201
|
Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat Commun 2018; 9:4613. [PMID: 30397205 PMCID: PMC6218475 DOI: 10.1038/s41467-018-06933-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 10/01/2018] [Indexed: 11/09/2022] Open
Abstract
Many pro-inflammatory pathways leading to arthritis have global effects on the immune system rather than only acting locally in joints. The reason behind the regional and patchy distribution of arthritis represents a longstanding paradox. Here we show that biomechanical loading acts as a decisive factor in the transition from systemic autoimmunity to joint inflammation. Distribution of inflammation and erosive disease is confined to mechano-sensitive regions with a unique microanatomy. Curiously, this pathway relies on stromal cells but not adaptive immunity. Mechano-stimulation of mesenchymal cells induces CXCL1 and CCL2 for the recruitment of classical monocytes, which can differentiate into bone-resorbing osteoclasts. Genetic ablation of CCL2 or pharmacologic targeting of its receptor CCR2 abates mechanically-induced exacerbation of arthritis, indicating that stress-induced chemokine release by mesenchymal cells and chemo-attraction of monocytes determines preferential homing of arthritis to certain hot spots. Thus, mechanical strain controls the site-specific localisation of inflammation and tissue damage in arthritis.
Collapse
|
202
|
Gravallese EM, Schett G. Effects of the IL-23–IL-17 pathway on bone in spondyloarthritis. Nat Rev Rheumatol 2018; 14:631-640. [DOI: 10.1038/s41584-018-0091-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
203
|
Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F. Tertiary Lymphoid Structures: Autoimmunity Goes Local. Front Immunol 2018; 9:1952. [PMID: 30258435 PMCID: PMC6143705 DOI: 10.3389/fimmu.2018.01952] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.
Collapse
Affiliation(s)
- Elena Pipi
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Experimental Medicine Unit, Immuno-Inflammation Therapeutic Area, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | | | - Charlotte Smith
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
204
|
Komatsu N, Takayanagi H. Immune-bone interplay in the structural damage in rheumatoid arthritis. Clin Exp Immunol 2018; 194:1-8. [PMID: 30022480 DOI: 10.1111/cei.13188] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
The immune and bone systems maintain homeostasis by interacting closely with each other. Rheumatoid arthritis is a pathological consequence of their interplay, as activated T cell immune responses result in osteoclast-mediated bone erosion. An imbalance between forkhead box protein 3 (Foxp3)+ regulatory T (Treg ) cells and T helper type 17 (Th17) cells is often linked with autoimmune diseases, including arthritis. Th17 cells contribute to the bone destruction in arthritis by up-regulating receptor activator of nuclear factor kappa-Β ligand (RANKL) on synovial fibroblasts as well as inducing local inflammation. Studies on the origin of Th17 cells in inflammation have shed light on the pathogenic conversion of Foxp3+ T cells. Th17 cells converted from Foxp3+ T cells (exFoxp3 Th17 cells) comprise the most potent osteoclastogenic T cell subset in inflammatory bone loss. It has been suggested that osteoclastogenic T cells may have developed originally to stop local infection in periodontitis by inducing tooth loss. In addition, Th17 cells also contribute to the pathogenesis of arthritis by modulating antibody function. Antibodies and immune complexes have attracted considerable attention for their direct role in osteoclastogenesis, and a specific T cell subset in joints was shown to be involved in B cell antibody production. Here we summarize the recent advances in our understanding of the immune-bone interplay in the context of the bone destruction in arthritis.
Collapse
Affiliation(s)
- N Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - H Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
205
|
Lin JX, Leonard WJ. The Common Cytokine Receptor γ Chain Family of Cytokines. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028449. [PMID: 29038115 DOI: 10.1101/cshperspect.a028449] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on their sharing the common cytokine receptor γ chain (γc), which was originally discovered as the third receptor component of the IL-2 receptor, IL-2Rγ. The IL2RG gene is located on the X chromosome and is mutated in humans with X-linked severe combined immunodeficiency (XSCID). The breadth of the defects in XSCID could not be explained solely by defects in IL-2 signaling, and it is now clear that γc is a shared receptor component of the six cytokines noted above, making XSCID a disease of defective cytokine signaling. Janus kinase (JAK)3 associates with γc, and JAK3-deficient SCID phenocopies XSCID, findings that served to stimulate the development of JAK3 inhibitors as immunosuppressants. γc family cytokines collectively control broad aspects of lymphocyte development, growth, differentiation, and survival, and these cytokines are clinically important, related to allergic and autoimmune diseases and cancer as well as immunodeficiency. In this review, we discuss the actions of these cytokines, their critical biological roles and signaling pathways, focusing mainly on JAK/STAT (signal transducers and activators of transcription) signaling, and how this information is now being used in clinical therapeutic efforts.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| |
Collapse
|
206
|
Holers VM, Demoruelle MK, Kuhn KA, Buckner JH, Robinson WH, Okamoto Y, Norris JM, Deane KD. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat Rev Rheumatol 2018; 14:542-557. [PMID: 30111803 PMCID: PMC6704378 DOI: 10.1038/s41584-018-0070-0] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Individuals at high risk of developing seropositive rheumatoid arthritis (RA) can be identified for translational research and disease prevention studies through the presence of highly informative and predictive patterns of RA-related autoantibodies, especially anti-citrullinated protein antibodies (ACPAs), in the serum. In serologically positive individuals without arthritis, designated ACPA positive at risk, the presence of mucosal inflammatory processes associated with the presence of local ACPA production has been demonstrated. In other at-risk populations, local RA-related autoantibody production is present even in the absence of serum autoantibodies. Additionally, a proportion of at-risk individuals exhibit local mucosal ACPA production in the lung, as well as radiographic small-airway disease, sputum hypercellularity and increased neutrophil extracellular trap formation. Other mucosal sites in at-risk individuals also exhibit autoantibody production, inflammation and/or evidence of dysbiosis. As the proportion of individuals who exhibit such localized inflammation-associated ACPA production is substantially higher than the likelihood of an individual developing future RA, this finding raises the hypothesis that mucosal ACPAs have biologically relevant protective roles. Identifying the mechanisms that drive both the generation and loss of externally focused mucosal ACPA production and promote systemic autoantibody expression and ultimately arthritis development should provide insights into new therapeutic approaches to prevent RA.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA.
| | | | - Kristine A Kuhn
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| | | | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Yuko Okamoto
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| |
Collapse
|
207
|
van der Geest KSM, Brouwer E, Sanders JS, Sandovici M, Bos NA, Boots AMH, Abdulahad WH, Stegeman CA, Kallenberg CGM, Heeringa P, Rutgers A. Towards precision medicine in ANCA-associated vasculitis. Rheumatology (Oxford) 2018; 57:1332-1339. [PMID: 29045715 DOI: 10.1093/rheumatology/kex367] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 12/18/2022] Open
Abstract
ANCA-associated vasculitis (AAV) is characterized by inflammation and destruction of small and medium-sized vessels. Current management strategies for AAV have been validated in large groups of patients. However, recent insights indicate that distinct patient subsets may actually exist within AAV, thereby justifying the development of more personalized treatment strategies. In this review, we discuss current evidence for a better classification of AAV based on ANCA type. We describe how thus defined categories of AAV patients may differ in genetic background, clinical presentation, immune pathology, response to treatment and disease outcome. We also explore how these insights may provide a rationale for targeted treatments in different categories of AAV patients. Finally, we provide recommendations on how to further establish precision medicine in AAV.
Collapse
Affiliation(s)
- Kornelis S M van der Geest
- Vasculitis Expertise Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- Vasculitis Expertise Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Stephan Sanders
- Vasculitis Expertise Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria Sandovici
- Vasculitis Expertise Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nicolaas A Bos
- Vasculitis Expertise Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke M H Boots
- Vasculitis Expertise Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wayel H Abdulahad
- Vasculitis Expertise Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Coen A Stegeman
- Vasculitis Expertise Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cees G M Kallenberg
- Vasculitis Expertise Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- Vasculitis Expertise Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Abraham Rutgers
- Vasculitis Expertise Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
208
|
Jubair WK, Hendrickson JD, Severs EL, Schulz HM, Adhikari S, Ir D, Pagan J, Anthony R, Robertson CE, Frank DN, Banda NK, Kuhn KA. Modulation of Inflammatory Arthritis in Mice by Gut Microbiota Through Mucosal Inflammation and Autoantibody Generation. Arthritis Rheumatol 2018; 70:1220-1233. [PMID: 29534332 PMCID: PMC6105374 DOI: 10.1002/art.40490] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Observations of microbial dysbiosis in patients with rheumatoid arthritis (RA) have raised interest in studying microbial-mucosal interactions as a potential trigger of RA. Using the murine collagen-induced arthritis (CIA) model, we undertook this study to test our hypothesis that microbiota modulate immune responses leading to autoimmune arthritis. METHODS CIA was induced by immunization of mice with type II collagen (CII) in adjuvant on days 0 and 21, with arthritis appearing on days 23 and 24. Intestinal microbiota were profiled by 16S ribosomal RNA sequencing every 7 days during the course of CIA, and intestinal mucosal changes were evaluated on days 14 and 35. Then, microbiota were depleted either early (7 days before immunization) or late (day 21 after immunization) by administration of broad-spectrum antibiotics. Disease severity, autoantibody and systemic cytokine production, and intestinal mucosal responses were monitored in the setting of microbial reduction. RESULTS Significant dysbiosis and mucosal inflammation occurred early in CIA, prior to visible arthritis, and continued to evolve during the course of disease. Depletion of the microbiota prior to the induction of CIA resulted in an ~40% reduction in disease severity and in significantly reduced levels of serum inflammatory cytokines and anti-CII antibodies. In intestinal tissue, production of interleukin-17A (IL-17A) and IL-22 was delayed. Unexpectedly, microbial depletion during the late phase of CIA resulted in a >50% decrease in disease severity. Anti-CII antibodies were mildly reduced but were significantly impaired in their ability to activate complement, likely due to altered glycosylation profiles. CONCLUSION These data support a model in which intestinal dysbiosis triggers mucosal immune responses that stimulate T and B cells that are key for the development of inflammatory arthritis.
Collapse
Affiliation(s)
- Widian K. Jubair
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Jason D. Hendrickson
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Erin L. Severs
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Hanna M. Schulz
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| | - Sumitra Adhikari
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
| | - Diana Ir
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora CO
| | - Jose Pagan
- Harvard University, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA
| | - Robert Anthony
- Harvard University, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA
| | - Charles E. Robertson
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora CO
| | - Daniel N. Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora CO
| | - Nirmal K. Banda
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
| | - Kristine A. Kuhn
- Department of Medicine, Division of Rheumatology, University of Colorado School of Medicine, Aurora CO
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora CO
| |
Collapse
|
209
|
Bondt A, Hafkenscheid L, Falck D, Kuijper TM, Rombouts Y, Hazes JMW, Wuhrer M, Dolhain RJEM. ACPA IgG galactosylation associates with disease activity in pregnant patients with rheumatoid arthritis. Ann Rheum Dis 2018; 77:1130-1136. [PMID: 29615411 DOI: 10.1136/annrheumdis-2018-212946] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Patients with autoantibody-positive rheumatoid arthritis (RA) are less likely to experience pregnancy-induced improvement of RA disease activity (DAS28-C reactive protein (CRP)) compared with patients with autoantibody-negative RA. Anti-citrullinated protein antibodies (ACPAs) are the most specific autoantibodies for RA. We previously demonstrated that disease improvement is associated with changes in total IgG glycosylation, which regulate antibody effector function. Therefore, we sought to analyse the ACPA-IgG glycosylation profile during pregnancy with the aim to understand the lower change of pregnancy-induced improvement of the disease in patients with autoantibody-positive RA. METHODS ACPA-IgGs were purified from ACPA-positive patient sera (n=112) of the Pregnancy-induced Amelioration of Rheumatoid Arthritis cohort, a prospective study designed to investigate pregnancy-associated improvement of RA. The fragment crystallisable (Fc)glycosylation profile of ACPA-IgGs was characterised by mass spectrometry and compared with that of total IgG derived from the same patients or from ACPA-negative patients. RESULTS All ACPA-IgG subclasses display significant changes in the level of galactosylation and sialylation during pregnancy, although less pronounced than in total IgG. The pregnancy-induced increase in ACPA-IgG galactosylation, but not sialylation, associates with lower DAS28-CRP. In ACPA-positive patients, no such association was found with changes in the galactosylation of total IgG, whereas in ACPA-negative patients changes in disease activity correlated well with changes in the galactosylation of total IgG. CONCLUSIONS In ACPA-positive RA, the pregnancy-induced change in galactosylation of ACPA-IgG, and not that of total IgG, associates with changes in disease activity. These data may indicate that in ACPA-positive patients the galactosylation of ACPA-IgG is of more pathogenic relevance than that of total IgG.
Collapse
Affiliation(s)
- Albert Bondt
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lise Hafkenscheid
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Martijn Kuijper
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France
| | - Johanna M W Hazes
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Radboud J E M Dolhain
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
210
|
Heyder T, Wiklundh E, Eklund A, James A, Grunewald J, Zubarev RA, Lundström SL. Altered Fc galactosylation in IgG 4 is a potential serum marker for chronic lung disease. ERJ Open Res 2018; 4:00033-2018. [PMID: 30083550 PMCID: PMC6066530 DOI: 10.1183/23120541.00033-2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Abstract
Characterising chronic lung diseases is challenging. New, less invasive diagnostics are needed to decipher disease pathologies and subphenotypes. Fc galactosylation is known to affect IgG function, and is altered in autoimmune disorders and under other pathological conditions. We tested how well Fc glycans in IgG from bronchoalveolar lavage fluid (BALF) and serum correlated, and if the Fc glycan profile could reveal pulmonary inflammation. A shotgun proteomics approach was used to profile Fc glycans in serum and BALF of controls (n=12) and sarcoidosis phenotypes (Löfgren's syndrome (LS), n=11; and non-LS, n=12). Results were further validated in severe asthma (SA) (n=20) and published rheumatoid arthritis (RA) patient data (n=13) including clinical information. Intra-individually, Fc-galactosylation status of IgG1 (R2=0.87) and IgG4 (R2=0.95) correlated well between matrixes. Following GlycoAge-index correction, the ratio between agalactosylated and digalactosylated Fc glycans of IgG4 could distinguish sarcoidosis and SA from healthy and RA subjects with a mean±se area under the curve (AUC) of 78±6%. The AUC increased to 83±6% using the more chronic lung disease types (non-LS and SA) and most strikingly, to 87±6% for the SA subgroup. The results indicate that the Fc galactosylation status of IgG4 is a potential blood test marker for chronic lung inflammation. IgG4 Fc galactosylation correlates between serum and BALF (R2=0.95) and is a potential blood marker for chronic lung inflammationhttp://ow.ly/XaNd30k35wg
Collapse
Affiliation(s)
- Tina Heyder
- Respiratory Medicine Unit, Dept of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Physiological Chemistry I, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Joint first authors
| | - Emil Wiklundh
- Respiratory Medicine Unit, Dept of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Joint first authors
| | - Anders Eklund
- Respiratory Medicine Unit, Dept of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna James
- Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Dept of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Joint last authors
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Joint last authors
| |
Collapse
|
211
|
|
212
|
Zhang CJ, Wang C, Jiang M, Gu C, Xiao J, Chen X, Martin BN, Tang F, Yamamoto E, Xian Y, Wang H, Li F, Sartor RB, Smith H, Husni ME, Shi FD, Gao J, Carman J, Dongre A, McKarns SC, Coppieters K, Jørgensen TN, Leonard WJ, Li X. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun 2018; 9:2745. [PMID: 30013031 PMCID: PMC6048100 DOI: 10.1038/s41467-018-04974-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
Although Act1 (adaptor for IL-17 receptors) is necessary for IL-17-mediated inflammatory responses, Act1- (but not Il17ra-, Il17rc-, or Il17rb-) deficient mice develop spontaneous SLE- and Sjögren's-like diseases. Here, we show that Act1 functions as a negative regulator in T and B cells via direct inhibition of STAT3. Mass spectrometry analysis detected an Act1-STAT3 complex, deficiency of Act1 (but not Il17ra-, Il17rc-, or Il17rb) results in hyper IL-23- and IL-21-induced STAT3 activation in T and B cells, respectively. IL-23R deletion or blockade of IL-21 ameliorates SLE- and Sjögren's-like diseases in Act1-/- mice. Act1 deficiency results in hyperactivated follicular Th17 cells with elevated IL-21 expression, which promotes T-B cell interaction for B cell expansion and antibody production. Moreover, anti-IL-21 ameliorates the SLE- and Sjögren's-like diseases in Act1-deficient mice. Thus, IL-21 blocking antibody might be an effective therapy for treating SLE- and Sjögren's-like syndrome in patients containing Act1 mutation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Animals
- Antibodies, Monoclonal/pharmacology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Differentiation
- Disease Models, Animal
- Female
- Gene Expression Regulation
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukins/antagonists & inhibitors
- Interleukins/genetics
- Interleukins/immunology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Primary Cell Culture
- Receptors, Interleukin/deficiency
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Receptors, Interleukin-17/deficiency
- Receptors, Interleukin-17/genetics
- Receptors, Interleukin-17/immunology
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/immunology
- Signal Transduction
- Sjogren's Syndrome/drug therapy
- Sjogren's Syndrome/genetics
- Sjogren's Syndrome/immunology
- Sjogren's Syndrome/pathology
- Spleen
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Cun-Jin Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300051, China
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Chenhui Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wuhan Institute of Biotechnology, Wuhan, 430200, China
| | - Meiling Jiang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chunfang Gu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Jianxin Xiao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Bradley N Martin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Fangqiang Tang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Erin Yamamoto
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Yibo Xian
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Han Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Fengling Li
- National Gnotobiotic Rodent Resource Center, Department of Medicine and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - R Balfour Sartor
- National Gnotobiotic Rodent Resource Center, Department of Medicine and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Howard Smith
- Department of Rheumatologic and Immunologic Disease, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - M Elaine Husni
- Department of Rheumatologic and Immunologic Disease, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300051, China
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Ji Gao
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Julie Carman
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Ashok Dongre
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Susan C McKarns
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Ken Coppieters
- Type 1 Diabetes Center, Novo Nordisk A/S, Søborg, 2860, Denmark
| | - Trine N Jørgensen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA.
| |
Collapse
|
213
|
Moschovakis GL, Bubke A, Friedrichsen M, Ristenpart J, Back JW, Falk CS, Kremmer E, Förster R. The chemokine receptor CCR7 is a promising target for rheumatoid arthritis therapy. Cell Mol Immunol 2018; 16:791-799. [PMID: 29973648 DOI: 10.1038/s41423-018-0056-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/27/2018] [Indexed: 01/04/2023] Open
Abstract
The chemokine receptor CCR7 and its ligands CCL19 and CCL21 guide the homing and positioning of dendritic and T cells in lymphoid organs, thereby contributing to several aspects of adaptive immunity and immune tolerance. In the present study, we investigated the role of CCR7 in the pathogenesis of collagen-induced arthritis (CIA). By using a novel anti-human CCR7 antibody and humanized CCR7 mice, we evaluated CCR7 as a target in this autoimmune model of rheumatoid arthritis (RA). Ccr7-deficient mice were completely resistant to CIA and presented severely impaired antibody responses to collagen II (CII). Selective CCR7 expression on dendritic cells restored arthritis severity and anti-CII antibody titers. Prophylactic and therapeutic treatment of humanized CCR7 mice with anti-human CCR7 mAb 8H3-16A12 led to complete resistance to CIA and halted CIA progression, respectively. Our data demonstrate that CCR7 signaling is essential for the induction of CIA and identify CCR7 as a potential therapeutic target in RA.
Collapse
Affiliation(s)
- Georgios L Moschovakis
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Michaela Friedrichsen
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Jasmin Ristenpart
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | | | - Christine S Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, IFB.Tx, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Elisabeth Kremmer
- Helmholtz-Zentrum München, Institute of Molecular Immunology, D-81377, Munich, Germany.,Biozentrum Martinsried, Dept. Bio II., LMU München, Grosshaderner Str. 2, D-82152, Martinsried, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
214
|
Bartsch YC, Rahmöller J, Mertes MMM, Eiglmeier S, Lorenz FKM, Stoehr AD, Braumann D, Lorenz AK, Winkler A, Lilienthal GM, Petry J, Hobusch J, Steinhaus M, Hess C, Holecska V, Schoen CT, Oefner CM, Leliavski A, Blanchard V, Ehlers M. Sialylated Autoantigen-Reactive IgG Antibodies Attenuate Disease Development in Autoimmune Mouse Models of Lupus Nephritis and Rheumatoid Arthritis. Front Immunol 2018; 9:1183. [PMID: 29928274 PMCID: PMC5997785 DOI: 10.3389/fimmu.2018.01183] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/11/2018] [Indexed: 01/08/2023] Open
Abstract
Pro- and anti-inflammatory effector functions of IgG antibodies (Abs) depend on their subclass and Fc glycosylation pattern. Accumulation of non-galactosylated (agalactosylated; G0) IgG Abs in the serum of rheumatoid arthritis and systemic lupus erythematosus (SLE) patients reflects severity of the diseases. In contrast, sialylated IgG Abs are responsible for anti-inflammatory effects of the intravenous immunoglobulin (pooled human serum IgG from healthy donors), administered in high doses (2 g/kg) to treat autoimmune patients. However, whether low amounts of sialylated autoantigen-reactive IgG Abs can also inhibit autoimmune diseases is hardly investigated. Here, we explore whether sialylated autoantigen-reactive IgG Abs can inhibit autoimmune pathology in different mouse models. We found that sialylated IgG auto-Abs fail to induce inflammation and lupus nephritis in a B cell receptor (BCR) transgenic lupus model, but instead are associated with lower frequencies of pathogenic Th1, Th17 and B cell responses. In accordance, the transfer of small amounts of immune complexes containing sialylated IgG Abs was sufficient to attenuate the development of nephritis. We further showed that administration of sialylated collagen type II (Col II)-specific IgG Abs attenuated the disease symptoms in a model of Col II-induced arthritis and reduced pathogenic Th17 cell and autoantigen-specific IgG Ab responses. We conclude that sialylated autoantigen-specific IgG Abs may represent a promising tool for treating pathogenic T and B cell immune responses in autoimmune diseases.
Collapse
Affiliation(s)
- Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Maria M M Mertes
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Susanne Eiglmeier
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Felix K M Lorenz
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Alexander D Stoehr
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Dominique Braumann
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.,Laboratory of Glycodesign and Glycoanalytics, Institute for Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - University Medicine Berlin, Berlin, Germany
| | - Alexandra K Lorenz
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - André Winkler
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Juliane Hobusch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Moritz Steinhaus
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Constanze Hess
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Vivien Holecska
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Carolin T Schoen
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Carolin M Oefner
- Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany
| | - Alexei Leliavski
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Véronique Blanchard
- Laboratory of Glycodesign and Glycoanalytics, Institute for Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - University Medicine Berlin, Berlin, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.,Laboratory of Tolerance and Autoimmunity, German Rheumatism Research Center, An Institute of the Leibniz Association, Berlin, Germany.,Airway Research Center North (ARCN), University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
215
|
Muñoz LE, Leppkes M, Fuchs TA, Hoffmann M, Herrmann M. Missing in action-The meaning of cell death in tissue damage and inflammation. Immunol Rev 2018; 280:26-40. [PMID: 29027227 DOI: 10.1111/imr.12569] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Billions of cells die every day in higher organisms as part of the normal process of tissue homeostasis. During special conditions like in development, acute infections, mechanical injuries, and immunity, cell death is a common denominator and it exerts profound effects in the outcome of these scenarios. To prevent the accumulation of aged, superfluous, infected, damaged and dead cells, professional phagocytes act in a rapid and efficient manner to clear the battle field and avoid spread of the destruction. Neutrophils are the most abundant effector immune cells that extravasate into tissues and can turn injured tissues into gory battle fields. In peace times, neutrophils tend to patrol tissues without provoking inflammatory reactions. We discuss in this review actual and forgotten knowledge about the meaning of cell death during homeostatic processes and drive the attention to the importance of the action of neutrophils during patrolling and for the maintenance or recovery of the homeostatic state once the organism gets attacked or injured, respectively. In this fashion, we disclose several disease conditions that arise as collateral damage of physiological responses to death.
Collapse
Affiliation(s)
- Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Department of Internal Medicine 1 - Gastroenterology, Pulmonology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias A Fuchs
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
216
|
Bösl K, Giambelluca M, Haug M, Bugge M, Espevik T, Kandasamy RK, Bergstrøm B. Coactivation of TLR2 and TLR8 in Primary Human Monocytes Triggers a Distinct Inflammatory Signaling Response. Front Physiol 2018; 9:618. [PMID: 29896111 PMCID: PMC5986927 DOI: 10.3389/fphys.2018.00618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/07/2018] [Indexed: 01/04/2023] Open
Abstract
Innate immune signaling is essential to mount a fast and specific immune response to pathogens. Monocytes and macrophages are essential cells in the early response in their capacity as ubiquitous phagocytic cells. They phagocytose microorganisms or damaged cells and sense pathogen/damage-associated molecular patterns (PAMPs/DAMPs) through innate receptors such as Toll-like receptors (TLRs). We investigated a phenomenon where co-signaling from TLR2 and TLR8 in human primary monocytes provides a distinct immune activation profile compared to signaling from either TLR alone. We compare gene signatures induced by either stimulus alone or together and show that co-signaling results in downstream differences in regulation of signaling and gene transcription. We demonstrate that these differences result in altered cytokine profiles between single and multi-receptor signaling, and show how it can influence both T-cell and neutrophil responses. The end response is tailored to combat extracellular pathogens, possibly by modifying the regulation of IFNβ and IL12-family cytokines.
Collapse
Affiliation(s)
- Korbinian Bösl
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miriam Giambelluca
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Markus Haug
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infection, St. Olav's University Hospital, Trondheim, Norway
| | - Marit Bugge
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard K Kandasamy
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarte Bergstrøm
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infection, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
217
|
Lilienthal GM, Rahmöller J, Petry J, Bartsch YC, Leliavski A, Ehlers M. Potential of Murine IgG1 and Human IgG4 to Inhibit the Classical Complement and Fcγ Receptor Activation Pathways. Front Immunol 2018; 9:958. [PMID: 29867943 PMCID: PMC5954034 DOI: 10.3389/fimmu.2018.00958] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023] Open
Abstract
IgG antibodies (Abs) mediate their effector functions through the interaction with Fcγ receptors (FcγRs) and the complement factors. The main IgG-mediated complement activation pathway is induced through the binding of complement C1q to IgG Abs. This interaction is dependent on antigen-dependent hexamer formation of human IgG1 and IgG3 to increase the affinity for the six-headed C1q molecule. By contrast, human IgG4 fails to bind to C1q. Instead, it has been suggested that human IgG4 can block IgG1 and IgG3 hexamerization required for their binding to C1q and activating the complement. Here, we show that murine IgG1, which functionally resembles human IgG4 by not interacting with C1q, inhibits the binding of IgG2a, IgG2b, and IgG3 to C1q in vitro, and suppresses IgG2a-mediated complement activation in a hemolytic assay in an antigen-dependent and IgG subclass-specific manner. From this perspective, we discuss the potential of murine IgG1 and human IgG4 to block the complement activation as well as suppressive effects of sialylated IgG subclass Abs on FcγR-mediated immune cell activation. Accumulating evidence suggests that both mechanisms seem to be responsible for preventing uncontrolled IgG (auto)Ab-induced inflammation in mice and humans. Distinct IgG subclass distributions and functionally opposite IgG Fc glycosylation patterns might explain different outcomes of IgG-mediated immune responses and provide new therapeutic options through the induction, enrichment, or application of antigen-specific sialylated human IgG4 to prevent complement and FcγR activation as well.
Collapse
Affiliation(s)
- Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany.,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Alexei Leliavski
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany.,Airway Research Center North (ARCN), University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
218
|
Engdahl C, Bondt A, Harre U, Raufer J, Pfeifle R, Camponeschi A, Wuhrer M, Seeling M, Mårtensson IL, Nimmerjahn F, Krönke G, Scherer HU, Forsblad-d'Elia H, Schett G. Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Res Ther 2018; 20:84. [PMID: 29720252 PMCID: PMC5932893 DOI: 10.1186/s13075-018-1586-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) preferentially affects women, with the peak incidence coinciding with estrogen decrease in menopause. Estrogen (E2) may therefore have intrinsic immune-regulatory properties that vanish with menopause. Fc sialylation is a crucial factor determining the inflammatory effector function of antibodies. We therefore analyzed whether E2 affects immunoglobulin G (IgG) sialylation. METHODS Postmenopausal (ovariectomized) mice were immunized with ovalbumin and treated with E2 or vehicle. Total and ovalbumin-specific IgG concentrations, sialylation, and Fcγ receptor expression were analyzed. Postmenopausal women with RA receiving hormone replacement therapy, including E2, or no treatment were analyzed for IgG sialylation. Furthermore, effects of E2 on the expression of the sialylation enzyme β-galactoside α2,6-sialyltransferase 1 (St6Gal1) were studied in mouse and human antibody-producing cells. RESULTS E2 treatment significantly increased Fc sialylation of total and ovalbumin-specific IgG in postmenopausal mice. Furthermore, E2 led to increased expression of inhibitory Fcγ receptor IIb on bone marrow leukocytes. Treatment with E2 also increased St6Gal1 expression in mouse and human antibody-producing cells, providing a mechanistic explanation for the increase in IgG-Fc sialylation. In postmenopausal women with RA, treatment with E2 significantly increased the Fc sialylation of IgG. CONCLUSIONS E2 induces anti-inflammatory effector functions in IgG by inducing St6Gal1 expression in antibody-producing cells and by increasing Fc sialylation. These observations provide a mechanistic explanation for the increased risk of RA in conditions with low estrogen levels such as menopause.
Collapse
Affiliation(s)
- Cecilia Engdahl
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany. .,Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden. .,Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Albert Bondt
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ulrike Harre
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jasmin Raufer
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - René Pfeifle
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Michaela Seeling
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Falk Nimmerjahn
- Institute of Genetics at the Department of Biology, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Helena Forsblad-d'Elia
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
219
|
Hauser B, Harre U. The Role of Autoantibodies in Bone Metabolism and Bone Loss. Calcif Tissue Int 2018; 102:522-532. [PMID: 29204673 DOI: 10.1007/s00223-017-0370-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Many autoimmune diseases are associated with deranged bone metabolism. The resulting localized or systemic bone loss can compromise the quality of life of patients by causing local bone deformities or fragility fractures. There is emerging evidence that antibodies have a direct impact on key players of bone homeostasis, in particular osteoclasts. Clinical and pre-clinical studies provide insight into the function of autoantibodies related to Rheumatoid Arthritis (rheumatoid factor, anti-citrullinated protein antibodies, and anti-carbamylated protein antibodies) and their inflammation-independent interaction with bone cells. Furthermore, we summarize the current knowledge about neutralizing antibodies to the antiresorptive protein osteoprotegerin, which have been described in patients with Coeliac Disease, Rheumatoid Arthritis, and Spondyloarthritis.
Collapse
Affiliation(s)
- Barbara Hauser
- Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ulrike Harre
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
220
|
Hofmann K, Clauder AK, Manz RA. Targeting B Cells and Plasma Cells in Autoimmune Diseases. Front Immunol 2018; 9:835. [PMID: 29740441 PMCID: PMC5924791 DOI: 10.3389/fimmu.2018.00835] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/05/2018] [Indexed: 12/29/2022] Open
Abstract
Success with B cell depletion using rituximab has proven the concept that B lineage cells represent a valid target for the treatment of autoimmune diseases, and has promoted the development of other B cell targeting agents. Present data confirm that B cell depletion is beneficial in various autoimmune disorders and also show that it can worsen the disease course in some patients. These findings suggest that B lineage cells not only produce pathogenic autoantibodies, but also significantly contribute to the regulation of inflammation. In this review, we will discuss the multiple pro- and anti-inflammatory roles of B lineage cells play in autoimmune diseases, in the context of recent findings using B lineage targeting therapies.
Collapse
Affiliation(s)
- Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| |
Collapse
|
221
|
Lloyd KA, Steen J, Amara K, Titcombe PJ, Israelsson L, Lundström SL, Zhou D, Zubarev RA, Reed E, Piccoli L, Gabay C, Lanzavecchia A, Baeten D, Lundberg K, Mueller DL, Klareskog L, Malmström V, Grönwall C. Variable domain N-linked glycosylation and negative surface charge are key features of monoclonal ACPA: Implications for B-cell selection. Eur J Immunol 2018. [PMID: 29512823 DOI: 10.1002/eji.201747446] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autoreactive B cells have a central role in the pathogenesis of rheumatoid arthritis (RA), and recent findings have proposed that anti-citrullinated protein autoantibodies (ACPA) may be directly pathogenic. Herein, we demonstrate the frequency of variable-region glycosylation in single-cell cloned mAbs. A total of 14 ACPA mAbs were evaluated for predicted N-linked glycosylation motifs in silico, and compared to 452 highly-mutated mAbs from RA patients and controls. Variable region N-linked motifs (N-X-S/T) were strikingly prevalent within ACPA (100%) compared to somatically hypermutated (SHM) RA bone marrow plasma cells (21%), and synovial plasma cells from seropositive (39%) and seronegative RA (7%). When normalized for SHM, ACPA still had significantly higher frequency of N-linked motifs compared to all studied mAbs including highly mutated HIV broadly-neutralizing and malaria-associated mAbs. The Fab glycans of ACPA-mAbs were highly sialylated, contributed to altered charge, but did not influence antigen binding. The analysis revealed evidence of unusual B-cell selection pressure and SHM-mediated decrease in surface charge and isoelectric point in ACPA. It is still unknown how these distinct features of anti-citrulline immunity may have an impact on pathogenesis. However, it is evident that they offer selective advantages for ACPA+ B cells, possibly through non-antigen driven mechanisms.
Collapse
Affiliation(s)
- Katy A Lloyd
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Johanna Steen
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Khaled Amara
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Philip J Titcombe
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden.,The Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lena Israelsson
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Susanna L Lundström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Diana Zhou
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Evan Reed
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Cem Gabay
- Division of Rheumatology, University Hospitals of Geneva, Geneva, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Dominique Baeten
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karin Lundberg
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Daniel L Mueller
- The Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lars Klareskog
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Vivianne Malmström
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Caroline Grönwall
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
222
|
Jones MB. IgG and leukocytes: Targets of immunomodulatory α2,6 sialic acids. Cell Immunol 2018; 333:58-64. [PMID: 29685495 DOI: 10.1016/j.cellimm.2018.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/30/2018] [Indexed: 12/27/2022]
Abstract
ST6Gal1 is a critical sialyltransferase enzyme that controls the addition of α2,6-linked sialic acids to the termini of glycans. Attachment of sialic acids to glycoproteins as a posttranslational modification influences cellular responses, and is a well-known modifier of immune cell behavior. ST6Gal1 activity impacts processes such as: effector functions of immunoglobulin G via Fc sialylation, hematopoietic capacity by hematopoietic stem and progenitor cell surface sialylation, and lymphocyte activation thresholds though CD22 engagement and inhibition of galectins. This review summarizes recent studies that suggest α2,6 sialylation by ST6Gal1 has an immunoregulatory effect on immune reactions.
Collapse
Affiliation(s)
- Mark B Jones
- Case Western Reserve University, School of Medicine, Department of Pathology, Cleveland, OH 44106, United States.
| |
Collapse
|
223
|
Gudelj I, Salo PP, Trbojević-Akmačić I, Albers M, Primorac D, Perola M, Lauc G. Low galactosylation of IgG associates with higher risk for future diagnosis of rheumatoid arthritis during 10 years of follow-up. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2034-2039. [PMID: 29572115 DOI: 10.1016/j.bbadis.2018.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Antibodies are known to have an important role in the development of rheumatoid arthritis (RA), one of the most prevalent chronic inflammatory diseases which primarily involves the joints. Most RA patients develop autoantibodies against immunoglobulin G (IgG) and changes in IgG glycosylation have been associated with RA. We undertook this study to determine whether altered IgG glycosylation precedes the disease diagnosis. We studied IgG glycosylation in RA in two prospective cohorts (N = 14,749) by measuring 28 IgG glycan traits in 179 subjects who developed RA within 10-years follow-up and 358 matched controls. Ultra-performance liquid chromatography method based on hydrophilic interactions (HILIC-UPLC) was used to analyse IgG glycans. Future RA diagnosis associated with traits related to lower galactosylation and sialylation of IgG when comparing the cases to the matched controls. In RA cases, these traits did not correlate with the time between being recruited to the study and being diagnosed with RA (median time 4.31 years). The difference in IgG glycosylation was relatively stable and present years before diagnosis. This indicates that long-acting factors affecting IgG glycome composition are among the underlying mechanisms of RA and that decreased galactosylation is a pre-existing risk factor involved in the disease development.
Collapse
Affiliation(s)
- Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Perttu P Salo
- National Institute for Health and Welfare, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | | | - Malena Albers
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Dragan Primorac
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; St. Catherine Specialty Hospital, Zabok, Zagreb, Croatia; JJ Strossmayer University of Osijek, School of Medicine, Osijek, Croatia; University of Split, School of Medicine, Split, Croatia; Eberly College of Science, The Pennsylvania State University, University Park, PA, USA; Children's Hospital Srebrnjak, Zagreb, Croatia
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland; Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland; University of Tartu, Estonian Genome Center, Tartu, Estonia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia; University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
| |
Collapse
|
224
|
Malkiel S, Barlev AN, Atisha-Fregoso Y, Suurmond J, Diamond B. Plasma Cell Differentiation Pathways in Systemic Lupus Erythematosus. Front Immunol 2018; 9:427. [PMID: 29556239 PMCID: PMC5845388 DOI: 10.3389/fimmu.2018.00427] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023] Open
Abstract
Plasma cells (PCs) are responsible for the production of protective antibodies against infectious agents but they also produce pathogenic antibodies in autoimmune diseases, such as systemic lupus erythematosus (SLE). Traditionally, high affinity IgG autoantibodies are thought to arise through germinal center (GC) responses. However, class switching and somatic hypermutation can occur in extrafollicular (EF) locations, and this pathway has also been implicated in SLE. The pathway from which PCs originate may determine several characteristics, such as PC lifespan and sensitivity to therapeutics. Although both GC and EF responses have been implicated in SLE, we hypothesize that one of these pathways dominates in each individual patient and genetic risk factors may drive this predominance. While it will be important to distinguish polymorphisms that contribute to a GC-driven or EF B cell response to develop targeted treatments, the challenge will be not only to identify the differentiation pathway but the molecular mechanisms involved. In B cells, this task is complicated by the cross-talk between the B cell receptor, toll-like receptors (TLR), and cytokine signaling molecules, which contribute to both GC and EF responses. While risk variants that affect the function of dendritic cells and T follicular helper cells are likely to primarily influence GC responses, it will be important to discover whether some risk variants in the interferon and TLR pathways preferentially influence EF responses. Identifying the pathways of autoreactive PC differentiation in SLE may help us to understand patient heterogeneity and thereby guide precision therapy.
Collapse
Affiliation(s)
- Susan Malkiel
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ashley N Barlev
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Yemil Atisha-Fregoso
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Tecnologico de Monterrey, Monterrey, Mexico
| | - Jolien Suurmond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
225
|
Scherer HU, Huizinga TWJ, Krönke G, Schett G, Toes REM. The B cell response to citrullinated antigens in the development of rheumatoid arthritis. Nat Rev Rheumatol 2018; 14:157-169. [DOI: 10.1038/nrrheum.2018.10] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
226
|
Bozec A, Luo Y, Engdahl C, Figueiredo C, Bang H, Schett G. Abatacept blocks anti-citrullinated protein antibody and rheumatoid factor mediated cytokine production in human macrophages in IDO-dependent manner. Arthritis Res Ther 2018; 20:24. [PMID: 29415763 PMCID: PMC5803926 DOI: 10.1186/s13075-018-1527-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/25/2018] [Indexed: 02/05/2023] Open
Abstract
Background The anti-inflammatory effect of abatacept is most pronounced in patients with high-titer autoantibodies (including anticitrullinated protein antibodies [ACPA] and rheumatoid factor [RF]). Considering that autoantibodies trigger inflammatory cytokine production by monocytes and that abatacept binds to monocytes, influencing their functional state, we hypothesized that abatacept may effectively inhibit the production of several different cytokines by ACPA- or RF-challenged monocytes. Methods Peripheral blood CD68+ monocytes stimulated with macrophage colony-stimulating factor for 24 h were exposed to random immunoglobulin G alone (negative control), purified ACPA, purified RF, or lipopolysaccharide (positive control) in cell culture plates coated with citrullinated vimentin (to allow ACPA immune complex formation). Stimulations were done in the presence or absence of abatacept or tumor necrosis factor (TNF) antibody (adalimumab) with or without indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan. Supernatants were analyzed for key proinflammatory cytokines TNF-α, interleukin (IL)-1β, IL-6, IL-8, and chemokine (C-C motif) ligand 2 (CCL2) after 24 h. Results Exposure to ACPA or RF significantly induced the production of TNF-α (20-fold and 27-fold, respectively), IL-1β (each 4-fold), IL-6 (12-fold and 11-fold, respectively), IL-8 (43-fold and 30-fold, respectively), and CCL2 (each 4-fold) in human monocytes. Abatacept inhibited this autoantibody-mediated upregulation of cytokines, reducing TNF-α by > 75%, IL-1β by > 65%, IL-6 and IL-8 by > 80%, and CCL2 by > 60%. In contrast, a TNF inhibitor did not influence autoantibody-induced proinflammatory cytokine production. IDO inhibition reversed the effect of abatacept and again permitted the induction of cytokine production by ACPA and RF. Conclusions These data show that abatacept interferes with autoantibody-mediated cytokine production by monocytes through induction of IDO. This inhibitory effect on the production of several effector cytokines in RA may explain the fast anti-inflammatory effect of abatacept as well as its preferential efficacy in patients with high-titer ACPA and RF.
Collapse
Affiliation(s)
- Aline Bozec
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Ulmenweg 18, 91054, Erlangen, Germany
| | - Yubin Luo
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Ulmenweg 18, 91054, Erlangen, Germany.,Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Cecilia Engdahl
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Ulmenweg 18, 91054, Erlangen, Germany
| | - Camille Figueiredo
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Ulmenweg 18, 91054, Erlangen, Germany.,Division of Rheumatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Georg Schett
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
227
|
Verstappen GM, Corneth OB, Bootsma H, Kroese FG. Th17 cells in primary Sjögren's syndrome: Pathogenicity and plasticity. J Autoimmun 2018; 87:16-25. [DOI: 10.1016/j.jaut.2017.11.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
|
228
|
Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun 2018; 87:69-81. [DOI: 10.1016/j.jaut.2017.12.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022]
|
229
|
Pagan JD, Kitaoka M, Anthony RM. Engineered Sialylation of Pathogenic Antibodies In Vivo Attenuates Autoimmune Disease. Cell 2018; 172:564-577.e13. [PMID: 29275858 PMCID: PMC5849077 DOI: 10.1016/j.cell.2017.11.041] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
Self-reactive IgGs contribute to the pathology of autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. Paradoxically, IgGs are used to treat inflammatory diseases in the form of high-dose intravenous immunoglobulin (IVIG). Distinct glycoforms on the IgG crystallizable fragment (Fc) dictate these divergent functions. IgG anti-inflammatory activity is attributed to sialylation of the Fc glycan. We therefore sought to convert endogenous IgG to anti-inflammatory mediators in vivo by engineering solubilized glycosyltransferases that attach galactose or sialic acid. When both enzymes were administered in a prophylactic or therapeutic fashion, autoimmune inflammation was markedly attenuated in vivo. The enzymes worked through a similar pathway to IVIG, requiring DC-SIGN, STAT6 signaling, and FcγRIIB. Importantly, sialylation was highly specific to pathogenic IgG at the site of inflammation, driven by local platelet release of nucleotide-sugar donors. These results underscore the therapeutic potential of glycoengineering in vivo.
Collapse
Affiliation(s)
- Jose D Pagan
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Maya Kitaoka
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
230
|
Dahdah A, Habir K, Nandakumar KS, Saxena A, Xu B, Holmdahl R, Malin S. Germinal Center B Cells Are Essential for Collagen-Induced Arthritis. Arthritis Rheumatol 2018; 70:193-203. [PMID: 29045049 DOI: 10.1002/art.40354] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is considered to be a prototypical autoimmune disorder. Several mechanisms have been proposed for the known pathologic function of B cells in RA, including antigen presentation, cytokine secretion, and humoral immunity. The aim of this study was to address the function of B lymphocytes in experimental arthritis. METHODS We mapped the adaptive immune response following collagen-induced arthritis (CIA). We subsequently monitored these responses and disease outcomes in genetically modified mouse strains that lack mature B cell or germinal center (GC) functionality in a B cell-intrinsic manner. RESULTS Following primary immunization, the draining lymph nodes broadly reacted against type II collagen (CII) with the formation of GCs and T cell activation. Mice that lacked mature B cell function were fully protected against CIA and had a severely attenuated ability to mount isotype-switched humoral immune responses against CII. Almost identical results were observed in mice that were selectively deficient in GC responses. Importantly, GC-deficient mice were fully susceptible to collagen antibody-induced arthritis. CONCLUSION We identified GC formation and anticollagen antibody production as the key pathogenic functions of B cells in CIA. The role of B cells in RA is likely to be more complex. However, targeting the GC reaction could allow for therapeutic interventions that are more refined than general B cell depletion.
Collapse
Affiliation(s)
- Albert Dahdah
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Habir
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden, and Southern Medical University, Guangzhou, China
| | - Amit Saxena
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bingze Xu
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Stephen Malin
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
231
|
Razawy W, van Driel M, Lubberts E. The role of IL-23 receptor signaling in inflammation-mediated erosive autoimmune arthritis and bone remodeling. Eur J Immunol 2018; 48:220-229. [PMID: 29148561 PMCID: PMC5838536 DOI: 10.1002/eji.201646787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/10/2017] [Indexed: 12/15/2022]
Abstract
The IL‐23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL‐23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL‐23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL‐23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation‐mediated joint erosion, IL‐23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL‐23 in autoimmune arthritis in patients and murine models, and provide an overview of IL‐23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL‐23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation‐mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis.
Collapse
Affiliation(s)
- Wida Razawy
- Department of Rheumatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marjolein van Driel
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
232
|
Molendijk M, Hazes JM, Lubberts E. From patients with arthralgia, pre-RA and recently diagnosed RA: what is the current status of understanding RA pathogenesis? RMD Open 2018; 4:e000256. [PMID: 29480896 PMCID: PMC5822638 DOI: 10.1136/rmdopen-2016-000256] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 01/01/2023] Open
Abstract
It is believed that therapy for rheumatoid arthritis (RA) is the most effective and beneficial within a short time frame around RA diagnosis. This insight has caused a shift from research in patients with established RA to patients at risk of developing RA and recently diagnosed patients. It is important for improvement of RA therapy to understand when and what changes occur in patients developing RA. This is true for both seropositive and seronegative patients. Activation of the immune system as presented by autoantibodies, increased cytokine and chemokine production, and alterations within several immune cells occur during RA development. In this review we describe RA pathogenesis with a focus on knowledge obtained from patients with arthralgia, pre-RA and recently diagnosed RA. Connections are proposed between altered immune cells, cytokines and chemokines, and events like synovial hyperplasia, pain and bone damage.
Collapse
Affiliation(s)
- Marlieke Molendijk
- Department of Rheumatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Johanna Mw Hazes
- Department of Rheumatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
233
|
|
234
|
Strle K, Sulka KB, Pianta A, Crowley JT, Arvikar SL, Anselmo A, Sadreyev R, Steere AC. T-Helper 17 Cell Cytokine Responses in Lyme Disease Correlate With Borrelia burgdorferi Antibodies During Early Infection and With Autoantibodies Late in the Illness in Patients With Antibiotic-Refractory Lyme Arthritis. Clin Infect Dis 2017; 64:930-938. [PMID: 28077518 DOI: 10.1093/cid/cix002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/04/2017] [Indexed: 01/17/2023] Open
Abstract
Background Control of Lyme disease is attributed predominantly to innate and adaptive T-helper 1 cell (TH1) immune responses, whereas the role of T-helper 17 cell (TH17) responses is less clear. Here we characterized these inflammatory responses in patients with erythema migrans (EM) or Lyme arthritis (LA) to elucidate their role early and late in the infection. Methods Levels of 21 cytokines and chemokines, representative of innate, TH1, and TH17 immune responses, were assessed by Luminex in acute and convalescent sera from 91 EM patients, in serum and synovial fluid from 141 LA patients, and in serum from 57 healthy subjects. Antibodies to Borrelia burgdorferi or autoantigens were measured by enzyme-linked immunosorbent assay. Results Compared with healthy subjects, EM patients had significantly higher levels of innate, TH1, and TH17-associated mediators (P ≤ .05) in serum. In these patients, the levels of inflammatory mediators, particularly TH17-associated cytokines, correlated directly with B. burgdorferi immunoglobulin G antibodies (P ≤ .02), suggesting a beneficial role for these responses in control of early infection. Late in the disease, in patients with LA, innate and TH1-associated mediators were often >10-fold higher in synovial fluid than serum. In contrast, the levels of TH17-associated mediators were more variable, but correlated strongly with autoantibodies to endothelial cell growth factor, matrix metalloproteinase 10, and apolipoprotein B-100 in joints of patients with antibiotic-refractory LA, implying a shift in TH17 responses toward an autoimmune phenotype. Conclusions Patients with Lyme disease often develop pronounced TH17 immune responses that may help control early infection. However, late in the disease, excessive TH17 responses may be disadvantageous by contributing to autoimmune responses associated with antibiotic-refractory LA.
Collapse
Affiliation(s)
- Klemen Strle
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, and
| | - Katherine B Sulka
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, and
| | - Annalisa Pianta
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, and
| | - Jameson T Crowley
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, and
| | - Sheila L Arvikar
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, and
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Allen C Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, and
| |
Collapse
|
235
|
Antipurinergic therapy for autism-An in-depth review. Mitochondrion 2017; 43:1-15. [PMID: 29253638 DOI: 10.1016/j.mito.2017.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
Are the symptoms of autism caused by a treatable metabolic syndrome that traces to the abnormal persistence of a normal, alternative functional state of mitochondria? A small clinical trial published in 2017 suggests this is possible. Based on a new unifying theory of pathogenesis for autism called the cell danger response (CDR) hypothesis, this study of 10 boys, ages 5-14years, showed that all 5 boys who received antipurinergic therapy (APT) with a single intravenous dose of suramin experienced improvements in all the core symptoms of autism that lasted for 5-8weeks. Language, social interaction, restricted interests, and repetitive movements all improved. Two children who were non-verbal spoke their first sentences. None of these improvements were observed in the placebo group. Larger and longer studies are needed to confirm this promising discovery. This review introduces the concept of M2 (anti-inflammatory) and M1 (pro-inflammatory) mitochondria that are polarized along a functional continuum according to cell stress. The pathophysiology of the CDR, the complementary functions of M1 and M2 mitochondria, relevant gene-environment interactions, and the metabolic underpinnings of behavior are discussed as foundation stones for understanding the improvements in ASD behaviors produced by antipurinergic therapy in this small clinical trial.
Collapse
|
236
|
Benson RA, McInnes IB, Garside P, Brewer JM. Model answers: Rational application of murine models in arthritis research. Eur J Immunol 2017; 48:32-38. [PMID: 29193037 PMCID: PMC5814907 DOI: 10.1002/eji.201746938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022]
Abstract
Advances in targeted immune therapeutics have profoundly improved clinical outcomes for patients with inflammatory arthropathies particularly rheumatoid arthritis. The landscape of disease that is observed and the treatment outcomes desired for the future have also progressed. As such there is an increasing move away from traditional models of end‐stage, chronic disease with recognition of the need to consider the earliest phases of pathogenesis as a target for treatment leading to resolution and/or cure. In order to continue the discovery process and enhance our understanding of disease and treatment, we therefore need to continuously revisit the animal models we employ and assess their relevance and utility in the light of contemporary therapeutic goals. In this review, we highlight the areas where we consider new developments in animal models and their application are most required. Thus, we have contextualised the relevant mouse models and their use within the current concepts of human inflammatory arthritis pathogenesis and highlight areas of need.
Collapse
Affiliation(s)
- Robert A Benson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| | - Paul Garside
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| |
Collapse
|
237
|
Cheng HD, Stöckmann H, Adamczyk B, McManus CA, Ercan A, Holm IA, Rudd PM, Ackerman ME, Nigrovic PA. High-throughput characterization of the functional impact of IgG Fc glycan aberrancy in juvenile idiopathic arthritis. Glycobiology 2017; 27:1099-1108. [PMID: 28973482 PMCID: PMC5881781 DOI: 10.1093/glycob/cwx082] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 12/19/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) encompasses all forms of chronic idiopathic arthritis that arise before age 16. Previous studies have found JIA to be associated with lower Fc galactosylation of circulating IgG, but the overall spectrum of glycan changes and the net impact on IgG function are unknown. Using ultra performance liquid chromatography (UPLC), we compared IgG glycosylation in 54 subjects with recent-onset untreated JIA with 98 healthy pediatric controls, paired to biophysical profiling of affinity for 20 IgG receptors using a high-throughput multiplexed microsphere assay. Patients with JIA exhibited an increase in hypogalactosylated and hyposialylated IgG glycans, but no change in fucosylation or bisection, together with alteration in the spectrum of IgG ligand binding. Supervised machine learning demonstrated a robust capacity to discriminate JIA subjects from controls using either glycosylation or binding data. The binding signature was driven predominantly by enhanced affinity for Fc receptor like protein 5 (FcRL5), a noncanonical Fc receptor expressed on B cells. Affinity for FcRL5 correlated inversely with galactosylation and sialylation, a relationship confirmed through enzymatic manipulation. These results demonstrate the capacity of combined structural and biophysical IgG phenotyping to define the overall functional impact of IgG glycan changes and implicate FcRL5 as a potential cellular sensor of IgG glycosylation.
Collapse
Affiliation(s)
- Hao D Cheng
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, 03755 NH, USA
| | - Henning Stöckmann
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Barbara Adamczyk
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Ciara A McManus
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Altan Ercan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ingrid A Holm
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
| | - Pauline M Rudd
- NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland
| | - Margaret E Ackerman
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, 03755 NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, 03755 NH, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
238
|
Schett G. The role of ACPAs in at-risk individuals: Early targeting of the bone and joints. Best Pract Res Clin Rheumatol 2017; 31:53-58. [PMID: 29221598 DOI: 10.1016/j.berh.2017.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
Autoimmunity precedes inflammation in patients with rheumatoid arthritis (RA), opening the possibility to search for early changes in the tissue preceding the onset of systemic inflammation. Autoantibodies are important and early drivers of bone damage in RA. This article summarizes current evidence for the role of RA-related autoantibodies in mediating bone loss. Rheumatoid factor (RF) and antibodies recognizing modified (citrullinated) proteins have been used as diagnostic markers for RA over many years. Their role as pathogenic players, however, has long been unrecognized. Recently, several pieces of evidence suggested that bone-resorbing osteoclasts are highly responsive to RA-related autoantibodies, providing a novel association between autoimmunity and bone. These developments have allowed the unraveling of the underlying mechanisms, which are responsible for the well-known clinical observation that anti-citrullinated protein antibodies and RF are associated with a more severe disease course. Furthermore, these mechanisms also explain the onset of inflammation in the joints of RA patients.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Erlangen, Germany.
| |
Collapse
|
239
|
Bosseboeuf A, Allain-Maillet S, Mennesson N, Tallet A, Rossi C, Garderet L, Caillot D, Moreau P, Piver E, Girodon F, Perreault H, Brouard S, Nicot A, Bigot-Corbel E, Hermouet S, Harb J. Pro-inflammatory State in Monoclonal Gammopathy of Undetermined Significance and in Multiple Myeloma Is Characterized by Low Sialylation of Pathogen-Specific and Other Monoclonal Immunoglobulins. Front Immunol 2017; 8:1347. [PMID: 29098000 PMCID: PMC5653692 DOI: 10.3389/fimmu.2017.01347] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma (MM) and its pre-cancerous stage monoclonal gammopathy of undetermined significance (MGUS) allow to study immune responses and the chronology of inflammation in the context of blood malignancies. Both diseases are characterized by the production of a monoclonal immunoglobulin (mc Ig) which for subsets of MGUS and MM patients targets pathogens known to cause latent infection, a major cause of inflammation. Inflammation may influence the structure of both polyclonal (pc) Ig and mc Ig produced by malignant plasma cells via the sialylation of Ig Fc fragment. Here, we characterized the sialylation of purified mc and pc IgGs from 148 MGUS and MM patients, in comparison to pc IgGs from 46 healthy volunteers. The inflammatory state of patients was assessed by the quantification in serum of 40 inflammation-linked cytokines, using Luminex technology. While pc IgGs from MGUS and MM patients showed heterogeneity in sialylation level, mc IgGs from both MGUS and MM patients exhibited a very low level of sialylation. Furthermore, mc IgGs from MM patients were less sialylated than mc IgGs from MGUS patients (p < 0.01), and mc IgGs found to target an infectious pathogen showed a lower level of sialylation than mc IgGs of undetermined specificity (p = 0.048). Regarding inflammation, 14 cytokines were similarly elevated with a p value < 0.0001 in MGUS and in MM compared to healthy controls. MM differed from MGUS by higher levels of HGF, IL-11, RANTES and SDF-1-α (p < 0.05). MGUS and MM patients presenting with hyposialylated pc IgGs had significantly higher levels of HGF, IL-6, tumor necrosis factor-α, TGF-β1, IL-17, and IL-33 compared to patients with hyper-sialylated pc IgGs (p < 0.05). In MGUS and in MM, the degree of sialylation of mc and pc IgGs and the levels of four cytokines important for the anti-microbial response were correlated, either positively (IFN-α2, IL-13) or negatively (IL-17, IL-33). Thus in MGUS as in MM, hyposialylation of mc IgGs is concomitant with increased levels of cytokines that play a major role in inflammation and anti-microbial response, which implies that infection, inflammation, and abnormal immune response contribute to the pathogenesis of MGUS and MM.
Collapse
Affiliation(s)
- Adrien Bosseboeuf
- CRCINA, INSERM, Institut de Recherche en Santé 2 (IRS-2), Université de Nantes, Nantes, France
| | - Sophie Allain-Maillet
- CRCINA, INSERM, Institut de Recherche en Santé 2 (IRS-2), Université de Nantes, Nantes, France
| | - Nicolas Mennesson
- CRCINA, INSERM, Institut de Recherche en Santé 2 (IRS-2), Université de Nantes, Nantes, France
| | - Anne Tallet
- Laboratoire de Biochimie, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Cédric Rossi
- Clinical Hematology, Centre Hospitalier Universitaire De Dijon, Dijon, France
| | - Laurent Garderet
- UMRS938, INSERM Institut National de la Santé et de la Recherche Médicale, Paris, France.,Département d'Hématologie et de Thérapie Cellulaire, Hôpital Saint Antoine, Paris, France.,UPMC Université Paris 6, Sorbonne Universités, Paris, France
| | - Denis Caillot
- Clinical Hematology, Centre Hospitalier Universitaire De Dijon, Dijon, France
| | - Philippe Moreau
- Hematology Department, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Eric Piver
- Laboratoire de Biochimie, Centre Hospitalier Universitaire de Tours, Tours, France.,UMR966, INSERM Institut National de la Santé et de la Recherche Médicale, Tours, France
| | - François Girodon
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire De Dijon, Dijon, France
| | - Hélène Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Nantes, France
| | - Arnaud Nicot
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Nantes, France
| | - Edith Bigot-Corbel
- CRCINA, INSERM, Institut de Recherche en Santé 2 (IRS-2), Université de Nantes, Nantes, France.,Laboratoire de Biochimie, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France.,Faculté de Pharmacie, Université de Nantes, Nantes, France
| | - Sylvie Hermouet
- CRCINA, INSERM, Institut de Recherche en Santé 2 (IRS-2), Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Jean Harb
- CRCINA, INSERM, Institut de Recherche en Santé 2 (IRS-2), Université de Nantes, Nantes, France.,Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Nantes, France.,Laboratoire de Biochimie, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France
| |
Collapse
|
240
|
Le Rouzic O, Pichavant M, Frealle E, Guillon A, Si-Tahar M, Gosset P. Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations. Eur Respir J 2017; 50:1602434. [PMID: 29025886 DOI: 10.1183/13993003.02434-2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/14/2017] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways caused mainly by cigarette smoke exposure. COPD progression is marked by exacerbations of the disease, often associated with infections. Recent data show the involvement in COPD pathophysiology of interleukin (IL)-17 and IL-22, two cytokines that are important in the control of lung inflammation and infection. During the initiation and progression of the disease, increased IL-17 secretion causes neutrophil recruitment, leading to chronic inflammation, airways obstruction and emphysema. In the established phase of COPD, a defective IL-22 response facilitates pathogen-associated infections and disease exacerbations. Altered production of these cytokines involves a complex network of immune cells and dysfunction of antigen-presenting cells. In this review, we describe current knowledge on the involvement of IL-17 and IL-22 in COPD pathophysiology at steady state and during exacerbations, and discuss implications for COPD management and future therapeutic approaches.
Collapse
Affiliation(s)
- Olivier Le Rouzic
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
- Service de Pneumologie Immunologie et Allergologie, CHU Lille, Lille, France
| | - Muriel Pichavant
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Emilie Frealle
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
- Laboratoire de Parasitologie et Mycologie Médicale, CHU Lille, Lille, France
| | - Antoine Guillon
- Service de Réanimation Polyvalente, CHRU de Tours, Tours, France
- Inserm, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- Inserm, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université François Rabelais, Tours, France
| | - Philippe Gosset
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
241
|
Abstract
Rheumatoid arthritis (RA) is a chronic immunoinflammatory (autoimmune) disease manifested by progressive joint destruction, systemic inflammation of the internal organs, and a wide range of comorbidities associated with chronic inflammation and frequently with adverse drug reactions. However, despite the major advances in the early diagnosis and treatment of RA, which have led to the radical improvement of prognosis in many patients, the problem of pharmacotherapy for RA is far from being solved. This is determined by a lack of sensitive and specific diagnostic and prognostic biomarkers in the early stage of the disease and, most importantly, by the heterogeneity of immunopathogenesis mechanisms in both at the onset of RA and during its progression, which make the personalization of therapy difficult in the patients. Selective block of inflammatory mediators with innovative medicines is frequently associated with primary inefficiency, secondary drug resistance, the development of generalized immunosuppression, the paradoxical activation of an autoimmune process, and the aggravation of comorbidities. At the same time, it is difficult to search for new RA pharmacotherapy targets since the nature of immunopathological disorders in patients can be substantially different from the inflammatory process that takes place when simulating arthritis in laboratory animals. The paper discusses the novel drugs that are used in rheumatology to treat RA or tested in different phases of preclinical or clinical trials, such as tumor necrosis factor-α inhibitors, interleukin-6 (IL-6), IL-17, anti-B cell therapy, bispecific antibodies, blockers of JAK (and other signaling molecules), bioelectronic vagus nerve activation, dendritic cell-based immunotherapy, and other therapies, as well as approaches to secondary prevention of RA in patients with undifferentiated arthritis and clinically suspect arthralgia, who are at high risk for RA. Decoding the mechanisms underlying the pathogenesis of RA and a chronic inflammatory process as a whole has created preconditions for the design of novel medications for the prevention and treatment of this disease, the introduction of which into clinical practice should lead to a radical improvement of prognosis in this disease.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology
I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| |
Collapse
|
242
|
Lv M, Miao J, Zhao P, Luo X, Han Q, Wu Z, Zhang K, Zhu P. CD147-mediated chemotaxis of CD4+CD161+ T cells may contribute to local inflammation in rheumatoid arthritis. Clin Rheumatol 2017; 37:59-66. [DOI: 10.1007/s10067-017-3800-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/24/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
|
243
|
Abstract
In healthy individuals, metabolically quiescent T cells survey lymph nodes and peripheral tissues in search of cognate antigens. During infection, T cells that encounter cognate antigens are activated and - in a context-specific manner - proliferate and/or differentiate to become effector T cells. This process is accompanied by important changes in cellular metabolism (known as metabolic reprogramming). The magnitude and spectrum of metabolic reprogramming as it occurs in T cells in the context of acute infection ensure host survival. By contrast, altered T cell metabolism, and hence function, is also observed in various disease states, in which T cells actively contribute to pathology. In this Review, we introduce the idea that the spectrum of immune cell metabolic states can provide a basis for categorizing human diseases. Specifically, we first summarize the metabolic and interlinked signalling requirements of T cells responding to acute infection. We then discuss how metabolic reprogramming of T cells is linked to disease.
Collapse
|
244
|
Seeling M, Brückner C, Nimmerjahn F. Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity? Nat Rev Rheumatol 2017; 13:621-630. [DOI: 10.1038/nrrheum.2017.146] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
245
|
Falkenburg WJJ, van Schaardenburg D. Evolution of autoantibody responses in individuals at risk of rheumatoid arthritis. Best Pract Res Clin Rheumatol 2017; 31:42-52. [PMID: 29221597 DOI: 10.1016/j.berh.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Abstract
Autoantibodies such as rheumatoid factors (RFs), anti-citrullinated protein antibodies (ACPAs), and other anti-modified protein antibodies are important risk factors for the development of rheumatoid arthritis (RA) and probably play an important role in its pathogenesis. In the phase before clinical arthritis becomes apparent, different autoantibody responses can evolve because of increases in their level, isotype switching, affinity maturation, epitope spreading, and a changing glycosylation profile. This evolution may be crucial for the pathogenic properties of the autoantibody responses, and interfering with this process in individuals at risk may become a route to prevent RA. Recent data suggest that interactions between RFs and ACPAs further amplify their inflammatory potential.
Collapse
Affiliation(s)
- Willem J J Falkenburg
- Amsterdam Rheumatology and Immunology Center, Reade, Doctor Jan van Breemenstraat 2, 1056 AB Amsterdam, The Netherlands; Department of Immunopathology, Sanquin Research, PO Box 9892, 1006 AN Amsterdam, The Netherlands.
| | - Dirkjan van Schaardenburg
- Amsterdam Rheumatology and Immunology Center, Reade, Doctor Jan van Breemenstraat 2, 1056 AB Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center, Academic Medical Center, PO Box 22660, 1100 DD, Amsterdam, The Netherlands
| |
Collapse
|
246
|
Engdahl C, Bang H, Dietel K, Lang SC, Harre U, Schett G. Periarticular Bone Loss in Arthritis Is Induced by Autoantibodies Against Citrullinated Vimentin. J Bone Miner Res 2017; 32:1681-1691. [PMID: 28425620 DOI: 10.1002/jbmr.3158] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/09/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022]
Abstract
Periarticular bone loss is a long known but yet insufficiently understood phenomenon in patients with rheumatoid arthritis. This study investigated whether autoimmunity against citrullinated proteins is causally involved in triggering periarticular bone loss. Periarticular bone loss was studied in the standard antigen-induced arthritis (AIA) mouse model with methylated bovine serum albumin (mBSA) as well as a modified model with mutated citrullinated vimentin (MCV) alone or in combination with mBSA. Periarticular bone loss, subchondral osteoclastogenesis, as well as local expression of cytokines, osteoclast genes, and peptidyl-arginine deiminase (PAD) enzymes were assessed after arthritis induction. Immune cell and osteoclast precursor infiltration were detected in the periarticular bone marrow and local lymph nodes. In addition, periarticular bone loss was assessed upon challenge of mice with purified anti-MCV antibody. Despite inducing a milder form of arthritis than mBSA, MCV triggered significant periarticular bone loss associated with an increased infiltration of osteoclast precursors and mature osteoclasts in the periarticular bone marrow. MCV enhanced the expression of the osteoclast inducers RANKL and M-CSF, the cytokines IL-8, IL-1, IL-6, and TNF-α, as well as PAD2 and PAD4 enzymes in the periarticular bone marrow. Furthermore, also anti-MCV antibody challenge induced significant periarticular bone loss and local osteoclastogenesis in the mice. Autoimmunity against citrullinated vimentin triggers periarticular bone loss by osteoclast activation in the bone marrow. These findings may explain why periarticular bone loss is already found very early in the disease course of patients with rheumatoid arthritis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Cecilia Engdahl
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | | | - Katharina Dietel
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Stefanie C Lang
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Ulrike Harre
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
247
|
Th17 in Animal Models of Rheumatoid Arthritis. J Clin Med 2017; 6:jcm6070073. [PMID: 28753982 PMCID: PMC5532581 DOI: 10.3390/jcm6070073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/04/2023] Open
Abstract
IL-17-secreting helper CD4 T cells (Th17 cells) constitute a newly identified subset of helper CD4 T cells that play a key role in the development of rheumatoid arthritis (RA) in its animal models. Recently, several models of spontaneous RA, which elucidate the mechanism of RA onset, have been discovered. These animal models shed new light on the role of Th17 in the development of autoimmune arthritis. Th17 cells coordinate inflammation and promote joint destruction, acting on various cells, including neutrophils, macrophages, synovial fibroblasts, and osteoclasts. Regulatory T cells cannot control Th17 cells under conditions of inflammation. In this review, the pathogenic role of Th17 cells in arthritis development, which was revealed by the recent animal models of RA, is discussed.
Collapse
|
248
|
Stümer J, Biermann MHC, Knopf J, Magorivska I, Kastbom A, Svärd A, Janko C, Bilyy R, Schett G, Sjöwall C, Herrmann M, Muñoz LE. Altered glycan accessibility on native immunoglobulin G complexes in early rheumatoid arthritis and its changes during therapy. Clin Exp Immunol 2017; 189:372-382. [PMID: 28509333 DOI: 10.1111/cei.12987] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2017] [Indexed: 12/31/2022] Open
Abstract
The goal of this study was to investigate the glycosylation profile of native immunoglobulin (Ig)G present in serum immune complexes in patients with rheumatoid arthritis (RA). To accomplish this, lectin binding assays, detecting the accessibility of glycans present on IgG-containing immune complexes by biotinylated lectins, were employed. Lectins capturing fucosyl residues (AAL), fucosylated tri-mannose N-glycan core sites (LCA), terminal sialic acid residues (SNA) and O-glycosidically linked galactose/N-acetylgalactosamine (GalNac-L) were used. Patients with recent-onset RA at baseline and after 3-year follow-up were investigated. We found that native IgG was complexed significantly more often with IgM, C1q, C3c and C-reactive protein (CRP) in RA patients, suggesting alterations of the native structure of IgG. The total accessibility of fucose residues on captured immune complexes to the respective lectin was significantly higher in patients with RA. Moreover, fucose accessibility on IgG-containing immune complexes correlated positively with the levels of antibodies to cyclic citrullinated peptides (anti-CCP). We also observed a significantly higher accessibility to sialic acid residues and galactose/GalNAc glyco-epitopes in native complexed IgG of patients with RA at baseline. While sialic acid accessibility increased during treatment, the accessibility of galactose/GalNAc decreased. Hence, successful treatment of RA was associated with an increase in the SNA/GalNAc-L ratio. Interestingly, the SNA/GalNAc-L ratio in particular rises after glucocorticoid treatment. In summary, this study shows the exposure of glycans in native complexed IgG of patients with early RA, revealing particular glycosylation patterns and its changes following pharmaceutical treatment.
Collapse
Affiliation(s)
- J Stümer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - M H C Biermann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - J Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - I Magorivska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - A Kastbom
- Rheumatology/Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A Svärd
- Rheumatology Clinic, Falun Hospital, Falun, Sweden
| | - C Janko
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen, Erlangen, Germany
| | - R Bilyy
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.,Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - G Schett
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - C Sjöwall
- Rheumatology/Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - L E Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
249
|
McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 2017; 389:2328-2337. [PMID: 28612747 DOI: 10.1016/s0140-6736(17)31472-1] [Citation(s) in RCA: 895] [Impact Index Per Article: 111.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis is a chronic autoimmune disease that causes progressive articular damage, functional loss, and comorbidity. The development of effective biologics and small-molecule kinase inhibitors in the past two decades has substantially improved clinical outcomes. Just as understanding of pathogenesis has led in large part to the development of drugs, so have mode-of-action studies of these specific immune-targeted agents revealed which immune pathways drive articular inflammation and related comorbidities. Cytokine inhibitors have definitively proven a critical role for tumour necrosis factor α and interleukin 6 in disease pathogenesis and possibly also for granulocyte-macrophage colony-stimulating factor. More recently, clinical trials with Janus kinase (JAK) inhibitors have shown that cytokine receptors that signal through the JAK/STAT signalling pathway are important for disease, informing the pathogenetic function of additional cytokines (such as the interferons). Finally, successful use of costimulatory blockade and B-cell depletion in the clinic has revealed that the adaptive immune response and the downstream events initiated by these cells participate directly in synovial inflammation. Taken together, it becomes apparent that understanding the effects of specific immune interventions can elucidate definitive molecular or cellular nodes that are essential to maintain complex inflammatory networks that subserve diseases like rheumatoid arthritis.
Collapse
Affiliation(s)
- Iain B McInnes
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
250
|
Cellular and molecular pathways of structural damage in rheumatoid arthritis. Semin Immunopathol 2017; 39:355-363. [PMID: 28597065 DOI: 10.1007/s00281-017-0634-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022]
Abstract
Structural damage of cartilage and bone tissue is a hallmark of rheumatoid arthritis (RA). The resulting joint destruction constitutes one of the major disease consequences for patients and creates a significant burden for the society. The main cells executing bone and cartilage degradation are osteoclasts and fibroblast-like synoviocytes, respectively. The function of both cell types is heavily influenced by the immune system. In the last decades, research has identified several mediators of structural damage, ranging from infiltrating immune cells and inflammatory cytokines to autoantibodies. These factors result in an inflammatory milieu in the affected joints which leads to an increased development and function of osteoclasts and the transformation of fibroblast-like synoviocytes towards a highly migratory and destructive phenotype. In addition, repair mechanisms mediated by osteoblasts and chondrocytes are strongly impaired by the presence of pro-inflammatory cytokines. This article will review the current knowledge on the mechanisms of joint inflammation and the destruction of bone and cartilage.
Collapse
|