201
|
Hey YY, Tan JKH, O’Neill HC. Redefining Myeloid Cell Subsets in Murine Spleen. Front Immunol 2016; 6:652. [PMID: 26793192 PMCID: PMC4707843 DOI: 10.3389/fimmu.2015.00652] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022] Open
Abstract
Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed "L-DC" in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(lo)Ly6G(-) cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6C(lo) and Ly6C(hi) monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) cells, which are CD43(+), Siglec-F(-) and CD115(-). Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types.
Collapse
Affiliation(s)
- Ying-Ying Hey
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jonathan K. H. Tan
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Helen C. O’Neill
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| |
Collapse
|
202
|
Bajaña S, Turner S, Paul J, Ainsua-Enrich E, Kovats S. IRF4 and IRF8 Act in CD11c+ Cells To Regulate Terminal Differentiation of Lung Tissue Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1666-77. [PMID: 26746189 DOI: 10.4049/jimmunol.1501870] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/10/2015] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) initiate immune responses in barrier tissues including lung and skin. Conventional DC (cDC) subsets, CD11b(-) (cDC1s) or CD11b(+) (cDC2s), arise via distinct networks of transcription factors involving IFN regulatory factor 4 (IRF4) and IRF8, and are specialized for unique functional responses. Using mice in which a conditional Irf4 or Irf8 allele is deleted in CD11c(+) cells, we determined whether IRF4 or IRF8 deficiency beginning in CD11c(+) cDC precursors (pre-cDCs) changed the homeostasis of mature DCs or pre-DCs in the lung, dermis, and spleen. CD11c-cre-Irf4(-/-) mice selectively lacked a lung-resident CD11c(hi)CD11b(+)SIRPα(+)CD24(+) DC subset, but not other lung CD11b(+) DCs or alveolar macrophages. Numbers of CD11b(+)CD4(+) splenic DCs, but not CD11b(+) dermal DCs, were reduced, indicating cDC2s in the lung and dermis develop via different pathways. Irf4 deficiency did not alter numbers of cDC1s. CD11c-cre-Irf8(-/-) mice lacked lung-resident CD103(+) DCs and splenic CD8α(+) DCs, yet harbored increased IRF4-dependent DCs. This correlated with a reduced number of Irf8(-/-) pre-cDCs, which contained elevated IRF4, suggesting that Irf8 deficiency diverts pre-cDC fate. Analyses of Irf4 and Irf8 haploinsufficient mice showed that, although one Irf4 allele was sufficient for lung cDC2 development, two functional Irf8 alleles were required for differentiation of lung cDC1s. Thus, IRF8 and IRF4 act in pre-cDCs to direct the terminal differentiation of cDC1 and cDC2 subsets in the lung and spleen. These data suggest that variation in IRF4 or IRF8 levels resulting from genetic polymorphisms or environmental cues will govern tissue DC numbers and, therefore, regulate the magnitude of DC functional responses.
Collapse
Affiliation(s)
- Sandra Bajaña
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Sean Turner
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Jinny Paul
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Erola Ainsua-Enrich
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Susan Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
203
|
Meng L, Bai Z, He S, Mochizuki K, Liu Y, Purushe J, Sun H, Wang J, Yagita H, Mineishi S, Fung H, Yanik GA, Caricchio R, Fan X, Crisalli LM, Hexner EO, Reshef R, Zhang Y, Zhang Y. The Notch Ligand DLL4 Defines a Capability of Human Dendritic Cells in Regulating Th1 and Th17 Differentiation. THE JOURNAL OF IMMUNOLOGY 2015; 196:1070-80. [PMID: 26712946 DOI: 10.4049/jimmunol.1501310] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023]
Abstract
Notch signaling regulates multiple helper CD4(+) T cell programs. We have recently demonstrated that dendritic cells (DCs) expressing the Notch ligand DLL4 are critical for eliciting alloreactive T cell responses and induction of graft-versus-host disease in mice. However, the human counterpart of murine DLL4(+) DCs has yet to be examined. We report the identification of human DLL4(+) DCs and their critical role in regulating Th1 and Th17 differentiation. CD1c(+) DCs and plasmacytoid DCs (pDCs) from the peripheral blood (PB) of healthy donors did not express DLL4. In contrast, patients undergoing allogeneic hematopoietic stem cell transplantation had a 16-fold more DLL4(+)CD1c(+) DCs than healthy donors. Upon activation of TLR signaling, healthy donor-derived CD1c(+) DCs dramatically upregulated DLL4, as did pDCs to a lesser extent. Activated DLL4(+) DCs were better able to promote Th1 and Th17 differentiation than unstimulated PB DCs. Blocking DLL4 using a neutralizing Ab decreased Notch signaling in T cells stimulated with DLL4(+) DCs, and it reduced the generation of Th1 and Th17 cells. Both NF-κB and STAT3 were crucial for inducing DLL4 in human DCs. Interestingly, STAT3 directly activated DLL4 transcription and inhibiting STAT3 alone was sufficient to reduce DLL4 in activated PB DCs. Thus, DLL4 is a unique functional molecule of human circulating DCs critical for directing Th1 and Th17 differentiation. These findings identify a pathway for therapeutic intervention for inflammatory disorders in humans, such as graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, autoimmunity, and tumor immunity.
Collapse
Affiliation(s)
- Lijun Meng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200231, China; Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Zhenjiang Bai
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Soochow University, Suzhou 215003, China
| | - Shan He
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Kazuhiro Mochizuki
- Department of Pediatric Oncology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yongnian Liu
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Janaki Purushe
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Hongxing Sun
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140
| | - Jian Wang
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Soochow University, Suzhou 215003, China
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shin Mineishi
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| | - Henry Fung
- Department of Hematology/Oncology, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111
| | - Gregory A Yanik
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Roberto Caricchio
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19148
| | - Xiaoxuan Fan
- Flow Cytometry Core Facility, Temple University School of Medicine, Temple University, Philadelphia, PA 19148; and
| | - Lisa M Crisalli
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Elizabeth O Hexner
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Ran Reshef
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Yanyun Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200231, China;
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140;
| |
Collapse
|
204
|
Everts B, Tussiwand R, Dreesen L, Fairfax KC, Huang SCC, Smith AM, O'Neill CM, Lam WY, Edelson BT, Urban JF, Murphy KM, Pearce EJ. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J Exp Med 2015; 213:35-51. [PMID: 26712805 PMCID: PMC4710198 DOI: 10.1084/jem.20150235] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 11/30/2015] [Indexed: 11/06/2022] Open
Abstract
Everts et al. use Batf3−/− mice to examine the role of Batf3-dependent CD8α+ and CD103+ DCs in Th2 immunity in response to helminth infection. Loss of Batf3-dependent DCs resulted in rapid control of normally chronic infection with Heligmosomoides polygyrus, whereas liver fibrosis was exacerbated with Schistosoma mansoni infection. Mechanistically, steady-state IL-12 production by migratory CD103+ DCs was found to antagonize Th2 responses. CD8α+ and CD103+ dendritic cells (DCs) play a central role in the development of type 1 immune responses. However, their role in type 2 immunity remains unclear. We examined this issue using Batf3−/− mice, in which both of these DC subsets are missing. We found that Th2 cell responses, and related events such as eosinophilia, alternative macrophage activation, and immunoglobulin class switching to IgG1, were enhanced in Batf3−/− mice responding to helminth parasites. This had beneficial or detrimental consequences depending on the context. For example, Batf3 deficiency converted a normally chronic intestinal infection with Heligmosomoides polygyrus into an infection that was rapidly controlled. However, liver fibrosis, an IL-13–mediated pathological consequence of wound healing in chronic schistosomiasis, was exacerbated in Batf3−/− mice infected with Schistosoma mansoni. Mechanistically, steady-state production of IL-12 by migratory CD103+ DCs, independent of signals from commensals or TLR-initiated events, was necessary and sufficient to exert the suppressive effects on Th2 response development. These findings identify a previously unrecognized role for migratory CD103+ DCs in antagonizing type 2 immune responses.
Collapse
Affiliation(s)
- Bart Everts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Roxane Tussiwand
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Leentje Dreesen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Keke C Fairfax
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Stanley Ching-Cheng Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Amber M Smith
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Christina M O'Neill
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Wing Y Lam
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joseph F Urban
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agriculture Research Service, US Department of Agriculture, Beltsville, MD 20705
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | - Edward J Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
205
|
Murphy TL, Grajales-Reyes GE, Wu X, Tussiwand R, Briseño CG, Iwata A, Kretzer NM, Durai V, Murphy KM. Transcriptional Control of Dendritic Cell Development. Annu Rev Immunol 2015; 34:93-119. [PMID: 26735697 DOI: 10.1146/annurev-immunol-032713-120204] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow.
Collapse
Affiliation(s)
- Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Missouri 63110;
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Missouri 63110;
| | - Xiaodi Wu
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Missouri 63110;
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Missouri 63110;
| | - Arifumi Iwata
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Missouri 63110;
| | - Nicole M Kretzer
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Missouri 63110;
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Missouri 63110;
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Missouri 63110; .,Howard Hughes Medical Institute, Washington University School of Medicine in St. Louis, Missouri 63110
| |
Collapse
|
206
|
Transcription factor Batf3 is important for development of CD8+ T-cell response against a phagosomal bacterium regardless of the location of antigen. Immunol Cell Biol 2015; 94:378-87. [PMID: 26567886 DOI: 10.1038/icb.2015.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022]
Abstract
Salmonella enterica serovar Typhimurium (ST) is a virulent intracellular bacterium that conceals itself in the phagosomes of infected cells. Although CD8(+) T cells promote protection against various intracellular pathogens, the role of CD8(+) T cells against virulent ST has been unclear due to early fatality of susceptible (B6) mice. Herein, we generated MHC I-deficient mice on the resistant (129SvJ) and susceptible (Nramp1 transgenic B6) background to evaluate the role of CD8(+) T cells against virulent ST. Our results indicate that CD8(+) T cells have a critical protective role in host survival during infection with virulent ST. As antigen presentation and CD8(+) T-cell activation against phagosomal antigens are considered to operate through the cross-presentation pathway, we have evaluated CD8(+) T-cell response against ST in Batf3-deficient mice that lack CD8α dendritic cells (DCs). Using a recombinant of ST that expresses antigen (ST-OVA) mainly in the phagosomes of infected cells, we show that CD8(+) T-cell response is compromised throughout the duration of infection in Batf3-deficient mice. In contrast, when ST delivers antigen to the cytosol of infected cells (ST-OVA-C), CD8(+) T-cell response against the cytosolic antigen was compromised only in the short term in the absence of CD8α DCs, with wild-type and Batf3-deficient mice generating similar CD8(+) T-cell response in the long term. Thus, Batf3 has an important role in CD8(+) T-cell priming regardless of antigenic location; however, its role is redundant at later time intervals against cytosolic antigen.
Collapse
|
207
|
Kim JH, Choi JY, Kim SB, Uyangaa E, Patil AM, Han YW, Park SY, Lee JH, Kim K, Eo SK. CD11c(hi) Dendritic Cells Regulate Ly-6C(hi) Monocyte Differentiation to Preserve Immune-privileged CNS in Lethal Neuroinflammation. Sci Rep 2015; 5:17548. [PMID: 26626303 PMCID: PMC4667186 DOI: 10.1038/srep17548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Although the roles of dendritic cells (DCs) in adaptive defense have been defined well, the contribution of DCs to T cell-independent innate defense and subsequent neuroimmunopathology in immune-privileged CNS upon infection with neurotropic viruses has not been completely defined. Notably, DC roles in regulating innate CD11b+Ly-6Chi monocyte functions during neuroinflammation have not yet been addressed. Using selective ablation of CD11chiPDCA-1int/lo DCs without alteration in CD11cintPDCA-1hi plasmacytoid DC number, we found that CD11chi DCs are essential to control neuroinflammation caused by infection with neurotropic Japanese encephalitis virus, through early and increased infiltration of CD11b+Ly-6Chi monocytes and higher expression of CC chemokines. More interestingly, selective CD11chi DC ablation provided altered differentiation and function of infiltrated CD11b+Ly-6Chi monocytes in the CNS through Flt3-L and GM-CSF, which was closely associated with severely enhanced neuroinflammation. Furthermore, CD11b+Ly-6Chi monocytes generated in CD11chi DC-ablated environment had a deleterious rather than protective role during neuroinflammation, and were more quickly recruited into inflamed CNS, depending on CCR2, thereby exacerbating neuroinflammation via enhanced supply of virus from the periphery. Therefore, our data demonstrate that CD11chi DCs provide a critical and unexpected role to preserve the immune-privileged CNS in lethal neuroinflammation via regulating the differentiation, function, and trafficking of CD11b+Ly-6Chi monocytes.
Collapse
Affiliation(s)
- Jin Hyoung Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Seong Bum Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Young Woo Han
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Sang-Youel Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University, School of Medicine, Yangsan 50612, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
208
|
Rodgers G, Doucette CD, Soutar DA, Liwski RS, Hoskin DW. Piperine impairs the migration and T cell-activating function of dendritic cells. Toxicol Lett 2015; 242:23-33. [PMID: 26640239 DOI: 10.1016/j.toxlet.2015.11.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/30/2022]
Abstract
Piperine, a major alkaloid found in the fruits of black and long pepper plants, has anti-inflammatory properties; however, piperine's effect on dendritic cell (DC) migration and T cell-activating function has not been investigated. Bone marrow-derived mouse DCs that were matured in the presence of 100 μM piperine showed reduced in vitro migration in response to CCL21, as well as reduced in vivo migration to lymph nodes. In addition, piperine-treated DCs had reduced CCR7 expression and elevated CCR5 expression, as well as reduced expression of CD40 and class II major histocompatibility complex molecules and decreased nuclear accumulation of RelB. DC production of interleukin (IL)-6, tumor necrosis factor α, and monocyte chemoattractant protein-1 in response to lipopolysaccharide stimulation was also reduced following piperine treatment. Exposure to piperine during maturation therefore caused DCs to retain an immature phenotype, which was associated with a reduced capacity to promote T cell activation since co-culture of ovalbumin (OVA323-339)-specific T cells with OVA323-339-pulsed DCs that were previously matured in the presence of piperine showed reduced interferon-γ and IL-2 expression. OVA323-339-specific T cell proliferation was also reduced in vivo in the presence of piperine-treated DCs. Inhibition of DC migration and function by piperine may therefore be a useful strategy to down-regulate potentially harmful DC-driven T cell responses to self-antigens and transplantation antigens.
Collapse
Affiliation(s)
- Gemma Rodgers
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Carolyn D Doucette
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - David A Soutar
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robert S Liwski
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - David W Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
209
|
Clausen BE, Stoitzner P. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Front Immunol 2015; 6:534. [PMID: 26557117 PMCID: PMC4617171 DOI: 10.3389/fimmu.2015.00534] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.
Collapse
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Division of Experimental Dermatology, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
210
|
Schinnerling K, García-González P, Aguillón JC. Gene Expression Profiling of Human Monocyte-derived Dendritic Cells - Searching for Molecular Regulators of Tolerogenicity. Front Immunol 2015; 6:528. [PMID: 26539195 PMCID: PMC4609880 DOI: 10.3389/fimmu.2015.00528] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/28/2015] [Indexed: 02/02/2023] Open
Abstract
The ability of dendritic cells (DCs) to initiate and modulate antigen-specific immune responses has made them attractive targets for immunotherapy. Since DC research in humans is limited by the scarcity of DC populations in the blood circulation, most of our knowledge about DC biology and function has been obtained in vitro from monocyte-derived DCs (moDCs), which can be readily generated in sufficient numbers and are able to differentiate into distinct functional subsets depending on the nature of stimulus. In particular, moDCs with tolerogenic properties (tolDCs) possess great therapeutic potential for the treatment of autoimmune diseases. Several protocols have been developed to generate tolDCs in vitro, able to reinstruct auto-reactive T cells and to promote regulatory cells. While ligands and soluble mediators, by which DCs shape immune responses, have been vastly studied, the intracellular pathways and transcriptional regulators that govern tolDC differentiation and function are poorly understood. Whole-genome microarrays and proteomics provide useful strategies to dissect the complex molecular processes that promote tolerogenicity. Only few attempts have been made to understand tolDC biology through a global view on "omics" profiles. So far, the identification of a common regulator of tolerogenicity has been hampered by the fact that each protocol, used for tolDC generation, targets distinct signaling pathways. Here, we review the progress in understanding the transcriptional regulation of moDC differentiation, with a special focus on tolDCs, and highlight candidate molecules that might be associated with DC tolerogenicity.
Collapse
Affiliation(s)
- Katina Schinnerling
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy (IMII) , Santiago , Chile
| | - Paulina García-González
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy (IMII) , Santiago , Chile
| | - Juan Carlos Aguillón
- Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy (IMII) , Santiago , Chile
| |
Collapse
|
211
|
Tussiwand R, Gautier EL. Transcriptional Regulation of Mononuclear Phagocyte Development. Front Immunol 2015; 6:533. [PMID: 26539196 PMCID: PMC4609886 DOI: 10.3389/fimmu.2015.00533] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/02/2015] [Indexed: 12/23/2022] Open
Abstract
Mononuclear phagocytes (MP) are a quite unique subset of hematopoietic cells, which comprise dendritic cells (DC), monocytes as well as monocyte-derived and tissue-resident macrophages. These cells are extremely diverse with regard to their origin, their phenotype as well as their function. Developmentally, DC and monocytes are constantly replenished from a bone marrow hematopoietic progenitor. The ontogeny of macrophages is more complex and is temporally linked and specified by the organ where they reside, occurring early during embryonic or perinatal life. The functional heterogeneity of MPs is certainly a consequence of the tissue of residence and also reflects the diverse ontogeny of the subsets. In this review, we will highlight the developmental pathways of murine MP, with a particular emphasis on the transcriptional factors that regulate their development and function. Finally, we will discuss and point out open questions in the field.
Collapse
Affiliation(s)
- Roxane Tussiwand
- Department of Biomedicine, University of Basel , Basel , Switzerland
| | - Emmanuel L Gautier
- INSERM UMR_S 1166, Sorbonne Universités, UPMC Univ Paris 06, Pitié-Salpêtrière Hospital , Paris , France
| |
Collapse
|
212
|
Lin Q, Chauvistré H, Costa IG, Gusmao EG, Mitzka S, Hänzelmann S, Baying B, Klisch T, Moriggl R, Hennuy B, Smeets H, Hoffmann K, Benes V, Seré K, Zenke M. Epigenetic program and transcription factor circuitry of dendritic cell development. Nucleic Acids Res 2015; 43:9680-93. [PMID: 26476451 PMCID: PMC4787753 DOI: 10.1093/nar/gkv1056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/03/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development.
Collapse
Affiliation(s)
- Qiong Lin
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Heike Chauvistré
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Ivan G Costa
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52074 Aachen, Germany Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, 52062 Aachen, Germany
| | - Eduardo G Gusmao
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Saskia Mitzka
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Sonja Hänzelmann
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Bianka Baying
- Genomics Core Facilities GeneCore, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Theresa Klisch
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, University of Veterinary Medicine, Medical University Vienna, 1090 Vienna, Austria
| | - Benoit Hennuy
- GIGA-Genomics, University of Liège, 4000 Liège, Belgium
| | - Hubert Smeets
- Department of Genetics and Cell Biology, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands Research Schools CARIM and GROW, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Kurt Hoffmann
- Institute of Molecular Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Vladimir Benes
- Genomics Core Facilities GeneCore, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Kristin Seré
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
213
|
Montagna GN, Biswas A, Hildner K, Matuschewski K, Dunay IR. Batf3 deficiency proves the pivotal role of CD8α + dendritic cells in protection induced by vaccination with attenuated Plasmodium sporozoites. Parasite Immunol 2015; 37:533-543. [PMID: 26284735 DOI: 10.1111/pim.12222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/10/2015] [Indexed: 12/28/2022]
Abstract
Increasing evidence indicates that hepatic CD8α+ dendritic cells (DCs) are important antigen cross-presenting cells (APC) involved in the priming of protective CD8+ T-cell responses induced by live-attenuated Plasmodium sporozoites. Experimental proof for a critical role of CD8α+ DCs in protective pre-erythrocytic malaria immunizations has pivotal implications for vaccine development, including improved vectored subunit vaccines. Employing Batf3-/- mice, which lack functional CD8α+ DCs, we demonstrate that deficiency of these particular APCs completely abolishes protection and corresponding signatures of vaccine-induced immunity. We show that in wild-type, but not in Batf3-/- , mice CD8α+ DCs accumulate in the liver after immunization with live irradiation-attenuated P. berghei sporozoites. IFN-γ production by Plasmodium antigen-specific CD8+ T cells is dependent on functional Batf3. In addition, our results demonstrate that the dysfunctional cDC-CD8+ T-cell axis correlates with MHC class II upregulation on splenic CD8α- DCs. Collectively, these findings underscore the essential role of CD8α+ DCs in robust protection induced by experimental live-attenuated malaria vaccines.
Collapse
Affiliation(s)
- G N Montagna
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Depto. de Microbiologia, Immunologia e Parasitologia, UNIFESP, Sao Paolo, Brazil
| | - A Biswas
- Institute of Medical Microbiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - K Hildner
- University Hospital Erlangen, Medical Department 1, Erlangen, Germany
| | - K Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Institute of Biology, Humboldt University, Berlin, Germany
| | - I R Dunay
- Institute of Medical Microbiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
214
|
Li S, Dislich B, Brakebusch CH, Lichtenthaler SF, Brocker T. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA. THE JOURNAL OF IMMUNOLOGY 2015; 195:4244-56. [PMID: 26408665 DOI: 10.4049/jimmunol.1500676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/01/2015] [Indexed: 11/19/2022]
Abstract
Tissues accommodate defined numbers of dendritic cells (DCs) in highly specific niches where different intrinsic and environmental stimuli control DC life span and numbers. DC homeostasis in tissues is important, because experimental changes in DC numbers influence immunity and tolerance toward various immune catastrophes and inflammation. However, the precise molecular mechanisms regulating DC life span and homeostasis are unclear. We report that the GTPase RhoA controls homeostatic proliferation, cytokinesis, survival, and turnover of cDCs. Deletion of RhoA strongly decreased the numbers of CD11b(-)CD8(+) and CD11b(+)Esam(hi) DC subsets, whereas CD11b(+)Esam(lo) DCs were not affected in conditional RhoA-deficient mice. Proteome analyses revealed a defective prosurvival pathway via PI3K/protein kinase B (Akt1)/Bcl-2-associated death promoter in the absence of RhoA. Taken together, our findings identify RhoA as a central regulator of DC homeostasis, and its deletion decreases DC numbers below critical thresholds for immune protection and homeostasis, causing aberrant compensatory DC proliferation.
Collapse
Affiliation(s)
- Shuai Li
- Institute for Immunology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Bastian Dislich
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany
| | - Cord H Brakebusch
- Biotech Research and Innovation Center, Molecular Pathology Section, 2200 Copenhagen, Denmark
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany; Neuroproteomics, Technical University Munich, 81675 Munich, Germany; and Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Ludwig-Maximilians-University, 80336 Munich, Germany;
| |
Collapse
|
215
|
Moran TP, Nakano K, Whitehead GS, Thomas SY, Cook DN, Nakano H. Inhaled house dust programs pulmonary dendritic cells to promote type 2 T-cell responses by an indirect mechanism. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1208-18. [PMID: 26386119 DOI: 10.1152/ajplung.00256.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022] Open
Abstract
The induction of allergen-specific T helper 2 (Th2) cells by lung dendritic cells (DCs) is a critical step in allergic asthma development. Airway delivery of purified allergens or microbial products can promote Th2 priming by lung DCs, but how environmentally relevant quantities and combinations of these factors affect lung DC function is unclear. Here, we investigated the ability of house dust extract (HDE), which contains a mixture of environmental adjuvants, to prime Th2 responses against an innocuous inhaled antigen. Inhalational exposure to HDE conditioned lung conventional DCs, but not monocyte-derived DCs, to induce antigen-specific Th2 differentiation. Conditioning of DCs by HDE was independent of Toll-like receptor 4 signaling, indicating that environmental endotoxin is dispensable for programming DCs to induce Th2 responses. DCs directly treated with HDE underwent maturation but were poor stimulators of Th2 differentiation. In contrast, DCs treated with bronchoalveolar lavage fluid (BALF) from HDE-exposed mice induced robust Th2 differentiation. DC conditioning by BALF was independent of the proallergic cytokines IL-25, IL-33, and thymic stromal lymphopoietin. BALF treatment of DCs resulted in upregulation of CD80 but low expression of CD40, CD86, and IL-12p40, which was associated with Th2 induction. These findings support a model whereby environmental adjuvants in house dust indirectly program DCs to prime Th2 responses by triggering the release of endogenous soluble factor(s) by airway cells. Identifying these factors could lead to novel therapeutic targets for allergic asthma.
Collapse
Affiliation(s)
- Timothy P Moran
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina; Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Gregory S Whitehead
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Seddon Y Thomas
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| |
Collapse
|
216
|
Kumar NA, Cheong K, Powell DR, da Fonseca Pereira C, Anderson J, Evans VA, Lewin SR, Cameron PU. The role of antigen presenting cells in the induction of HIV-1 latency in resting CD4(+) T-cells. Retrovirology 2015; 12:76. [PMID: 26362311 PMCID: PMC4567795 DOI: 10.1186/s12977-015-0204-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/01/2015] [Indexed: 12/24/2022] Open
Abstract
Background Combination antiretroviral therapy (cART) is able to control HIV-1 viral replication, however long-lived latent infection in resting memory CD4+ T-cells persist. The mechanisms for establishment and maintenance of latent infection in resting memory CD4+ T-cells remain unclear. Previously we have shown that HIV-1 infection of resting CD4+ T-cells co-cultured with CD11c+ myeloid dendritic cells (mDC) produced a population of non-proliferating T-cells with latent infection. Here we asked whether different antigen presenting cells (APC), including subpopulations of DC and monocytes, were able to induce post-integration latent infection in resting CD4+ T-cells, and examined potential cell interactions that may be involved using RNA-seq. Results mDC (CD1c+), SLAN+ DC and CD14+ monocytes were most efficient in stimulating proliferation of CD4+ T-cells during syngeneic culture and in generating post-integration latent infection in non-proliferating CD4+ T-cells following HIV-1 infection of APC-T cell co-cultures. In comparison, plasmacytoid DC (pDC) and B-cells did not induce latent infection in APC-T-cell co-cultures. We compared the RNA expression profiles of APC subpopulations that could and could not induce latency in non-proliferating CD4+ T-cells. Gene expression analysis, comparing the CD1c+ mDC, SLAN+ DC and CD14+ monocyte subpopulations to pDC identified 53 upregulated genes that encode proteins expressed on the plasma membrane that could signal to CD4+ T-cells via cell–cell interactions (32 genes), immune checkpoints (IC) (5 genes), T-cell activation (9 genes), regulation of apoptosis (5 genes), antigen presentation (1 gene) and through unknown ligands (1 gene). Conclusions APC subpopulations from the myeloid lineage, specifically mDC subpopulations and CD14+ monocytes, were able to efficiently induce post-integration HIV-1 latency in non-proliferating CD4+ T-cells in vitro. Inhibition of key pathways involved in mDC-T-cell interactions and HIV-1 latency may provide novel targets to eliminate HIV-1 latency. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0204-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nitasha A Kumar
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Karey Cheong
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - David R Powell
- Victorian Life Science Computational Initiative, Parkville, 3010, Australia. .,Monash Bioinformatics Platform, Monash University, Clayton, 3800, Australia.
| | | | - Jenny Anderson
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Vanessa A Evans
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| | - Paul U Cameron
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, 3004, Australia. .,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, 3004, Australia. .,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, 3010, Australia.
| |
Collapse
|
217
|
Ma YL, Huang FJ, Cong L, Gong WC, Bai HM, Li J, Chen CX, Zhou NY, Jiang XL, Yin L, Chen XP. IL-4-Producing Dendritic Cells Induced during Schistosoma japonica Infection Promote Th2 Cells via IL-4-Dependent Pathway. THE JOURNAL OF IMMUNOLOGY 2015; 195:3769-80. [PMID: 26363056 DOI: 10.4049/jimmunol.1403240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
Abstract
Although dendritic cells (DCs) have been widely demonstrated to play essential roles in initiation of Th2 responses in helminth infections and allergic reactions, the mechanisms remain uncertain largely because DCs do not produce IL-4. In present investigation, we have uncovered a novel subset of DCs from mice infected with Th2-provoking pathogens Schistosoma japonica, which independently promoted Th2 cells via IL-4-dependent pathway. These DCs contained similar levels of IL-4 mRNA and higher levels of IL-12p40 mRNA comparing to basophils, correlating to their Th2-promoting and Th1-promoting dual polarization capacities. Characterized by expression of FcεRI(+), these DCs were induced independent of T cells. Further investigations revealed that Th2-promoting FcεRI(+) DCs were monocyte-derived inflammatory DCs, which were sufficient to induce Th2 cells in vivo. Egg Ags together with GM-CSF or IL-3 alone were able to stimulate the generation of Th2-promoting FcεRI(+) DCs from bone marrow cells in vitro. To our knowledge, our data for the first time demonstrate that IL-4-producing DCs are induced under some Th2-provoking situations, and they should play important roles in initiation of Th2 response.
Collapse
Affiliation(s)
- Yi-Lei Ma
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| | - Feng-Juan Huang
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| | - Li Cong
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| | - Wen-Ci Gong
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| | - Hong-Mei Bai
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| | - Jun Li
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| | - Chun-Xia Chen
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| | - Nian-Yu Zhou
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiao-Lu Jiang
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| | - Lan Yin
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiao-Ping Chen
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
218
|
Cohen SB, Denkers EY. Impact of Toxoplasma gondii on Dendritic Cell Subset Function in the Intestinal Mucosa. THE JOURNAL OF IMMUNOLOGY 2015; 195:2754-62. [PMID: 26283477 DOI: 10.4049/jimmunol.1501137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/20/2015] [Indexed: 01/10/2023]
Abstract
The function of mucosal dendritic cell (DC) subsets in immunity and inflammation is not well understood. In this study, we define four DC subsets present within the lamina propria and mesenteric lymph node compartments based on expression of CD103 and CD11b. Using IL-12p40 YFP (Yet40) reporter mice, we show that CD103(+)CD11b(-) mucosal DCs are primary in vivo sources of IL-12p40; we also identified CD103(-)CD11b(-) mucosal DCs as a novel population producing this cytokine. Infection was preferentially found in CD11b(+) DCs that were negative for CD103. Lamina propria DCs containing parasites were negative for IL-12p40. Instead, production of the cytokine was strictly a property of noninfected cells. We also show that vitamin A metabolism, as measured by ALDH activity, was preferentially found in CD103(+)CD11b(+) DC and was strongly downregulated in all mucosal DC subsets during infection. Finally, overall apoptosis of lamina propria DC subsets was increased during infection. Combined, these results highlight the ability of intestinal Toxoplasma infection to alter mucosal DC activity at both the whole population level and at the level of individual subsets.
Collapse
Affiliation(s)
- Sara B Cohen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Eric Y Denkers
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
219
|
Fryer M, Grahammer J, Khalifian S, Furtmüller GJ, Lee WPA, Raimondi G, Brandacher G. Exploring cell-based tolerance strategies for hand and face transplantation. Expert Rev Clin Immunol 2015; 11:1189-204. [DOI: 10.1586/1744666x.2015.1078729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
220
|
Wu YJ, Wu YH, Mo ST, Hsiao HW, He YW, Lai MZ. Cellular FLIP Inhibits Myeloid Cell Activation by Suppressing Selective Innate Signaling. THE JOURNAL OF IMMUNOLOGY 2015; 195:2612-23. [PMID: 26238491 DOI: 10.4049/jimmunol.1402944] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/08/2015] [Indexed: 11/19/2022]
Abstract
Cellular FLIP (c-FLIP) specifically inhibits caspase-8 and suppresses death receptor-induced apoptosis. c-FLIP has also been reported to transmit activation signals. In this study, we report a novel function of c-FLIP involving inhibition of myeloid cell activation through antagonizing the selective innate signaling pathway. We found that conditional knockout of c-FLIP in dendritic cells (DCs) led to neutrophilia and splenomegaly. Peripheral DC populations, including CD11b(+) conventional DCs (cDCs), CD8(+) cDCs, and plasmacytoid DCs, were not affected by c-FLIP deficiency. We also found that c-FLIP knockout cDCs, plasmacytoid DCs, and bone marrow-derived DCs (BMDCs) displayed enhanced production of TNF-α, IL-2, or G-CSF in response to stimulation of TLR4, TLR2, and dectin-1. Consistent with the ability of c-FLIP to inhibit the activation of p38 MAPK, the enhanced activation of c-FLIP-deficient BMDCs could be partly linked to an elevated activation of p38 MAPK after engagement of innate receptors. Increased activation was also found in c-FLIP(+/-) macrophages. Additionally, the increased activation in c-FLIP-deficient DCs was independent of caspase-8. Our results reveal a novel inhibitory role of c-FLIP in myeloid cell activation and demonstrate the unexpected anti-inflammatory activity of c-FLIP. Additionally, our observations suggest that cancer therapy targeting c-FLIP downregulation may facilitate DC activation and increase T cell immunity.
Collapse
Affiliation(s)
- Yu-Jung Wu
- Institute of Immunology, National Taiwan University, Taipei 10051, Taiwan, Republic of China; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Yung-Hsuan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Shu-Ting Mo
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Huey-Wen Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Ming-Zong Lai
- Institute of Immunology, National Taiwan University, Taipei 10051, Taiwan, Republic of China; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| |
Collapse
|
221
|
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique DC subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases that are characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. In this Review, we summarize recent progress in the field of pDC biology, focusing on the molecular mechanisms that regulate the development and functions of pDCs, the pathways involved in their sensing of pathogens and endogenous nucleic acids, their functions at mucosal sites, and their roles in infection, autoimmunity and cancer.
Collapse
|
222
|
Abstract
Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases.
Collapse
Affiliation(s)
- Ansuman T Satpathy
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
223
|
Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 2015; 42:916-28. [PMID: 25992862 DOI: 10.1016/j.immuni.2015.04.017] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/15/2015] [Accepted: 04/29/2015] [Indexed: 01/14/2023]
Abstract
The two major lineages of classical dendritic cells (cDCs) express and require either IRF8 or IRF4 transcription factors for their development and function. IRF8-dependent cDCs promote anti-viral and T-helper 1 (Th1) cell responses, whereas IRF4-expressing cDCs have been implicated in controlling both Th2 and Th17 cell responses. Here, we have provided evidence that Kruppel-like factor 4 (Klf4) is required in IRF4-expressing cDCs to promote Th2, but not Th17, cell responses in vivo. Conditional Klf4 deletion within cDCs impaired Th2 cell responses during Schistosoma mansoni infection, Schistosoma egg antigen (SEA) immunization, and house dust mite (HDM) challenge without affecting cytotoxic T lymphocyte (CTL), Th1 cell, or Th17 cell responses to herpes simplex virus, Toxoplasma gondii, and Citrobacter rodentium infections. Further, Klf4 deletion reduced IRF4 expression in pre-cDCs and resulted in selective loss of IRF4-expressing cDCs subsets in several tissues. These results indicate that Klf4 guides a transcriptional program promoting IRF4-expressing cDCs heterogeneity.
Collapse
|
224
|
Jones A, Opejin A, Henderson JG, Gross C, Jain R, Epstein JA, Flavell RA, Hawiger D. Peripherally Induced Tolerance Depends on Peripheral Regulatory T Cells That Require Hopx To Inhibit Intrinsic IL-2 Expression. THE JOURNAL OF IMMUNOLOGY 2015; 195:1489-97. [PMID: 26170384 DOI: 10.4049/jimmunol.1500174] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/15/2015] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) can induce peripheral immune tolerance that prevents autoimmune responses. Ag presentation by peripheral DCs under steady-state conditions leads to a conversion of some peripheral CD4(+) T cells into regulatory T cells (Tregs) that require homeodomain-only protein (Hopx) to mediate T cell unresponsiveness. However, the roles of these peripheral Tregs (pTregs) in averting autoimmune responses, as well as immunological mechanisms of Hopx, remain unknown. We report that Hopx(+) pTregs converted by DCs from Hopx(-) T cells are indispensible to sustain tolerance that prevents autoimmune responses directed at self-Ags during experimental acute encephalomyelitis. Our studies further reveal that Hopx inhibits intrinsic IL-2 expression in pTregs after antigenic rechallenge. In the absence of Hopx, increased levels of IL-2 lead to death and decreased numbers of pTregs. Therefore, formation of Hopx(+) pTregs represents a crucial pathway of sustained tolerance induced by peripheral DCs, and the maintenance of such pTregs and tolerance requires functions of Hopx to block intrinsic IL-2 production in pTregs.
Collapse
Affiliation(s)
- Andrew Jones
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Adeleye Opejin
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Jacob G Henderson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Cindy Gross
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Rajan Jain
- Department of Cell and Developmental Biology and Institute for Regenerative Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology and Institute for Regenerative Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Richard A Flavell
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06519
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104;
| |
Collapse
|
225
|
Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK, Roy S. Monocyte and macrophage plasticity in tissue repair and regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2596-606. [PMID: 26118749 DOI: 10.1016/j.ajpath.2015.06.001] [Citation(s) in RCA: 553] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Heterogeneity and high versatility are the characteristic features of the cells of monocyte-macrophage lineage. The mononuclear phagocyte system, derived from the bone marrow progenitor cells, is primarily composed of monocytes, macrophages, and dendritic cells. In regenerative tissues, a central role of monocyte-derived macrophages and paracrine factors secreted by these cells is indisputable. Macrophages are highly plastic cells. On the basis of environmental cues and molecular mediators, these cells differentiate to proinflammatory type I macrophage (M1) or anti-inflammatory or proreparative type II macrophage (M2) phenotypes and transdifferentiate into other cell types. Given a central role in tissue repair and regeneration, the review focuses on the heterogeneity of monocytes and macrophages with current known mechanisms of differentiation and plasticity, including microenvironmental cues and molecular mediators, such as noncoding RNAs.
Collapse
Affiliation(s)
- Amitava Das
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Mithun Sinha
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Soma Datta
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Motaz Abas
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Scott Chaffee
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Chandan K Sen
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
226
|
Reynolds G, Haniffa M. Human and Mouse Mononuclear Phagocyte Networks: A Tale of Two Species? Front Immunol 2015; 6:330. [PMID: 26124761 PMCID: PMC4479794 DOI: 10.3389/fimmu.2015.00330] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs), monocytes, and macrophages are a heterogeneous population of mononuclear phagocytes that are involved in antigen processing and presentation to initiate and regulate immune responses to pathogens, vaccines, tumor, and tolerance to self. In addition to their afferent sentinel function, DCs and macrophages are also critical as effectors and coordinators of inflammation and homeostasis in peripheral tissues. Harnessing DCs and macrophages for therapeutic purposes has major implications for infectious disease, vaccination, transplantation, tolerance induction, inflammation, and cancer immunotherapy. There has been a paradigm shift in our understanding of the developmental origin and function of the cellular constituents of the mononuclear phagocyte system. Significant progress has been made in tandem in both human and mouse mononuclear phagocyte biology. This progress has been accelerated by comparative biology analysis between mouse and human, which has proved to be an exceptionally fruitful strategy to harmonize findings across species. Such analyses have provided unexpected insights and facilitated productive reciprocal and iterative processes to inform our understanding of human and mouse mononuclear phagocytes. In this review, we discuss the strategies, power, and utility of comparative biology approaches to integrate recent advances in human and mouse mononuclear phagocyte biology and its potential to drive forward clinical translation of this knowledge. We also present a functional framework on the parallel organization of human and mouse mononuclear phagocyte networks.
Collapse
Affiliation(s)
- Gary Reynolds
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK ; Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Muzlifah Haniffa
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
227
|
Abstract
Macrophages are cellular components of the innate immune system that reside in virtually all tissues and contribute to immunity, repair, and homeostasis. The traditional view that all tissue-resident macrophages derive from the bone marrow through circulating monocyte intermediates has dramatically shifted recently with the observation that macrophages from embryonic progenitors can persist into adulthood and self-maintain by local proliferation. In several tissues, however, monocytes also contribute to the resident macrophage population, on which the local environment can impose tissue-specific macrophage functions. These observations have raised important questions: What determines resident macrophage identity and function, ontogeny or environment? How is macrophage proliferation regulated? In this review, we summarize the current knowledge about the identity, proliferation, and turnover of tissue-resident macrophages and how they differ from freshly recruited short-lived monocyte-derived cells. We examine whether macrophage proliferation can be qualified as self-renewal of mature differentiated cells and whether the concepts and molecular pathways are comparable to self-renewal mechanisms in stem cells. Finally, we discuss how improved understanding of macrophage identity and self-renewal could be exploited for therapeutic intervention of macrophage-mediated pathologies by selectively targeting freshly recruited or resident macrophages.
Collapse
Affiliation(s)
- Rebecca Gentek
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Marseille, France; Institute National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | | | | |
Collapse
|
228
|
A Plasmacytoid Dendritic Cells-Type I Interferon Axis Is Critically Implicated in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2015; 16:14158-70. [PMID: 26110387 PMCID: PMC4490545 DOI: 10.3390/ijms160614158] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease that is characterized by the generation of immune responses to various nuclear components. Impaired clearance of apoptotic cells and loss of tolerance to self-antigens are involved both in the initiation and in the propagation of the disease. Dendritic cells (DCs) are key factors in the balance between autoimmunity and tolerance and play a role linking innate and adaptive immunity. DCs, particularly plasmacytoid DCs (pDCs), are the main source of type I interferon (IFN) cytokines, which contribute to the immunopathogenesis of SLE. There is accumulating evidence that pDCs and type I IFN cytokines take the leading part in the development of SLE. In this review, we discuss recent data regarding the role of pDCs and type I IFN cytokines in the pathogenesis of SLE and the potential for employing therapies targeting against aberrant regulation of the pDC-type I IFN axis for treating SLE.
Collapse
|
229
|
Széles L, Meissner F, Dunand-Sauthier I, Thelemann C, Hersch M, Singovski S, Haller S, Gobet F, Fuertes Marraco SA, Mann M, Garcin D, Acha-Orbea H, Reith W. TLR3-Mediated CD8+ Dendritic Cell Activation Is Coupled with Establishment of a Cell-Intrinsic Antiviral State. THE JOURNAL OF IMMUNOLOGY 2015; 195:1025-33. [PMID: 26101320 DOI: 10.4049/jimmunol.1402033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/20/2015] [Indexed: 01/13/2023]
Abstract
Because of their unique capacity to cross-present Ags to CD8(+) T cells, mouse lymphoid tissue-resident CD8(+) dendritic cells (DCs) and their migratory counterparts are critical for priming antiviral T cell responses. High expression of the dsRNA sensor TLR3 is a distinctive feature of these cross-presenting DC subsets. TLR3 engagement in CD8(+) DCs promotes cross-presentation and the acquisition of effector functions required for driving antiviral T cell responses. In this study, we performed a comprehensive analysis of the TLR3-induced antiviral program and cell-autonomous immunity in CD8(+) DC lines and primary CD8(+) DCs. We found that TLR3-ligand polyinosinic-polycytidylic acid and human rhinovirus infection induced a potent antiviral protection against Sendai and vesicular stomatitis virus in a TLR3 and type I IFN receptor-dependent manner. Polyinosinic-polycytidylic acid-induced antiviral genes were identified by mass spectrometry-based proteomics and transcriptomics in the CD8(+) DC line. Nanostring nCounter experiments confirmed that these antiviral genes were induced by TLR3 engagement in primary CD8(+) DCs, and indicated that many are secondary TLR3-response genes requiring autocrine IFN-β stimulation. TLR3-activation thus establishes a type I IFN-dependent antiviral program in a DC subtype playing crucial roles in priming adaptive antiviral immune responses. This mechanism is likely to shield the priming of antiviral responses against inhibition or abrogation by the viral infection. It could be particularly relevant for viruses detected mainly by TLR3, which may not trigger type I IFN production by DCs that lack TLR3, such as plasmacytoid DCs or CD8(-) DCs.
Collapse
Affiliation(s)
- Lajos Széles
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Felix Meissner
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Isabelle Dunand-Sauthier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christoph Thelemann
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Micha Hersch
- Computational Biology Group, Department of Medical Genetics, University of Lausanne, CH-1005 Lausanne, Switzerland; and
| | - Simon Singovski
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sergio Haller
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Florian Gobet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | | | - Matthias Mann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland;
| |
Collapse
|
230
|
Grajales-Reyes GE, Iwata A, Albring J, Wu X, Tussiwand R, Kc W, Kretzer NM, Briseño CG, Durai V, Bagadia P, Haldar M, Schönheit J, Rosenbauer F, Murphy TL, Murphy KM. Batf3 maintains autoactivation of Irf8 for commitment of a CD8α(+) conventional DC clonogenic progenitor. Nat Immunol 2015; 16:708-17. [PMID: 26054719 PMCID: PMC4507574 DOI: 10.1038/ni.3197] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/05/2015] [Indexed: 12/11/2022]
Abstract
The transcription factors Batf3 and IRF8 are required for the development of CD8α(+) conventional dendritic cells (cDCs), but the basis for their actions has remained unclear. Here we identified two progenitor cells positive for the transcription factor Zbtb46 that separately generated CD8α(+) cDCs and CD4(+) cDCs and arose directly from the common DC progenitor (CDP). Irf8 expression in CDPs required prior autoactivation of Irf8 that was dependent on the transcription factor PU.1. Specification of the clonogenic progenitor of CD8α(+) cDCs (the pre-CD8 DC) required IRF8 but not Batf3. However, after specification of pre-CD8 DCs, autoactivation of Irf8 became Batf3 dependent at a CD8α(+) cDC-specific enhancer with multiple transcription factor AP1-IRF composite elements (AICEs) within the Irf8 superenhancer. CDPs from Batf3(-/-) mice that were specified toward development into pre-CD8 DCs failed to complete their development into CD8α(+) cDCs due to decay of Irf8 autoactivation and diverted to the CD4(+) cDC lineage.
Collapse
Affiliation(s)
- Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arifumi Iwata
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jörn Albring
- Department of Medicine A, Hematology and Oncology, University of Muenster, Muenster, Germany
| | - Xiaodi Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Roxane Tussiwand
- 1] Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA. [2] Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Wumesh Kc
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole M Kretzer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Malay Haldar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jörg Schönheit
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kenneth M Murphy
- 1] Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA. [2] Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
231
|
Terhorst D, Fossum E, Baranska A, Tamoutounour S, Malosse C, Garbani M, Braun R, Lechat E, Crameri R, Bogen B, Henri S, Malissen B. Laser-assisted intradermal delivery of adjuvant-free vaccines targeting XCR1+ dendritic cells induces potent antitumoral responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:5895-902. [PMID: 25941327 DOI: 10.4049/jimmunol.1500564] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/15/2015] [Indexed: 12/20/2022]
Abstract
The development of vaccines inducing efficient CD8(+) T cell responses is the focus of intense research. Dendritic cells (DCs) expressing the XCR1 chemokine receptor, also known as CD103(+) or CD8α(+) DCs, excel in the presentation of extracellular Ags to CD8(+) T cells. Because of its high numbers of DCs, including XCR1(+) DCs, the skin dermis is an attractive site for vaccine administration. By creating laser-generated micropores through the epidermis, we targeted a model protein Ag fused to XCL1, the ligand of XCR1, to dermal XCR1(+) DCs and induced Ag-specific CD8(+) and CD4(+) T cell responses. Efficient immunization required the emigration of XCR1(+) dermal DCs to draining lymph nodes and occurred irrespective of TLR signaling. Moreover, a single intradermal immunization protected mice against melanoma tumor growth in prophylactic and therapeutic settings, in the absence of exogenous adjuvant. The mild inflammatory milieu created in the dermis by skin laser microporation itself most likely favored the development of potent T cell responses in the absence of exogenous adjuvants. The existence of functionally equivalent XCR1(+) dermal DCs in humans should permit the translation of laser-assisted intradermal delivery of a tumor-specific vaccine targeting XCR1(+) DCs to human cancer immunotherapy. Moreover, considering that the use of adjuvants in vaccines is often associated with safety issues, the possibility of inducing protective responses against melanoma tumor growth independently of the administration of exogenous adjuvants should facilitate the development of safer vaccines.
Collapse
Affiliation(s)
- Dorothea Terhorst
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, 13288 Marseille Cedex 9, France; INSERM U1104, 13288 Marseille Cedex 9, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, 13288 Marseille Cedex 9, France; Department of Dermatology, Charité University Medicine, 10117 Berlin, Germany
| | - Even Fossum
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo 0424, Norway
| | - Anna Baranska
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, 13288 Marseille Cedex 9, France; INSERM U1104, 13288 Marseille Cedex 9, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, 13288 Marseille Cedex 9, France
| | - Samira Tamoutounour
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, 13288 Marseille Cedex 9, France; INSERM U1104, 13288 Marseille Cedex 9, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, 13288 Marseille Cedex 9, France
| | - Camille Malosse
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, 13288 Marseille Cedex 9, France; INSERM U1104, 13288 Marseille Cedex 9, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, 13288 Marseille Cedex 9, France
| | - Mattia Garbani
- Department of Molecular Allergology, Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos 7270, Switzerland
| | | | - Elmira Lechat
- Pantec Biosolutions, 9491 Ruggell, Liechtenstein; and
| | - Reto Crameri
- Department of Molecular Allergology, Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos 7270, Switzerland
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo 0424, Norway; Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo 0424 Norway
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, 13288 Marseille Cedex 9, France; INSERM U1104, 13288 Marseille Cedex 9, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, 13288 Marseille Cedex 9, France;
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, 13288 Marseille Cedex 9, France; INSERM U1104, 13288 Marseille Cedex 9, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7280, 13288 Marseille Cedex 9, France;
| |
Collapse
|
232
|
Innate and Adaptive Immune Functions of Peyer’s Patch Monocyte-Derived Cells. Cell Rep 2015; 11:770-84. [DOI: 10.1016/j.celrep.2015.03.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/03/2015] [Accepted: 03/26/2015] [Indexed: 12/23/2022] Open
|
233
|
Martner A, Wiktorin HG, Lenox B, Ewald Sander F, Aydin E, Aurelius J, Thorén FB, Ståhlberg A, Hermodsson S, Hellstrand K. Histamine promotes the development of monocyte-derived dendritic cells and reduces tumor growth by targeting the myeloid NADPH oxidase. THE JOURNAL OF IMMUNOLOGY 2015; 194:5014-21. [PMID: 25870245 DOI: 10.4049/jimmunol.1402991] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/16/2015] [Indexed: 11/19/2022]
Abstract
The efficiency of immune-mediated clearance of cancer cells is hampered by immunosuppressive mediators in the malignant microenvironment, including NADPH oxidase-derived reactive oxygen species. We aimed at defining the effects of histamine, an inhibitor of the myeloid NADPH oxidase/NOX2, on the development of Ag-presenting dendritic cells (DCs) from myeloid precursors and the impact of these mechanisms for tumor growth. Histamine was found to promote the maturation of human DCs from monocytes by increasing the expression of HLA-DR and costimulatory molecules, which resulted in improved induction of Th cells with Th0 polarity. Experiments using wild-type and NOX2-deficient myelomonoblastic cells showed that histamine facilitated myeloid cell maturation only in cells capable of generating reactive oxygen species. Treatment of mice with histamine reduced the growth of murine EL-4 lymphomas in parallel with an increment of tumor-infiltrating DCs in NOX2-sufficient mice but not in NOX2-deficient (gp91(phox) (-/-)) mice. We propose that strategies to target the myeloid NADPH oxidase may facilitate the development of endogenous DCs in cancer.
Collapse
Affiliation(s)
- Anna Martner
- Sahlgrenska Cancer Center, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Hanna G Wiktorin
- Sahlgrenska Cancer Center, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Brianna Lenox
- Sahlgrenska Cancer Center, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Frida Ewald Sander
- Sahlgrenska Cancer Center, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Ebru Aydin
- Sahlgrenska Cancer Center, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Johan Aurelius
- Sahlgrenska Cancer Center, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Fredrik B Thorén
- Sahlgrenska Cancer Center, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Cancer Center, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Svante Hermodsson
- Sahlgrenska Cancer Center, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | | |
Collapse
|
234
|
Iwasaki T, Takahashi I, Nagashima T, Igawa S, Komatsu S, Honma M, Ishida-Yamamoto A, Iizuka H. Cutaneous Langerhans cell histiocytosis in elderly with chronic myelomonocytic leukemia. J Dermatol 2015; 41:262-5. [PMID: 24628074 DOI: 10.1111/1346-8138.12417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/20/2013] [Indexed: 01/27/2023]
Abstract
Langerhans cell histiocytosis (LCH) is a rare histiocytic neoplasm characterized by clonal proliferation of Langerhans cells in multi-organ systems including skin, bone, pituitary gland, liver and spleen. Skin-limited involvement of LCH usually indicates an indolent clinical course; however, in rare cases, LCH is accompanied by other myeloproliferative disorders, which may determine the prognosis. An 82-year old Japanese man presented with numerous asymptomatic facial papules clinically simulating rhinophyma. Although findings of histopathology and general examination including bone marrow biopsy led to the diagnosis of cutaneous LCH, he died from chronic myelomonocytic leukemia, which emerged 10 months after the initial diagnosis of LCH. The previously reported cases of LCH concomitant with other hematological disorders are also summarized and described compared with the present case.
Collapse
Affiliation(s)
- Takeshi Iwasaki
- Dermatology Section, Kitami Red Cross Hospital, Kitami, Japan
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Kim YS, Sayers TJ, Colburn NH, Milner JA, Young HA. Impact of dietary components on NK and Treg cell function for cancer prevention. Mol Carcinog 2015; 54:669-78. [PMID: 25845339 DOI: 10.1002/mc.22301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/09/2014] [Accepted: 01/21/2015] [Indexed: 01/11/2023]
Abstract
An important characteristic of cancer is that the disease can overcome the surveillance of the immune system. A possible explanation for this resistance arises from the ability of tumor cells to block the tumoricidal activity of host immune cells such as natural killer (NK) cells by inducing the localized accumulation of regulatory T (Treg) cells. Evidence exists that components in commonly consumed foods including vitamins A, D, and E, water-soluble constituents of mushrooms, polyphenolics in fruits and vegetables, and n-3 fatty acids in fish oil can modulate NK cell activities, Treg cell properties, and the interactions between those two cell types. Thus, it is extremely important for cancer prevention to understand the involvement of dietary components with the early stage dynamics of interactions among these immune cells. This review addresses the potential significance of diet in supporting the function of NK cells, Treg cells, and the balance between those two cell types, which ultimately results in decreased cancer risk.
Collapse
Affiliation(s)
- Young S Kim
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland
| | - Thomas J Sayers
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - Nancy H Colburn
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - John A Milner
- Human Nutrition Research Center, USDA/ARS, Beltsville, Maryland
| | - Howard A Young
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| |
Collapse
|
236
|
Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015; 16:343-53. [PMID: 25789684 PMCID: PMC4507498 DOI: 10.1038/ni.3123] [Citation(s) in RCA: 1238] [Impact Index Per Article: 137.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.
Collapse
Affiliation(s)
- Akiko Iwasaki
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
237
|
Brinkmann MM, Dağ F, Hengel H, Messerle M, Kalinke U, Čičin-Šain L. Cytomegalovirus immune evasion of myeloid lineage cells. Med Microbiol Immunol 2015; 204:367-82. [PMID: 25776081 DOI: 10.1007/s00430-015-0403-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/28/2015] [Indexed: 12/23/2022]
Abstract
Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
| | | | | | | | | | | |
Collapse
|
238
|
Nakano H, Moran TP, Nakano K, Gerrish KE, Bortner CD, Cook DN. Complement receptor C5aR1/CD88 and dipeptidyl peptidase-4/CD26 define distinct hematopoietic lineages of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:3808-19. [PMID: 25769922 DOI: 10.4049/jimmunol.1402195] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/13/2015] [Indexed: 12/17/2022]
Abstract
Differential display of the integrins CD103 and CD11b are widely used to distinguish two major dendritic cell (DC) subsets in nonlymphoid tissues. CD103(+) DCs arise from FLT3-dependent DC precursors (preDCs), whereas CD11b(hi) DCs can arise either from preDCs or FLT3-independent monocytes. Functional characterization of these two lineages of CD11b(hi) DCs has been hindered by the lack of a widely applicable method to distinguish between them. We performed gene expression analysis of fractionated lung DCs from C57BL/6 mice and found that monocyte-derived DCs (moDCs), including CD11b(hi)Ly-6C(lo) tissue-resident and CD11b(hi)Ly-6C(hi) inflammatory moDCs, express the complement 5a receptor 1/CD88, whereas preDC-derived conventional DCs (cDCs), including CD103(+) and CD11b(hi) cDCs, express dipeptidyl peptidase-4/CD26. Flow cytometric analysis of multiple organs, including the kidney, liver, lung, lymph nodes, small intestine, and spleen, confirmed that reciprocal display of CD88 and CD26 can reliably distinguish FLT3-independent moDCs from FLT3-dependent cDCs in C57BL/6 mice. Similar results were obtained when DCs from BALB/c mice were analyzed. Using this novel approach to study DCs in mediastinal lymph nodes, we observed that most blood-derived lymph node-resident DCs, as well as tissue-derived migratory DCs, are cDCs. Furthermore, cDCs, but not moDCs, stimulated naive T cell proliferation. We anticipate that the use of Abs against CD88 and CD26 to distinguish moDCs and cDCs in multiple organs and mouse strains will facilitate studies aimed at assigning specific functions to distinct DC lineages in immune responses.
Collapse
Affiliation(s)
- Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709;
| | - Timothy P Moran
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27705
| | - Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Kevin E Gerrish
- Molecular Genetics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | - Carl D Bortner
- Signal Transduction Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
239
|
Zabaleta A, D'Avola D, Echeverria I, Llopiz D, Silva L, Villanueva L, Riezu-Boj JI, Larrea E, Pereboev A, Lasarte JJ, Rodriguez-Lago I, Iñarrairaegui M, Sangro B, Prieto J, Sarobe P. Clinical testing of a dendritic cell targeted therapeutic vaccine in patients with chronic hepatitis C virus infection. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15006. [PMID: 26029717 PMCID: PMC4444996 DOI: 10.1038/mtm.2015.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/24/2022]
Abstract
The lack of antiviral cellular immune responses in patients with chronic hepatitis C virus (HCV) infection suggests that T-cell vaccines may provide therapeutic benefit. Due to the central role that dendritic cells (DC) play in the activation of T-cell responses, our aim was to carry out a therapeutic vaccination clinical trial in HCV patients using DC. Five patients with chronic HCV infection were vaccinated with three doses of 5 × 106 or 107 autologous DC transduced with a recombinant adenovirus encoding NS3 using the adapter protein CFh40L, which facilitates DC transduction and maturation. No significant adverse effects were recorded after vaccination. Treatment caused no changes in serum liver enzymes nor in viral load. Vaccination induced weak but consistent expansion of T-cell responses against NS3 and adenoviral antigens. Patients’ DC, as opposed to murine DC or DC from healthy subjects, secreted high IL-10 levels after transduction, inducing the activation of IL-10–producing T cells. IL-10 blockade during vaccine preparation restored its ability to stimulate anti-NS3 Th1 responses. Thus, vaccination with adenovirus-transduced DC is safe and induces weak antiviral immune responses. IL-10 associated with vaccine preparation may be partly responsible for these effects, suggesting that future vaccines should consider concomitant inhibition of this cytokine.
Collapse
Affiliation(s)
- Aintzane Zabaleta
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Delia D'Avola
- Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Liver Unit, Clínica Universidad de Navarra , Pamplona, Spain ; Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Clínica Universidad de Navarra , Pamplona, Spain
| | - Itziar Echeverria
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Diana Llopiz
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Leyre Silva
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Lorea Villanueva
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - José Ignacio Riezu-Boj
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Esther Larrea
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Alexander Pereboev
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Juan José Lasarte
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| | - Iago Rodriguez-Lago
- Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Liver Unit, Clínica Universidad de Navarra , Pamplona, Spain
| | - Mercedes Iñarrairaegui
- Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Liver Unit, Clínica Universidad de Navarra , Pamplona, Spain ; Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Clínica Universidad de Navarra , Pamplona, Spain
| | - Bruno Sangro
- Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Liver Unit, Clínica Universidad de Navarra , Pamplona, Spain ; Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Clínica Universidad de Navarra , Pamplona, Spain
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain ; Liver Unit, Clínica Universidad de Navarra , Pamplona, Spain ; Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Clínica Universidad de Navarra , Pamplona, Spain
| | - Pablo Sarobe
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain ; Instituto de Investigación Sanitaria de Navarra (IDISNA) , Pamplona, Spain
| |
Collapse
|
240
|
Shao T, Zhu LY, Nie L, Shi W, Dong WR, Xiang LX, Shao JZ. Characterization of surface phenotypic molecules of teleost dendritic cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:38-43. [PMID: 25445909 DOI: 10.1016/j.dci.2014.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
Dendritic cells (DCs) are among the most important professional antigen-presenting cells (APCs) that participate in various biological activities in mammals. However, evidence of the existence of DCs in teleost fish and other lower vertebrates remains limited. In this study, phenotypic and functional characteristics of teleost DCs were described in a zebrafish model. An improved method to efficiently enrich DCs was established. Immunofluorescence staining revealed that the surface phenotypic hallmarks of mammalian DCs, including MHC-II, CD80/86, CD83, and CD209, were distributed on the surfaces of zebrafish DCs (DrDCs). Functional analysis results showed that DrDCs could initiate antigen-specific CD4(+) T cell activation, in which MHC-II, CD80/86, CD83, and CD209 are implicated. Hence, teleost DCs exhibit conserved immunophenotypes and functions similar to those of their mammalian counterparts. Our findings contributed to the current understanding of the evolutionary history of DCs and the DC-regulatory mechanisms of adaptive immunity.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- B7-1 Antigen/genetics
- B7-1 Antigen/immunology
- B7-1 Antigen/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Flow Cytometry
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/immunology
- GATA2 Transcription Factor/metabolism
- Gene Expression/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Immunoglobulins/genetics
- Immunoglobulins/immunology
- Immunoglobulins/metabolism
- Immunophenotyping
- Interleukin-12 Subunit p40/genetics
- Interleukin-12 Subunit p40/immunology
- Interleukin-12 Subunit p40/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lymphocyte Activation/immunology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Microscopy, Confocal
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/immunology
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Zebrafish/genetics
- Zebrafish/immunology
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/immunology
- Zebrafish Proteins/metabolism
- CD83 Antigen
Collapse
Affiliation(s)
- Tong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Lv-Yun Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Wei Shi
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Wei-Ren Dong
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
241
|
Abstract
The past 15 years have seen enormous advances in our understanding of the receptor and signalling systems that allow dendritic cells (DCs) to respond to pathogens or other danger signals and initiate innate and adaptive immune responses. We are now beginning to appreciate that many of these pathways not only stimulate changes in the expression of genes that control DC immune functions, but also affect metabolic pathways, thereby integrating the cellular requirements of the activation process. In this Review, we focus on this relatively new area of research and attempt to describe an integrated view of DC immunometabolism.
Collapse
Affiliation(s)
- Edward J Pearce
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
242
|
Alamino VA, Mascanfroni ID, Montesinos MM, Gigena N, Donadio AC, Blidner AG, Milotich SI, Cheng SY, Masini-Repiso AM, Rabinovich GA, Pellizas CG. Antitumor Responses Stimulated by Dendritic Cells Are Improved by Triiodothyronine Binding to the Thyroid Hormone Receptor β. Cancer Res 2015; 75:1265-74. [PMID: 25672979 DOI: 10.1158/0008-5472.can-14-1875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/20/2015] [Indexed: 01/22/2023]
Abstract
Bidirectional cross-talk between the neuroendocrine and immune systems orchestrates immune responses in both physiologic and pathologic settings. In this study, we provide in vivo evidence of a critical role for the thyroid hormone triiodothyronine (T3) in controlling the maturation and antitumor functions of dendritic cells (DC). We used a thyroid hormone receptor (TR) β mutant mouse (TRβPV) to establish the relevance of the T3-TRβ system in vivo. In this model, TRβ signaling endowed DCs with the ability to stimulate antigen-specific cytotoxic T-cell responses during tumor development. T3 binding to TRβ increased DC viability and augmented DC migration to lymph nodes. Moreover, T3 stimulated the ability of DCs to cross-present antigens and to stimulate cytotoxic T-cell responses. In a B16-OVA mouse model of melanoma, vaccination with T3-stimulated DCs inhibited tumor growth and prolonged host survival, in part by promoting the generation of IFNγ-producing CD8(+) T cells. Overall, our results establish an adjuvant effect of T3-TRβ signaling in DCs, suggesting an immediately translatable method to empower DC vaccination approaches for cancer immunotherapy.
Collapse
Affiliation(s)
- Vanina A Alamino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Iván D Mascanfroni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María M Montesinos
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Gigena
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana C Donadio
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ada G Blidner
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET) and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia I Milotich
- Hospital Materno-Neonatal Ramón Carrillo, Sanatorio Allende, Córdoba, Argentina
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ana M Masini-Repiso
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET) and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia G Pellizas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
243
|
Abstract
In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.
Collapse
Affiliation(s)
- Bali Pulendran
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329;
| |
Collapse
|
244
|
Huen SC, Cantley LG. Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol 2015; 30:199-209. [PMID: 24442822 PMCID: PMC5048744 DOI: 10.1007/s00467-013-2726-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/29/2013] [Accepted: 12/06/2013] [Indexed: 01/08/2023]
Abstract
Acute ischemic kidney injury is a common complication in hospitalized patients. No treatment is yet available for augmenting kidney repair or preventing progressive kidney fibrosis. Animal models of acute kidney injury demonstrate that activation of the innate immune system plays a major role in the systemic response to ischemia/reperfusion injury. Macrophage depletion studies suggest that macrophages, key participants in the innate immune response, augment the initial injury after reperfusion but also promote tubular repair and contribute to long-term kidney fibrosis after ischemic injury. The distinct functional outcomes seen following macrophage depletion at different time points after ischemia/reperfusion injury suggest heterogeneity in macrophage activation states. Identifying the pathways that regulate the transitions of macrophage activation is thus critical for understanding the mechanisms that govern both macrophage-mediated injury and repair in the postischemic kidney. This review examines our understanding of the complex and intricately controlled pathways that determine monocyte recruitment, macrophage activation, and macrophage effector functions after renal ischemia/reperfusion injury. Careful delineation of repair and resolution pathways could provide therapeutic targets for the development of effective treatments to offer patients with acute kidney injury.
Collapse
Affiliation(s)
- Sarah C Huen
- Department of Medicine, Section of Nephrology, Yale University, PO Box 208029, New Haven, CT, USA,
| | | |
Collapse
|
245
|
Abstract
The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD.
Collapse
Affiliation(s)
- Calum C Bain
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
246
|
Abstract
The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD.
Collapse
Affiliation(s)
- Calum C Bain
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
247
|
Schinnerling K, Soto L, García-González P, Catalán D, Aguillón JC. Skewing dendritic cell differentiation towards a tolerogenic state for recovery of tolerance in rheumatoid arthritis. Autoimmun Rev 2015; 14:517-27. [PMID: 25633325 DOI: 10.1016/j.autrev.2015.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
To date, the available options to treat autoimmune diseases such as rheumatoid arthritis (RA) include traditional corticoids and biological drugs, which are not exempt of adverse effects. The development of cellular therapies based on dendritic cells with tolerogenic functions (TolDCs) has opened a new possibility to efficiently eradicate symptoms and control the immune response in the field of autoimmunity. TolDCs are an attractive tool for antigen-specific immunotherapy to restore self-tolerance in RA and other autoimmune disorders. A promising strategy is to inject autologous self-antigen-loaded TolDCs, which are able to delete or reprogram autoreactive T cells. Different protocols for the generation of stable human TolDCs have been established and the therapeutic effect of TolDCs has been investigated in multiple rodent models of arthritis. Pilot studies in humans confirmed that TolDC application is safe, encouraging clinical trials using self-antigen-loaded TolDCs in RA patients. Although an abundance of molecular regulators of DC functions has been discovered in the last decade, no master regulator of tolerogenicity has been identified yet. Further research is required to define biomarkers or key regulators of tolerogenicity that might facilitate the induction and monitoring of TolDCs.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paulina García-González
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Catalán
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Juan C Aguillón
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
248
|
Ferris ST, Carrero JA, Mohan JF, Calderon B, Murphy KM, Unanue ER. A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity 2015; 41:657-69. [PMID: 25367577 DOI: 10.1016/j.immuni.2014.09.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
Autoimmune diabetes is characterized by inflammatory infiltration; however, the initiating events are poorly understood. We found that the islets of Langerhans in young nonobese diabetic (NOD) mice contained two antigen-presenting cell (APC) populations: a major macrophage and a minor CD103(+) dendritic cell (DC) population. By 4 weeks of age, CD4(+) T cells entered islets coincident with an increase in CD103(+) DCs. In order to examine the role of the CD103(+) DCs in diabetes, we examined Batf3-deficient NOD mice that lacked the CD103(+) DCs in islets and pancreatic lymph nodes. This led to a lack of autoreactive T cells in islets and, importantly, no incidence of diabetes. Additional examination revealed that presentation of major histocompatibility complex (MHC) class I epitopes in the pancreatic lymph nodes was absent with a partial impairment of MHC class II presentation. Altogether, this study reveals that CD103(+) DCs are essential for autoimmune diabetes development.
Collapse
Affiliation(s)
- Stephen T Ferris
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James F Mohan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Boris Calderon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
249
|
Miguel CD, Rudemiller NP, Abais JM, Mattson DL. Inflammation and hypertension: new understandings and potential therapeutic targets. Curr Hypertens Rep 2015; 17:507. [PMID: 25432899 PMCID: PMC4418473 DOI: 10.1007/s11906-014-0507-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objectives of this brief review are to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors, and inflammasomes in hypertension.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Justine M. Abais
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - David L. Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
250
|
Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Fučíková J, Galon J, Tartour E, Spisek R, Dhodapkar MV, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3:e963424. [PMID: 25941593 DOI: 10.4161/21624011.2014.963424] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics.
Collapse
Key Words
- DC, dendritic cell
- DC-based vaccination
- FDA, Food and Drug Administration
- IFN, interferon
- MRC1, mannose receptor, C type 1
- MUC1, mucin 1
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- Toll-like receptor agonists
- Treg, regulatory T cell
- WT1, Wilms tumor 1
- antigen cross-presentation
- autophagy
- iDC, immature DC
- immunogenic cell death
- mDC, mature DC
- pDC, plasmacytoid DC
- regulatory T cells
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris-Sud/Paris XI ; Orsay, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France
| | | | - Isabelle Cremer
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Wolf Hervé Fridman
- INSERM , U1138; Paris France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France
| | - Jitka Fučíková
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM , U1138; Paris France ; Université Pierre et Marie Curie/Paris VI ; Paris France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; INSERM , U970; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France
| | - Radek Spisek
- Department of Immunology; 2nd Medical School Charles University and University Hospital Motol ; Prague, Czech Republic ; Sotio a.s. ; Prague, Czech Republic
| | - Madhav V Dhodapkar
- Department of Medicine; Immunobiology and Yale Cancer Center; Yale University ; New Haven, CT USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015, CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France ; Pôle de Biologie; Hôpital Européen Georges Pompidou, AP-HP ; Paris France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM , U1138; Paris France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris France
| |
Collapse
|