| |
Collapse
|
208
|
Hamada K, Murakami R, Ueda A, Kashima Y, Miyagawa C, Taki M, Yamanoi K, Yamaguchi K, Hamanishi J, Minamiguchi S, Matsumura N, Mandai M. A Deep Learning-Based Assessment Pipeline for Intraepithelial and Stromal Tumor-Infiltrating Lymphocytes in High-Grade Serous Ovarian Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1272-1284. [PMID: 38537936 DOI: 10.1016/j.ajpath.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Tumor-infiltrating lymphocytes (TILs) are associated with improved survival in patients with epithelial ovarian cancer. However, TIL evaluation has not been used in routine clinical practice because of reproducibility issues. The current study developed two convolutional neural network models to detect TILs and to determine their spatial location in whole slide images, and established a spatial assessment pipeline to objectively quantify intraepithelial and stromal TILs in patients with high-grade serous ovarian carcinoma. The predictions of the established models showed a significant positive correlation with the number of CD8+ T cells and immune gene expressions. Patients with a higher density of intraepithelial TILs had a significantly prolonged overall survival and progression-free survival in multiple cohorts. On the basis of the density of intraepithelial and stromal TILs, patients were classified into three immunophenotypes: immune inflamed, excluded, and desert. The immune-desert subgroup showed the worst prognosis. Gene expression analysis showed that the immune-desert subgroup had lower immune cytolytic activity and T-cell-inflamed gene-expression profile scores, whereas the immune-excluded subgroup had higher expression of interferon-γ and programmed death 1 receptor signaling pathway. The established evaluation method provided detailed and comprehensive quantification of intraepithelial and stromal TILs throughout hematoxylin and eosin-stained slides. It has potential for clinical application for personalized treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akihiko Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoko Kashima
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Chiho Miyagawa
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
209
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
210
|
Wang Y, Zeng Y, Yang W, Wang X, Jiang J. Targeting CD8 + T cells with natural products for tumor therapy: Revealing insights into the mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155608. [PMID: 38642413 DOI: 10.1016/j.phymed.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xiuxuan Wang
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., Beijing, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
211
|
Ji Y, Heng Y, Zhu X, Zhang D, Tang D, Zhou J, Lin H, Ma J, Ding X, Tao L, Lu L. Increased tumor-infiltrating plasmacytoid dendritic cells express high levels of PD-L2 and affect CD8 + T lymphocyte infiltration in human laryngeal squamous cell carcinoma. Transl Oncol 2024; 45:101936. [PMID: 38678970 PMCID: PMC11068930 DOI: 10.1016/j.tranon.2024.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024] Open
Abstract
The infiltration and prognostic significance of tumor-infiltrating plasmacytoid dendritic cells (TI-pDC) have been elucidated in various human solid cancers. However, the infiltrating patterns and functional importance of TI-pDC in laryngeal squamous cell carcinoma (LSCC) remain unknown. In this study, flow cytometric analyses were conducted to characterize the infiltration of dendritic cells and T lymphocytes, along with their respective subgroups in tumor tissues (TT), para-carcinoma tissues (PT), and peripheral blood (PB) from LSCC patients. Immunohistochemical staining for CD4 and CD8, as well as immunofluorescence staining for CD123, were performed on serial tissue sections to investigate the co-localization of TI-pDC and tumor-infiltrating T lymphocytes (TIL) within the tumor microenvironment (TME). Our results demonstrated significantly lower percentages of all three DC subsets in PB compared to TT and PT. Notably, the pDC percentage was markedly higher in TT than in PT. Moreover, TI-pDC percentage was significantly elevated in N+ stage patients compared to those with N0 stage. The results of survival analysis consistently demonstrated that high levels of TI-pDC infiltration were indicative of a poor prognosis. Further investigation revealed a significant negative correlation between TI-pDC and CD8+ TILs; notably, pDCs expressed an inhibitory surface molecule PD-L2 rather than PD-L1 within PT. Collectively, our findings suggest that increased TI-pDC is associated with adverse outcomes in LSCC patients while exhibiting an inhibitory phenotype that may play a crucial role in suppressing CD8+ TILs within LSCC tumors. These results highlight the potential therapeutic strategy targeting PD-L2+ pDCs for immunotherapies against LSCC.
Collapse
Affiliation(s)
- Yangyang Ji
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Yu Heng
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Xiaoke Zhu
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Duo Zhang
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Di Tang
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Jian Zhou
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Hanqing Lin
- Department of Otorhinolaryngology, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, PR China
| | - Jingyu Ma
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Xuping Ding
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lei Tao
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China.
| | - Liming Lu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
212
|
Shiomi K, Ichinoe M, Ushiwata A, Eshima K, Nagashio R, Hayashi S, Sonoda D, Kondo Y, Maruyama R, Mikubo M, Murakumo Y, Satoh Y. Insight into the significance of Foxp3 + tumor-infiltrating lymphocytes in squamous cell lung cancer. Clin Transl Oncol 2024; 26:1708-1715. [PMID: 38402536 PMCID: PMC11178642 DOI: 10.1007/s12094-024-03392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/15/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Although developing a better understanding of tumor-infiltrating Foxp3 + lymphocytes (Foxp3 + TILs) might provide essential knowledge to predict response to immunotherapy and prognosis, our current knowledge about Foxp3 + TILs is inadequate. This study investigated the prognostic significance of tumor-infiltrating Foxp3 + lymphocytes (Foxp3 + TILs) in squamous cell lung cancer (SQ-LC) objectively. METHODS Among patients with SQ-LC surgically resected in our institution between 2011 and 2017, those with pathological stage IA3-IIIA were immunohistochemically studied to evaluate Foxp3 + TILs in their tumor stroma. The impact of Foxp3 + TILs on relapse-free survival (RFS) was analyzed with Kaplan-Meier survival analysis and multivariate analysis using a Cox proportional hazards model/Fine-Gray model. RESULTS This study analyzed 100 patients. Multivariate analysis showed that a large number of Foxp3 + TILs in the stroma does not associate with a poor prognosis, rather that a large number of Foxp3 + TILs (≥ 64 cells) tend to be associated with a more favorable prognosis than a small number of Foxp3 + TILs (< 64 cells) (large vs small number: HR, 0.56; 95% CI, 0.17-1.83; P = 0.34). Exploratory analysis also showed that in the two populations divided by a difference in Foxp3 expression levels, similar trends to the main analysis were observed. CONCLUSION Our results showed that a large number of Foxp3 + TILs in the stroma may not associate with a poor prognosis in SQ-LC. To use the seemingly complicated information of Foxp3 + TILs as biomarkers, better understanding the diversity and heterogeneity of Foxp3 + TILs and analyzing their subpopulations that increase in the TME may be needed.
Collapse
Affiliation(s)
- Kazu Shiomi
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan.
| | - Masaaki Ichinoe
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Ai Ushiwata
- Department of Clinical Medicine (Biostatistics), Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Koji Eshima
- Department of Biosciences, Kitasato University School of Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Ryo Nagashio
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Shoko Hayashi
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Dai Sonoda
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Yasuto Kondo
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Raito Maruyama
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Masashi Mikubo
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Yukitoshi Satoh
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| |
Collapse
|
213
|
Cocco E, de Stanchina E. Patient-Derived-Xenografts in Mice: A Preclinical Platform for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041381. [PMID: 37696659 PMCID: PMC11216185 DOI: 10.1101/cshperspect.a041381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The use of patient-derived xenografts (PDXs) has dramatically improved drug development programs. PDXs (1) reproduce the pathological features and the genomic profile of the parental tumors more precisely than other preclinical models, and (2) more faithfully predict therapy response. However, PDXs have limitations. These include the inability to completely capture tumor heterogeneity and the role of the immune system, the low engraftment efficiency of certain tumor types, and the consequences of the human-host interactions. Recently, the use of novel mouse strains and specialized engraftment techniques has enabled the generation of "humanized" PDXs, partially overcoming such limitations. Importantly, establishing, characterizing, and maintaining PDXs is costly and requires a significant regulatory, administrative, clinical, and laboratory infrastructure. In this review, we will retrace the historical milestones that led to the implementation of PDXs for cancer research, review the most recent innovations in the field, and discuss future avenues to tackle deficiencies that still exist.
Collapse
Affiliation(s)
- Emiliano Cocco
- University of Miami, Miller School of Medicine, Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
214
|
Mousset A, Bellone L, Gaggioli C, Albrengues J. NETscape or NEThance: tailoring anti-cancer therapy. Trends Cancer 2024; 10:655-667. [PMID: 38664080 DOI: 10.1016/j.trecan.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 07/12/2024]
Abstract
Neutrophils, major regulators of innate immunity, have recently emerged as key components of the tumor microenvironment. The role of neutrophils in cancer has been linked to their ability to form neutrophil extracellular traps (NETs), structures composed of decondensed DNA decorated with enzymes that are released into the extracellular space. Here, we discuss the pivotal roles of NETs in influencing responses to anticancer therapies such as chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Highlighting recent insights, we delve into the dual nature of NETs in the context of anticancer treatments, examining their potential to either counteract or enhance treatment outcomes. Strategic targeting of NETs may be a promising avenue for crafting combination therapies to counteract resistance or enhance anticancer treatments' efficacy.
Collapse
Affiliation(s)
- Alexandra Mousset
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Lola Bellone
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Cedric Gaggioli
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Jean Albrengues
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.
| |
Collapse
|
215
|
Hasegawa M, Amano Y, Kihara A, Matsubara D, Fukushima N, Takahashi H, Chikamatsu K, Nishino H, Mori Y, Yoshida N, Niki T. Guanylate binding protein 5 is an immune-related biomarker of oral squamous cell carcinoma: A retrospective prognostic study with bioinformatic analysis. Cancer Med 2024; 13:e7431. [PMID: 38978333 PMCID: PMC11231040 DOI: 10.1002/cam4.7431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Cancer utilizes immunosuppressive mechanisms to create a tumor microenvironment favorable for its progression. The purpose of this study is to histologically characterize the immunological properties of the tumor microenvironment of oral squamous cell carcinoma (OSCC) and identify key molecules involved in the immunological microenvironment and patient prognosis. METHODS First, overlapping differentially expressed genes (DEGs) were screened from OSCC transcriptome data in public databases. Correlation analysis of DEGs with known immune-related genes identified genes involved in the immune microenvironment of OSCC. Next, stromal patterns of tumor were classified and immunohistochemical staining was performed for immune cell markers (CD3, CD4, Foxp3, CD8, CD20, CD68, and CD163), programmed death-ligand 1 (PD-L1), and guanylate binding protein 5 (GBP5) in resected specimens obtained from 110 patients with OSCC who underwent resection. Correlations between each factor and their prognostic impact were analyzed. RESULTS Among the novel OSCC-specific immune-related genes screened (including ADAMDEC1, CXCL9, CXCL13, DPT, GBP5, IDO1, and PLA2G7), GBP5 was selected as the target gene. Histopathologic analysis showed that multiple T-cell subsets and CD20-positive cells were less common in the advanced stages, whereas CD163-positive cells were more common in advanced stages. The immature type in the stromal pattern category was associated with less immune cell infiltration, lower expression of PD-L1 in immune cells, lower expression of GBP5 in the stroma, and shorter overall survival and recurrence-free survival. Expression of GBP5 in the tumor and stroma correlated with immune cell infiltration of tumors and PD-L1 expression in tumor and immune cells. Patients with low tumor GBP5 expression and high stromal expression had significantly longer overall survival and recurrence-free survival. CONCLUSIONS The stromal pattern category may reflect both invasive and immunomodulatory potentials of cancer-associated fibroblasts in OSCC. GBP5 has been suggested as a potential biomarker to predict the prognosis and therapeutic efficacy of immune checkpoint inhibitors.
Collapse
MESH Headings
- Adult
- Aged
- Female
- Humans
- Male
- Middle Aged
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/metabolism
- Computational Biology/methods
- Gene Expression Regulation, Neoplastic
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/immunology
- GTP-Binding Proteins/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mouth Neoplasms/immunology
- Mouth Neoplasms/pathology
- Mouth Neoplasms/genetics
- Mouth Neoplasms/mortality
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/surgery
- Prognosis
- Retrospective Studies
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Masayo Hasegawa
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
- Department of Otolaryngology‐Head and Neck SurgeryJichi Medical University Saitama Medical CenterSaitamaJapan
| | - Yusuke Amano
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Atsushi Kihara
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Daisuke Matsubara
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
- Department of Pathology, Faculty of medicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Noriyoshi Fukushima
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Hideyuki Takahashi
- Department of Otolaryngology‐Head and Neck SurgeryGunma University Graduate School of MedicineMaebashiGunmaJapan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology‐Head and Neck SurgeryGunma University Graduate School of MedicineMaebashiGunmaJapan
| | - Hiroshi Nishino
- Department of Otolaryngology‐Head and Neck SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial SurgeryJichi Medical University Saitama Medical CenterSaitamaJapan
| | - Naohiro Yoshida
- Department of Otolaryngology‐Head and Neck SurgeryJichi Medical University Saitama Medical CenterSaitamaJapan
| | - Toshiro Niki
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
| |
Collapse
|
216
|
Shin HE, Han JH, Shin S, Bae GH, Son B, Kim TH, Park HH, Park CG, Park W. M1-polarized macrophage-derived cellular nanovesicle-coated lipid nanoparticles for enhanced cancer treatment through hybridization of gene therapy and cancer immunotherapy. Acta Pharm Sin B 2024; 14:3169-3183. [PMID: 39027257 PMCID: PMC11252390 DOI: 10.1016/j.apsb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 07/20/2024] Open
Abstract
Optimum genetic delivery for modulating target genes to diseased tissue is a major obstacle for profitable gene therapy. Lipid nanoparticles (LNPs), considered a prospective vehicle for nucleic acid delivery, have demonstrated efficacy in human use during the COVID-19 pandemic. This study introduces a novel biomaterial-based platform, M1-polarized macrophage-derived cellular nanovesicle-coated LNPs (M1-C-LNPs), specifically engineered for a combined gene-immunotherapy approach against solid tumor. The dual-function system of M1-C-LNPs encapsulates Bcl2-targeting siRNA within LNPs and immune-modulating cytokines within M1 macrophage-derived cellular nanovesicles (M1-NVs), effectively facilitating apoptosis in cancer cells without impacting T and NK cells, which activate the intratumoral immune response to promote granule-mediating killing for solid tumor eradication. Enhanced retention within tumor was observed upon intratumoral administration of M1-C-LNPs, owing to the presence of adhesion molecules on M1-NVs, thereby contributing to superior tumor growth inhibition. These findings represent a promising strategy for the development of targeted and effective nanoparticle-based cancer genetic-immunotherapy, with significant implications for advancing biomaterial use in cancer therapeutics.
Collapse
Affiliation(s)
- Ha Eun Shin
- Department of Integrative Biotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, Republic of Korea
| | - Jun-Hyeok Han
- Department of Integrative Biotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, Republic of Korea
- Deparment of Inteligent Precision Healthcare Convergence, SKKU, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seungyong Shin
- Department of Integrative Biotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, Republic of Korea
| | - Ga-Hyun Bae
- Department of Integrative Biotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth, SKKU Institute for Convergence, SKKU, Suwon, Gyeonggi 16419, Republic of Korea
| | - Boram Son
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Tae-Hyung Kim
- Department of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chun Gwon Park
- Deparment of Inteligent Precision Healthcare Convergence, SKKU, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Biomedical Engineering, SKKU, Suwon, Gyeonggi 16419, Republic of Korea
- Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth, SKKU Institute for Convergence, SKKU, Suwon, Gyeonggi 16419, Republic of Korea
- Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
217
|
Ezzibdeh R, Diop M, Divi V. Neoadjuvant Immunotherapy in Non-melanoma Skin Cancers of the Head and Neck. Curr Treat Options Oncol 2024; 25:885-896. [PMID: 38916713 DOI: 10.1007/s11864-024-01197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 06/26/2024]
Abstract
OPINION STATEMENT Neoadjuvant immunotherapy will change the standard of care for advanced resectable cutaneous squamous cell carcinoma (cSCC) and possibly other non-melanoma skin cancers. With pathological complete response rates around 50% for cSCC in early studies, neoadjuvant therapy allows patients the possibility of significant reduction in tumor size, de-escalation of adjuvant therapy, and improved long-term outcomes. Patients must be carefully selected to ensure that there is a margin of safety with respect to resectability, such that if a tumor progresses on neoadjuvant therapy, there remains a curative surgical option that is acceptable to the patient. The optimal treatment paradigm is an area of active research, with many researchers questioning whether adjuvant therapy, or even local therapy, is necessary in patients who seem to have a complete response. The ability to predict who will respond will become even more critical to answer, as a significant number of patients do not want to risk their disease progressing, especially in cosmetically sensitive areas of the head and neck. Recent studies in melanoma show promise for improved response rates using combination therapies, and these strategies may apply to cSCC as well. The use of LAG-3 inhibitors or mRNA vaccine technology may further improve the utility of neoadjuvant strategies.
Collapse
Affiliation(s)
- Rami Ezzibdeh
- Division of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, 900 Welch Road, Rm 170, Stanford, CA, 94305, USA
| | - Mohamed Diop
- Division of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, 900 Welch Road, Rm 170, Stanford, CA, 94305, USA
| | - Vasu Divi
- Division of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, 900 Welch Road, Rm 170, Stanford, CA, 94305, USA.
| |
Collapse
|
218
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
219
|
Liu D, Yu L, Rong H, Liu L, Yin J. Engineering Microorganisms for Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2304649. [PMID: 38598792 DOI: 10.1002/adhm.202304649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer immunotherapy presents a promising approach to fight against cancer by utilizing the immune system. Recently, engineered microorganisms have emerged as a potential strategy in cancer immunotherapy. These microorganisms, including bacteria and viruses, can be designed and modified using synthetic biology and genetic engineering techniques to target cancer cells and modulate the immune system. This review delves into various microorganism-based therapies for cancer immunotherapy, encompassing strategies for enhancing efficacy while ensuring safety and ethical considerations. The development of these therapies holds immense potential in offering innovative personalized treatments for cancer.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Lichao Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Chongqing, 401147, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
220
|
Zhao Z, Yan P, Zhang X, Yu X, Lv F, Gong M, Yang XA. Causal role of immune cells on cervical cancer onset revealed by two-sample Mendelian randomization study. Sci Rep 2024; 14:14890. [PMID: 38937531 PMCID: PMC11211447 DOI: 10.1038/s41598-024-65957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Cervical cancer (CC) is a prevalent gynecological cancer worldwide that significantly impacts the quality of life and the physical and mental well-being of women. However, there have been limited studies utilizing Mendelian randomization (MR) analysis to investigate the connection between immune cells and CC. This study is to investigate the causal effects of immune traits on CC and non-neoplastic conditions of the cervix. The GWAS data for 731 immunophenotypes and six GWAS data for CC from the FinnGen database were downloaded. Subsequently, a two-sample MR analysis was conducted using the MR Egger, Weighted median, Inverse variance weighted (IVW), Simple mode, and Weighted mode methods. Our study has identified the potential causal effects of immune traits on inflammatory diseases of the cervix, other noninflammatory disorders of the cervix uteri, carcinoma in situ of cervix uteri, adenocarcinomas of cervix, squamous cell neoplasms and carcinoma of cervix, as well as malignant neoplasm of the cervix uteri, with the respective numbers being 8, 6, 11, 8, 23, and 12, respectively. A strong correlation between classic monocytes and various cervical diseases was revealed. Furthermore, we discovered that B cells expressing BAFF-R have the ability to impede the advancement of malignant CC, specifically squamous cell neoplasms and carcinoma of cervix. Our study has demonstrated a significant association between immune traits and both CC and non-neoplastic conditions of the cervix through two-sample Mendelian randomization, providing valuable insights for future clinical research.
Collapse
Affiliation(s)
- Zicheng Zhao
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Pengxian Yan
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Xiaoyu Zhang
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, Hebei, China
- Graduate School of Chengde Medical University, Chengde, 067000, China
| | - Xiaomin Yu
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Fengchun Lv
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Mingyu Gong
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Xiu-An Yang
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde, 067000, Hebei, China.
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, 067000, China.
| |
Collapse
|
221
|
Zhou Z, Wang J, Wang J, Yang S, Wang R, Zhang G, Li Z, Shi R, Wang Z, Lu Q. Deciphering the tumor immune microenvironment from a multidimensional omics perspective: insight into next-generation CAR-T cell immunotherapy and beyond. Mol Cancer 2024; 23:131. [PMID: 38918817 PMCID: PMC11201788 DOI: 10.1186/s12943-024-02047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Tumor immune microenvironment (TIME) consists of intra-tumor immunological components and plays a significant role in tumor initiation, progression, metastasis, and response to therapy. Chimeric antigen receptor (CAR)-T cell immunotherapy has revolutionized the cancer treatment paradigm. Although CAR-T cell immunotherapy has emerged as a successful treatment for hematologic malignancies, it remains a conundrum for solid tumors. The heterogeneity of TIME is responsible for poor outcomes in CAR-T cell immunotherapy against solid tumors. The advancement of highly sophisticated technology enhances our exploration in TIME from a multi-omics perspective. In the era of machine learning, multi-omics studies could reveal the characteristics of TIME and its immune resistance mechanism. Therefore, the clinical efficacy of CAR-T cell immunotherapy in solid tumors could be further improved with strategies that target unfavorable conditions in TIME. Herein, this review seeks to investigate the factors influencing TIME formation and propose strategies for improving the effectiveness of CAR-T cell immunotherapy through a multi-omics perspective, with the ultimate goal of developing personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiahui Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Nephrology, Union Medical College Hospital, Chinese Academy of Medical Sciences, PekingBeijing, 100730, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shuai Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruizhi Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
222
|
Shimizu D, Yuge R, Kitadai Y, Ariyoshi M, Miyamoto R, Hiyama Y, Takigawa H, Urabe Y, Oka S. Pexidartinib and Immune Checkpoint Inhibitors Combine to Activate Tumor Immunity in a Murine Colorectal Cancer Model by Depleting M2 Macrophages Differentiated by Cancer-Associated Fibroblasts. Int J Mol Sci 2024; 25:7001. [PMID: 39000110 PMCID: PMC11241126 DOI: 10.3390/ijms25137001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are known to play supportive roles in tumor development and progression, but their interactions in colorectal cancer (CRC) remain unclear. Here, we investigated the effects of colon-cancer-derived CAFs on TAM differentiation, migration, and tumor immunity, both in vitro and in vivo. When co-cultured with monocytes, CAFs attracted monocytes and induced their differentiation into M2 macrophages. Immunohistology of surgically resected human CRC specimens and orthotopically transplanted mouse tumors revealed a correlation between numbers of CAFs and numbers of M2 macrophages. In a mouse model of CRC orthotopic transplantation, treatment with an inhibitor of the colony-stimulating factor-1 receptor (PLX3397) depleted M2 macrophages and increased CD8-positive T cells infiltrating the tumor nest. While this treatment had a minor effect on tumor growth, combining PLX3397 with anti-PD-1 antibody significantly reduced tumor growth. RNA-seq following combination therapy showed activation of tumor immunity. In summary, CAFs are involved in the induction and mobilization of M2 macrophage differentiation in the CRC tumor immune microenvironment, and the combination of cancer immunotherapy and PLX3397 may represent a novel therapeutic option for CRC.
Collapse
Affiliation(s)
- Daisuke Shimizu
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Ryo Yuge
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Yuki Kitadai
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Misa Ariyoshi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Ryo Miyamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Yuichi Hiyama
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Hidehiko Takigawa
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Yuji Urabe
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| |
Collapse
|
223
|
Xu J, Jin XL, Shen H, Chen XW, Chen J, Huang H, Xu B, Xu J. NOTCH3 as a prognostic biomarker and its correlation with immune infiltration in gastrointestinal cancers. Sci Rep 2024; 14:14327. [PMID: 38906903 PMCID: PMC11192884 DOI: 10.1038/s41598-024-65036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
NOTCH receptor 3 (NOTCH3) is known to regulate the transcription of oncogenes or tumor suppressor genes, thereby playing a crucial role in tumor development, invasion, maintenance, and chemotherapy resistance. However, the specific mechanism of how NOTCH3 drives immune infiltration in gastrointestinal cancer remains uncertain. The expression of NOTCH3 was analyzed through Western blot, PCR, Oncomine database, and the Tumor Immune Estimation Resource (TIMER) site. Kaplan-Meier plotter, PrognoScan database, and gene expression profile interactive analysis (GEPIA) were used to assess the impact of NOTCH3 on clinical prognosis. The correlation between NOTCH3 expression and immune infiltration gene markers was investigated using TIMER and GEPIA. NOTCH3 was found to be commonly overexpressed in various types of gastrointestinal tumors and was significantly associated with poor prognosis. Furthermore, the expression level of NOTCH3 showed a significant correlation with the tumor purity of gastrointestinal tumors and the extent of immune infiltration by different immune cells. Our findings suggest that NOTCH3 may act as a crucial regulator of tumor immune cell infiltration and can serve as a valuable prognostic biomarker in gastrointestinal cancers.
Collapse
Affiliation(s)
- Jia Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xiao-Li Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Hao Shen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xuan-Wei Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jin Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Hui Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, People's Republic of China.
| | - Jian Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
224
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
225
|
Zhao D, Li H, Mambetsariev I, Mirzapoiazova T, Chen C, Fricke J, Wheeler D, Arvanitis L, Pillai R, Afkhami M, Chen BT, Sattler M, Erhunmwunsee L, Massarelli E, Kulkarni P, Amini A, Armstrong B, Salgia R. Spatial iTME analysis of KRAS mutant NSCLC and immunotherapy outcome. NPJ Precis Oncol 2024; 8:135. [PMID: 38898200 PMCID: PMC11187132 DOI: 10.1038/s41698-024-00626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
We conducted spatial immune tumor microenvironment (iTME) profiling using formalin-fixed paraffin-embedded (FFPE) samples of 25 KRAS-mutated non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs), including 12 responders and 13 non-responders. An eleven-marker panel (CD3, CD4, CD8, FOXP3, CD68, arginase-1, CD33, HLA-DR, pan-keratin (PanCK), PD-1, and PD-L1) was used to study the tumor and immune cell compositions. Spatial features at single cell level with cellular neighborhoods and fractal analysis were determined. Spatial features and different subgroups of CD68+ cells and FOXP3+ cells being associated with response or resistance to ICIs were also identified. In particular, CD68+ cells, CD33+ and FOXP3+ cells were found to be associated with resistance. Interestingly, there was also significant association between non-nuclear expression of FOXP3 being resistant to ICIs. We identified CD68dim cells in the lung cancer tissues being associated with improved responses, which should be insightful for future studies of tumor immunity.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiqing Li
- Integrative Genomic Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Computational & Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Chen Chen
- Department of Applied AI & Data Science, City of Hope, Duarte, CA, USA
| | - Jeremy Fricke
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Deric Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | | | - Raju Pillai
- Department of Pathology, City of Hope, Duarte, CA, USA
| | | | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope, Duarte, CA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Erminia Massarelli
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Brian Armstrong
- Light Microscopy/Digital Imaging Core, City of Hope, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA.
| |
Collapse
|
226
|
Li Z, Duan D, Li L, Peng D, Ming Y, Ni R, Liu Y. Tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for hepatocellular carcinoma: recent research progress. Front Pharmacol 2024; 15:1382256. [PMID: 38957393 PMCID: PMC11217528 DOI: 10.3389/fphar.2024.1382256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that seriously threaten human health. Immunotherapy serves as the mainstay of treatment for HCC patients by targeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) axis. However, the effectiveness of anti-PD-1/PD-L1 treatment is limited when HCC becomes drug-resistant. Tumor-associated macrophages (TAMs) are an important factor in the negative regulation of PD-1 antibody targeted therapy in the tumor microenvironment (TME). Therefore, as an emerging direction in cancer immunotherapy research for the treatment of HCC, it is crucial to elucidate the correlations and mechanisms between TAMs and PD-1/PD-L1-mediated immune tolerance. This paper summarizes the effects of TAMs on the pathogenesis and progression of HCC and their impact on HCC anti-PD-1/PD-L1 immunotherapy, and further explores current potential therapeutic strategies that target TAMs in HCC, including eliminating TAMs in the TME, inhibiting TAMs recruitment to tumors and functionally repolarizing M2-TAMs (tumor-supportive) to M1-TAMs (antitumor type).
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
227
|
Cabané P, Correa C, Bode I, Aguilar R, Elorza AA. Biomarkers in Thyroid Cancer: Emerging Opportunities from Non-Coding RNAs and Mitochondrial Space. Int J Mol Sci 2024; 25:6719. [PMID: 38928426 PMCID: PMC11204084 DOI: 10.3390/ijms25126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.
Collapse
Affiliation(s)
- Patricio Cabané
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Correa
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
| | - Ignacio Bode
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| |
Collapse
|
228
|
Li J, Luo Z, Jiang S, Li J. Advancements in neoadjuvant immune checkpoint inhibitor therapy for locally advanced head and neck squamous Carcinoma: A narrative review. Int Immunopharmacol 2024; 134:112200. [PMID: 38744175 DOI: 10.1016/j.intimp.2024.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The prevalent treatment paradigm for locally advanced head and neck squamous carcinoma (HNSCC) typically entails surgery followed by adjuvant radiotherapy and chemotherapy. Despite this, a significant proportion of patients experience recurrence and metastasis. Immune checkpoint inhibitors (ICIs), notably pembrolizumab and nivolumab, have been established as the first and second lines of treatment for recurrent and metastatic HNSCC (R/M HNSCC). The application of ICIs as neoadjuvant immunotherapy in this context is currently under rigorous investigation. This review synthesizes data from clinical trials focusing on neoadjuvant ICIs, highlighting that the pathological responses elicited by these treatments are promising. Furthermore, it is noted that the safety profiles of both monotherapy and combination therapies with ICIs are manageable, with no new safety signals identified. The review concludes by contemplating the future direction and challenges associated with neoadjuvant ICI therapy, encompassing aspects such as the refinement of imaging and pathological response criteria, selection criteria for adjuvant therapies, evaluation of the efficacy and safety of various combination treatment modalities, and the identification of responsive patient cohorts.
Collapse
Affiliation(s)
- Jin Li
- Department of Comprehensive Chemotherapy/Head & Neck Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China
| | - Zhenqin Luo
- Department of Comprehensive Chemotherapy/Head & Neck Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China
| | - Siqing Jiang
- Department of Comprehensive Chemotherapy/Head & Neck Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China.
| | - Junjun Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, China.
| |
Collapse
|
229
|
He C, Gu X, Dong C, Xu Z, Liu L, Jiang B, Lu Y, Jiang X, Lu Z. The association between ferroptosis-related patterns and tumor microenvironment in colorectal cancer. Int Immunopharmacol 2024; 134:112258. [PMID: 38744178 DOI: 10.1016/j.intimp.2024.112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Ferroptosis, a form of regulated cell death (RCD), exhibits distinct characteristics such as iron-dependence and lipid peroxidation accumulation (ROS), setting it apart from other types of cell death like apoptosis and necrosis. Its role in cancer biology is increasingly recognized, particularly its potential interaction with tumor microenvironment (TME) and CD8 T cells in cancer immunotherapy. However, the impact of ferroptosis on TME cell infiltration remains unclear. In this study, we conducted unsupervised clustering analysis on patient data from public databases, identifying three ferroptosis patterns with distinct TME cell infiltration characteristics: immune-inflamed, immune-excluded, and immune-desert phenotypes. We developed a ferroptosis score based on differentially expressed genes (DEGs) among these patterns, which correlated with various biological features including chemotherapy-resistance and immune cells infiltration. Despite patients with high ferroptosis scores exhibiting worse prognosis, they showed increased likelihood of benefiting from immunotherapy. Our findings highlight the importance of ferroptosis-related patterns in understanding TME cell infiltration and suggest novel strategies for drug combinations and immune-related therapies.
Collapse
Affiliation(s)
- Chengshan He
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Gu
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Shanghai, China
| | - Chengyuan Dong
- Clinical Laboratory, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai, China
| | - Zheng Xu
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Liu
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Jiang
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingying Lu
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiudi Jiang
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhicheng Lu
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
230
|
Li T, Xu X, Guo M, Guo J, Nakayama K, Ren Z, Zhang L. Identification of a Macrophage marker gene signature to evaluate immune infiltration and therapeutic response in hepatocellular carcinoma. Heliyon 2024; 10:e31881. [PMID: 38845876 PMCID: PMC11154631 DOI: 10.1016/j.heliyon.2024.e31881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Background Only a minority of hepatocellular carcinoma (HCC) patients can benefit from systemic regimens. Macrophages, which abundantly infiltrate in HCC, could mediate tumour microenvironment remodelling and immune escape, proving to be powerful weapons in combating HCC. Thus, a deeper understanding of macrophages is necessary for improving existing antitumour treatments. Methods With a series of bioinformatic approaches, we comprehensively explored the role of macrophage-related genes in human HCCs from multiple single-cell and bulk RNA sequencing datasets. Unsupervised clustering was performed to cluster the macrophage marker genes (MMGs). GSVA and functional enrichment analysis were used to elucidate the functional differences among the MMG-associated clusters. Subsequently, a component analysis algorithm was used to construct a Macrosig score, and the prognosis, biological characteristics, mutation profile, TME cell infiltration status and drug response of patients with different Macrosig scores were further analysed. Results We identified 13 MMGs in 574 HCC samples, based on which three MMG-associated clusters were defined. Overall survival time, clinicopathological features and immune infiltration scores differed among the different clusters. On this basis, 12 hub genes were identified among these clusters; subsequently, a scoring system was constructed to determine the Macrosig score. Importantly, patients with low-Macrosig scores, characterized by increased immune infiltration, increased mutation frequency and increased immune checkpoint expression, including CTLA-4, LAG3, PDCD1 and TIGIT, exhibited enhanced efficacy of immunotherapy when validated in an external database. Moreover, a low-Macrosig score indicates increased sensitivity to AZD.2281, A.443654, ABT.263, ABT.888, AG.014699 and ATRA, while a high Macrosig score indicates increased sensitivity to AZD6482, AKT inhibitor VIII, AS601245, AZ628, AZD.0530 and AZD6244. Conclusions A novel scoring system was constructed to guide more effective prognostic evaluation and tailoring therapeutic regimens for HCC patients.
Collapse
Affiliation(s)
- Tong Li
- Liver Cancer Institute & Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Gastroenterology, Zhongshan Hospital Xuhui Branch, Fudan University, Shanghai, China
| | - Xin Xu
- Liver Cancer Institute & Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengzhou Guo
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Guo
- Department of Gastroenterology, Zhongshan Hospital Xuhui Branch, Fudan University, Shanghai, China
| | - Kiyoko Nakayama
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenggang Ren
- Liver Cancer Institute & Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lan Zhang
- Liver Cancer Institute & Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
231
|
Zheng E, Włodarczyk M, Węgiel A, Osielczak A, Możdżan M, Biskup L, Grochowska A, Wołyniak M, Gajewski D, Porc M, Maryńczak K, Dziki Ł. Navigating through novelties concerning mCRC treatment-the role of immunotherapy, chemotherapy, and targeted therapy in mCRC. Front Surg 2024; 11:1398289. [PMID: 38948479 PMCID: PMC11211389 DOI: 10.3389/fsurg.2024.1398289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Over the course of nearly six decades since the inception of initial trials involving 5-FU in the treatment of mCRC (metastatic colorectal cancer), our progressive comprehension of the pathophysiology, genetics, and surgical techniques related to mCRC has paved the way for the introduction of novel therapeutic modalities. These advancements not only have augmented the overall survival but have also positively impacted the quality of life (QoL) for affected individuals. Despite the remarkable progress made in the last two decades in the development of chemotherapy, immunotherapy, and target therapies, mCRC remains an incurable disease, with a 5-year survival rate of 14%. In this comprehensive review, our primary goal is to present an overview of mCRC treatment methods following the latest guidelines provided by the National Comprehensive Cancer Network (NCCN), the American Society of Clinical Oncology (ASCO), and the American Society of Colon and Rectal Surgeons (ASCRS). Emphasis has been placed on outlining treatment approaches encompassing chemotherapy, immunotherapy, targeted therapy, and surgery's role in managing mCRC. Furthermore, our review delves into prospective avenues for developing new therapies, offering a glimpse into the future of alternative pathways that hold potential for advancing the field.
Collapse
Affiliation(s)
- Edward Zheng
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Włodarczyk
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Węgiel
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Osielczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Możdżan
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Laura Biskup
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Agata Grochowska
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Wołyniak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dominik Gajewski
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Porc
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
232
|
Torkildsen CF, Austdal M, Jarmund AH, Kleinmanns K, Lamark EK, Nilsen EB, Stefansson I, Sande RK, Iversen AC, Thomsen LCV, Bjørge L. New immune phenotypes for treatment response in high-grade serous ovarian carcinoma patients. Front Immunol 2024; 15:1394497. [PMID: 38947323 PMCID: PMC11211251 DOI: 10.3389/fimmu.2024.1394497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Despite advances in surgical and therapeutic approaches, high-grade serous ovarian carcinoma (HGSOC) prognosis remains poor. Surgery is an indispensable component of therapeutic protocols, as removal of all visible tumor lesions (cytoreduction) profoundly improves the overall survival. Enhanced predictive tools for assessing cytoreduction are essential to optimize therapeutic precision. Patients' immune status broadly reflects the tumor cell biological behavior and the patient responses to disease and treatment. Serum cytokine profiling is a sensitive measure of immune adaption and deviation, yet its integration into treatment paradigms is underexplored. This study is part of the IMPACT trial (NCT03378297) and aimed to characterize immune responses before and during primary treatment for HGSOC to identify biomarkers for treatment selection and prognosis. Longitudinal serum samples from 22 patients were collected from diagnosis until response evaluation. Patients underwent primary cytoreductive surgery or neoadjuvant chemotherapy (NACT) based on laparoscopy scoring. Twenty-seven serum cytokines analyzed by Bio-Plex 200, revealed two immune phenotypes at diagnosis: Immune High with marked higher serum cytokine levels than Immune Low. The immune phenotypes reflected the laparoscopy scoring and allocation to surgical treatment. The five Immune High patients undergoing primary cytoreductive surgery exhibited immune mobilization and extended progression-free survival, compared to the Immune Low patients undergoing the same treatment. Both laparoscopy and cytoreductive surgery induced substantial and transient changes in serum cytokines, with upregulation of the inflammatory cytokine IL-6 and downregulation of the multifunctional cytokines IP-10, Eotaxin, IL-4, and IL-7. Over the study period, cytokine levels uniformly decreased in all patients, leading to the elimination of the initial immune phenotypes regardless of treatment choice. This study reveals distinct pre-treatment immune phenotypes in HGSOC patients that might be informative for treatment stratification and prognosis. This potential novel biomarker holds promise as a foundation for improved assessment of treatment responses in patients with HGSOC. ClinicalTrials.gov Identifier: NCT03378297.
Collapse
Affiliation(s)
- Cecilie Fredvik Torkildsen
- Department of Obstetrics and Gynecology, Stavanger University Hospital, Stavanger, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marie Austdal
- Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Anders Hagen Jarmund
- Department of Clinical and Molecular Medicine, and Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Katrin Kleinmanns
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Eva Karin Lamark
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Berge Nilsen
- Department of Obstetrics and Gynecology, Stavanger University Hospital, Stavanger, Norway
| | - Ingunn Stefansson
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ragnar Kvie Sande
- Department of Obstetrics and Gynecology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ann-Charlotte Iversen
- Department of Clinical and Molecular Medicine, and Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Liv Cecilie Vestrheim Thomsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Line Bjørge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
233
|
Bullock KK, Richmond A. Beyond Anti-PD-1/PD-L1: Improving Immune Checkpoint Inhibitor Responses in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:2189. [PMID: 38927895 PMCID: PMC11201651 DOI: 10.3390/cancers16122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The introduction of anti-programmed cell death protein-1 (anti-PD-1) to the clinical management of triple-negative breast cancer (TNBC) represents a breakthrough for a disease whose treatment has long relied on the standards of chemotherapy and surgery. Nevertheless, few TNBC patients achieve a durable remission in response to anti-PD-1, and there is a need to develop strategies to maximize the potential benefit of immune checkpoint inhibition (ICI) for TNBC patients. In the present review, we discuss three conceptual strategies to improve ICI response rates in TNBC patients. The first effort involves improving patient selection. We discuss proposed biomarkers of response and resistance to anti-PD-1, concluding that an optimal biomarker will likely be multifaceted. The second effort involves identifying existing targeted therapies or chemotherapies that may synergize with ICI. In particular, we describe recent efforts to use inhibitors of the PI3K/AKT or RAS/MAPK/ERK pathways in combination with ICI. Third, considering the possibility that targeting the PD-1 axis is not the most promising strategy for TNBC treatment, we describe ongoing efforts to identify novel immunotherapy strategies.
Collapse
Affiliation(s)
| | - Ann Richmond
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
234
|
Luo J, Zhang X. Challenges and innovations in CAR-T cell therapy: a comprehensive analysis. Front Oncol 2024; 14:1399544. [PMID: 38919533 PMCID: PMC11196618 DOI: 10.3389/fonc.2024.1399544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Recent years have seen a marked increase in research on chimeric antigen receptor T (CAR-T) cells, with specific relevance to the treatment of hematological malignancies. Here, the structural principles, iterative processes, and target selection of CAR-T cells for therapeutic applications are described in detail, as well as the challenges faced in the treatment of solid tumors and hematological malignancies. These challenges include insufficient infiltration of cells, off-target effects, cytokine release syndrome, and tumor lysis syndrome. In addition, directions in the iterative development of CAR-T cell therapy are discussed, including modifications of CAR-T cell structures, improvements in specificity using multi-targets and novel targets, the use of Boolean logic gates to minimize off-target effects and control toxicity, and the adoption of additional protection mechanisms to improve the durability of CAR-T cell treatment. This review provides ideas and strategies for the development of CAR-T cell therapy through an in-depth exploration of the underlying mechanisms of action of CAR-T cells and their potential for innovative modification.
Collapse
Affiliation(s)
| | - Xianwen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
235
|
Yan S, Wang W, Feng Z, Xue J, Liang W, Wu X, Tan Z, Zhang X, Zhang S, Li X, Zhang C. Immune checkpoint inhibitors in colorectal cancer: limitation and challenges. Front Immunol 2024; 15:1403533. [PMID: 38919624 PMCID: PMC11196401 DOI: 10.3389/fimmu.2024.1403533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Colorectal cancer exhibits a notable prevalence and propensity for metastasis, but the current therapeutic interventions for metastatic colorectal cancer have yielded suboptimal results. ICIs can decrease tumor development by preventing the tumor's immune evasion, presenting cancer patients with a new treatment alternative. The increased use of immune checkpoint inhibitors (ICIs) in CRC has brought several issues. In particular, ICIs have demonstrated significant clinical effectiveness in patients with MSI-H CRC, whereas their efficacy is limited in MSS. Acquired resistance can still occur in patients with a positive response to ICIs. This paper describes the efficacy of ICIs currently in the clinical treatment of CRC, discusses the mechanisms by which acquired resistance occurs, primarily related to loss and impaired presentation of tumor antigens, reduced response of IFN-λ and cytokine or metabolic dysregulation, and summarizes the incidence of adverse effects. We posit that the future of ICIs hinges upon the advancement of precise prediction biomarkers and the implementation of combination therapies. This study aims to elucidate the constraints associated with ICIs in CRC and foster targeted problem-solving approaches, thereby enhancing the potential benefits for more patients.
Collapse
Affiliation(s)
- Suying Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanting Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhiquan Tan
- Department of Scientific and Technical Information, Tianjin Union Medical Center, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- Tianjin Institute of Coloproctology, Tianjin, China
| |
Collapse
|
236
|
Li Z, Yin S, Yang K, Zhang B, Wu X, Zhang M, Gao D. CircRNA Regulation of T Cells in Cancer: Unraveling Potential Targets. Int J Mol Sci 2024; 25:6383. [PMID: 38928088 PMCID: PMC11204142 DOI: 10.3390/ijms25126383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
T lymphocytes play a critical role in antitumor immunity, but their exhaustion poses a significant challenge for immune evasion by malignant cells. Circular RNAs (circRNAs), characterized by their covalently closed looped structure, have emerged as pivotal regulators within the neoplastic landscape. Recent studies have highlighted their multifaceted roles in cellular processes, including gene expression modulation and protein function regulation, which are often disrupted in cancer. In this review, we systematically explore the intricate interplay between circRNAs and T cell modulation within the tumor microenvironment. By dissecting the regulatory mechanisms through which circRNAs impact T cell exhaustion, we aim to uncover pathways crucial for immune evasion and T cell dysfunction. These insights can inform innovative immunotherapeutic strategies targeting circRNA-mediated molecular pathways. Additionally, we discuss the translational potential of circRNAs as biomarkers for therapeutic response prediction and as intervention targets. Our comprehensive analysis aims to enhance the understanding of immune evasion dynamics in the tumor microenvironment by facilitating the development of precision immunotherapy.
Collapse
Affiliation(s)
- Zelin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Shuanshuan Yin
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Kangping Yang
- The Second Clinical Medical College, Nanchang University, Nanchang 330047, China;
| | - Baojie Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| | - Xuanhuang Wu
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Meng Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| | - Dian Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| |
Collapse
|
237
|
Luo B, Song J, Zhang J, Han J, Zhou X, Chen L. The contribution of circadian clock to the biological processes. Front Mol Biosci 2024; 11:1387576. [PMID: 38903177 PMCID: PMC11187296 DOI: 10.3389/fmolb.2024.1387576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
All organisms have various circadian, behavioral, and physiological 24-h periodic rhythms, which are controlled by the circadian clock. The circadian clock controls various behavioral and physiological rhythms. In mammals, the primary circadian clock is present in the suprachiasmatic nucleus of the hypothalamus. The rhythm of the circadian clock is controlled by the interaction between negative and positive feedback loops, consisting of crucial clock regulators (including Bmal1 and Clock), three cycles (mPer1, mPer2, and mPer3), and two cryptochromes (Cry1 and Cry2). The development of early mammalian embryos is an ordered and complex biological process that includes stages from fertilized eggs to blastocysts and undergoes important morphological changes, such as blastocyst formation, cell multiplication, and compaction. The circadian clock affects the onset and timing of embryonic development. The circadian clock affects many biological processes, including eating time, immune function, sleep, energy metabolism, and endocrinology, therefore, it is also crucial for overall health, growth and development after birth. This review summarized the effects of the circadian clock in the body's physiological activities. A new strategy is proposed for the prevention of malformations or diseases by regulating the circadian clock or changing circadian rhythms.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiangyuan Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jun Han
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
238
|
Theofilou VI, Ghita I, Elnaggar M, Chaisuparat R, Papadimitriou JC, Bentzen SM, Dyalram D, Lubek JE, Ord RA, Younis RH. Histological pattern of tumor inflammation and stromal density correlate with patient demographics and immuno-oncologic transcriptional profile in oral squamous cell carcinoma. FRONTIERS IN ORAL HEALTH 2024; 5:1408072. [PMID: 38903181 PMCID: PMC11187265 DOI: 10.3389/froh.2024.1408072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Oral squamous cell carcinoma (OSCC) is the most prevalent oral malignancy, with emerging interest in the characterization of its tumor microenvironment. Herein, we present a comprehensive histological analysis of OSCC stromal density and inflammation and their relationship with patient demographics, clinicopathologic features and immuno-oncologic signatures. Materials-methods Eighty-seven completely excised OSCC tissues were prospectively collected and scored for histopathologic inflammatory subtypes [HIS]-inflamed (INF), immune-excluded (IE) and immune-desert (ID), peritumoral stromal inflammation (PTSI), and peritumoral stromal fibrosis (PTSF). Scoring of inflammation was complemented by Semaphorin 4D immunohistochemistry. NanoString differential gene expression (DGE) analysis was conducted for eight OSCC cases representative of the inflammatory and stromal subtypes and the demographic groups. Results PTSF correlated with male gender (p = 0.0043), smoking (p = 0.0455), alcohol consumption (p = 0.0044), increased tumor size (p = 0.0054), and advanced stage (p = 0.002). On the contrary, PTSI occurred predominantly in females (p = 0.0105), non-drinkers (p = 0.0329), and small tumors (p = 0.0044). Transcriptionally, decreased cytokine signaling, and oncogenic pathway activation were observed in HIS-IE. Smokers and males displayed decreased global immune-cell levels and myeloid-cell predominance. Conclusion Our work describes OSCC stromal and inflammatory phenotypes in correlation with distinct patient groups and DGE, highlighting the translational potential of characterizing the tumor microenvironment for optimal patient stratification.
Collapse
Affiliation(s)
- Vasileios Ionas Theofilou
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ioana Ghita
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Manar Elnaggar
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Risa Chaisuparat
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - John C. Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Soren M. Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Biostatistics Core, Institute of Clinical and Translational Research, University of Maryland, Baltimore, MD, United States
- Biostatistics Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center,Baltimore, MD, United States
| | - Donita Dyalram
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Joshua E. Lubek
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Robert A. Ord
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rania H. Younis
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
239
|
Cai Y, Luo M, Yang W, Xu C, Wang P, Xue G, Jin X, Cheng R, Que J, Zhou W, Pang B, Xu S, Li Y, Jiang Q, Xu Z. The Deep Learning Framework iCanTCR Enables Early Cancer Detection Using the T-cell Receptor Repertoire in Peripheral Blood. Cancer Res 2024; 84:1915-1928. [PMID: 38536129 DOI: 10.1158/0008-5472.can-23-0860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/20/2023] [Accepted: 03/19/2024] [Indexed: 06/05/2024]
Abstract
T cells recognize tumor antigens and initiate an anticancer immune response in the very early stages of tumor development, and the antigen specificity of T cells is determined by the T-cell receptor (TCR). Therefore, monitoring changes in the TCR repertoire in peripheral blood may offer a strategy to detect various cancers at a relatively early stage. Here, we developed the deep learning framework iCanTCR to identify patients with cancer based on the TCR repertoire. The iCanTCR framework uses TCRβ sequences from an individual as an input and outputs the predicted cancer probability. The model was trained on over 2,000 publicly available TCR repertoires from 11 types of cancer and healthy controls. Analysis of several additional publicly available datasets validated the ability of iCanTCR to distinguish patients with cancer from noncancer individuals and demonstrated the capability of iCanTCR for the accurate classification of multiple cancers. Importantly, iCanTCR precisely identified individuals with early-stage cancer with an AUC of 86%. Altogether, this work provides a liquid biopsy approach to capture immune signals from peripheral blood for noninvasive cancer diagnosis. SIGNIFICANCE Development of a deep learning-based method for multicancer detection using the TCR repertoire in the peripheral blood establishes the potential of evaluating circulating immune signals for noninvasive early cancer detection.
Collapse
Affiliation(s)
- Yideng Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyi Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China
| | - Guangfu Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiyun Jin
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jinhao Que
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Boran Pang
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shouping Xu
- Department of Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China
| | - Zhaochun Xu
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China
| |
Collapse
|
240
|
Cunha D, Neves M, Silva D, Silvestre AR, Nunes PB, Arrobas F, Ribot JC, Ferreira F, Moita LF, Soares-de-Almeida L, Silva JM, Filipe P, Ferreira J. Tumor-Infiltrating T Cells in Skin Basal Cell Carcinomas and Squamous Cell Carcinomas: Global Th1 Preponderance with Th17 Enrichment-A Cross-Sectional Study. Cells 2024; 13:964. [PMID: 38891095 PMCID: PMC11172364 DOI: 10.3390/cells13110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs) are high-incidence, non-melanoma skin cancers (NMSCs). The success of immune-targeted therapies in advanced NMSCs led us to anticipate that NMSCs harbored significant populations of tumor-infiltrating lymphocytes with potential anti-tumor activity. The main aim of this study was to characterize T cells infiltrating NMSCs. Flow cytometry and immunohistochemistry were used to assess, respectively, the proportions and densities of T cell subpopulations in BCCs (n = 118), SCCs (n = 33), and normal skin (NS, n = 30). CD8+ T cells, CD4+ T cell subsets, namely, Th1, Th2, Th17, Th9, and regulatory T cells (Tregs), CD8+ and CD4+ memory T cells, and γδ T cells were compared between NMSCs and NS samples. Remarkably, both BCCs and SCCs featured a significantly higher Th1/Th2 ratio (~four-fold) and an enrichment for Th17 cells. NMSCs also showed a significant enrichment for IFN-γ-producing CD8+T cells, and a depletion of γδ T cells. Using immunohistochemistry, NMSCs featured denser T cell infiltrates (CD4+, CD8+, and Tregs) than NS. Overall, these data favor a Th1-predominant response in BCCs and SCCs, providing support for immune-based treatments in NMSCs. Th17-mediated inflammation may play a role in the progression of NMSCs and thus become a potential therapeutic target in NMSCs.
Collapse
Affiliation(s)
- Daniela Cunha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Centro de Dermatologia, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal
- Dermatology Unit, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Marco Neves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Daniela Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Ana Rita Silvestre
- Serviço de Anatomia Patológica, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal (P.B.N.)
| | - Paula Borralho Nunes
- Serviço de Anatomia Patológica, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal (P.B.N.)
- Instituto de Anatomia Patológica, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Fernando Arrobas
- Datamedica, Biostatistics Services and Consulting, 2610-008 Amadora, Portugal
| | - Julie C. Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Fernando Ferreira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Luís F. Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Luís Soares-de-Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - João Maia Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Centro de Dermatologia, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Paulo Filipe
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
241
|
Enfield KS, Colliver E, Lee C, Magness A, Moore DA, Sivakumar M, Grigoriadis K, Pich O, Karasaki T, Hobson PS, Levi D, Veeriah S, Puttick C, Nye EL, Green M, Dijkstra KK, Shimato M, Akarca AU, Marafioti T, Salgado R, Hackshaw A, Jamal-Hanjani M, van Maldegem F, McGranahan N, Glass B, Pulaski H, Walk E, Reading JL, Quezada SA, Hiley CT, Downward J, Sahai E, Swanton C, Angelova M. Spatial Architecture of Myeloid and T Cells Orchestrates Immune Evasion and Clinical Outcome in Lung Cancer. Cancer Discov 2024; 14:1018-1047. [PMID: 38581685 PMCID: PMC11145179 DOI: 10.1158/2159-8290.cd-23-1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Understanding the role of the tumor microenvironment (TME) in lung cancer is critical to improving patient outcomes. We identified four histology-independent archetype TMEs in treatment-naïve early-stage lung cancer using imaging mass cytometry in the TRACERx study (n = 81 patients/198 samples/2.3 million cells). In immune-hot adenocarcinomas, spatial niches of T cells and macrophages increased with clonal neoantigen burden, whereas such an increase was observed for niches of plasma and B cells in immune-excluded squamous cell carcinomas (LUSC). Immune-low TMEs were associated with fibroblast barriers to immune infiltration. The fourth archetype, characterized by sparse lymphocytes and high tumor-associated neutrophil (TAN) infiltration, had tumor cells spatially separated from vasculature and exhibited low spatial intratumor heterogeneity. TAN-high LUSC had frequent PIK3CA mutations. TAN-high tumors harbored recently expanded and metastasis-seeding subclones and had a shorter disease-free survival independent of stage. These findings delineate genomic, immune, and physical barriers to immune surveillance and implicate neutrophil-rich TMEs in metastasis. SIGNIFICANCE This study provides novel insights into the spatial organization of the lung cancer TME in the context of tumor immunogenicity, tumor heterogeneity, and cancer evolution. Pairing the tumor evolutionary history with the spatially resolved TME suggests mechanistic hypotheses for tumor progression and metastasis with implications for patient outcome and treatment. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Katey S.S. Enfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Emma Colliver
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Claudia Lee
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Alastair Magness
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Kristiana Grigoriadis
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Takahiro Karasaki
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Philip S. Hobson
- Flow Cytometry, The Francis Crick Institute, London, United Kingdom
| | - Dina Levi
- Flow Cytometry, The Francis Crick Institute, London, United Kingdom
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Emma L. Nye
- Experimental Histopathology, The Francis Crick Institute, London, United Kingdom
| | - Mary Green
- Experimental Histopathology, The Francis Crick Institute, London, United Kingdom
| | - Krijn K. Dijkstra
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Masako Shimato
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ayse U. Akarca
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Allan Hackshaw
- Cancer Research UK and University College London Cancer Trials Centre, London, United Kingdom
| | | | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Febe van Maldegem
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | | | | | | | - James L. Reading
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Pre-cancer Immunology Laboratory, University College London Cancer Institute, London, United Kingdom
- Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Sergio A. Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Crispin T. Hiley
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
242
|
Dwivedi R, Jain A, Gupta S, Chandra S. Immunotherapy: The Fourth Domain in Oral Cancer Therapeutics. Indian J Otolaryngol Head Neck Surg 2024; 76:2257-2272. [PMID: 38883453 PMCID: PMC11169205 DOI: 10.1007/s12070-024-04565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 06/18/2024] Open
Abstract
Owing to high global prevalence, incidence and associated mortality, cancer of head and neck particularly oral cancer remains a cardinal domain for research and trials. Immune-modulatory therapies that employ patients own immune system for therapeutic benefits in oral cancer seems promising. The aim of this review is to gauge the potential of immunotherapy as fourth domain of Oral cancer therapeutics. Articles were searched using suitable search terms in MEDLINE and Google Scholar database to include clinical trials, meta-analyses, and research in humans/animals/cell lines published in peer reviewed journals. A total of 97 articles were included in this review. Literature has several studies and trials where different types of immunotherapies has been attempted but it is crucial to identify precise biomarkers of genome based targeted agents and to find parameters to select patients who might benefit from immunotherapy. Also further research is required to estimate predictive value of tumor mutational burden and mutational signatures so as to aid in personalized prediction of oral cancer therapeutic response.
Collapse
Affiliation(s)
- Ruby Dwivedi
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh 226003 India
| | - Ayushi Jain
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh 226003 India
| | - Shalini Gupta
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh 226003 India
| | - Shaleen Chandra
- Atal Bihari Vajpayee Medical University, Lucknow, Uttar Pradesh India
| |
Collapse
|
243
|
Zang Y, Guo B, Qiu Y, Liu H, Opyrchal M, Lu X. Adaptive phase I-II clinical trial designs identifying optimal biological doses for targeted agents and immunotherapies. Clin Trials 2024; 21:298-307. [PMID: 38205644 PMCID: PMC11132954 DOI: 10.1177/17407745231220661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Targeted agents and immunotherapies have revolutionized cancer treatment, offering promising options for various cancer types. Unlike traditional therapies the principle of "more is better" is not always applicable to these new therapies due to their unique biomedical mechanisms. As a result, various phase I-II clinical trial designs have been proposed to identify the optimal biological dose that maximizes the therapeutic effect of targeted therapies and immunotherapies by jointly monitoring both efficacy and toxicity outcomes. This review article examines several innovative phase I-II clinical trial designs that utilize accumulated efficacy and toxicity outcomes to adaptively determine doses for subsequent patients and identify the optimal biological dose, maximizing the overall therapeutic effect. Specifically, we highlight three categories of phase I-II designs: efficacy-driven, utility-based, and designs incorporating multiple efficacy endpoints. For each design, we review the dose-outcome model, the definition of the optimal biological dose, the dose-finding algorithm, and the software for trial implementation. To illustrate the concepts, we also present two real phase I-II trial examples utilizing the EffTox and ISO designs. Finally, we provide a classification tree to summarize the designs discussed in this article.
Collapse
Affiliation(s)
- Yong Zang
- Department of Biostatistics and Health Data Sciences, School of Medicine, Indiana University
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University
| | - Beibei Guo
- Department of Experimental Statistics, Louisiana State University
| | - Yingjie Qiu
- Department of Biostatistics and Health Data Sciences, School of Medicine, Indiana University
| | - Hao Liu
- Department of Biostatistics and Epidemiology, Cancer Institute of New Jersey, Rutgers University
| | | | - Xiongbin Lu
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University
| |
Collapse
|
244
|
Zhang L, Bai H, Zhou J, Ye L, Gao L. Role of tumor cell pyroptosis in anti-tumor immunotherapy. CELL INSIGHT 2024; 3:100153. [PMID: 38464416 PMCID: PMC10924176 DOI: 10.1016/j.cellin.2024.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Peripheral tumor-specific CD8+ T cells often fail to infiltrate into tumor parenchyma due to the immunosuppression of tumor microenvironment (TME). Meanwhile, a significant portion of tumor-specific CD8+ T cells infiltrated into TME are functionally exhausted. Despite the enormous success of anti-PD-1/PD-L1 immune-checkpoint blockade (ICB) treatment in a wide variety of cancer types, the majority of patients do not respond to this treatment largely due to the failure to efficiently drive tumor-specific CD8+ T cell infiltration and reverse their exhaustion states. Nowadays, tumor cell pyroptosis, a unique cell death executed by pore-forming gasdermin (GSDM) family proteins dependent or independent on inflammatory caspase activation, has been shown to robustly promote immune-killing of tumor cells by enhancing tumor immunogenicity and altering the inflammatory state in the TME, which would be beneficial in overcoming the shortages of anti-PD-1/PD-L1 ICB therapy. Therefore, in this review we summarize the current progresses of tumor cell pyroptosis in enhancing immune function and modulating TME, which synergizes anti-PD-1/PD-L1 ICB treatment to achieve better anti-tumor effect. We also enumerate several strategies to better amply the efficiency of anti-PD-1/PD-L1 ICB therapy by inducing tumor cell pyroptosis.
Collapse
Affiliation(s)
- Lincheng Zhang
- Institute of Immunology, Third Military Medical University, Chongqing, 400030, China
| | - Haotian Bai
- Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan, 215316, China
| | - Jing Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, 400030, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, 400030, China
| | - Leiqiong Gao
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, 400030, China
| |
Collapse
|
245
|
Zhao J, Shen J, Mao L, Yang T, Liu J, Hongbin S. Cancer associated fibroblast secreted miR-432-5p targets CHAC1 to inhibit ferroptosis and promote acquired chemoresistance in prostate cancer. Oncogene 2024; 43:2104-2114. [PMID: 38769193 DOI: 10.1038/s41388-024-03057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Prostate cancer (PCa) ranks as the sixth most serious male malignant disease globally. While docetaxel (DTX) chemotherapy is the standard treatment for advanced PCa patients with distant metastasis, some individuals exhibit insensitivity or resistance to DTX. Cancer-associated fibroblasts (CAFs) play a pivotal role as stromal cells within the tumor microenvironment, influencing tumor development, progression, and drug resistance through exosomes. Ferroptosis, a novel form of programmed cell death, is characterized by intracellular iron accumulation that triggers lipid peroxidation, ultimately leading to cell demise. To delve into the potential mechanisms of chemotherapy resistance in prostate cancer, our research delved into the impact of CAF-derived exosomes on ferroptosis. Our findings revealed that CAF exosomes hindered the buildup of lipid reactive oxygen species (ROS) in prostate cancer cells induced by erastin, as well as mitigated erastin-induced mitochondrial damage, thereby impeding iron-induced cell death in prostate cancer cells. Furthermore, miR-432-5p was identified to diminish glutathione (GSH) consumption by targeting CHAC1, consequently inhibiting ferroptosis in prostate cancer cells. Our study found that miR-432-5p, originating from cancer-associated fibroblast (CAF) exosomes, suppresses ferroptosis by targeting CHAC1, thereby increasing resistance to docetaxel (DTX) in PCa. This research introduces a novel approach to address resistance to DTX.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jijie Shen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Liang Mao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Sun Hongbin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| |
Collapse
|
246
|
Liu Y, Wang Y, Zhang J, Peng Q, Wang X, Xiao X, Shi K. Nanotherapeutics targeting autophagy regulation for improved cancer therapy. Acta Pharm Sin B 2024; 14:2447-2474. [PMID: 38828133 PMCID: PMC11143539 DOI: 10.1016/j.apsb.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
The clinical efficacy of current cancer therapies falls short, and there is a pressing demand to integrate new targets with conventional therapies. Autophagy, a highly conserved self-degradation process, has received considerable attention as an emerging therapeutic target for cancer. With the rapid development of nanomedicine, nanomaterials have been widely utilized in cancer therapy due to their unrivaled delivery performance. Hence, considering the potential benefits of integrating autophagy and nanotechnology in cancer therapy, we outline the latest advances in autophagy-based nanotherapeutics. Based on a brief background related to autophagy and nanotherapeutics and their impact on tumor progression, the feasibility of autophagy-based nanotherapeutics for cancer treatment is demonstrated. Further, emerging nanotherapeutics developed to modulate autophagy are reviewed from the perspective of cell signaling pathways, including modulation of the mammalian target of rapamycin (mTOR) pathway, autophagy-related (ATG) and its complex expression, reactive oxygen species (ROS) and mitophagy, interference with autophagosome-lysosome fusion, and inhibition of hypoxia-mediated autophagy. In addition, combination therapies in which nano-autophagy modulation is combined with chemotherapy, phototherapy, and immunotherapy are also described. Finally, the prospects and challenges of autophagy-based nanotherapeutics for efficient cancer treatment are envisioned.
Collapse
Affiliation(s)
- Yunmeng Liu
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yaxin Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jincheng Zhang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qikai Peng
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xingdong Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xiyue Xiao
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Kai Shi
- College of Pharmacy, Nankai University, Tianjin 300350, China
| |
Collapse
|
247
|
Ou Q, Lu Z, Cai G, Lai Z, Lin R, Huang H, Zeng D, Wang Z, Luo B, Ouyang W, Liao W. Unraveling the influence of metabolic signatures on immune dynamics for predicting immunotherapy response and survival in cancer. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/28/2024] [Indexed: 10/31/2024]
Abstract
AbstractMetabolic reprogramming in cancer significantly impacts immune responses within the tumor microenvironment, but its influence on cancer immunotherapy effectiveness remains uncertain. This study aims to elucidate the prognostic significance of metabolic genes in cancer immunotherapy through a comprehensive analytical approach. Utilizing data from the IMvigor210 trial (n = 348) and validated by retrospective datasets, we performed patient clustering using non‐negative matrix factorization based on metabolism‐related genes. A metabiotic score was developed using a “DeepSurv” neural network to assess correlations with overall survival (OS), progression‐free survival, and immunotherapy response. Validation of the metabolic score and key genes was achieved via comparative gene expression analysis using qPCR. Our analysis identified four distinct metabolic classes with significant variations in OS. Notably, the metabolism‐inactive and hypoxia‐low class demonstrated the most pronounced benefit in terms of OS. The metabolic score predicted immunotherapeutic benefits with high accuracy (AUC: 0.93 at 12 months). SETD3 emerged as a crucial gene, showing strong correlations with improved OS outcomes. This study underscores the importance of metabolic profiling in predicting cancer immunotherapy success. Specifically, patients classified as metabolism‐inactive and hypoxia‐low appear to derive substantial benefits. SETD3 is established as a promising prognostic marker, linking metabolic activity with patient outcomes, advocating for the integration of metabolic profiling into immunotherapy strategies to enhance treatment precision and efficacy.
Collapse
Affiliation(s)
- Qiyun Ou
- Department of Oncology Nanfang Hospital, Southern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Zhiqiang Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Gengyi Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Zijia Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Ruicong Lin
- Faculty of Innovation Engineering Macau University of Science and Technology Taipa China
- School of Computer and Information Engineering Guangzhou Huali College Guangzhou China
| | - Hong Huang
- Clinical Medicine College Guilin Medical University Guilin China
| | - Dongqiang Zeng
- Department of Oncology Nanfang Hospital, Southern Medical University Guangzhou China
| | - Zehua Wang
- Faculty of Medicine Macau University of Science and Technology Taipa China
| | - Baoming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ultrasound in Medicine, Department of Medicine Oncology, Department of Pulmonary and Critical Care Medicine, Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou China
| | - Wangjun Liao
- Department of Oncology Nanfang Hospital, Southern Medical University Guangzhou China
| |
Collapse
|
248
|
Fukuda H, Arai K, Mizuno H, Nishito Y, Motoi N, Arai Y, Hiraoka N, Shibata T, Sonobe Y, Kayukawa Y, Hashimoto E, Takahashi M, Fujii E, Maruyama T, Kuwabara K, Nishizawa T, Mizoguchi Y, Yoshida Y, Watanabe S, Yamashita M, Kitano S, Sakamoto H, Nagata Y, Mitsumori R, Ozaki K, Niida S, Kanai Y, Hirayama A, Soga T, Tsukada K, Yabuki N, Shimada M, Kitazawa T, Natori O, Sawada N, Kato A, Yoshida T, Yasuda K, Ochiai A, Tsunoda H, Aoki K. Molecular subtypes of lung adenocarcinoma present distinct immune tumor microenvironments. Cancer Sci 2024; 115:1763-1777. [PMID: 38527308 PMCID: PMC11145114 DOI: 10.1111/cas.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Overcoming resistance to immune checkpoint inhibitors is an important issue in patients with non-small-cell lung cancer (NSCLC). Transcriptome analysis shows that adenocarcinoma can be divided into three molecular subtypes: terminal respiratory unit (TRU), proximal proliferative (PP), and proximal inflammatory (PI), and squamous cell carcinoma (LUSQ) into four. However, the immunological characteristics of these subtypes are not fully understood. In this study, we investigated the immune landscape of NSCLC tissues in molecular subtypes using a multi-omics dataset, including tumor-infiltrating leukocytes (TILs) analyzed using flow cytometry, RNA sequences, whole exome sequences, metabolomic analysis, and clinicopathologic findings. In the PI subtype, the number of TILs increased and the immune response in the tumor microenvironment (TME) was activated, as indicated by high levels of tertiary lymphoid structures, and high cytotoxic marker levels. Patient prognosis was worse in the PP subtype than in other adenocarcinoma subtypes. Glucose transporter 1 (GLUT1) expression levels were upregulated and lactate accumulated in the TME of the PP subtype. This could lead to the formation of an immunosuppressive TME, including the inactivation of antigen-presenting cells. The TRU subtype had low biological malignancy and "cold" tumor-immune phenotypes. Squamous cell carcinoma (LUSQ) did not show distinct immunological characteristics in its respective subtypes. Elucidation of the immune characteristics of molecular subtypes could lead to the development of personalized immune therapy for lung cancer. Immune checkpoint inhibitors could be an effective treatment for the PI subtype. Glycolysis is a potential target for converting an immunosuppressive TME into an antitumorigenic TME in the PP subtype.
Collapse
Affiliation(s)
- Hironori Fukuda
- Department of Immune MedicineNational Cancer Center Research InstituteTokyoJapan
- Department of UrologyTokyo Women's Medical UniversityTokyoJapan
| | - Kosuke Arai
- Department of Immune MedicineNational Cancer Center Research InstituteTokyoJapan
- Department of HematologyGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental UniversityTokyoJapan
| | - Hideaki Mizuno
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Yukari Nishito
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Noriko Motoi
- Department of Diagnostic PathologyNational Cancer Center HospitalTokyoJapan
| | - Yasuhito Arai
- Division of Cancer GenomicsNational Cancer Center Research InstituteTokyoJapan
| | - Nobuyoshi Hiraoka
- Department of Analytical PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Tatsuhiro Shibata
- Division of Cancer GenomicsNational Cancer Center Research InstituteTokyoJapan
| | - Yukiko Sonobe
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Yoko Kayukawa
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Eri Hashimoto
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Mina Takahashi
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Etsuko Fujii
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Toru Maruyama
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Kenta Kuwabara
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Takashi Nishizawa
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Yukihiro Mizoguchi
- Department of Immune MedicineNational Cancer Center Research InstituteTokyoJapan
| | - Yukihiro Yoshida
- Department of Thoracic SurgeryNational Cancer Center HospitalTokyoJapan
| | | | - Makiko Yamashita
- Advanced Medical Development CenterCancer Research Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Shigehisa Kitano
- Advanced Medical Development CenterCancer Research Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Hiromi Sakamoto
- Department of Clinical GenomicsNational Cancer Center Research InstituteTokyoJapan
| | - Yuki Nagata
- Medical Genome CenterResearch Institute, National Center for Geriatrics and GerontologyObuJapan
- Bioresource Research Center, Graduate School of Medical and Dental ScienceTokyo Medical and Dental UniversityTokyoJapan
| | - Risa Mitsumori
- Medical Genome CenterResearch Institute, National Center for Geriatrics and GerontologyObuJapan
| | - Kouichi Ozaki
- Medical Genome CenterResearch Institute, National Center for Geriatrics and GerontologyObuJapan
| | - Shumpei Niida
- Medical Genome CenterResearch Institute, National Center for Geriatrics and GerontologyObuJapan
| | - Yae Kanai
- Department of Pathology, School of MedicineKeio UniversityTokyoJapan
| | | | - Tomoyoshi Soga
- Institute for Advanced BiosciencesKeio UniversityYamagataJapan
| | - Keisuke Tsukada
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Nami Yabuki
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Mei Shimada
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Takehisa Kitazawa
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Osamu Natori
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Noriaki Sawada
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Atsuhiko Kato
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Teruhiko Yoshida
- Department of Genetic Medicine and ServicesNational Cancer Center HospitalTokyoJapan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Atsushi Ochiai
- Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterChibaJapan
| | - Hiroyuki Tsunoda
- Chugai Life Science Park YokohamaChugai Pharmaceutical Co. LtdYokohamaJapan
| | - Kazunori Aoki
- Department of Immune MedicineNational Cancer Center Research InstituteTokyoJapan
| |
Collapse
|
249
|
Sato Y, Nakamura T, Yamada Y, Harashima H. The impact of, and expectations for, lipid nanoparticle technology: From cellular targeting to organelle targeting. J Control Release 2024; 370:516-527. [PMID: 38718875 DOI: 10.1016/j.jconrel.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The success of mRNA vaccines against COVID-19 has enhanced the potential of lipid nanoparticles (LNPs) as a system for the delivery of mRNA. In this review, we describe our progress using a lipid library to engineer ionizable lipids and promote LNP technology from the viewpoints of safety, controlled biodistribution, and mRNA vaccines. These advancements in LNP technology are applied to cancer immunology, and a potential nano-DDS is constructed to evaluate immune status that is associated with a cancer-immunity cycle that includes the sub-cycles in tumor microenvironments. We also discuss the importance of the delivery of antigens and adjuvants in enhancing the cancer-immunity cycle. Recent progress in NK cell targeting in cancer immunotherapy is also introduced. Finally, the impact of next-generation DDS technology is explained using the MITO-Porter membrane fusion-based delivery system for the organelle targeting of the mitochondria. We introduce a successful example of the MITO-Porter used in a cell therapeutic strategy to treat cardiomyopathy.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | | |
Collapse
|
250
|
Li X, Eastham J, Giltnane JM, Zou W, Zijlstra A, Tabatsky E, Banchereau R, Chang CW, Nabet BY, Patil NS, Molinero L, Chui S, Harryman M, Lau S, Rangell L, Waumans Y, Kockx M, Orlova D, Koeppen H. Automated tumor immunophenotyping predicts clinical benefit from anti-PD-L1 immunotherapy. J Pathol 2024; 263:190-202. [PMID: 38525811 DOI: 10.1002/path.6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Cancer immunotherapy has transformed the clinical approach to patients with malignancies, as profound benefits can be seen in a subset of patients. To identify this subset, biomarker analyses increasingly focus on phenotypic and functional evaluation of the tumor microenvironment to determine if density, spatial distribution, and cellular composition of immune cell infiltrates can provide prognostic and/or predictive information. Attempts have been made to develop standardized methods to evaluate immune infiltrates in the routine assessment of certain tumor types; however, broad adoption of this approach in clinical decision-making is still missing. We developed approaches to categorize solid tumors into 'desert', 'excluded', and 'inflamed' types according to the spatial distribution of CD8+ immune effector cells to determine the prognostic and/or predictive implications of such labels. To overcome the limitations of this subjective approach, we incrementally developed four automated analysis pipelines of increasing granularity and complexity for density and pattern assessment of immune effector cells. We show that categorization based on 'manual' observation is predictive for clinical benefit from anti-programmed death ligand 1 therapy in two large cohorts of patients with non-small cell lung cancer or triple-negative breast cancer. For the automated analysis we demonstrate that a combined approach outperforms individual pipelines and successfully relates spatial features to pathologist-based readouts and the patient's response to therapy. Our findings suggest that tumor immunophenotype generated by automated analysis pipelines should be evaluated further as potential predictive biomarkers for cancer immunotherapy. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xiao Li
- Genentech, South San Francisco, CA, USA
| | | | | | - Wei Zou
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | - Shari Lau
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|