201
|
Cao J, Chan WC, Chow MSS. Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (Review). Int J Oncol 2022; 60:52. [PMID: 35322860 DOI: 10.3892/ijo.2022.5342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer mortality is ranked second among all cancer mortalities in men worldwide. There is a great need for a method of efficient drug screening for precision therapy, especially for patients with existing drug‑resistant prostate cancer. Based on the concept of bacterial cell culture and drug sensitivity testing, the traditional approach of cancer drug screening is inadequate. The current and more innovative use of cancer cell culture and in vivo tumor models in drug screening for potential individualization of anti‑cancer therapy is reviewed and discussed in the present review. An ideal screening model would have the ability to identify drug activity for the targeted cells resembling what would have occurred in the in vivo environment. Based on this principle, three available cell culture/tumor screening models for prostate cancer are reviewed and considered. The culture conditions, advantages and disadvantages for each model together with ideas to best utilize these models are discussed. The first screening model uses conditional reprogramed cells derived from patient cancer cells. Although these cells are convenient to grow and use, they are likely to have different markers and characteristics from original tumor cells and thus not likely to be informative. The second model employs patient derived xenograft (PDX) which resembles an in vivo approach, but its main disadvantages are that it cannot be easily genetically modified and it is not suitable for high‑throughput drug screening. Finally, high‑throughput screening is more feasible with tumor organoids grown from patient cancer cells. The last system still needs a large number of tumor cells. It lacks in situ blood vessels, immune cells and the extracellular matrix. Based on these current models, future establishment of an organoid data bank would allow the selection of a specific organoid resembling that of an individual's prostate cancer and used for screening of suitable anticancer drugs. This can be further confirmed using the PDX model. Thus, this combined organoid‑PDX approach is expected to be able to provide the drug sensitivity testing approach for individualization of prostate cancer therapy in the near future.
Collapse
Affiliation(s)
- Jessica Cao
- College of Osteopathic Medicine of The Pacific, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| | - Wing C Chan
- City of Hope Comprehensive Cancer Center, City of Hope Medical Center, Duarte, CA 91010‑3012, USA
| | - Moses S S Chow
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| |
Collapse
|
202
|
Fei K, Zhang J, Yuan J, Xiao P. Present Application and Perspectives of Organoid Imaging Technology. Bioengineering (Basel) 2022; 9:121. [PMID: 35324810 PMCID: PMC8945799 DOI: 10.3390/bioengineering9030121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 11/18/2022] Open
Abstract
An organoid is a miniaturized and simplified in vitro model with a similar structure and function to a real organ. In recent years, the use of organoids has increased explosively in the field of growth and development, disease simulation, drug screening, cell therapy, etc. In order to obtain necessary information, such as morphological structure, cell function and dynamic signals, it is necessary and important to directly monitor the culture process of organoids. Among different detection technologies, imaging technology is a simple and convenient choice and can realize direct observation and quantitative research. In this review, the principle, advantages and disadvantages of imaging technologies that have been applied in organoids research are introduced. We also offer an overview of prospective technologies for organoid imaging. This review aims to help biologists find appropriate imaging techniques for different areas of organoid research, and also contribute to the development of organoid imaging systems.
Collapse
Affiliation(s)
| | | | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (K.F.); (J.Z.)
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou 510060, China; (K.F.); (J.Z.)
| |
Collapse
|
203
|
Lee S, Mendoza TR, Burner DN, Muldong MT, Wu CCN, Arreola-Villanueva C, Zuniga A, Greenburg O, Zhu WY, Murtadha J, Koutouan E, Pineda N, Pham H, Kang SG, Kim HT, Pineda G, Lennon KM, Cacalano NA, Jamieson CHM, Kane CJ, Kulidjian AA, Gaasterland T, Jamieson CAM. Novel Dormancy Mechanism of Castration Resistance in Bone Metastatic Prostate Cancer Organoids. Int J Mol Sci 2022; 23:ijms23063203. [PMID: 35328625 PMCID: PMC8952299 DOI: 10.3390/ijms23063203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.
Collapse
MESH Headings
- Androgens/pharmacology
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Benzamides/pharmacology
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/secondary
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Male
- Mice
- Nitriles/pharmacology
- Organoids/metabolism
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- SARS-CoV-2/metabolism
- SARS-CoV-2/physiology
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Transplantation, Heterologous
- Virus Internalization
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Theresa R. Mendoza
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Danielle N. Burner
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Michelle T. Muldong
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Christina C. N. Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Catalina Arreola-Villanueva
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Abril Zuniga
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Olga Greenburg
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - William Y. Zhu
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Jamillah Murtadha
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Evodie Koutouan
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Naomi Pineda
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Hao Pham
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Sung-Gu Kang
- Department of Urology, Korea University College of Medicine, Seongbuk-Gu, Seoul 02841, Korea;
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Gabriel Pineda
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Kathleen M. Lennon
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Nicholas A. Cacalano
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA;
| | - Catriona H. M. Jamieson
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Department of Urology, Korea University College of Medicine, Seongbuk-Gu, Seoul 02841, Korea;
| | - Christopher J. Kane
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | | | - Terry Gaasterland
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina A. M. Jamieson
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Correspondence: ; Tel.: +1-858-534-2921
| |
Collapse
|
204
|
Hou Z, Huang S, Mei Z, Chen L, Guo J, Gao Y, Zhuang Q, Zhang X, Tan Q, Yang T, Liu Y, Chi Y, Qi L, Jiang T, Shao X, Wu Y, Xu X, Qin J, Ren R, Tang H, Wu D, Li Z. Inhibiting 3βHSD1 to eliminate the oncogenic effects of progesterone in prostate cancer. Cell Rep Med 2022; 3:100561. [PMID: 35492874 PMCID: PMC9040187 DOI: 10.1016/j.xcrm.2022.100561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
Prostate cancer continuously progresses following deprivation of circulating androgens originating from the testis and adrenal glands, indicating the existence of oncometabolites beyond androgens. In this study, mass-spectrometry-based screening of clinical specimens and a retrospective analysis on the clinical data of prostate cancer patients indicate the potential oncogenic effects of progesterone in patients. High doses of progesterone activate canonical and non-canonical androgen receptor (AR) target genes. Physiological levels of progesterone facilitate cell proliferation via GATA2. Inhibitors of 3β-hydroxysteroid dehydrogenase 1 (3βHSD1) has been discovered and shown to suppress the generation of progesterone, eliminating its transient and accumulating oncogenic effects. An increase in progesterone is associated with poor clinical outcomes in patients and may be used as a predictive biomarker. Overall, we demonstrate that progesterone acts as an oncogenic hormone in prostate cancer, and strategies to eliminate its oncogenic effects may benefit prostate cancer patients. High doses of progesterone activate canonical and non-canonical AR signaling Progesterone of physiological levels exerts its chronic oncogenic effect via GATA2 Targeting 3βHSD1 to suppress progesterone synthesis blocks its oncogenic effects Serum progesterone might be a predictive biomarker for abiraterone response
Collapse
Affiliation(s)
- Zemin Hou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zejie Mei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Longlong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yuanyuan Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qian Zhuang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xuebin Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qilong Tan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tao Yang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ying Liu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yongnan Chi
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Lifengrong Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ting Jiang
- Department of Urology, First People's Hospital of Taicang, Taicang, Jiangsu 215400, China
| | - Xuefeng Shao
- Department of Urology, First People's Hospital of Taicang, Taicang, Jiangsu 215400, China
| | - Yan Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, the Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
205
|
Cambuli F, Foletto V, Alaimo A, De Felice D, Gandolfi F, Palumbieri MD, Zaffagni M, Genovesi S, Lorenzoni M, Celotti M, Bertossio E, Mazzero G, Bertossi A, Bisio A, Berardinelli F, Antoccia A, Gaspari M, Barbareschi M, Fiorentino M, Shen MM, Loda M, Romanel A, Lunardi A. Intra-epithelial non-canonical Activin A signaling safeguards prostate progenitor quiescence. EMBO Rep 2022; 23:e54049. [PMID: 35253958 PMCID: PMC9066067 DOI: 10.15252/embr.202154049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
The healthy prostate is a relatively quiescent tissue. Yet, prostate epithelium overgrowth is a common condition during aging, associated with urinary dysfunction and tumorigenesis. For over thirty years, TGF-β ligands have been known to induce cytostasis in a variety of epithelia, but the intracellular pathway mediating this signal in the prostate, and its relevance for quiescence, have remained elusive. Here, using mouse prostate organoids to model epithelial progenitors, we find that intra-epithelial non-canonical Activin A signaling inhibits cell proliferation in a Smad-independent manner. Mechanistically, Activin A triggers Tak1 and p38 ΜAPK activity, leading to p16 and p21 nuclear import. Spontaneous evasion from this quiescent state occurs upon prolonged culture, due to reduced Activin A secretion, a condition associated with DNA replication stress and aneuploidy. Organoids capable to escape quiescence in vitro are also able to implant with increased frequency into immunocompetent mice. This study demonstrates that non-canonical Activin A signaling safeguards epithelial quiescence in the healthy prostate, with potential implications for the understanding of cancer initiation, and the development of therapies targeting quiescent tumor progenitors.
Collapse
Affiliation(s)
- Francesco Cambuli
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly,Department of Medicine, Genetics and DevelopmentUrologySystems BiologyHerbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA,Present address:
Molecular Pharmacology ProgramSloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Veronica Foletto
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessandro Alaimo
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Dario De Felice
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Francesco Gandolfi
- Laboratory of Bioinformatics and Computational GenomicsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Maria Dilia Palumbieri
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Michela Zaffagni
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Sacha Genovesi
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Marco Lorenzoni
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Martina Celotti
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Emiliana Bertossio
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | | | - Arianna Bertossi
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessandra Bisio
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Francesco Berardinelli
- Department of ScienceUniversity of Roma TreRomaItaly,Laboratory of Neurodevelopment, Neurogenetics and Molecular Neurobiology UnitIRCCS Santa Lucia FoundationRomaItaly
| | | | - Marco Gaspari
- Department of Experimental and Clinical MedicineUniversity of CatanzaroCatanzaroItaly
| | | | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly
| | - Michael M Shen
- Department of Medicine, Genetics and DevelopmentUrologySystems BiologyHerbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Massimo Loda
- Department of Pathology and Laboratory MedicineWeill Medical College of Cornell UniversityNew YorkNYUSA
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational GenomicsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Andrea Lunardi
- The Armenise‐Harvard Laboratory of Cancer Biology & GeneticsDepartment of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
206
|
Lorenzoni M, De Felice D, Beccaceci G, Di Donato G, Foletto V, Genovesi S, Bertossi A, Cambuli F, Lorenzin F, Savino A, Avalle L, Cimadamore A, Montironi R, Weber V, Carbone FG, Barbareschi M, Demichelis F, Romanel A, Poli V, Del Sal G, Julio MKD, Gaspari M, Alaimo A, Lunardi A. ETS-related gene (ERG) undermines genome stability in mouse prostate progenitors via Gsk3β dependent Nkx3.1 degradation. Cancer Lett 2022; 534:215612. [PMID: 35259458 PMCID: PMC8968219 DOI: 10.1016/j.canlet.2022.215612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022]
Abstract
21q22.2–3 deletion is the most common copy number alteration in prostate cancer (PCa). The genomic rearrangement results in the androgen-dependent de novo expression of ETS-related gene (ERG) in prostate cancer cells, a condition promoting tumor progression to advanced stages of the disease. Interestingly, ERG expression characterizes 5–30% of tumor precursor lesions – High Grade Prostatic Intraepithelial Neoplasia (HGPIN) - where its role remains unclear. Here, by combining organoids technology with Click-chemistry coupled Mass Spectrometry, we demonstrate a prominent role of ERG in remodeling the protein secretome of prostate progenitors. Functionally, by lowering autocrine Wnt-4 signaling, ERG represses canonical Wnt pathway in prostate progenitors, and, in turn, promotes the accumulation of DNA double strand breaks via Gsk3β-dependent degradation of the tumor suppressor Nkx3.1. On the other hand, by shaping extracellular paracrine signals, ERG strengthens the pro-oxidative transcriptional signature of inflammatory macrophages, which we demonstrate to infiltrate pre-malignant ERG positive prostate lesions. These findings highlight previously unrecognized functions of ERG in undermining adult prostate progenitor niche through cell autonomous and non-autonomous mechanisms. Overall, by supporting the survival and proliferation of prostate progenitors in the absence of growth stimuli and promoting the accumulation of DNA damage through destabilization of Nkx3.1, ERG could orchestrate the prelude to neoplastic transformation. Expression of ERGM40 in mouse prostate organoids promotes their survival and growth in the absence of Egf. ERGM40 alters the extracellular signaling network of mouse prostate organoids. Canonical Wnt pathway is substantially reduced in ERG + prostate organoids due to decreased autocrine signaling of Wnt4. Gsk3b promotes Nkx3.1 proteolysis and, in turn, accumulation of double strand breaks in ERG + prostate organoids. Paracrine signaling of ERG + prostate organoids modulates Arginase 1 expression in M1-polarized macrophages.
Collapse
Affiliation(s)
- Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Dario De Felice
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Giulia Beccaceci
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Giorgia Di Donato
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Arianna Bertossi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Francesco Cambuli
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessia Cimadamore
- Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, Ancona, Italy
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Polytechnic University of the Marche Region, Via Tronto, 10, Ancona, Italy
| | - Veronica Weber
- Unit of Surgical Pathology, Santa Chiara Hospital, Trento, Italy
| | | | | | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giannino Del Sal
- University of Trieste Department Life Sciences, ICGEB-Area Science Park Trieste, IFOM, Milan, Italy
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland; Translational Organoid Resource CORE, Department for BioMedical Research, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland; Department of Urology, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| | - Andrea Lunardi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
207
|
The potential of liquid biopsy in the management of cancer patients. Semin Cancer Biol 2022; 84:69-79. [PMID: 35331850 DOI: 10.1016/j.semcancer.2022.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
|
208
|
Lacouture A, Lafront C, Peillex C, Pelletier M, Audet-Walsh É. Impacts of endocrine-disrupting chemicals on prostate function and cancer. ENVIRONMENTAL RESEARCH 2022; 204:112085. [PMID: 34562481 DOI: 10.1016/j.envres.2021.112085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Because of their historical mode of action, endocrine-disrupting chemicals (EDCs) are associated with sex-steroid receptors, namely the two estrogen receptors (ERα and ERβ) and the androgen receptor (AR). Broadly, EDCs can modulate sex-steroid receptor functions. They can also indirectly impact the androgen and estrogen pathways by influencing steroidogenesis, expression of AR or ERs, and their respective activity as transcription factors. Additionally, many of these chemicals have multiple cellular targets other than sex-steroid receptors, which results in a myriad of potential effects in humans. The current article reviews the association between prostate cancer and the endocrine-disrupting functions of four prominent EDC families: bisphenols, phthalates, phytoestrogens, and mycoestrogens. Results from both in vitro and in vivo models are included and discussed to better assess the molecular mechanisms by which EDCs can modify prostate biology. To overcome the heterogeneity of results published, we established common guidelines to properly study EDCs in the context of endocrine diseases. Firstly, the expression of sex-steroid receptors in the models used must be determined before testing. Then, in parallel to EDCs, pharmacological compounds acting as positive (agonists) and negative controls (antagonists) have to be employed. Finally, EDCs need to be used in a precise range of concentrations to modulate sex-steroid receptors and avoid off-target effects. By adequately integrating molecular endocrinology aspects in EDC studies and identifying their underlying molecular mechanisms, we will truly understand their impact on prostate cancer and distinguish those that favor the progression of the disease from those that slow down tumor development.
Collapse
Affiliation(s)
- Aurélie Lacouture
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada
| | - Camille Lafront
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada
| | - Cindy Peillex
- Infectious and Immune Diseases Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Martin Pelletier
- Infectious and Immune Diseases Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; ARThrite Research Center, Laval University, Québec, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, Canada.
| | - Étienne Audet-Walsh
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada; Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, Canada; Cancer Research Center (CRC), Laval University, Québec, Canada.
| |
Collapse
|
209
|
Cellular plasticity upon proton irradiation determines tumor cell radiosensitivity. Cell Rep 2022; 38:110422. [PMID: 35196495 DOI: 10.1016/j.celrep.2022.110422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/24/2021] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Proton radiotherapy has been implemented into the standard-of-care for cancer patients within recent years. However, experimental studies investigating cellular and molecular mechanisms are lacking, and prognostic biomarkers are needed. Cancer stem cell (CSC)-related biomarkers, such as aldehyde dehydrogenase (ALDH), are known to influence cellular radiosensitivity through inactivation of reactive oxygen species, DNA damage repair, and cell death. In a previous study, we found that ionizing radiation itself enriches for ALDH-positive CSCs. In this study, we analyze CSC marker dynamics in prostate cancer, head and neck cancer, and glioblastoma cells upon proton beam irradiation. We find that proton irradiation has a higher potential to target CSCs through induction of complex DNA damages, lower rates of cellular senescence, and minor alteration in histone methylation pattern compared with conventional photon irradiation. Mathematical modeling indicates differences in plasticity rates among ALDH-positive CSCs and ALDH-negative cancer cells between the two irradiation types.
Collapse
|
210
|
Prigaro BJ, Esquer H, Zhou Q, Pike LA, Awolade P, Lai XH, Abraham AD, Abbott JM, Matter B, Kompella UB, Messersmith WA, Gustafson DL, LaBarbera DV. Design, Synthesis, and Biological Evaluation of the First Inhibitors of Oncogenic CHD1L. J Med Chem 2022; 65:3943-3961. [PMID: 35192363 DOI: 10.1021/acs.jmedchem.1c01778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromodomain helicase DNA-binding protein 1 like (CHD1L) is an oncogene implicated in tumor progression, multidrug resistance, and metastasis in many types of cancer. In this article, we described the optimization of the first lead CHD1L inhibitors (CHD1Li) through drug design and medicinal chemistry. More than 30 CHD1Li were synthesized and evaluated using a variety of colorectal cancer (CRC) tumor organoid models and functional assays. The results led to the prioritization of six lead CHD1Li analogues with improved potency, antitumor activity, and drug-like properties including metabolic stability and in vivo pharmacokinetics. Furthermore, lead CHD1Li 6.11 proved to be an orally bioavailable antitumor agent, significantly reducing the tumor volume of CRC xenografts generated from isolated quasi mesenchymal cells (M-phenotype), which possess enhanced tumorigenic properties. In conclusion, we reported the optimization of first-in-class inhibitors of oncogenic CHD1L as a novel therapeutic strategy with potential for the treatment of cancer.
Collapse
Affiliation(s)
- Brett J Prigaro
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Hector Esquer
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Qiong Zhou
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Laura A Pike
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Paul Awolade
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Xin-He Lai
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Adedoyin D Abraham
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Joshua M Abbott
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Brock Matter
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Uday B Kompella
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States.,The University of Colorado (CU) Anschutz Medical Campus (AMC) Center for Drug Discovery, The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Wells A Messersmith
- The School of Medicine, Division of Medical Oncology, The CU Cancer Center, Aurora, Colorado 80045, United States.,The University of Colorado (CU) Anschutz Medical Campus (AMC) Center for Drug Discovery, The CU Cancer Center, Aurora, Colorado 80045, United States.,The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Daniel L Gustafson
- Flint Animal Cancer Center and Department of Clinical Sciences, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.,The University of Colorado (CU) Anschutz Medical Campus (AMC) Center for Drug Discovery, The CU Cancer Center, Aurora, Colorado 80045, United States.,The CU Cancer Center, Aurora, Colorado 80045, United States
| | - Daniel V LaBarbera
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The CU Cancer Center, Aurora, Colorado 80045, United States.,The University of Colorado (CU) Anschutz Medical Campus (AMC) Center for Drug Discovery, The CU Cancer Center, Aurora, Colorado 80045, United States.,The CU Cancer Center, Aurora, Colorado 80045, United States
| |
Collapse
|
211
|
Jia Y, Wei Z, Zhang S, Yang B, Li Y. Instructive Hydrogels for Primary Tumor Cell Culture: Current Status and Outlook. Adv Healthc Mater 2022; 11:e2102479. [PMID: 35182456 DOI: 10.1002/adhm.202102479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Primary tumor organoids (PTOs) growth in hydrogels have emerged as an important in vitro model that recapitulates many characteristics of the native tumor tissue, and have important applications in fundamental cancer research and for the development of useful therapeutic treatment. This paper begins with reviewing the methods of isolation of primary tumor cells. Then, recent advances on the instructive hydrogels as biomimetic extracellular matrix for primary tumor cell culture and construction of PTO models are summarized. Emerging microtechnology for growth of PTOs in microscale hydrogels and the applications of PTOs are highlighted. This paper concludes with an outlook on the future directions in the investigation of instructive hydrogels for PTO growth.
Collapse
Affiliation(s)
- Yiyang Jia
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Zhentong Wei
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Songling Zhang
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| |
Collapse
|
212
|
Schwarz FM, Schniewind I, Besso MJ, Lange S, Linge A, Patil SG, Löck S, Klusa D, Dietrich A, Voss-Böhme A, Nowrouzi A, Krause M, Dubrovska A, Kurth I, Peitzsch C. Plasticity within aldehyde dehydrogenase-positive cells determines prostate cancer radiosensitivity. Mol Cancer Res 2022; 20:794-809. [PMID: 35135863 DOI: 10.1158/1541-7786.mcr-21-0806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/08/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Tumor heterogeneity and cellular plasticity are key determinants of tumor progression, metastatic spread and therapy response driven by the cancer stem cell (CSC) population. Within the present study, we analyzed irradiation-induced plasticity within the aldehyde dehydrogenase (ALDH)-positive population in prostate cancer (PCa). The radiosensitivity of xenograft tumors derived from ALDH+ and ALDH- cells was determined with local tumor control analyses and demonstrated different dose-response profiles, time to relapse and focal adhesion signaling. The transcriptional heterogeneity was analyzed in pools of ten DU145 and PC3 cells with multiplex gene expression analyses and illustrated a higher degree of heterogeneity within the ALDH+ population that even increases upon irradiation in comparison to ALDH- cells. Phenotypic conversion and clonal competition were analyzed with fluorescence protein-labeled cells to distinguish cellular origins in competitive 3D cultures and xenograft tumors. We found that the ALDH+ population outcompetes ALDH- cells and drives tumor growth, in particular upon irradiation. The observed dynamics of the cellular state compositions between ALDH+ and ALDH- cells in vivo before and after tumor irradiation was reproduced by a probabilistic Markov compartment model that incorporates cellular plasticity, clonal competition and phenotype-specific radiosensitivities. Transcriptional analyses indicate that the cellular conversion from ALDH- into ALDH+ cells within xenograft tumors under therapeutic pressure was partially mediated through induction of the transcriptional repressor SNAI2. In summary, irradiation-induced cellular conversion events are present in xenograft tumors derived from PCa cells and may be responsible for radiotherapy failure.
Collapse
Affiliation(s)
- Franziska M Schwarz
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, National Center for Radiation Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iñaki Schniewind
- OncoRay - National Center for Radiation Research in Oncology, National Center for Radiation Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Neurology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Maria J Besso
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Lange
- Faculty of Informatics/Mathematics, University of Applied Science, Dresden, Germany
| | - Annett Linge
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, National Center for Radiation Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Shivaprasad G Patil
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, National Center for Radiation Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, National Center for Radiation Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daria Klusa
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, National Center for Radiation Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Antje Dietrich
- OncoRay - National Center for Radiation Research in Oncology, National Center for Radiation Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Voss-Böhme
- Faculty of Informatics/Mathematics, University of Applied Science, Dresden, Germany
| | - Ali Nowrouzi
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), National Center for Tumor Diseases (NCT) Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Mechthild Krause
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, National Center for Radiation Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Anna Dubrovska
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, National Center for Radiation Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University, Heidelberg, Germany
| | - Claudia Peitzsch
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, National Center for Radiation Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| |
Collapse
|
213
|
Li Z, Xu H, Gong Y, Chen W, Zhan Y, Yu L, Sun Y, Li A, He S, Guan B, Wu Y, Xiong G, Fang D, He Y, Tang Q, Yao L, Hu Z, Mei H, He Z, Cai Z, Guo Y, Li X, Zhou L, Huang W. Patient-Derived Upper Tract Urothelial Carcinoma Organoids as a Platform for Drug Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103999. [PMID: 34914855 PMCID: PMC8811809 DOI: 10.1002/advs.202103999] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/12/2021] [Indexed: 05/25/2023]
Abstract
Upper tract urothelial carcinomas (UTUCs) are rare entities that are usually diagnosed at advanced stages. Research on UTUC pathobiology and clinical management has been hampered by the lack of models accurately reflecting disease nature and diversity. In this study, a modified organoid culture system is used to generate a library of 25 patient-derived UTUC organoid lines retaining the histological architectures, marker gene expressions, genomic landscapes, and gene expression profiles of their parental tumors. The study demonstrates that the responses of UTUC organoids to anticancer drugs can be identified and the model supports the exploration of novel treatment strategies. This work proposes a modified protocol for generating patient-derived UTUC organoid lines that may help elucidate UTUC pathophysiology and assess the responses of these diseases to various drug therapies in personalized medicine.
Collapse
Affiliation(s)
- Zhichao Li
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityInternational Cancer Center of Shenzhen UniversityShenzhen518039China
| | - Haibo Xu
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityInternational Cancer Center of Shenzhen UniversityShenzhen518039China
| | - Yanqing Gong
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Wei Chen
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityInternational Cancer Center of Shenzhen UniversityShenzhen518039China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen518035China
| | - Yonghao Zhan
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Lei Yu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen518035China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Yangyang Sun
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen518035China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Aolin Li
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Shiming He
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Bao Guan
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Yucai Wu
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Gengyan Xiong
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Dong Fang
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Yuhui He
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Qi Tang
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Lin Yao
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Zheng Hu
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Hongbing Mei
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityInternational Cancer Center of Shenzhen UniversityShenzhen518039China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen518035China
| | - Zhisong He
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Zhiming Cai
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityInternational Cancer Center of Shenzhen UniversityShenzhen518039China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen518035China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Yinglu Guo
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Xuesong Li
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Liqun Zhou
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
| | - Weiren Huang
- Department of UrologyPeking University First HospitalNational Urological Cancer CenterBeijing100034China
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityInternational Cancer Center of Shenzhen UniversityShenzhen518039China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen518035China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| |
Collapse
|
214
|
Ding Y, Shao J, Shi T, Yu H, Wang X, Chi H, Wang X. Leukemia inhibitory factor receptor homodimerization mediated by acetylation of extracellular lysine promotes prostate cancer progression through the PDPK1/AKT/GCN5 axis. Clin Transl Med 2022; 12:e676. [PMID: 35172032 PMCID: PMC8849371 DOI: 10.1002/ctm2.676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa), an inert tumour, has a long progression period, but valid biomarkers and methods for effectively and sensitively monitoring PCa progression are lacking, prompting us to identify new predictors for diagnosis and prognosis. Posttranslational modifications characterizing receptor activation are considered potentially strong indicators of disease progression. METHODS The posttranscriptional regulation of leukaemia inhibitory factor receptor (LIFR) and its novel downstream signalling activity in PCa were studied using liquid mass spectrometry, genetically engineered mouse (GEM) models, organoid assays, lentivirus packaging, infection and stable cell line construction. RESULTS In this study, the level of acetylated K620 on LIFR in its extracellular domain was shown to predict the progression and prognosis of PCa. In PCa cells, LIFR-K620 acetylation is reversibly mediated by GCN5 and SIRT2. GEM experiments and organoid assays confirmed that the loss of LIFR-K620 acetylation inhibits PCa progression. Mechanistically, K620 acetylation facilitates LIFR homodimerization and subsequently promotes LIFR-S1044 phosphorylation and activation, which further recruits PDPK1 to activate AKT signalling and sequentially enhances the GCN5 protein level to sustain the protumour level of LIFR-K620 acetylation by preventing GCN5 degradation via CRL4Cdt2 E3 ligase. CONCLUSIONS Acetylation of extracellular K620 on LIFR reinforces its homodimerization and integrates the activities of PDPK1, AKT, GSK3β and GCN5 to form a novel positive feedback loop in PCa; this modification is thus a promising biomarker for monitoring PCa progression.
Collapse
Affiliation(s)
- Yufeng Ding
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Jialiang Shao
- Department of UrologyShanghai General HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Tiezhu Shi
- Department of UrologyShanghai General HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Hua Yu
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiang Wang
- Department of UrologyShanghai General HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Honggang Chi
- Department of Traditional Chinese MedicineThe First Dongguan Affiliated Hospital of Guangdong Medical UniversityDongguanChina
| | - Xiongjun Wang
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
215
|
Song H, Weinstein HNW, Allegakoen P, Wadsworth MH, Xie J, Yang H, Castro EA, Lu KL, Stohr BA, Feng FY, Carroll PR, Wang B, Cooperberg MR, Shalek AK, Huang FW. Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat Commun 2022; 13:141. [PMID: 35013146 PMCID: PMC8748675 DOI: 10.1038/s41467-021-27322-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is the second most common malignancy in men worldwide and consists of a mixture of tumor and non-tumor cell types. To characterize the prostate cancer tumor microenvironment, we perform single-cell RNA-sequencing on prostate biopsies, prostatectomy specimens, and patient-derived organoids from localized prostate cancer patients. We uncover heterogeneous cellular states in prostate epithelial cells marked by high androgen signaling states that are enriched in prostate cancer and identify a population of tumor-associated club cells that may be associated with prostate carcinogenesis. ERG-negative tumor cells, compared to ERG-positive cells, demonstrate shared heterogeneity with surrounding luminal epithelial cells and appear to give rise to common tumor microenvironment responses. Finally, we show that prostate epithelial organoids harbor tumor-associated epithelial cell states and are enriched with distinct cell types and states from their parent tissues. Our results provide diagnostically relevant insights and advance our understanding of the cellular states associated with prostate carcinogenesis.
Collapse
Affiliation(s)
- Hanbing Song
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Hannah N. W. Weinstein
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Paul Allegakoen
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Marc H. Wadsworth
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Jamie Xie
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Heiko Yang
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Ethan A. Castro
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Kevin L. Lu
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bradley A. Stohr
- grid.266102.10000 0001 2297 6811Department of Pathology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Felix Y. Feng
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Departments of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Peter R. Carroll
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Bruce Wang
- grid.266102.10000 0001 2297 6811Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA 94143 USA
| | - Matthew R. Cooperberg
- grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Department of Urology, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| | - Alex K. Shalek
- grid.116068.80000 0001 2341 2786The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142 USA
| | - Franklin W. Huang
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.266102.10000 0001 2297 6811Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143 USA ,grid.410372.30000 0004 0419 2775Division of Hematology and Oncology, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| |
Collapse
|
216
|
Liu C, Niu K, Xiao Q. Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovasc Res 2022; 118:97-114. [PMID: 33135070 PMCID: PMC8752356 DOI: 10.1093/cvr/cvaa313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculopathy is a pathological process occurring in the blood vessel wall, which could affect the haemostasis and physiological functions of all the vital tissues/organs and is one of the main underlying causes for a variety of human diseases including cardiovascular diseases. Current pharmacological interventions aiming to either delay or stop progression of vasculopathies are suboptimal, thus searching novel, targeted, risk-reducing therapeutic agents, or vascular grafts with full regenerative potential for patients with vascular abnormalities are urgently needed. Since first reported, pluripotent stem cells (PSCs), particularly human-induced PSCs, have open new avenue in all research disciplines including cardiovascular regenerative medicine and disease remodelling. Assisting with recent technological breakthroughs in tissue engineering, in vitro construction of tissue organoid made a tremendous stride in the past decade. In this review, we provide an update of the main signal pathways involved in vascular cell differentiation from human PSCs and an extensive overview of PSC-derived tissue organoids, highlighting the most recent discoveries in the field of blood vessel organoids as well as vascularization of other complex tissue organoids, with the aim of discussing the key cellular and molecular players in generating vascular organoids.
Collapse
MESH Headings
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cell Culture Techniques
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Organoids
- Phenotype
- Signal Transduction
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| |
Collapse
|
217
|
Recher G, Mombereau A, Boyreau A, Nassoy P, Andrique L. [3D Tumor organoid models produced by cellular capsules technology CCT]. Bull Cancer 2022; 109:38-48. [PMID: 34996600 DOI: 10.1016/j.bulcan.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Monolayer cultures of cell lines and derived-patient cells have long been the in vitro model of choice in oncology. In particular, these models have made it possible to decipher the mechanisms that determine tumor proliferation and invasion. However these 2D models are insufficient because they do not take into account the spatial organization of cells and their interactions with each other or with the extracellular matrix. In the context of cancer, there is a need to develop new 3D (tumoroid) models in order to gain a better understanding of the development of these pathologies but also to assess the penetration of drugs through a tissue and the associated cellular response. We present here the cell capsule technology (CCT), which allows the production of different tumoroid models: simple or more complex 3D culture models including co-culture of tumor cells with components of the microenvironment (fibroblasts, matrix, etc.). The development of these new 3D culture systems now makes it possible to propose refined physiopathological models that will allow the implementation of improved targeted therapeutic strategies.
Collapse
Affiliation(s)
- Gaëlle Recher
- Université de Bordeaux, Laboratoire photonique numérique et nanosciences, UMR 5298, 33400 Talence, France; Institut d'optique & Centre national de la recherche scientifique, LP2N, UMR 5298, 33400 Talence, France
| | - Amaël Mombereau
- Université de Bordeaux, Laboratoire photonique numérique et nanosciences, UMR 5298, 33400 Talence, France; Institut d'optique & Centre national de la recherche scientifique, LP2N, UMR 5298, 33400 Talence, France
| | - Adeline Boyreau
- Université de Bordeaux, Laboratoire photonique numérique et nanosciences, UMR 5298, 33400 Talence, France; Institut d'optique & Centre national de la recherche scientifique, LP2N, UMR 5298, 33400 Talence, France
| | - Pierre Nassoy
- Université de Bordeaux, Laboratoire photonique numérique et nanosciences, UMR 5298, 33400 Talence, France; Institut d'optique & Centre national de la recherche scientifique, LP2N, UMR 5298, 33400 Talence, France
| | - Laëtitia Andrique
- Plateforme VoxCell, UMS TBMcore 3427, 146 rue Léo-Saignat, Bâtiment 1A 2(e) étage, 33076 Bordeaux, France.
| |
Collapse
|
218
|
Wang J, Feng X, Li Z, Chen Y, Huang W. Patient-derived organoids as a model for tumor research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:259-326. [PMID: 35595351 DOI: 10.1016/bs.pmbts.2022.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer represents a leading cause of death, despite the rapid progress of cancer research, leading to urgent need for accurate preclinical model to further study of tumor mechanism and accelerate translational applications. Cancer cell lines cannot fully recapitulate tumors of different patients due to the lack of tumor complexity and specification, while the high technical difficulty, long time, and substantial cost of patient-derived xenograft model makes it unable to be used extensively for all types of tumors and large-scale drug screening. Patient-derived organoids can be established rapidly with a high success rate from many tumors, and precisely replicate the key histopathological, genetic, and phenotypic features, as well as therapeutic response of patient tumor. Therefore, they are extensively used in cancer basic research, biobanking, disease modeling and precision medicine. The combinations of cancer organoids with other advanced technologies, such as 3D bio-printing, organ-on-a-chip, and CRISPR-Cas9, contributes to the more complete replication of complex tumor microenvironment and tumorigenesis. In this review, we discuss the various methods of the establishment and the application of patient-derived organoids in diverse tumors as well as the limitations and future prospects of these models. Further advances of tumor organoids are expected to bridge the huge gap between bench and bedside and provide the unprecedented opportunities to advance cancer research.
Collapse
Affiliation(s)
- Jia Wang
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China
| | - Xiaoying Feng
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China
| | - Zhichao Li
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China; International Cancer Center of Shenzhen University, Shenzhen, China
| | - Yongsong Chen
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China
| | - Weiren Huang
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China; Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China; International Cancer Center of Shenzhen University, Shenzhen, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
219
|
Cheaito K, Bahmad HF, Hadadeh O, Msheik H, Monzer A, Ballout F, Dagher C, Telvizian T, Saheb N, Tawil A, El-Sabban M, El-Hajj A, Mukherji D, Al-Sayegh M, Abou-Kheir W. Establishment and characterization of prostate organoids from treatment-naïve patients with prostate cancer. Oncol Lett 2022; 23:6. [PMID: 34820005 PMCID: PMC8607232 DOI: 10.3892/ol.2021.13124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) organoid culture systems are emerging as potential reliable tools to investigate basic developmental processes of human disease, especially cancer. The present study used established and modified culture conditions to report successful generation and characterization of patient-derived organoids from fresh primary tissue specimens of patients with treatment-naïve prostate cancer (PCa). Fresh tissue specimens were collected, digested enzymatically and the resulting cell suspensions were plated in a 3D environment using Matrigel as an extracellular matrix. Previously established 12-factor medium for organoid culturing was modified to create a minimal 5-factor medium. Organoids and corresponding tissue specimens were characterized using transcriptomic analysis, immunofluorescent analysis, and immunohistochemistry. Furthermore, patient-derived organoids were used to assess the drug response. Treatment-naïve patient-derived PCa organoids were obtained from fresh radical prostatectomy specimens. These PCa organoids mimicked the heterogeneity of corresponding parental tumor tissue. Histopathological analysis demonstrated similar tissue architecture and cellular morphology, as well as consistent immunohistochemical marker expression. Also, the results confirmed the potential of organoids as an in vitro model to assess potential personalized treatment responses as there was a differential drug response between different patient samples. In conclusion, the present study investigated patient-derived organoids from a cohort of treatment-naïve patients. Derived organoids mimicked the histological features and prostate lineage profiles of their corresponding parental tissue and may present a potential model to predict patient-specific treatment response in a pre-clinical setting.
Collapse
Affiliation(s)
- Katia Cheaito
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiba Msheik
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Farah Ballout
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Christelle Dagher
- Department of Internal Medicine, Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Talar Telvizian
- Department of Internal Medicine, Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Nour Saheb
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Albert El-Hajj
- Department of Surgery, Division of Urology, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
220
|
Marr KD, Ignatenko NA, Warfel NA, Batai K, Cress AE, Pollock GR, Wong AC, Lee BR. Digital image analysis using video microscopy of human-derived prostate cancer vs normal prostate organoids to assess migratory behavior on extracellular matrix proteins. Front Oncol 2022; 12:1083150. [PMID: 36727054 PMCID: PMC9885251 DOI: 10.3389/fonc.2022.1083150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
The advent of perpetuating living organoids derived from patient tissue is a promising avenue for cancer research but is limited by difficulties with precise characterization. In this brief communication, we demonstrate via time-lapse imaging distinct phenotypes of prostate organoids derived from patient material- without confirmation of cellular identity. We show that organoids derived from histologically normal tissue more readily spread on a physiologic extracellular matrix (ECM) than on pathologic ECM (p<0.0001), while tumor-derived organoids spread equally on either substrate (p=0.2406). This study is an important proof-of-concept to defer precise characterization of organoids and still glean information into disease pathology.
Collapse
Affiliation(s)
- Kendra D. Marr
- Cancer Biology, University of Arizona, Tucson, AZ, United States
- MD/PhD Program, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | | | - Noel A. Warfel
- Cancer Biology, University of Arizona, Tucson, AZ, United States
- Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Ken Batai
- Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Anne E. Cress
- Cancer Biology, University of Arizona, Tucson, AZ, United States
- Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Grant R. Pollock
- Urology, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Ava C. Wong
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Benjamin R. Lee
- Urology, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
- *Correspondence: Benjamin R. Lee,
| |
Collapse
|
221
|
van de Merbel AF, van der Horst G, van der Mark MH, Bots STF, van den Wollenberg DJM, de Ridder CMA, Stuurman D, Aalders T, Erkens-Schulz S, van Montfoort N, Karthaus WR, Mehra N, Smits M, Schalken JA, van Weerden WM, Hoeben RC, van der Pluijm G. Reovirus mutant jin-3 exhibits lytic and immune-stimulatory effects in preclinical human prostate cancer models. Cancer Gene Ther 2022; 29:793-802. [PMID: 34135475 PMCID: PMC9209329 DOI: 10.1038/s41417-021-00360-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/08/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Treatment of castration-resistant prostate cancer remains a challenging clinical problem. Despite the promising effects of immunotherapy in other solid cancers, prostate cancer has remained largely unresponsive. Oncolytic viruses represent a promising therapeutic avenue, as oncolytic virus treatment combines tumour cell lysis with activation of the immune system and mounting of effective anti-tumour responses. Mammalian Orthoreoviruses are non-pathogenic human viruses with a preference of lytic replication in human tumour cells. In this study, we evaluated the oncolytic efficacy of the bioselected oncolytic reovirus mutant jin-3 in multiple human prostate cancer models. The jin-3 reovirus displayed efficient infection, replication, and anti-cancer responses in 2D and 3D prostate cancer models, as well as in ex vivo cultured human tumour slices. In addition, the jin-3 reovirus markedly reduced the viability and growth of human cancer cell lines and patient-derived xenografts. The infection induced the expression of mediators of immunogenic cell death, interferon-stimulated genes, and inflammatory cytokines. Taken together, our data demonstrate that the reovirus mutant jin-3 displays tumour tropism, and induces potent oncolytic and immunomodulatory responses in human prostate cancer models. Therefore, jin-3 reovirus represents an attractive candidate for further development as oncolytic agent for treatment of patients with aggressive localised or advanced prostate cancer.
Collapse
Affiliation(s)
- Arjanneke F. van de Merbel
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geertje van der Horst
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike H. van der Mark
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Selas T. F. Bots
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana J. M. van den Wollenberg
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Corrina M. A. de Ridder
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Debra Stuurman
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tilly Aalders
- grid.10417.330000 0004 0444 9382Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sigrun Erkens-Schulz
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nadine van Montfoort
- grid.10419.3d0000000089452978Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter R. Karthaus
- grid.51462.340000 0001 2171 9952Human Pathology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Niven Mehra
- grid.10417.330000 0004 0444 9382Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Minke Smits
- grid.10417.330000 0004 0444 9382Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack A. Schalken
- grid.10417.330000 0004 0444 9382Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wytske M. van Weerden
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rob C. Hoeben
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gabri van der Pluijm
- grid.10419.3d0000000089452978Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
222
|
Claridge SE, Cavallo JA, Hopkins BD. Patient-Derived In Vitro and In Vivo Models of Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:215-233. [DOI: 10.1007/978-3-030-91836-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
223
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Singh N, Ramnarine VR, Song JH, Pandey R, Padi SKR, Nouri M, Olive V, Kobelev M, Okumura K, McCarthy D, Hanna MM, Mukherjee P, Sun B, Lee BR, Parker JB, Chakravarti D, Warfel NA, Zhou M, Bearss JJ, Gibb EA, Alshalalfa M, Karnes RJ, Small EJ, Aggarwal R, Feng F, Wang Y, Buttyan R, Zoubeidi A, Rubin M, Gleave M, Slack FJ, Davicioni E, Beltran H, Collins C, Kraft AS. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nat Commun 2021; 12:7349. [PMID: 34934057 PMCID: PMC8692330 DOI: 10.1038/s41467-021-26901-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroendocrine (NE) prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer (PCa) arising either de novo or from transdifferentiated prostate adenocarcinoma following androgen deprivation therapy (ADT). Extensive computational analysis has identified a high degree of association between the long noncoding RNA (lncRNA) H19 and NEPC, with the longest isoform highly expressed in NEPC. H19 regulates PCa lineage plasticity by driving a bidirectional cell identity of NE phenotype (H19 overexpression) or luminal phenotype (H19 knockdown). It contributes to treatment resistance, with the knockdown of H19 re-sensitizing PCa to ADT. It is also essential for the proliferation and invasion of NEPC. H19 levels are negatively regulated by androgen signaling via androgen receptor (AR). When androgen is absent SOX2 levels increase, driving H19 transcription and facilitating transdifferentiation. H19 facilitates the PRC2 complex in regulating methylation changes at H3K27me3/H3K4me3 histone sites of AR-driven and NEPC-related genes. Additionally, this lncRNA induces alterations in genome-wide DNA methylation on CpG sites, further regulating genes associated with the NEPC phenotype. Our clinical data identify H19 as a candidate diagnostic marker and predictive marker of NEPC with elevated H19 levels associated with an increased probability of biochemical recurrence and metastatic disease in patients receiving ADT. Here we report H19 as an early upstream regulator of cell fate, plasticity, and treatment resistance in NEPC that can reverse/transform cells to a treatable form of PCa once therapeutically deactivated.
Collapse
MESH Headings
- Androgen Antagonists/therapeutic use
- Animals
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Biomarkers, Tumor/metabolism
- Carcinoma, Neuroendocrine/diagnosis
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/pathology
- Cell Line, Tumor
- Cell Lineage/genetics
- Cell Nucleus/metabolism
- Cell Plasticity/genetics
- Cell Proliferation/genetics
- Cohort Studies
- DNA Methylation/genetics
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic
- Genome, Human
- Histones/metabolism
- Humans
- Male
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplastic Stem Cells/metabolism
- Nitriles/pharmacology
- Nitriles/therapeutic use
- Organoids/metabolism
- Organoids/pathology
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/therapeutic use
- Phylogeny
- Polycomb Repressive Complex 2/metabolism
- Promoter Regions, Genetic/genetics
- Prostatic Neoplasms/diagnosis
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Receptors, Androgen/metabolism
- SOXB1 Transcription Factors/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Neha Singh
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Varune R Ramnarine
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Jin H Song
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Ritu Pandey
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Sathish K R Padi
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
- Department of Molecular Biology and Biophysics, UConn Health Center, Farmington, CT, 06030, USA
| | - Mannan Nouri
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Virginie Olive
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
- Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Maxim Kobelev
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Koichi Okumura
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| | - David McCarthy
- Ribomed Biotechnologies, Inc., 8821N. 7th St. STE 300, Phoenix, AZ, 85020, USA
| | - Michelle M Hanna
- Ribomed Biotechnologies, Inc., 8821N. 7th St. STE 300, Phoenix, AZ, 85020, USA
| | - Piali Mukherjee
- Epigenomics Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Belinda Sun
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Benjamin R Lee
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - J Brandon Parker
- Department of Obstetrics and Gynecology, Division of Reproductive Science in Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Debabrata Chakravarti
- Department of Obstetrics and Gynecology, Division of Reproductive Science in Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Noel A Warfel
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Muhan Zhou
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Jeremiah J Bearss
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Ewan A Gibb
- Decipher Biosciences, Inc, Vancouver, BC, Canada
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - R Jefferey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Eric J Small
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Rahul Aggarwal
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Felix Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ralph Buttyan
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mark Rubin
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Martin Gleave
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA, 02115, USA
| | - Colin Collins
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA.
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
225
|
Gil V, Miranda S, Riisnaes R, Gurel B, D'Ambrosio M, Vasciaveo A, Crespo M, Ferreira A, Brina D, Troiani M, Sharp A, Sheehan B, Christova R, Seed G, Figueiredo I, Lambros M, Dolling D, Rekowski J, Alajati A, Clarke M, Pereira R, Flohr P, Fowler G, Boysen G, Sumanasuriya S, Bianchini D, Rescigno P, Aversa C, Tunariu N, Guo C, Paschalis A, Bertan C, Buroni L, Ning J, Carreira S, Workman P, Swain A, Califano A, Shen MM, Alimonti A, Neeb A, Welti J, Yuan W, de Bono J. HER3 Is an Actionable Target in Advanced Prostate Cancer. Cancer Res 2021; 81:6207-6218. [PMID: 34753775 PMCID: PMC8932336 DOI: 10.1158/0008-5472.can-21-3360] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
It has been recognized for decades that ERBB signaling is important in prostate cancer, but targeting ERBB receptors as a therapeutic strategy for prostate cancer has been ineffective clinically. However, we show here that membranous HER3 protein is commonly highly expressed in lethal prostate cancer, associating with reduced time to castration resistance (CR) and survival. Multiplex immunofluorescence indicated that the HER3 ligand NRG1 is detectable primarily in tumor-infiltrating myelomonocytic cells in human prostate cancer; this observation was confirmed using single-cell RNA sequencing of human prostate cancer biopsies and murine transgenic prostate cancer models. In castration-resistant prostate cancer (CRPC) patient-derived xenograft organoids with high HER3 expression as well as mouse prostate cancer organoids, recombinant NRG1 enhanced proliferation and survival. Supernatant from murine bone marrow-derived macrophages and myeloid-derived suppressor cells promoted murine prostate cancer organoid growth in vitro, which could be reversed by a neutralizing anti-NRG1 antibody and ERBB inhibition. Targeting HER3, especially with the HER3-directed antibody-drug conjugate U3-1402, exhibited antitumor activity against HER3-expressing prostate cancer. Overall, these data indicate that HER3 is commonly overexpressed in lethal prostate cancer and can be activated by NRG1 secreted by myelomonocytic cells in the tumor microenvironment, supporting HER3-targeted therapeutic strategies for treating HER3-expressing advanced CRPC. SIGNIFICANCE: HER3 is an actionable target in prostate cancer, especially with anti-HER3 immunoconjugates, and targeting HER3 warrants clinical evaluation in prospective trials.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents, Immunological/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Camptothecin/analogs & derivatives
- Camptothecin/pharmacology
- Cell Proliferation
- Follow-Up Studies
- Humans
- Male
- Mice, Inbred NOD
- Mice, SCID
- Neuregulin-1/genetics
- Neuregulin-1/metabolism
- Organoids/drug effects
- Organoids/metabolism
- Organoids/pathology
- Prognosis
- Prospective Studies
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Veronica Gil
- The Institute of Cancer Research, London, United Kingdom
| | - Susana Miranda
- The Institute of Cancer Research, London, United Kingdom
| | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Bora Gurel
- The Institute of Cancer Research, London, United Kingdom
| | | | | | - Mateus Crespo
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Ana Ferreira
- The Institute of Cancer Research, London, United Kingdom
| | - Daniela Brina
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Martina Troiani
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | | | | | - George Seed
- The Institute of Cancer Research, London, United Kingdom
| | | | - Maryou Lambros
- The Institute of Cancer Research, London, United Kingdom
| | - David Dolling
- The Institute of Cancer Research, London, United Kingdom
| | - Jan Rekowski
- The Institute of Cancer Research, London, United Kingdom
| | - Abdullah Alajati
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Matthew Clarke
- The Institute of Cancer Research, London, United Kingdom
| | - Rita Pereira
- The Institute of Cancer Research, London, United Kingdom
| | - Penny Flohr
- The Institute of Cancer Research, London, United Kingdom
| | - Gemma Fowler
- The Institute of Cancer Research, London, United Kingdom
| | - Gunther Boysen
- The Institute of Cancer Research, London, United Kingdom
| | - Semini Sumanasuriya
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Diletta Bianchini
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Pasquale Rescigno
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Caterina Aversa
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Nina Tunariu
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Christina Guo
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Alec Paschalis
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Claudia Bertan
- The Institute of Cancer Research, London, United Kingdom
| | - Lorenzo Buroni
- The Institute of Cancer Research, London, United Kingdom
| | - Jian Ning
- The Institute of Cancer Research, London, United Kingdom
| | | | - Paul Workman
- The Institute of Cancer Research, London, United Kingdom
| | - Amanda Swain
- The Institute of Cancer Research, London, United Kingdom
| | - Andrea Califano
- Columbia University College of Physicians and Surgeons, New York, New York
| | - Michael M Shen
- Columbia University College of Physicians and Surgeons, New York, New York
| | - Andrea Alimonti
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Jonathan Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Johann de Bono
- The Institute of Cancer Research, London, United Kingdom.
- The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
226
|
Chan HSC, Ng HK, Chan AKY, Cheng SH, Chow C, Wong N, Wong GKC. Establishment and characterization of meningioma patient-derived organoid. J Clin Neurosci 2021; 94:192-199. [PMID: 34863437 DOI: 10.1016/j.jocn.2021.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/24/2021] [Indexed: 01/03/2023]
Abstract
Meningioma is a central nervous system tumor originated from arachnoid cells. 2D cell culture is widely used as a platform for tumor research as it enables us to culture cells in in vitro and a controlled environment. However, in 2D culture condition, 3D architecture of in vivo tumor mass is lost and phenotypic change may occur. Due to the drawbacks of 2D cell culture, organoid culture is seen as an alternative platform for disease modeling, drug testing and personalized medicine. The objective of this study was to establishing protocol for culturing cells from patient meningioma tissue in in vitro 3D environment. Eight meningiomas were collected for the 3D organoid culture. Cells of 5 meningioma tissues survived and proliferated. Under 3D culture condition, cell aggregates were formed and cytoplasmic processes linking the cell aggregates could be observed. In H&E staining, ovaloid cells and spindle cells were observed. Resembling cultured organoids observed under the light microscope, cell aggregates were also observed in the H&E staining. Epithelial Membrane Antigen (EMA) staining was positive. In 4 (80%) cultured organoids, low Ki67 index (≤6%) were measured. In one cultured organoid, a high Ki67 index (12.8%) was seen. The result of this study revealed the feasibility of culturing meningioma cells in in vitro 3D culture condition. Organoid technology showed its potential as an alternative platform for meningioma research.
Collapse
Affiliation(s)
- Henry Siu Cheung Chan
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, 4/F, Department of Surgery, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China
| | - Ho Keung Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Aden Ka-Yin Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Sau Ha Cheng
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, N.T., Hong Kong, China
| | - Chit Chow
- Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, N.T., Hong Kong, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, 4/F, Department of Surgery, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China.
| |
Collapse
|
227
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
228
|
Bolis M, Bossi D, Vallerga A, Ceserani V, Cavalli M, Impellizzieri D, Di Rito L, Zoni E, Mosole S, Elia AR, Rinaldi A, Pereira Mestre R, D’Antonio E, Ferrari M, Stoffel F, Jermini F, Gillessen S, Bubendorf L, Schraml P, Calcinotto A, Corey E, Moch H, Spahn M, Thalmann G, Kruithof-de Julio M, Rubin MA, Theurillat JPP. Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nat Commun 2021; 12:7033. [PMID: 34857732 PMCID: PMC8640014 DOI: 10.1038/s41467-021-26840-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Comprehensive genomic studies have delineated key driver mutations linked to disease progression for most cancers. However, corresponding transcriptional changes remain largely elusive because of the bias associated with cross-study analysis. Here, we overcome these hurdles and generate a comprehensive prostate cancer transcriptome atlas that describes the roadmap to tumor progression in a qualitative and quantitative manner. Most cancers follow a uniform trajectory characterized by upregulation of polycomb-repressive-complex-2, G2-M checkpoints, and M2 macrophage polarization. Using patient-derived xenograft models, we functionally validate our observations and add single-cell resolution. Thereby, we show that tumor progression occurs through transcriptional adaption rather than a selection of pre-existing cancer cell clusters. Moreover, we determine at the single-cell level how inhibition of EZH2 - the top upregulated gene along the trajectory - reverts tumor progression and macrophage polarization. Finally, a user-friendly web-resource is provided enabling the investigation of dynamic transcriptional perturbations linked to disease progression.
Collapse
Affiliation(s)
- Marco Bolis
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI, 6500, Switzerland. .,Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, 20156, Milano, Italy. .,Bioinformatics Core Unit, Swiss Institute of Bioinformatics, TI, 6500, Bellinzona, Switzerland.
| | - Daniela Bossi
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Arianna Vallerga
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland ,grid.419765.80000 0001 2223 3006Bioinformatics Core Unit, Swiss Institute of Bioinformatics, TI 6500 Bellinzona, Switzerland
| | - Valentina Ceserani
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Manuela Cavalli
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Daniela Impellizzieri
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Laura Di Rito
- grid.4527.40000000106678902Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche ‘Mario Negri’ IRCCS, 20156 Milano, Italy
| | - Eugenio Zoni
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Simone Mosole
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Angela Rita Elia
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Andrea Rinaldi
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Ricardo Pereira Mestre
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland
| | - Eugenia D’Antonio
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland
| | - Matteo Ferrari
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Flavio Stoffel
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Fernando Jermini
- grid.469433.f0000 0004 0514 7845Urology Department, Ente Ospedaliero Cantonale, Bellinzona, TI Switzerland
| | - Silke Gillessen
- grid.419922.5Oncology Institute of Southern Switzerland, Bellinzona, TI 6500 Switzerland ,grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, University of Southern Switzerland (USI), TI 6900 Lugano, Switzerland
| | - Lukas Bubendorf
- grid.410567.1Institute of Surgical Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Peter Schraml
- grid.412004.30000 0004 0478 9977Department of Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Arianna Calcinotto
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| | - Eva Corey
- grid.34477.330000000122986657Department of Urology, University of Washington, Seattle, WA 98195 USA
| | - Holger Moch
- grid.412004.30000 0004 0478 9977Department of Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Martin Spahn
- grid.415941.c0000 0004 0509 4333Lindenhofspital Bern, Prostate Center Bern, 3012 Bern, Switzerland
| | - George Thalmann
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.411656.10000 0004 0479 0855Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.411656.10000 0004 0479 0855Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Mark A. Rubin
- grid.5734.50000 0001 0726 5157Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Bern Center for Precision Medicine, University of Bern and Inselspital, 3012 Bern, Switzerland
| | - Jean-Philippe P. Theurillat
- grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, TI 6500 Switzerland
| |
Collapse
|
229
|
Chaves LP, Melo CM, Saggioro FP, dos Reis RB, Squire JA. Epithelial-Mesenchymal Transition Signaling and Prostate Cancer Stem Cells: Emerging Biomarkers and Opportunities for Precision Therapeutics. Genes (Basel) 2021; 12:1900. [PMID: 34946849 PMCID: PMC8701270 DOI: 10.3390/genes12121900] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancers may reactivate a latent embryonic program called the epithelial-mesenchymal transition (EMT) during the development of metastatic disease. Through EMT, tumors can develop a mesenchymal phenotype similar to cancer stem cell traits that contributes to metastasis and variation in therapeutic responses. Some of the recurrent somatic mutations of prostate cancer affect EMT driver genes and effector transcription factors that induce the chromatin- and androgen-dependent epigenetic alterations that characterize castrate-resistant prostate cancer (CRPC). EMT regulators in prostate cancer comprise transcription factors (SNAI1/2, ZEB1, TWIST1, and ETS), tumor suppressor genes (RB1, PTEN, and TP53), and post-transcriptional regulators (miRNAs) that under the selective pressures of antiandrogen therapy can develop an androgen-independent metastatic phenotype. In prostate cancer mouse models of EMT, Slug expression, as well as WNT/β-Catenin and notch signaling pathways, have been shown to increase stemness potential. Recent single-cell transcriptomic studies also suggest that the stemness phenotype of advanced prostate cancer may be related to EMT. Other evidence correlates EMT and stemness with immune evasion, for example, activation of the polycomb repressor complex I, promoting EMT and stemness and cytokine secretion through RB1, TP53, and PRC1. These findings are helping clinical trials in CRPC that seek to understand how drugs and biomarkers related to the acquisition of EMT can improve drug response.
Collapse
Affiliation(s)
- Luiz Paulo Chaves
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
| | - Camila Morais Melo
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
| | - Fabiano Pinto Saggioro
- Pathology Department, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Jeremy Andrew Squire
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
230
|
Hu LF, Yang X, Lan HR, Fang XL, Chen XY, Jin KT. Preclinical tumor organoid models in personalized cancer therapy: Not everyone fits the mold. Exp Cell Res 2021; 408:112858. [PMID: 34600901 DOI: 10.1016/j.yexcr.2021.112858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
In contrast to conventional cancer treatment, in personalized cancer medicine each patient receives a specific treatment. The response to therapy, clinical outcomes, and tumor behavior such as metastases, tumor progression, carcinogenesis can be significantly affected by the heterogeneous tumor microenvironment (TME) and interpersonal differences. Therefore, using native tumor microenvironment mimicking models is necessary to improving personalized cancer therapy. Both in vitro 2D cell culture and in vivo animal models poorly recapitulate the heterogeneous tumor (immune) microenvironments of native tumors. The development of 3D culture models, native tumor microenvironment mimicking models, made it possible to evaluate the chemoresistance of tumor tissue and the functionality of drugs in the presence of cell-extracellular matrix and cell-cell interactions in a 3D construction. Various personalized tumor models have been designed to preserving the native tumor microenvironment, including patient-derived tumor xenografts and organoid culture strategies. In this review, we will discuss the patient-derived organoids as a native tumor microenvironment mimicking model in personalized cancer therapy. In addition, we will also review the potential and the limitations of organoid culture systems for predicting patient outcomes and preclinical drug screening. Finally, we will discuss immunotherapy drug screening in tumor organoids by using microfluidic technology.
Collapse
Affiliation(s)
- Li-Feng Hu
- Department of Colorectal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang Province, 312000, China
| | - Xue Yang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
| | - Xing-Liang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University College of Medicine (Shaoxing Municipal Hospital), Shaoxing, Zhejiang Province, 312000, China
| | - Xiao-Yi Chen
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China; Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China.
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China.
| |
Collapse
|
231
|
Ermini L, Francis JC, Rosa GS, Rose AJ, Ning J, Greaves M, Swain A. Evolutionary selection of alleles in the melanophilin gene that impacts on prostate organ function and cancer risk. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:311-321. [PMID: 34754452 PMCID: PMC8573191 DOI: 10.1093/emph/eoab026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022]
Abstract
Background and objectives Several hundred inherited genetic variants or SNPs that alter the risk of cancer have been identified through genome-wide association studies. In populations of European ancestry, these variants are mostly present at relatively high frequencies. To gain insight into evolutionary origins, we screened a series of genes and SNPs linked to breast or prostate cancer for signatures of historical positive selection. Methodology We took advantage of the availability of the 1000 genome data and we performed genomic scans for positive selection in five different Caucasian populations as well as one African reference population. We then used prostate organoid cultures to provide a possible functional explanation for the interplay between the action of evolutionary forces and the disease risk association. Results Variants in only one gene showed genomic signatures of positive, evolutionary selection within Caucasian populations melanophilin (MLPH). Functional depletion of MLPH in prostate organoids, by CRISPR/Cas9 mutation, impacted lineage commitment of progenitor cells promoting luminal versus basal cell differentiation and on resistance to androgen deprivation. Conclusions and implications The MLPH variants influencing prostate cancer risk may have been historically selected for their adaptive benefit on skin pigmentation but MLPH is highly expressed in the prostate and the derivative, positively selected, alleles decrease the risk of prostate cancer. Our study suggests a potential functional mechanism via which MLPH and its genetic variants could influence risk of prostate cancer, as a serendipitous consequence of prior evolutionary benefits to another tissue. Lay Summary We screened a limited series of genomic variants associated with breast and prostate cancer risk for signatures of historical positive selection. Variants within the melanophilin (MLPH) gene fell into this category. Depletion of MLPH in prostate organoid cultures, suggested a potential functional mechanism for impacting on cancer risk, as a serendipitous consequence of prior evolutionary benefits to another tissue.
Collapse
Affiliation(s)
- Luca Ermini
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Jeffrey C Francis
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Gabriel S Rosa
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Alexandra J Rose
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Jian Ning
- Division of Cancer Biology, The Institute of Cancer Research, London, UK.,Tumour Profiling Unit, The Institute of Cancer Research, London, UK
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Amanda Swain
- Division of Cancer Biology, The Institute of Cancer Research, London, UK.,Tumour Profiling Unit, The Institute of Cancer Research, London, UK
| |
Collapse
|
232
|
Gong Z, Huang L, Tang X, Chen K, Wu Z, Zhang L, Sun Y, Xia Y, Chen H, Wei Y, Wang F, Guo S. Acoustic Droplet Printing Tumor Organoids for Modeling Bladder Tumor Immune Microenvironment within a Week. Adv Healthc Mater 2021; 10:e2101312. [PMID: 34558233 DOI: 10.1002/adhm.202101312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Current organoid models are limited by the incapability of rapidly fabricating organoids that can mimic the immune microenvironment for a short term. Here, an acoustic droplet-based platform is presented to facilitate the rapid formation of tumor organoids, which retains the original tumor immune microenvironment and establishes a personalized bladder cancer tumor immunotherapy model. In combination with a hydrophobic substrate, the acoustic droplet printer can yield a large number of homogeneous and highly viable bladder tumor organoids in vitro within a week. The generated organoids consist of all components of bladder tumor, including diverse immune elements and tumor cells. By coculturing tumor organoids with autologous immune cells for 2 days, tumor reactive T cells are induced in vitro. Furthermore, it is also demonstrated that these tumor-reactive T cells can also enhance the killing efficiency of matched organoids. Because of the easy operation, repeatability, and stability, the proposed acoustic droplet platform will provide a reliable approach for personalized tumor immunotherapy.
Collapse
Affiliation(s)
- Zhiyi Gong
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Lanxiang Huang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Wuhan Research Center for Infectious Diseases and Cancer Chinese Academy of Medical Sciences Wuhan 430071 China
| | - Xuan Tang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Wuhan Research Center for Infectious Diseases and Cancer Chinese Academy of Medical Sciences Wuhan 430071 China
| | - Keke Chen
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Zhuhao Wu
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Lingling Zhang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Yue Sun
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yu Xia
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Hui Chen
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Fubing Wang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Wuhan Research Center for Infectious Diseases and Cancer Chinese Academy of Medical Sciences Wuhan 430071 China
| | - Shishang Guo
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| |
Collapse
|
233
|
Abstract
Organoids have complex three-dimensional structures that exhibit functionalities and feature architectures similar to those of in vivo organs and are developed from adult stem cells, embryonic stem cells, and pluripotent stem cells through a self-organization process. Organoids derived from adult epithelial stem cells are the most mature and extensive. In recent years, using organoid culture techniques, researchers have established various adult human tissue-derived epithelial organoids, including intestinal, colon, lung, liver, stomach, breast, and oral mucosal organoids, all of which exhibit strong research and application prospects. Studies have shown that epithelial organoids are mainly applied in drug discovery, personalized drug response testing, disease mechanism research, and regenerative medicine. In this review, we mainly discuss current organoid culture systems and potential applications of this technique with human epithelial tissue.
Collapse
Affiliation(s)
- Fengjiao Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Peng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, College of Chemistry & Chemical Engineering, Changsha, Hunan 410081, China
| | - Saizhi Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Lianwen Yuan
- Department of Geriatric Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
234
|
Zhou Z, Van der Jeught K, Fang Y, Yu T, Li Y, Ao Z, Liu S, Zhang L, Yang Y, Eyvani H, Cox ML, Wang X, He X, Ji G, Schneider BP, Guo F, Wan J, Zhang X, Lu X. An organoid-based screen for epigenetic inhibitors that stimulate antigen presentation and potentiate T-cell-mediated cytotoxicity. Nat Biomed Eng 2021; 5:1320-1335. [PMID: 34725507 PMCID: PMC8647932 DOI: 10.1038/s41551-021-00805-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
In breast cancer, genetic heterogeneity, the lack of actionable targets and immune evasion all contribute to the limited clinical response rates to immune checkpoint blockade therapy. Here, we report a high-throughput screen based on the functional interaction of mouse- or patient-derived breast tumour organoids and tumour-specific cytotoxic T cells for the identification of epigenetic inhibitors that promote antigen presentation and potentiate T-cell-mediated cytotoxicity. We show that the epigenetic inhibitors GSK-LSD1, CUDC-101 and BML-210, identified by the screen, display antitumour activities in orthotopic mammary tumours in mice, that they upregulate antigen presentation mediated by the major histocompatibility complex class I on breast tumour cells and that treatment with BML-210 substantially sensitized breast tumours to the inhibitor of the checkpoint programmed death-1. Standardized measurements of tumour-cell killing activity facilitated by tumour-organoid-T-cell screens may help with the identification of candidate immunotherapeutics for a range of cancers.
Collapse
Affiliation(s)
- Zhuolong Zhou
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuanzhang Fang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tao Yu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lu Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Yang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haniyeh Eyvani
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mary L Cox
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiyu Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bryan P Schneider
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
235
|
Van Hemelryk A, Mout L, Erkens-Schulze S, French PJ, van Weerden WM, van Royen ME. Modeling Prostate Cancer Treatment Responses in the Organoid Era: 3D Environment Impacts Drug Testing. Biomolecules 2021; 11:1572. [PMID: 34827570 PMCID: PMC8615701 DOI: 10.3390/biom11111572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Organoid-based studies have revolutionized in vitro preclinical research and hold great promise for the cancer research field, including prostate cancer (PCa). However, experimental variability in organoid drug testing complicates reproducibility. For example, we observed PCa organoids to be less affected by cabazitaxel, abiraterone and enzalutamide as compared to corresponding single cells prior to organoid assembly. We hypothesized that three-dimensional (3D) organoid organization and the use of various 3D scaffolds impact treatment efficacy. Live-cell imaging of androgen-induced androgen receptor (AR) nuclear translocation and taxane-induced tubulin stabilization was used to investigate the impact of 3D scaffolds, spatial organoid distribution and organoid size on treatment effect. Scaffolds delayed AR translocation and tubulin stabilization, with Matrigel causing a more pronounced delay than synthetic hydrogel as well as incomplete tubulin stabilization. Drug effect was further attenuated the more centrally organoids were located in the scaffold dome. Moreover, cells in the organoid core revealed a delayed treatment effect compared to cells in the organoid periphery, underscoring the impact of organoid size. These findings indicate that analysis of organoid drug responses needs careful interpretation and requires dedicated read-outs with consideration of underlying technical aspects.
Collapse
Affiliation(s)
- Annelies Van Hemelryk
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.V.H.); (L.M.); (S.E.-S.)
| | - Lisanne Mout
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.V.H.); (L.M.); (S.E.-S.)
- Department of Medical Oncology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.V.H.); (L.M.); (S.E.-S.)
| | - Pim J. French
- Cancer Treatment Screening Facility, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
- Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wytske M. van Weerden
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.V.H.); (L.M.); (S.E.-S.)
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
236
|
Pernigoni N, Zagato E, Calcinotto A, Troiani M, Mestre RP, Calì B, Attanasio G, Troisi J, Minini M, Mosole S, Revandkar A, Pasquini E, Elia AR, Bossi D, Rinaldi A, Rescigno P, Flohr P, Hunt J, Neeb A, Buroni L, Guo C, Welti J, Ferrari M, Grioni M, Gauthier J, Gharaibeh RZ, Palmisano A, Lucchini GM, D'Antonio E, Merler S, Bolis M, Grassi F, Esposito A, Bellone M, Briganti A, Rescigno M, Theurillat JP, Jobin C, Gillessen S, de Bono J, Alimonti A. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 2021; 374:216-224. [PMID: 34618582 DOI: 10.1126/science.abf8403] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nicolò Pernigoni
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Elena Zagato
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Martina Troiani
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Ricardo Pereira Mestre
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Bianca Calì
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Giuseppe Attanasio
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Jacopo Troisi
- Theoreo Srl, Montecorvino Pugliano, 84090 Salerno, Italy
| | - Mirko Minini
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Simone Mosole
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Ajinkya Revandkar
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Angela Rita Elia
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Daniela Bossi
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | | | - Penny Flohr
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Joanne Hunt
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Antje Neeb
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Lorenzo Buroni
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Christina Guo
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Jonathan Welti
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Matteo Ferrari
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Matteo Grioni
- Cellular Immunology Unit, IRCCS Ospedale San Raffaele, 20100 Milan, Italy
| | - Josée Gauthier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Florida College of Medicine, Gainesville, FL, USA
| | - Raad Z Gharaibeh
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Florida College of Medicine, Gainesville, FL, USA
| | - Anna Palmisano
- Experimental Imaging Center, San Raffaele Scientific Institute, 20100 Milan, Italy.,School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | | | - Eugenia D'Antonio
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Sara Merler
- Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy.,Section of Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Marco Bolis
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland.,Computational Oncology Unit, Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156 Milano, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, 20100 Milan, Italy.,School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, IRCCS Ospedale San Raffaele, 20100 Milan, Italy
| | - Alberto Briganti
- Division of Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Milan, Italy
| | - Jean-Philippe Theurillat
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Silke Gillessen
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland.,Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Johann de Bono
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Andrea Alimonti
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, CH-6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-1011 Lugano, Switzerland.,Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy.,Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| |
Collapse
|
237
|
Nie JH, Yang T, Li H, Ye HS, Zhong GQ, Li TT, Zhang C, Huang WH, Xiao J, Li Z, He JL, Du BL, Zhang Y, Liu J. Identification of GPC3 mutation and upregulation in a multidrug resistant osteosarcoma and its spheroids as therapeutic target. J Bone Oncol 2021; 30:100391. [PMID: 34611509 PMCID: PMC8476350 DOI: 10.1016/j.jbo.2021.100391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022] Open
Abstract
GPC3 mutation in primary osteosarcoma becomes abundant in its metastasis. Mutant GPC3 is over-produced in metastatic spheroids with multidrug resistance. Anti-GPC3 antibody effectively commits metastatic spheroids to apoptosis. GPC3 would be a promising therapeutic target of osteosarcomas.
Background Drug resistance and the lack of molecular therapeutic target are the main challenges in the management of osteosarcomas (OSs). Identification of novel genetic alteration(s) related with OS recurrence and chemotherapeutic resistance would be of scientific and clinical significance. Methods To identify potential genetic alterations related with OS recurrence and chemotherapeutic resistance, the biopsies of a 20-year-old male osteosarcoma patient were collected at primary site (p-OS) and from its metastatic tumor (m-OS) formed after 5 months of adjuvant chemotherapy. Both OS specimens were subjected to cancer-targeted next generation sequencing (NGS) and their cell suspensions were cultured under three-dimensional condition to establish spheroid therapeutic model. Transcript-oriented Sanger sequencing for GPC3, the detected mutated gene, was performed on RNA samples of p-OS and m-OS tissues and spheroids. The effects of anti-GPC3 antibody and its combination with cisplatin on m-OS spheroids were elucidated. Results NGS revealed 4 mutations (GPC3, SOX10, MDM4 and MAPK8) and 6 amplifications (MDM2, CDK4, CCND3, RUNX2, GLI1 and FRS2) in p-OS, and 3 mutations (GPC3, SOX10 and EGF) and 10 amplifications (CDK4, CCND3, MDM2, RUNX2, GLI1, FRS2, CARD11, RAC1, SLC16A7 and PMS2) in m-OS. Among those alterations, the mutation abundance of GPC3 was the highest (56.49%) in p-OS and showed 1.54 times increase in m-OS. GPC3 transcript-oriented Sanger sequencing confirmed the mutation at 1046 in Exon 4, and immunohistochemical staining showed increased GPC3 production in m-OS tissues and its spheroids. EdU cell proliferation and Calcein/PI cell viability assays revealed that of the anti-OS first line drugs (doxorubicin, cisplatin, methotrexate, ifosfamide and carboplatin), 10 μM carboplatin exerted the best inhibitory effects on the p-OS but not the m-OS spheroids. 2 μg/mL anti-GPC3 antibody effectively committed m-OS spheroids to death by itself (76.43%) or in combination with cisplatin (92.93%). Conclusion This study demonstrates increased abundance and up-regulated expression of mutant GPC3 in metastatic osteosarcoma and its spheroids with multidrug resistance. As GPC3-targeting therapy has been used to treat hepatocellular carcinomas and it is also effective to OS PDSs, GPC3 would be a novel prognostic parameter and therapeutic target of osteosarcomas.
Collapse
Key Words
- Anti-GPC3 targeted therapy
- CBP, carboplatin
- CDDP, cisplatin
- DOX, doxorubicin
- FFPE, formalin-fixed, paraffin- embedded
- GPC3 mutation
- GPC3-Ab, anti-GPC3 antibody
- Gene upregulation
- H/E, hematoxylin and eosin
- IHC, immunohistochemistry
- MA, mutation abundance
- MSS, microsatellite stable
- MTX, methotrexate
- Multidrug resistance
- NAC, neoadjuvant chemotherapy
- NGS, next generation sequencing
- Next generation sequencing
- OS, osteosarcoma
- Osteosarcoma
- PDS, patient-derived spheroids
- Patient-derived spheroids
- SNV, single-nucleotide variant
- m-OS, metastatic osteosarcoma
- p-OS, primary osteosarcoma
Collapse
Affiliation(s)
- Jun-Hua Nie
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Tao Yang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Hong Li
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Hai-Shan Ye
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Guo-Qing Zhong
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Ting-Ting Li
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Chi Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Wen-Han Huang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jin Xiao
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Zhi Li
- Department of Pathology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jian-Li He
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Bo-Le Du
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Yu Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jia Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
238
|
Primary Lung Cancer Organoids for Personalized Medicine-Are They Ready for Clinical Use? Cancers (Basel) 2021; 13:cancers13194832. [PMID: 34638316 PMCID: PMC8507762 DOI: 10.3390/cancers13194832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Identification of novel therapeutic strategies for the treatment of non-small cell lung cancer (NSCLC) remains an urgent need in the area of lung cancer research. Traditional in vitro cell culture systems form one of the corner stones of cancer research. However, the growth of cancer cells in a two-dimensional pattern on a plastic dish in artificial conditions is not ideal, as the growth pattern significantly differs from that of a complex tumor in a patient. Hence, in recent years, efforts have been undertaken to generate more complex three-dimensional in vitro models, so-called organoid or tumoroid models, that more closely resemble the growth pattern and tumor heterogeneity observed in a patient. In this review, we summarize the efforts thus far undertaken in the area of NSCLC organoid development. Abstract Despite many developments in recent years, non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death worldwide. Therefore, additional research, aiming to further elucidate the underlying molecular mechanisms of malignant transformation and development of therapy resistance, as well as the identification of additional novel therapeutic avenues, is crucial. For this purpose, reliable in vitro models are indispensable, as they allow for quick identification of suspected oncogenic drivers or evaluation of novel therapeutic strategies in a timely and cost-effective fashion. However, standard two-dimensional cell culture systems, the most frequently used in vitro model, are usually not truly representative of the situation in a patient as these models lack the tumor heterogeneity, the surrounding tumor microenvironment and the three-dimensional complexity of a tumor in vitro. For this reason, 3D cell culture systems, in particular organoids generated from normal non-malignant cells or tumor cell-based organoids (tumoroids), have in recent years gained much attention as alternative in vitro model systems that more closely resemble the actual primary tumor. In this review, we provide an overview of the available literature in the field of NSCLC organoids, which might still be in its infancy, but is gaining momentum.
Collapse
|
239
|
Heninger E, Kosoff D, Rodems TS, Sethakorn N, Singh A, Gungurthi H, Carlson KN, Yang B, Gilsdorf C, Pasch CA, Deming DA, Ellis L, Beebe DJ, Jarrard DF, Lang JM. Live cell molecular analysis of primary prostate cancer organoids identifies persistent androgen receptor signaling. Med Oncol 2021; 38:135. [PMID: 34581895 PMCID: PMC8478748 DOI: 10.1007/s12032-021-01582-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/12/2021] [Indexed: 11/29/2022]
Abstract
Prostate Cancer (PC) is a disease with remarkable tumor heterogeneity that often manifests in significant intra-patient variability with regards to clinical outcomes and treatment response. Commonly available PC cell lines do not accurately reflect the complexity of this disease and there is critical need for development of new models to recapitulate the intricate hierarchy of tumor pathogenesis. In current study, we established ex vivo primary patient-derived cancer organoid (PDCO) cultures from prostatectomy specimens of patients with locally advanced PC. We then performed a comprehensive multi-parameter characterization of the cellular composition utilizing a novel approach for live-cell staining and direct imaging in the integrated microfluidic Stacks device. Using orthogonal flow cytometry analysis, we demonstrate that primary PDCOs maintain distinct subsets of epithelial cells throughout culture and that these cells conserve expression of androgen receptor (AR)-related elements. Furthermore, to confirm the tumor-origin of the PDCOs we have analyzed the expression of PC-associated epigenetic biomarkers including promoter methylation of the GSTP1, RASSF1 and APC and RARb genes by employing a novel microfluidic rare-event screening protocol. These results demonstrate that this ex vivo PDCO model recapitulates the complexity of the epithelial tumor microenvironment of multifocal PC using orthogonal analyses. Furthermore, we propose to leverage the Stacks microfluidic device as a high-throughput, translational platform to interrogate phenotypic and molecular endpoints with the capacity to incorporate a complex tumor microenvironment.
Collapse
Affiliation(s)
- Erika Heninger
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - David Kosoff
- Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Tamara S Rodems
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Nan Sethakorn
- Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Anupama Singh
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Harshitha Gungurthi
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Kristin N Carlson
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Bing Yang
- Department of Urology, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Cole Gilsdorf
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Cheri A Pasch
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA
| | - Dustin A Deming
- Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Leigh Ellis
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, 1111 Highland Ave., Madison, WI, 53705, USA
| | - David F Jarrard
- Department of Urology, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave., Madison, USA. .,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA. .,Wisconsin Institutes for Medical Research, Rm 7151, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
240
|
Zhou L, Zhang C, Zhang Y, Shi C. Application of Organoid Models in Prostate Cancer Research. Front Oncol 2021; 11:736431. [PMID: 34646778 PMCID: PMC8504437 DOI: 10.3389/fonc.2021.736431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Complex heterogeneity is an important characteristic in the development of prostate cancer (PCa), which further leads to the failure of known therapeutic options. PCa research has been hampered by the current in vitro model systems that cannot fully reflect the biological characteristics and clinical diversity of PCa. The tumor organoid model in three-dimensional culture retains the heterogeneity of primary tumor tissues in vitro well and enables high-throughput screening and genome editing. Therefore, the establishment of a PCa organoid model that recapitulates the diverse heterogeneity observed in clinical settings is of great significance for the study of PCa. In this review, we summarize the culture conditions, establishments, and limitations of PCa organoids and further review their application for the study of pathogenesis, drug screening, mechanism of drug resistance, and individualized treatment for PCa. Additionally, we look forward to other potential developmental directions of PCa organoids, such as the interaction between prostate cancer tumor cells and their microenvironment, clinical individualized treatments, heterogeneous transformation model, tumor immunotherapy, and organoid models combined with liquid biopsy. Through this, we provide more effective preclinical experimental schemes using the PCa organoid model.
Collapse
Affiliation(s)
- Ligui Zhou
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, China
| | - Yongbin Zhang
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
241
|
Abstract
3D cultures of mammary epithelial cells purified from murine models provide a unique resource to study genetically defined breast cancer and response to targeted therapies. Here, we describe step-by-step experimental procedures for the successful establishment of murine mammary organoid lines isolated from mammary glands or mammary tumors driven by mutations in components of the PI3K pathway. These detailed protocols also include procedures to perform assays that can be adopted to screen response to drug treatments and to inform better therapies. For details on potential applications and use of this protocol, please refer to Yip et al. (2020).
Collapse
Affiliation(s)
- Hon Yan Kelvin Yip
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
242
|
Li J, Fang K, Choppavarapu L, Yang K, Yang Y, Wang J, Cao R, Jatoi I, Jin VX. Hi-C profiling of cancer spheroids identifies 3D-growth-specific chromatin interactions in breast cancer endocrine resistance. Clin Epigenetics 2021; 13:175. [PMID: 34535185 PMCID: PMC8447690 DOI: 10.1186/s13148-021-01167-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Organoids or spheroids have emerged as a physiologically relevant in vitro preclinical model to study patient-specific diseases. A recent study used spheroids of MCF10 cells to model breast cancer progression and identified targetable alterations more similar to those in vivo. Thus, it is practical and essential to explore and characterize the spheroids of the commonly used human breast cancer (BC) cells. METHODS In this study, we conducted Hi-C analyses in three-dimensional (3D) spheroids of MCF10A, MCF7 and MCF7TR cells and compared TADs and looping genes with those in 2D monolayers. Furthermore, we performed in silico functional analysis on 3D-growth-specific looping genes and to compare patient outcomes with or without endocrinal therapy. Finally, we performed 3C/RT-qPCR validations in 3D spheroids and 3D-FISH confirmations in organoids of breast cancer patient tissues. RESULTS We found that chromatin structures have experienced drastic changes during the 3D culture growth of BC cells although there is not much change in the quantity of chromatin domains. We also observed that the strengths of looping genes were statistically different between 2D monolayers and 3D spheroids. We further identified novel 3D growth-specific looping genes within Hippo relevant pathways, of which two genes showed potential prognostic values in measuring the outcome of the endocrine treatment. We finally confirmed a few selected genes in Hippo relevant pathways with enhanced looping in organoids of breast cancer patient tissues. CONCLUSIONS Hence, our work has provided significant insights into our understanding of 3D-growth-specific chromatin architecture in tamoxifen-resistant breast cancer. Our analyses suggest that the strengthened looping-mediated Hippo relevant pathways may contribute to endocrine therapy resistance in breast cancer patients.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410006, Hunan, People's Republic of China
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Kun Fang
- Program of Biomedical Engineering, UTHSA-UTSA Joint Graduate Program, San Antonio, TX, 78229, USA
| | - Lavanya Choppavarapu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ke Yang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yini Yang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Minimally Invasive Surgical Center, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Junbai Wang
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, 0310, Montebello, Oslo, Norway
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Ismail Jatoi
- Department of Surgery, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
243
|
Yang H, Wang Y, Wang P, Zhang N, Wang P. Tumor organoids for cancer research and personalized medicine. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0335. [PMID: 34520134 PMCID: PMC8958892 DOI: 10.20892/j.issn.2095-3941.2021.0335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022] Open
Abstract
Organoids are three-dimensional culture systems generated from embryonic stem cells, induced pluripotent stem cells, and adult stem cells. They are capable of cell proliferation, differentiation, and self-renewal. Upon stimulation by signal factors and/or growth factors, organoids self-assemble to replicate the morphological and structural characteristics of the corresponding organs. They provide an extraordinary platform for investigating organ development and mimicking pathological processes. Organoid biobanks derived from a wide range of carcinomas have been established to represent different lesions or stages of clinical tumors. Importantly, genomic and transcriptomic analyses have confirmed maintenance of intra- and interpatient heterogeneities in organoids. Therefore, this technology has the potential to revolutionize drug screening and personalized medicine. In this review, we summarized the characteristics and applications of organoids in cancer research by the establishment of organoid biobanks directly from tumor organoids or from genetically modified non-cancerous organoids. We also analyzed the current state of organoid applications in drug screening and personalized medicine.
Collapse
Affiliation(s)
- Hui Yang
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Yinuo Wang
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Peng Wang
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Pengyuan Wang
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
- Division of General Surgery, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
244
|
Marx U, Accastelli E, David R, Erfurth H, Koenig L, Lauster R, Ramme AP, Reinke P, Volk HD, Winter A, Dehne EM. An Individual Patient's "Body" on Chips-How Organismoid Theory Can Translate Into Your Personal Precision Therapy Approach. Front Med (Lausanne) 2021; 8:728866. [PMID: 34589503 PMCID: PMC8473633 DOI: 10.3389/fmed.2021.728866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
The first concepts for reproducing human systemic organismal biology in vitro were developed over 12 years ago. Such concepts, then called human- or body-on-a-chip, claimed that microphysiological systems would become the relevant technology platform emulating the physiology and morphology of human organisms at the smallest biologically acceptable scale in vitro and, therefore, would enable the selection of personalized therapies for any patient at unprecedented precision. Meanwhile, the first human organoids-stem cell-derived complex three-dimensional organ models that expand and self-organize in vitro-have proven that in vitro self-assembly of minute premature human organ-like structures is feasible, once the respective stimuli of ontogenesis are provided to human stem cells. Such premature organoids can precisely reflect a number of distinct physiological and pathophysiological features of their respective counterparts in the human body. We now develop the human-on-a-chip concepts of the past into an organismoid theory. We describe the current concept and principles to create a series of organismoids-minute, mindless and emotion-free physiological in vitro equivalents of an individual's mature human body-by an artificially short process of morphogenetic self-assembly mimicking an individual's ontogenesis from egg cell to sexually mature organism. Subsequently, we provide the concept and principles to maintain such an individual's set of organismoids at a self-sustained functional healthy homeostasis over very long time frames in vitro. Principles how to perturb a subset of healthy organismoids by means of the natural or artificial induction of diseases are enrolled to emulate an individual's disease process. Finally, we discuss using such series of healthy and perturbed organismoids in predictively selecting, scheduling and dosing an individual patient's personalized therapy or medicine precisely. The potential impact of the organismoid theory on our healthcare system generally and the rapid adoption of disruptive personalized T-cell therapies particularly is highlighted.
Collapse
Affiliation(s)
- Uwe Marx
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- TissUse GmbH, Berlin, Germany
| | | | - Rhiannon David
- Functional and Mechanistic Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Roland Lauster
- Department of Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
- BIH-Center for Regenerative Therapies, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- BIH-Center for Regenerative Therapies, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
245
|
AR-negative prostate cancer is vulnerable to loss of JMJD1C demethylase. Proc Natl Acad Sci U S A 2021; 118:2026324118. [PMID: 34475205 DOI: 10.1073/pnas.2026324118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is a leading cause of cancer-related mortality in men. The widespread use of androgen receptor (AR) inhibitors has generated an increased incidence of AR-negative prostate cancer, triggering the need for effective therapies for such patients. Here, analysis of public genome-wide CRISPR screens in human prostate cancer cell lines identified histone demethylase JMJD1C (KDM3C) as an AR-negative context-specific vulnerability. Secondary validation studies in multiple cell lines and organoids, including isogenic models, confirmed that small hairpin RNA (shRNA)-mediated depletion of JMJD1C potently inhibited growth specifically in AR-negative prostate cancer cells. To explore the cooperative interactions of AR and JMJD1C, we performed comparative transcriptomics of 1) isogenic AR-positive versus AR-negative prostate cancer cells, 2) AR-positive versus AR-negative prostate cancer tumors, and 3) isogenic JMJD1C-expressing versus JMJD1C-depleted AR-negative prostate cancer cells. Loss of AR or JMJD1C generates a modest tumor necrosis factor alpha (TNFα) signature, whereas combined loss of AR and JMJD1C strongly up-regulates the TNFα signature in human prostate cancer, suggesting TNFα signaling as a point of convergence for the combined actions of AR and JMJD1C. Correspondingly, AR-negative prostate cancer cells showed exquisite sensitivity to TNFα treatment and, conversely, TNFα pathway inhibition via inhibition of its downstream effector MAP4K4 partially reversed the growth defect of JMJD1C-depleted AR-negative prostate cancer cells. Given the deleterious systemic side effects of TNFα therapy in humans and the viability of JMJD1C-knockout mice, the identification of JMJD1C inhibition as a specific vulnerability in AR-negative prostate cancer may provide an alternative drug target for prostate cancer patients progressing on AR inhibitor therapy.
Collapse
|
246
|
Grbesa I, Augello MA, Liu D, McNally DR, Gaffney CD, Huang D, Lin K, Ivenitsky D, Goueli R, Robinson BD, Khani F, Deonarine LD, Blattner M, Elemento O, Davicioni E, Sboner A, Barbieri CE. Reshaping of the androgen-driven chromatin landscape in normal prostate cells by early cancer drivers and effect on therapeutic sensitivity. Cell Rep 2021; 36:109625. [PMID: 34496233 PMCID: PMC8477443 DOI: 10.1016/j.celrep.2021.109625] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/06/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
The normal androgen receptor (AR) cistrome and transcriptional program are fundamentally altered in prostate cancer (PCa). Here, we profile the chromatin landscape and AR-directed transcriptional program in normal prostate cells and show the impact of SPOP mutations, an early event in prostate tumorigenesis. In genetically normal mouse prostate organoids, SPOP mutation results in accessibility and AR binding patterns similar to that of human PCa. Consistent with dependence on AR signaling, castration of SPOP mutant mouse models results in the loss of neoplastic phenotypes, and human SPOP mutant PCa shows a favorable response to AR-targeted therapies. Together, these data validate mouse prostate organoids as a robust model for studying epigenomic and transcriptional alterations in normal prostate, provide valuable datasets for further studies, and show that a single genomic alteration may be sufficient to reprogram the chromatin of normal prostate cells toward oncogenic phenotypes, with potential therapeutic implications for AR-targeting therapies.
Collapse
Affiliation(s)
- Ivana Grbesa
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael A Augello
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deli Liu
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dylan R McNally
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Dennis Huang
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kevin Lin
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daria Ivenitsky
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ramy Goueli
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Brian D Robinson
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Francesca Khani
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lesa D Deonarine
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mirjam Blattner
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Andrea Sboner
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher E Barbieri
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
247
|
Luo Z, Zhou X, Mandal K, He N, Wennerberg W, Qu M, Jiang X, Sun W, Khademhosseini A. Reconstructing the tumor architecture into organoids. Adv Drug Deliv Rev 2021; 176:113839. [PMID: 34153370 PMCID: PMC8560135 DOI: 10.1016/j.addr.2021.113839] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading health burden worldwide. One of the challenges hindering cancer therapy development is the substantial discrepancies between the existing cancer models and the tumor microenvironment (TME) of human patients. Constructing tumor organoids represents an emerging approach to recapitulate the pathophysiological features of the TME in vitro. Over the past decade, various approaches have been demonstrated to engineer tumor organoids as in vitro cancer models, such as incorporating multiple cellular populations, reconstructing biophysical and chemical traits, and even recapitulating structural features. In this review, we focus on engineering approaches for building tumor organoids, including biomaterial-based, microfabrication-assisted, and synthetic biology-facilitated strategies. Furthermore, we summarize the applications of engineered tumor organoids in basic cancer research, cancer drug discovery, and personalized medicine. We also discuss the challenges and future opportunities in using tumor organoids for broader applications.
Collapse
Affiliation(s)
- Zhimin Luo
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Na He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wally Wennerberg
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, and Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
248
|
Yang J, Huang S, Cheng S, Jin Y, Zhang N, Wang Y. Application of Ovarian Cancer Organoids in Precision Medicine: Key Challenges and Current Opportunities. Front Cell Dev Biol 2021; 9:701429. [PMID: 34409036 PMCID: PMC8366314 DOI: 10.3389/fcell.2021.701429] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023] Open
Abstract
Ovarian cancer (OC) is the leading cause of death among gynecologic malignances. Over the past decades, human-derived models have advanced from monolayer cell cultures to three-dimensional (3D) organoids that could faithfully recapitulate biological characteristics and tumor heterogeneity of primary tissues. As a complement of previous studies based on cell lines or xenografts, organoids provide a 3D platform for mutation–carcinogenesis modeling, high-throughput drug screening, genetic engineering, and biobanking, which might fulfill the gap between basic research and clinical practice. Stepwise, cutting-edge bioengineering techniques of organoid-on-a-chip and 3D bioprinting might converge current challenges and contribute to personalized therapy. We comprehensively reviewed the advantages, challenges, and translational potential of OC organoids. Undeniably, organoids represent an excellent near-physiological platform for OC, paving the way for precision medicine implementation. Future efforts will doubtlessly bring this innovative technique from bench to bedside.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Shan Huang
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Jin
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Zhang
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| |
Collapse
|
249
|
Risbridger GP, Clark AK, Porter LH, Toivanen R, Bakshi A, Lister NL, Pook D, Pezaro CJ, Sandhu S, Keerthikumar S, Quezada Urban R, Papargiris M, Kraska J, Madsen HB, Wang H, Richards MG, Niranjan B, O'Dea S, Teng L, Wheelahan W, Li Z, Choo N, Ouyang JF, Thorne H, Devereux L, Hicks RJ, Sengupta S, Harewood L, Iddawala M, Azad AA, Goad J, Grummet J, Kourambas J, Kwan EM, Moon D, Murphy DG, Pedersen J, Clouston D, Norden S, Ryan A, Furic L, Goode DL, Frydenberg M, Lawrence MG, Taylor RA. The MURAL collection of prostate cancer patient-derived xenografts enables discovery through preclinical models of uro-oncology. Nat Commun 2021; 12:5049. [PMID: 34413304 PMCID: PMC8376965 DOI: 10.1038/s41467-021-25175-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Preclinical testing is a crucial step in evaluating cancer therapeutics. We aimed to establish a significant resource of patient-derived xenografts (PDXs) of prostate cancer for rapid and systematic evaluation of candidate therapies. The PDX collection comprises 59 tumors collected from 30 patients between 2012-2020, coinciding with availability of abiraterone and enzalutamide. The PDXs represent the clinico-pathological and genomic spectrum of prostate cancer, from treatment-naïve primary tumors to castration-resistant metastases. Inter- and intra-tumor heterogeneity in adenocarcinoma and neuroendocrine phenotypes is evident from bulk and single-cell RNA sequencing data. Organoids can be cultured from PDXs, providing further capabilities for preclinical studies. Using a 1 x 1 x 1 design, we rapidly identify tumors with exceptional responses to combination treatments. To govern the distribution of PDXs, we formed the Melbourne Urological Research Alliance (MURAL). This PDX collection is a substantial resource, expanding the capacity to test and prioritize effective treatments for prospective clinical trials in prostate cancer.
Collapse
Affiliation(s)
- Gail P Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| | - Ashlee K Clark
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Laura H Porter
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Roxanne Toivanen
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew Bakshi
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Natalie L Lister
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - David Pook
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.,Department of Medical Oncology, Monash Health, Clayton, VIC, Australia
| | - Carmel J Pezaro
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Eastern Health and Monash University Eastern Health Clinical School, Box Hill, VIC, Australia.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Cancer Tissue Collection After Death (CASCADE) Program, Melbourne, VIC, Australia
| | - Shivakumar Keerthikumar
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rosalia Quezada Urban
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Melissa Papargiris
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Australian Prostate Cancer Bioresource, VIC Node, Monash University, Clayton, VIC, Australia
| | - Jenna Kraska
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Australian Prostate Cancer Bioresource, VIC Node, Monash University, Clayton, VIC, Australia
| | - Heather B Madsen
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Australian Prostate Cancer Bioresource, VIC Node, Monash University, Clayton, VIC, Australia
| | - Hong Wang
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Michelle G Richards
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Birunthi Niranjan
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Samantha O'Dea
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Linda Teng
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - William Wheelahan
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Zhuoer Li
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Nicholas Choo
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Heather Thorne
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Devereux
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Rodney J Hicks
- Center for Molecular Imaging, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Shomik Sengupta
- Eastern Health and Monash University Eastern Health Clinical School, Box Hill, VIC, Australia.,Department of Urology, Austin Hospital, The University of Melbourne, Heidelberg, VIC, Australia.,Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia.,Epworth Healthcare, Melbourne, VIC, Australia.,Epworth Freemasons, Epworth Health, East Melbourne, VIC, Australia
| | - Laurence Harewood
- Epworth Healthcare, Melbourne, VIC, Australia.,Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Mahesh Iddawala
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Arun A Azad
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jeremy Goad
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Epworth Healthcare, Melbourne, VIC, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeremy Grummet
- Epworth Healthcare, Melbourne, VIC, Australia.,Department of Surgery, Central Clinical School, Monash University, Clayton, VIC, Australia.,Australian Urology Associates, Melbourne, VIC, Australia
| | - John Kourambas
- Department of Medicine, Monash Health, Casey Hospital, Berwick, VIC, Australia
| | - Edmond M Kwan
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.,Department of Medical Oncology, Monash Health, Clayton, VIC, Australia
| | - Daniel Moon
- Epworth Healthcare, Melbourne, VIC, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia.,Australian Urology Associates, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Clayton, VIC, Australia.,The Epworth Prostate Centre, Epworth Hospital, Richmond, VIC, Australia
| | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Epworth Healthcare, Melbourne, VIC, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - John Pedersen
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,TissuPath, Mount Waverley, VIC, Australia
| | | | - Sam Norden
- TissuPath, Mount Waverley, VIC, Australia
| | | | - Luc Furic
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - David L Goode
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark Frydenberg
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Epworth Healthcare, Melbourne, VIC, Australia.,Australian Urology Associates, Melbourne, VIC, Australia.,Department of Surgery, Monash University, Clayton, VIC, Australia.,Department of Urology, Cabrini Institute, Cabrini Health, Melbourne, VIC, Australia
| | - Mitchell G Lawrence
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. .,Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Physiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
250
|
Pan C, Kang J, Hwang JS, Li J, Boese AC, Wang X, Yang L, Boggon TJ, Chen GZ, Saba NF, Shin DM, Magliocca KR, Jin L, Kang S. Cisplatin-mediated activation of glucocorticoid receptor induces platinum resistance via MAST1. Nat Commun 2021; 12:4960. [PMID: 34400618 PMCID: PMC8368102 DOI: 10.1038/s41467-021-24845-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/06/2021] [Indexed: 02/04/2023] Open
Abstract
Agonists of glucocorticoid receptor (GR) are frequently given to cancer patients with platinum-containing chemotherapy to reduce inflammation, but how GR influences tumor growth in response to platinum-based chemotherapy such as cisplatin through inflammation-independent signaling remains largely unclear. Combined genomics and transcription factor profiling reveal that MAST1, a critical platinum resistance factor that reprograms the MAPK pathway, is upregulated upon cisplatin exposure through activated transcription factor GR. Mechanistically, cisplatin binds to C622 in GR and recruits GR to the nucleus for its activation, which induces MAST1 expression and consequently reactivates MEK signaling. GR nuclear translocation and MAST1 upregulation coordinately occur in patient tumors collected after platinum treatment, and align with patient treatment resistance. Co-treatment with dexamethasone and cisplatin restores cisplatin-resistant tumor growth, whereas addition of the MAST1 inhibitor lestaurtinib abrogates tumor growth while preserving the inhibitory effect of dexamethasone on inflammation in vivo. These findings not only provide insights into the underlying mechanism of GR in cisplatin resistance but also offer an effective alternative therapeutic strategy to improve the clinical outcome of patients receiving platinum-based chemotherapy with GR agonists.
Collapse
Affiliation(s)
- Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Jung Seok Hwang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Jie Li
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Austin C Boese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Xu Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Likun Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Georgia Z Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly R Magliocca
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|