201
|
Kim K, Park CB. Femtomolar sensing of Alzheimer's tau proteins by water oxidation-coupled photoelectrochemical platform. Biosens Bioelectron 2020; 154:112075. [PMID: 32056970 DOI: 10.1016/j.bios.2020.112075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. A key pathogenic event of AD is the formation of intracellular neurofibrillary tangles that are mainly composed of tau proteins. Here, we report on ultrasensitive detection of total tau (t-tau) proteins using an artificial electron donor-free, BiVO4-based photoelectrochemical (PEC) analysis. The platform was constructed by incorporating molybdenum (Mo) dopant and iron oxyhydroxide (FeOOH) ad-layer into the BiVO4 photoelectrode and employing a signal amplifier formed by horseradish peroxidase (HRP)-triggered oxidation of 3,3'-diaminobenzidine (DAB). Despite the absence of additional electron suppliers, the FeOOH/Mo:BiVO4 conjugated with the Tau5 antibody produced strong current signals at 0 V (vs. Ag/AgCl, 3 M NaCl) under the illumination of a white light-emitting diode. The Mo extrinsic dopants increased the charge carrier density of BiVO4-Tau5 by 1.57 times, and the FeOOH co-catalyst promoted the interfacial water oxidation reaction of Mo:BiVO4-Tau5 by suppressing charge recombination. The introduction of HRP-labeled Tau46 capture antibodies to the FeOOH/Mo:BiVO4-Tau5 platform produced insoluble precipitation on the transducer by accelerating the oxidation of DAB, which amplified the photocurrent signal of FeOOH/Mo:BiVO4-Tau5 by 2.07-fold. Consequently, the water oxidation-coupled, FeOOH/Mo:BiVO4-based PEC sensing platform accurately and selectively recognized t-tau proteins down to femtomolar concentrations; the limit of detection and limit of quantification were determined to be 1.59 fM and 4.11 fM, respectively.
Collapse
Affiliation(s)
- Kayoung Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
202
|
Ramesh M, Gopinath P, Govindaraju T. Role of Post-translational Modifications in Alzheimer's Disease. Chembiochem 2020; 21:1052-1079. [PMID: 31863723 DOI: 10.1002/cbic.201900573] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The global burden of Alzheimer's disease (AD) is growing. Valiant efforts to develop clinical candidates for treatment have continuously met with failure. Currently available palliative treatments are temporary and there is a constant need to search for reliable disease pathways, biomarkers and drug targets for developing diagnostic and therapeutic tools to address the unmet medical needs of AD. Challenges in drug-discovery efforts raise further questions about the strategies of current conventional diagnosis; drug design; and understanding of disease pathways, biomarkers and targets. In this context, post-translational modifications (PTMs) regulate protein trafficking, function and degradation, and their in-depth study plays a significant role in the identification of novel biomarkers and drug targets. Aberrant PTMs of disease-relevant proteins could trigger pathological pathways, leading to disease progression. Advancements in proteomics enable the generation of patterns or signatures of such modifications, and thus, provide a versatile platform to develop biomarkers based on PTMs. In addition, understanding and targeting the aberrant PTMs of various proteins provide viable avenues for addressing AD drug-discovery challenges. This review highlights numerous PTMs of proteins relevant to AD and provides an overview of their adverse effects on the protein structure, function and aggregation propensity that contribute to the disease pathology. A critical discussion offers suggestions of methods to develop PTM signatures and interfere with aberrant PTMs to develop viable diagnostic and therapeutic interventions in AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM-Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamilnadu, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
203
|
Zhang F, Gannon M, Chen Y, Yan S, Zhang S, Feng W, Tao J, Sha B, Liu Z, Saito T, Saido T, Keene CD, Jiao K, Roberson ED, Xu H, Wang Q. β-amyloid redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade. Sci Transl Med 2020; 12:eaay6931. [PMID: 31941827 PMCID: PMC7891768 DOI: 10.1126/scitranslmed.aay6931] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
The brain noradrenergic system is critical for normal cognition and is affected at early stages in Alzheimer's disease (AD). Here, we reveal a previously unappreciated direct role of norepinephrine signaling in connecting β-amyloid (Aβ) and tau, two key pathological components of AD pathogenesis. Our results show that Aβ oligomers bind to an allosteric site on α2A adrenergic receptor (α2AAR) to redirect norepinephrine-elicited signaling to glycogen synthase kinase 3β (GSK3β) activation and tau hyperphosphorylation. This norepinephrine-dependent mechanism sensitizes pathological GSK3β/tau activation in response to nanomolar accumulations of extracellular Aβ, which is 50- to 100-fold lower than the amount required to activate GSK3β by Aβ alone. The significance of our findings is supported by in vivo evidence in two mouse models, human tissue sample analysis, and longitudinal clinical data. Our study provides translational insights into mechanisms underlying Aβ proteotoxicity, which might have strong implications for the interpretation of Aβ clearance trial results and future drug design and for understanding the selective vulnerability of noradrenergic neurons in AD.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mary Gannon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yunjia Chen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shun Yan
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sixue Zhang
- Department of Chemistry, Southern Research Institute, Birmingham, AL 35205, USA
| | - Wendy Feng
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jiahui Tao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bingdong Sha
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhenghui Liu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98104, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
204
|
Kim K, Kim MJ, Kim DW, Kim SY, Park S, Park CB. Clinically accurate diagnosis of Alzheimer's disease via multiplexed sensing of core biomarkers in human plasma. Nat Commun 2020; 11:119. [PMID: 31913282 PMCID: PMC6949261 DOI: 10.1038/s41467-019-13901-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, affecting one in ten people aged over 65 years. Despite the severity of the disease, early diagnosis of AD is still challenging due to the low accuracy or high cost of neuropsychological tests and neuroimaging. Here we report clinically accurate and ultrasensitive detection of multiple AD core biomarkers (t-tau, p-tau181, Aβ42, and Aβ40) in human plasma using densely aligned carbon nanotubes (CNTs). The closely packed and unidirectionally aligned CNT sensor array exhibits high precision, sensitivity, and accuracy, evidenced by a low coefficient of variation (<6%), a femtomolar-level limit of detection, and a high degree of recovery (>93.0%). By measuring the levels of t-tau/Aβ42, p-tau181/Aβ42, and Aβ42/Aβ40 in clinical blood samples, the sensor array successfully discriminates the clinically diagnosed AD patients from healthy controls with an average sensitivity of 90.0%, a selectivity of 90.0%, and an average accuracy of 88.6%. Detection of Alzheimer’s disease (AD) biomarkers from patients’ blood is challenging because these are present in very low concentrations in the plasma. Here the authors develop a sensor array of densely aligned single-walled carbon nanotubes for clinically accurate detection of femtomolar AD biomarkers in human plasma samples.
Collapse
Affiliation(s)
- Kayoung Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Min-Ji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Da Won Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Su Yeong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea.
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
205
|
Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 2020; 27:18. [PMID: 31906949 PMCID: PMC6943903 DOI: 10.1186/s12929-019-0609-7] [Citation(s) in RCA: 403] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer disease (AD) accounts for 60-70% of dementia cases. Given the seriousness of the disease and continual increase in patient numbers, developing effective therapies to treat AD has become urgent. Presently, the drugs available for AD treatment, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate receptor, can only inhibit dementia symptoms for a limited period of time but cannot stop or reverse disease progression. On the basis of the amyloid hypothesis, many global drug companies have conducted many clinical trials on amyloid clearing therapy but without success. Thus, the amyloid hypothesis may not be completely feasible. The number of anti-amyloid trials decreased in 2019, which might be a turning point. An in-depth and comprehensive understanding of the contribution of amyloid beta and other factors of AD is crucial for developing novel pharmacotherapies.In ongoing clinical trials, researchers have developed and are testing several possible interventions aimed at various targets, including anti-amyloid and anti-tau interventions, neurotransmitter modification, anti-neuroinflammation and neuroprotection interventions, and cognitive enhancement, and interventions to relieve behavioral psychological symptoms. In this article, we present the current state of clinical trials for AD at clinicaltrials.gov. We reviewed the underlying mechanisms of these trials, tried to understand the reason why prior clinical trials failed, and analyzed the future trend of AD clinical trials.
Collapse
Affiliation(s)
- Li-Kai Huang
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, National Health Research Institute, Taipei, Taiwan
| | - Shu-Ping Chao
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, National Health Research Institute, Taipei, Taiwan.
- Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
206
|
Riquelme A, Valdés-Tovar M, Ugalde O, Maya-Ampudia V, Fernández M, Mendoza-Durán L, Rodríguez-Cárdenas L, Benítez-King G. Potential Use of Exfoliated and Cultured Olfactory Neuronal Precursors for In Vivo Alzheimer's Disease Diagnosis: A Pilot Study. Cell Mol Neurobiol 2020; 40:87-98. [PMID: 31414299 DOI: 10.1007/s10571-019-00718-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/31/2019] [Indexed: 11/26/2022]
Abstract
Histopathological hallmarks of dementia have been described postmortem in the brain of patients with Alzheimer's disease (AD). Tau, a microtubule associated protein, is abnormally arranged in neurofibrillary tangles. In living AD patients, total tau (t-tau) and hyperphosphorylated tau (p-tau) levels are increased in the cerebrospinal fluid obtained by lumbar puncture. Herein, we studied the t-tau and p-tau levels as well as the subcellular distribution of t-tau in olfactory neuronal precursors obtained by exfoliation of the nasal cavity of AD patients and control participants. Data showed that t-tau and p-tau levels were increased in cell homogenates from AD patients. Also, t-tau immunoreactivity was arranged in a punctate pattern in olfactory neuronal precursors derived from an AD participant with 5 years of evolution and in the oldest participants, either control subjects or those with Alzheimer's disease. Results support that exfoliated neuronal precursors have tau alterations demonstrated in postmortem brain and in the cerebrospinal fluid. This evidence and because the obtainment of olfactory neuronal precursors is a noninvasive procedure, detection of tau alterations shown here might be useful for an early diagnosis of AD-type dementia.
Collapse
Affiliation(s)
- Agustín Riquelme
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
- Cellular Neuroanatomy Laboratory, Program in Neurobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Oscar Ugalde
- Clínica de Psicogeriatría, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Vanessa Maya-Ampudia
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Monserrat Fernández
- Clínica de Psicogeriatría, Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Leticia Mendoza-Durán
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Leslye Rodríguez-Cárdenas
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo-Huipulco, 14370, Tlalpan, Ciudad de México, Mexico.
| |
Collapse
|
207
|
Liu Y, Wang L, Xie F, Wang X, Hou Y, Wang X, Liu J. Overexpression of miR-26a-5p Suppresses Tau Phosphorylation and Aβ Accumulation in the Alzheimer's Disease Mice by Targeting DYRK1A. Curr Neurovasc Res 2020; 17:241-248. [PMID: 32286945 DOI: 10.2174/1567202617666200414142637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE It is reported that miR-26a-5p could regulate neuronal development, but its underlying mechanisms in Alzheimer's disease (AD) progression is unclear. METHODS APP (swe)/PS1 (ΔE9) transgenic mice served as AD mice. Morris water maze test was used to measure the spatial learning and memory ability of mice. The expressions of miR-26a-5p, DYRK1A, phosphorylated-Tau, Aβ40, and Aβ42 were detected. The relationship between miR- 26a-5p and DYRK1A was explored using dual luciferase reporter assay. The effects of miR-26a- 5p on AD mice was determined. RESULTS AD mice walked a lot of wrong ways to find the platform area and the latency time to reach the platform was longer. There was low expression of MiR-26a-5p in AD mice. Overexpression of miR-26a-5p inhibited Tau phosphorylation and Aβ accumulation. MiR-26a-5p negatively regulated DYRK1A via targeting its 3'UTR. In vivo, increased miR-26a-5p down-regulated Aβ40, Aβ42, p-APP and p-Tau levels in AD mice through decreasing DYRK1A. Meanwhile, the swimming path and the latency time, to reach the platform, was shorten after enhancing miR-26a-5p expression. CONCLUSION Overexpression of miR-26a-5p could repress Tau phosphorylation and Aβ accumulation via down-regulating DYRK1A level in AD mice.
Collapse
Affiliation(s)
- Yanni Liu
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Lin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, 710077, China
| | - Fuheng Xie
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Xiao Wang
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Yuanyuan Hou
- Department of Neurology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Xiaomeng Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, 710077, China
| | - Juan Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, 710077, China
| |
Collapse
|
208
|
Kim K, Lee CH, Park CB. Chemical sensing platforms for detecting trace-level Alzheimer's core biomarkers. Chem Soc Rev 2020; 49:5446-5472. [DOI: 10.1039/d0cs00107d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review provides an overview of recent advances in optical and electrical detection of Alzheimer's disease biomarkers in clinically relevant fluids.
Collapse
Affiliation(s)
- Kayoung Kim
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Chang Heon Lee
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
209
|
Quntanilla RA, Tapia-Monsalves C. The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection. Curr Neuropharmacol 2020; 18:1076-1091. [PMID: 32448104 PMCID: PMC7709157 DOI: 10.2174/1570159x18666200525020259] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/23/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulative evidence has shown that mitochondrial dysfunction plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial impairment actively contributes to the synaptic and cognitive failure that characterizes AD. The presence of soluble pathological forms of tau like hyperphosphorylated at Ser396 and Ser404 and cleaved at Asp421 by caspase 3, negatively impacts mitochondrial bioenergetics, transport, and morphology in neurons. These adverse effects against mitochondria health will contribute to the synaptic impairment and cognitive decline in AD. Current studies suggest that mitochondrial failure induced by pathological tau forms is likely the result of the opening of the mitochondrial permeability transition pore (mPTP). mPTP is a mitochondrial mega-channel that is activated by increases in calcium and is associated with mitochondrial stress and apoptosis. This structure is composed of different proteins, where Ciclophilin D (CypD) is considered to be the primary mediator of mPTP activation. Also, new studies suggest that mPTP contributes to Aβ pathology and oxidative stress in AD. Further, inhibition of mPTP through the reduction of CypD expression prevents cognitive and synaptic impairment in AD mouse models. More importantly, tau protein contributes to the physiological regulation of mitochondria through the opening/interaction with mPTP in hippocampal neurons. Therefore, in this paper, we will discuss evidence that suggests an important role of pathological forms of tau against mitochondrial health. Also, we will discuss the possible role of mPTP in the mitochondrial impairment produced by the presence of tau pathology and its impact on synaptic function present in AD.
Collapse
Affiliation(s)
- Rodrigo A. Quntanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carola Tapia-Monsalves
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
210
|
Furcila D, Domínguez-Álvaro M, DeFelipe J, Alonso-Nanclares L. Subregional Density of Neurons, Neurofibrillary Tangles and Amyloid Plaques in the Hippocampus of Patients With Alzheimer's Disease. Front Neuroanat 2019; 13:99. [PMID: 31920568 PMCID: PMC6930895 DOI: 10.3389/fnana.2019.00099] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
A variety of anatomical alterations have been reported in the hippocampal formation of patients with Alzheimer's Disease (AD) and these alterations have been correlated with cognitive symptoms in the early stages of the disease. Major hallmarks in AD are the presence of paired helical filaments of tau protein (PHFTau) within neurons, also known as neurofibrillary tangles (NFTs), and aggregates of amyloid-β protein (Aβ) which form plaques in the extracellular space. Nevertheless, how the density of plaques and NFTs relate to the severity of cell loss and cognitive decline is not yet clear. The aim of the present study was to further examine the possible relationship of both Aβ plaques and NFTs with neuronal loss in several hippocampal fields (DG, CA3, CA1, and subiculum) of 11 demented AD patients. For this purpose, using stereological techniques, we compared neuronal densities (Nissl-stained, and immunoreactive neurons for NeuN) with: (i) numbers of neurons immunostained for two isoforms of PHFTau (PHFTau-AT8 and PHFTau-pS396); and (ii) number of Aβ plaques. We found that CA1 showed the highest number of NFTs and Aβ plaques, whereas DG and CA3 displayed the lowest number of these markers. Furthermore, AD patients showed a variable neuronal loss in CA1 due to tangle-related cell death, which seems to correlate with the presence of extracellular tangles.
Collapse
Affiliation(s)
- Diana Furcila
- Cajal Laboratory of Cortical Circuits, Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Network Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Domínguez-Álvaro
- Cajal Laboratory of Cortical Circuits, Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier DeFelipe
- Cajal Laboratory of Cortical Circuits, Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Network Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Cajal Institute (CSIC), Madrid, Spain
| | - Lidia Alonso-Nanclares
- Cajal Laboratory of Cortical Circuits, Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Network Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Cajal Institute (CSIC), Madrid, Spain
| |
Collapse
|
211
|
Bittar A, Bhatt N, Kayed R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol Dis 2019; 134:104707. [PMID: 31841678 PMCID: PMC6980703 DOI: 10.1016/j.nbd.2019.104707] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
The multifactorial and complex nature of Alzheimer’s disease (AD) has made it difficult to identify therapeutic targets that are causally involved in the disease process. However, accumulating evidence from experimental and clinical studies that investigate the early disease process point towards the required role of tau in AD etiology. Importantly, a large number of studies investigate and characterize the plethora of pathological forms of tau protein involved in disease onset and propagation. Immunotherapy is one of the most clinical approaches anticipated to make a difference in the field of AD therapeutics. Tau –targeted immunotherapy is the new direction after the failure of amyloid beta (Aß)-targeted immunotherapy and the growing number of studies that highlight the Aß-independent disease process. It is now well established that immunotherapy alone will most likely be insufficient as a monotherapy. Therefore, this review discusses updates on tau-targeted immunotherapy studies, AD-relevant tau species, updates on promising biomarkers and a prospect on combination therapies to surround the disease propagation in an efficient and timely manner.
Collapse
Affiliation(s)
- Alice Bittar
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Nemil Bhatt
- Department of Neuroscience, Cell Biology and Anatomy, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Rakez Kayed
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| |
Collapse
|
212
|
Arnoriaga-Rodríguez M, Fernández-Real JM. Microbiota impacts on chronic inflammation and metabolic syndrome - related cognitive dysfunction. Rev Endocr Metab Disord 2019; 20:473-480. [PMID: 31884557 DOI: 10.1007/s11154-019-09537-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cognitive dysfunction, one of the major concerns of increased life expectancy, is prevalent in patients with metabolic disorders. Added to the inflammation in the context of aging (inflammaging), low-grade chronic inflammation (metaflammation) accompanies metabolic diseases. Peripheral and central inflammation underlie metabolic syndrome - related cognitive dysfunction. The gut microbiota is increasingly recognized to be linked to both inflammaging and metaflammation in parallel to the pathophysiology of obesity, type 2 diabetes and the metabolic syndrome. Microbiota composition, diversity and diverse metabolites have been related to different metabolic features and cognitive traits. The study of different mouse models has contributed to identify characteristic microbiota profiles and shifts in the microbial gene richness in association with cognitive function. Diet, exercise and prebiotics, probiotics or symbiotics significantly influence cognition and changes in the microbiota. Few studies have analyzed the gut microbiota composition in association with cognitive function in humans. Impaired attention, mental flexibility and executive function have been observed in association with a microbiota ecosystem in cross-sectional and longitudinal studies. Nevertheless, the evidence in humans is still scarce and not causal relationships may be inferred, so larger and long-term studies are required to gain insight into the possible role of microbiota in human cognition.
Collapse
Affiliation(s)
- María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute [IdibGi], Carretera de França s/n, 17007, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute [IdibGi], Carretera de França s/n, 17007, Girona, Spain.
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain.
- CIBEROBN Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain.
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
213
|
Pandit R, Chen L, Götz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv Drug Deliv Rev 2019; 165-166:1-14. [PMID: 31790711 DOI: 10.1016/j.addr.2019.11.009] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that functions as a gatekeeper, reflecting the unique requirements of the brain. In this review, following a brief historical overview of how the concepts of the BBB and the neurovascular unit (NVU) developed, we describe its physiology and architecture, which pose a particular challenge to therapeutic intervention. We then discuss how the restrictive nature of this barrier can be overcome for the delivery of therapeutic agents. Alterations to drug formulation offer one option, in part by utilizing distinct transport modes; another is invasive or non-invasive strategies to bypass the BBB. An emerging non-invasive technology for targeted drug delivery is focused ultrasound that allows for the safe and reversible disruption of the BBB. We discuss the underlying mechanisms and provide an outlook, emphasizing the need for more research into the NVU and investment in innovative technologies to overcome the BBB for drug delivery.
Collapse
Affiliation(s)
- Rucha Pandit
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Liyu Chen
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
214
|
He Y, Ruganzu JB, Lin C, Ding B, Zheng Q, Wu X, Ma R, Liu Q, Wang Y, Jin H, Qian Y, Peng X, Ji S, Zhang L, Yang W, Lei X. Tanshinone IIA ameliorates cognitive deficits by inhibiting endoplasmic reticulum stress-induced apoptosis in APP/PS1 transgenic mice. Neurochem Int 2019; 133:104610. [PMID: 31778727 DOI: 10.1016/j.neuint.2019.104610] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/15/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Our previous data indicated that tanshinone IIA (tan IIA) improves learning and memory in a mouse model of Alzheimer's disease (AD) induced by streptozotocin via restoring cholinergic function, attenuating oxidative stress and blocking p38 MAPK signal pathway activation. This study aims to estimate whether tan IIA inhibits endoplasmic reticulum (ER) stress-induced apoptosis to prevent cognitive decline in APP/PS1 transgenic mice. Tan IIA (10 mg/kg and 30 mg/kg) was intraperitoneally administered to the six-month-old APP/PS1 mice for 30 consecutive days. β-amyloid (Aβ) plaques were measured by immunohistochemisty and Thioflavin S staining, apoptotic cells were observed by TUNEL, ER stress markers and apoptosis signaling proteins were investigated by western blotting and RT-PCR. Our results showed that tan IIA significantly ameliorates cognitive deficits and improves spatial learning ability of APP/PS1 mice in the nest-building test, novel object recognition test and Morris water maze test. Furthermore, tan IIA significantly reduced the deposition of Aβ plaques and neuronal apoptosis, and markedly prevented abnormal expression of glucose regulated protein 78 (GRP78), initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α), activating transcription factor 6 (ATF6), as well as suppressed the activation of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) pathways in the parietal cortex and hippocampus. Moreover, tan IIA induced an up-regulation of the Bcl-2/Bax ratio and down-regulation of caspase-3 protein activity. Taken together, the above findings indicated that tan IIA improves learning and memory through attenuating Aβ plaques deposition and inhibiting ER stress-induced apoptosis. These results suggested that tan IIA might become a promising therapeutic candidate drug against AD.
Collapse
Affiliation(s)
- Yingying He
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - John Bosco Ruganzu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Chengheng Lin
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Bo Ding
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Quzhao Zheng
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Xiangyuan Wu
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Ruiyang Ma
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Qian Liu
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Yang Wang
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Hui Jin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Yihua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Xiaoqian Peng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Shengfeng Ji
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Liangliang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Weina Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China.
| | - Xiaomei Lei
- Department of Child Health Care, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710004, China.
| |
Collapse
|
215
|
Gosselin N, Baril AA, Osorio RS, Kaminska M, Carrier J. Obstructive Sleep Apnea and the Risk of Cognitive Decline in Older Adults. Am J Respir Crit Care Med 2019; 199:142-148. [PMID: 30113864 DOI: 10.1164/rccm.201801-0204pp] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Nadia Gosselin
- 1 Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,2 Université de Montréal, Montreal, Canada.,3 Canadian Sleep and Circadian Network, Canada
| | - Andrée-Ann Baril
- 1 Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,2 Université de Montréal, Montreal, Canada.,3 Canadian Sleep and Circadian Network, Canada
| | - Ricardo S Osorio
- 4 Center for Brain Health, New York University Langone Medical Center, Manhattan, New York.,5 Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York; and
| | - Marta Kaminska
- 3 Canadian Sleep and Circadian Network, Canada.,6 Respiratory Epidemiology and Clinical Research Unit, Respiratory Division and Sleep Laboratory, Department of Medicine, McGill University Health Center, Montreal, Canada
| | - Julie Carrier
- 1 Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,2 Université de Montréal, Montreal, Canada.,3 Canadian Sleep and Circadian Network, Canada
| |
Collapse
|
216
|
Mrdjen D, Fox EJ, Bukhari SA, Montine KS, Bendall SC, Montine TJ. The basis of cellular and regional vulnerability in Alzheimer's disease. Acta Neuropathol 2019; 138:729-749. [PMID: 31392412 PMCID: PMC6802290 DOI: 10.1007/s00401-019-02054-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) differentially and specifically affects brain regions and neuronal cell types in a predictable pattern. Damage to the brain appears to spread and worsens with time, taking over more regions and activating multiple stressors that can converge to promote vulnerability of certain cell types. At the same time, other cell types and brain regions remain intact in the face of this onslaught of neuropathology. Although neuropathologic descriptions of AD have been extensively expanded and mapped over the last several decades, our understanding of the mechanisms underlying how certain regions and cell populations are specifically vulnerable or resistant has lagged behind. In this review, we detail what is known about the selectivity of local initiation of AD pathology in the hippocampus, its proposed spread via synaptic connections, and the diversity of clinical phenotypes and brain atrophy patterns that may arise from different fibrillar strains of pathologic proteins or genetic predispositions. We summarize accumulated and emerging knowledge of the cellular and molecular basis for neuroanatomic selectivity, consider potential disease-relevant differences between vulnerable and resistant neuronal cell types and isolate molecular markers to identify them.
Collapse
Affiliation(s)
- Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Edward J Fox
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
217
|
Fornari S, Schäfer A, Jucker M, Goriely A, Kuhl E. Prion-like spreading of Alzheimer's disease within the brain's connectome. J R Soc Interface 2019; 16:20190356. [PMID: 31615329 PMCID: PMC6833337 DOI: 10.1098/rsif.2019.0356] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/23/2019] [Indexed: 01/26/2023] Open
Abstract
The prion hypothesis states that misfolded proteins can act as infectious agents that template the misfolding and aggregation of healthy proteins to transmit a disease. Increasing evidence suggests that pathological proteins in neurodegenerative diseases adopt prion-like mechanisms and spread across the brain along anatomically connected networks. Local kinetic models of protein misfolding and global network models of protein spreading provide valuable insight into several aspects of prion-like diseases. Yet, to date, these models have not been combined to simulate how pathological proteins multiply and spread across the human brain. Here, we create an efficient and robust tool to simulate the spreading of misfolded protein using three classes of kinetic models, the Fisher-Kolmogorov model, the Heterodimer model and the Smoluchowski model. We discretize their governing equations using a human brain network model, which we represent as a weighted Laplacian graph generated from 418 brains from the Human Connectome Project. Its nodes represent the anatomic regions of interest and its edges are weighted by the mean fibre number divided by the mean fibre length between any two regions. We demonstrate that our brain network model can predict the histopathological patterns of Alzheimer's disease and capture the key characteristic features of finite-element brain models at a fraction of their computational cost: simulating the spatio-temporal evolution of aggregate size distributions across the human brain throughout a period of 40 years takes less than 7 s on a standard laptop computer. Our model has the potential to predict biomarker curves, aggregate size distributions, infection times, and the effects of therapeutic strategies including reduced production and increased clearance of misfolded protein.
Collapse
Affiliation(s)
- Sveva Fornari
- Living Matter Laboratory, Stanford University, Stanford, CA, USA
| | - Amelie Schäfer
- Living Matter Laboratory, Stanford University, Stanford, CA, USA
| | - Mathias Jucker
- Hertie-Institute for Clinical Brain Research/German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Ellen Kuhl
- Living Matter Laboratory, Stanford University, Stanford, CA, USA
| |
Collapse
|
218
|
Amadoro G, Latina V, Corsetti V, Calissano P. N-terminal tau truncation in the pathogenesis of Alzheimer's disease (AD): Developing a novel diagnostic and therapeutic approach. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165584. [PMID: 31676377 DOI: 10.1016/j.bbadis.2019.165584] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/04/2023]
Abstract
Tau truncation occurs at early stages during the development of human Alzheimer's disease (AD) and other tauopathy dementias. Tau cleavage, particularly in its N-terminal projection domain, is able to drive per se neurodegeneration, regardless of its pro-aggregative pathway(s) and in fragment(s)-dependent way. In this short review, we highlight the pathological relevance of the 20-22 kDa NH2-truncated tau fragment which is endowed with potent neurotoxic "gain-of-function" action(s), both in vitro and in vivo. An extensive comment on its clinical value as novel progression/diagnostic biomarker and potential therapeutic target in the context of tau-mediated neurodegeneration is also provided.
Collapse
Affiliation(s)
- G Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - V Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - V Corsetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| |
Collapse
|
219
|
Dubey T, Chinnathambi S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer's disease. Arch Biochem Biophys 2019; 676:108153. [PMID: 31622587 DOI: 10.1016/j.abb.2019.108153] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 01/16/2023]
Abstract
Ayurveda is the medicinal science, dealing with utilization of naturally available plant products for treatment. A wide variety of neuroprotective herbs have been reported in Ayurveda. Brahmi, Bacopa monnieri is a nootropic ayurvedic herb known to be effective in neurological disorders from ancient times. Numerous approaches including natural and synthetic compounds have been applied against Alzheimer's disease. Amyloid-β and Tau are the hallmarks proteins of several neuronal dysfunctions resulting in Alzheimer's disease. Tau is a microtubule-associated protein known to be involved in progression of Alzheimer's disease. The generation of reaction oxygen species, increased neuroinflammation and neurotoxicity are the major physiological dysfunctions associated with Tau aggregates, which leads to dementia and behavioural deficits. Bacoside A, Bacoside B, Bacosaponins, Betulinic acid, etc; are the bioactive component of Brahmi belonging to various chemical families. Each chemical component known have its significant role in neuroprotection. The neuroprotective properties of Brahmi and its bioactive components including reduction of ROS, neuroinflammation, aggregation inhibition of Amyloid-β and improvement of cognitive and learning behaviour. Here on basis of earlier studies we hypothesize the inhibitory role of Brahmi against Tau-mediated toxicity. The overall studies have concluded that Brahmi can be used as a lead formulation for treatment of Alzheimer's disease and other neurological disorders.
Collapse
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008, Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008, Pune, India.
| |
Collapse
|
220
|
Melchior B, Mittapalli GK, Lai C, Duong‐Polk K, Stewart J, Güner B, Hofilena B, Tjitro A, Anderson SD, Herman DS, Dellamary L, Swearingen CJ, Sunil K, Yazici Y. Tau pathology reduction with SM07883, a novel, potent, and selective oral DYRK1A inhibitor: A potential therapeutic for Alzheimer's disease. Aging Cell 2019; 18:e13000. [PMID: 31267651 PMCID: PMC6718548 DOI: 10.1111/acel.13000] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/26/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A) is known to phosphorylate the microtubule-associated tau protein. Overexpression is correlated with tau hyperphosphorylation and neurofibrillary tangle (NFT) formation in Alzheimer's disease (AD). This study assessed the potential of SM07883, an oral DYRK1A inhibitor, to inhibit tau hyperphosphorylation, aggregation, NFT formation, and associated phenotypes in mouse models. Exploratory neuroinflammatory effects were also studied. SM07883 specificity was tested in a kinase panel screen and showed potent inhibition of DYRK1A (IC50 = 1.6 nM) and GSK-3β (IC50 = 10.8 nM) kinase activity. Tau phosphorylation measured in cell-based assays showed a reduction in phosphorylation of multiple tau epitopes, especially the threonine 212 site (EC50 = 16 nM). SM07883 showed good oral bioavailability in multiple species and demonstrated a dose-dependent reduction of transient hypothermia-induced phosphorylated tau in the brains of wild-type mice compared to vehicle (47%, p < 0.001). Long-term efficacy assessed in aged JNPL3 mice overexpressing the P301L human tau mutation (3 mg/kg, QD, for 3 months) exhibited significant reductions in tau hyperphosphorylation, oligomeric and aggregated tau, and tau-positive inclusions compared to vehicle in brainstem and spinal cord samples. Reduced gliosis compared to vehicle was further confirmed by ELISA. SM07883 was well tolerated with improved general health, weight gain, and functional improvement in a wire-hang test compared to vehicle-treated mice (p = 0.048). SM07883, a potent, orally bioavailable, brain-penetrant DYRK1A inhibitor, significantly reduced effects of pathological tau overexpression and neuroinflammation, while functional endpoints were improved compared to vehicle in animal models. This small molecule has potential as a treatment for AD.
Collapse
|
221
|
Abstract
NAD+ is a pivotal metabolite involved in cellular bioenergetics, genomic stability, mitochondrial homeostasis, adaptive stress responses, and cell survival. Multiple NAD+-dependent enzymes are involved in synaptic plasticity and neuronal stress resistance. Here, we review emerging findings that reveal key roles for NAD+ and related metabolites in the adaptation of neurons to a wide range of physiological stressors and in counteracting processes in neurodegenerative diseases, such as those occurring in Alzheimer's, Parkinson's, and Huntington diseases, and amyotrophic lateral sclerosis. Advances in understanding the molecular and cellular mechanisms of NAD+-based neuronal resilience will lead to novel approaches for facilitating healthy brain aging and for the treatment of a range of neurological disorders.
Collapse
Affiliation(s)
- Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
222
|
Gao Y, Liu EJ, Wang WJ, Wang YL, Li XG, Wang X, Li SH, Zhang SJ, Li MZ, Zhou QZ, Long XB, Zhang HQ, Wang JZ. Microglia CREB-Phosphorylation Mediates Amyloid-β-Induced Neuronal Toxicity. J Alzheimers Dis 2019; 66:333-345. [PMID: 30282353 DOI: 10.3233/jad-180286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular accumulation of amyloid-β (Aβ) forming senile plaques is one of the hallmark pathologies in Alzheimer's disease (AD), while the mechanisms underlying the neuronal toxic effect of Aβ are not fully understood. Here, we found that intracerebroventricular infusion of the aged Aβ42 in mice only induces memory deficit at 24 h but not at 7 days. Interestingly, a remarkably increased CREB (cAMP response element-binding protein) Ser133-phosphorylation (pS133-CREB) with microglial activation was detected at 24 h but not at 7 days after Aβ infusion. Aβ treatment for 24 h increased pS133-CREB level in microglia of the hippocampal non-granular cell layers with remarkably decreased pS133-CREB immunoreactivity in neurons of the hippocampal granular cell layers, including CA1, CA3, and DG subsets. Inhibition of microglia activation by minocycline or CREB phosphorylation by H89, an inhibitor of protein kinase A (PKA), abolished Aβ-induced microglia CREB hyperphosphorylation with restoration of neuronal function and attenuation of inflammatory response, i.e., reduced levels of interleukin-6 (IL6) and pCREB binding of matrix metalloproteinase-9 (MMP9) DNA. Finally, treatment of the primary hippocampal neurons with Aβ-potentiated microglia media decreased neuronal GluN1 and GluA2 levels, while simultaneous inhibition of PKA restored the levels. These novel findings reveal that intracerebroventricular infusion of Aβ only induces transient memory deficit in mice and the molecular mechanisms involve a stimulated microglial CREB phosphorylation.
Collapse
Affiliation(s)
- Yuan Gao
- Pathophysiology Department, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - En-Jie Liu
- Pathophysiology Department, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Jin Wang
- Pathophysiology Department, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Li Wang
- Pathophysiology Department, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Pathophysiology Department, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Pathophysiology Department, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Hong Li
- Pathophysiology Department, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Juan Zhang
- Pathophysiology Department, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Zhu Li
- Pathophysiology Department, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu-Zhi Zhou
- Pathophysiology Department, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Bing Long
- Neurosurgery Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Hospital, Tongji Medical College, Wuhan, China
| | - Hua-Qiu Zhang
- Neurosurgery Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Hospital, Tongji Medical College, Wuhan, China
| | - Jian-Zhi Wang
- Pathophysiology Department, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
223
|
Yang GJ, Liu H, Ma DL, Leung CH. Rebalancing metal dyshomeostasis for Alzheimer's disease therapy. J Biol Inorg Chem 2019; 24:1159-1170. [PMID: 31486954 DOI: 10.1007/s00775-019-01712-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative malady that is associated with the accumulation of amyloid plaques. Metal ions are critical for the development and upkeep of brain activity, but metal dyshomeostasis can contribute to the development of neurodegenerative diseases, including AD. This review highlights the association between metal dyshomeostasis and AD pathology, the feasibility of rebalancing metal homeostasis as a therapeutic strategy for AD, and a survey of current drugs that action via rebalancing metal homeostasis. Finally, we discuss the challenges that should be overcome by researchers in the future to enable the practical use of metal homeostasis rebalancing agents for clinical application.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| |
Collapse
|
224
|
Regan P, McClean PL, Smyth T, Doherty M. Early Stage Glycosylation Biomarkers in Alzheimer's Disease. MEDICINES 2019; 6:medicines6030092. [PMID: 31484367 PMCID: PMC6789538 DOI: 10.3390/medicines6030092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is of great cause for concern in our ageing population, which currently lacks diagnostic tools to permit accurate and timely diagnosis for affected individuals. The development of such tools could enable therapeutic interventions earlier in the disease course and thus potentially reducing the debilitating effects of AD. Glycosylation is a common, and important, post translational modification of proteins implicated in a host of disease states resulting in a complex array of glycans being incorporated into biomolecules. Recent investigations of glycan profiles, in a wide range of conditions, has been made possible due to technological advances in the field enabling accurate glycoanalyses. Amyloid beta (Aβ) peptides, tau protein, and other important proteins involved in AD pathogenesis, have altered glycosylation profiles. Crucially, these abnormalities present early in the disease state, are present in the peripheral blood, and help to distinguish AD from other dementias. This review describes the aberrant glycome in AD, focusing on proteins implicated in development and progression, and elucidates the potential of glycome aberrations as early stage biomarkers of AD.
Collapse
Affiliation(s)
- Patricia Regan
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland.
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland.
| | - Paula L McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Clinical Translational Research and Innovation Centre, Altnagelvin Area Hospital, Glenshane Road, Derry BT47 6SB, UK
| | - Thomas Smyth
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Margaret Doherty
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| |
Collapse
|
225
|
Hoang VH, Ngo VTH, Cui M, Manh NV, Tran PT, Ann J, Ha HJ, Kim H, Choi K, Kim YH, Chang H, Macalino SJY, Lee J, Choi S, Lee J. Discovery of Conformationally Restricted Human Glutaminyl Cyclase Inhibitors as Potent Anti-Alzheimer's Agents by Structure-Based Design. J Med Chem 2019; 62:8011-8027. [PMID: 31411468 DOI: 10.1021/acs.jmedchem.9b00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disease whose pathogenesis cannot be defined by one single element but consists of various factors; thus, there is a call for alternative approaches to tackle the multifaceted aspects of AD. Among the potential alternative targets, we aim to focus on glutaminyl cyclase (QC), which reduces the toxic pyroform of β-amyloid in the brains of AD patients. On the basis of a putative active conformation of the prototype inhibitor 1, a series of N-substituted thiourea, urea, and α-substituted amide derivatives were developed. The structure-activity relationship analyses indicated that conformationally restrained inhibitors demonstrated much improved QC inhibition in vitro compared to nonrestricted analogues, and several selected compounds demonstrated desirable therapeutic activity in an AD mouse model. The conformational analysis of a representative inhibitor indicated that the inhibitor appeared to maintain the Z-E conformation at the active site, as it is critical for its potent activity.
Collapse
Affiliation(s)
- Van-Hai Hoang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Van T H Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City 75307 , Vietnam
| | - Minghua Cui
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Nguyen Van Manh
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry , Hanoi University of Pharmacy , Hanoi 10000 , Vietnam
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Hee-Jin Ha
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Hee Kim
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Kwanghyun Choi
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Young-Ho Kim
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Hyerim Chang
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Stephani Joy Y Macalino
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Seoul 01133 , Republic of Korea
| | - Sun Choi
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
226
|
|
227
|
Abstract
Animal models are indispensable tools for Alzheimer disease (AD) research. Over the course of more than two decades, an increasing number of complementary rodent models has been generated. These models have facilitated testing hypotheses about the aetiology and progression of AD, dissecting the associated pathomechanisms and validating therapeutic interventions, thereby providing guidance for the design of human clinical trials. However, the lack of success in translating rodent data into therapeutic outcomes may challenge the validity of the current models. This Review critically evaluates the genetic and non-genetic strategies used in AD modelling, discussing their strengths and limitations, as well as new opportunities for the development of better models for the disease.
Collapse
|
228
|
Vega IE, Umstead A, Kanaan NM. EFhd2 Affects Tau Liquid-Liquid Phase Separation. Front Neurosci 2019; 13:845. [PMID: 31456657 PMCID: PMC6700279 DOI: 10.3389/fnins.2019.00845] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
The transition of tau proteins from its soluble physiological conformation to the pathological aggregate forms found in Alzheimer's disease and related dementias, is poorly understood. Therefore, understanding the process that modulates the formation of toxic tau oligomers and their conversion to putative neuroprotective neurofibrillary tangles will lead to better therapeutic strategies. We previously identified that EFhd2 is associated with aggregated tau species in AD brains and the coiled-coil domain in EFhd2 mediates the interaction with tau. To further characterize the association between EFhd2 and tau, we examined whether EFhd2 could affect the liquid-liquid phase separation properties of tau under molecular crowding conditions. We demonstrate that EFhd2 alters tau liquid phase behavior in a calcium and coiled-coil domain dependent manner. Co-incubation of EFhd2 and tau in the absence of calcium leads to the formation of solid-like structures containing both proteins, while in the presence of calcium these two proteins phase separate together into liquid droplets. EFhd2's coiled-coil domain is necessary to alter tau's liquid phase separation, indicating that protein-protein interaction is required. The results demonstrate that EFhd2 affects the liquid-liquid phase separation of tau proteins in vitro, suggesting that EFhd2 modulates the structural dynamics of tau proteins.
Collapse
Affiliation(s)
- Irving E Vega
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, Grand Rapids, MI, United States.,Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Umstead
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Grand Rapids, MI, United States
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Grand Rapids, MI, United States.,Neuroscience Program, Michigan State University, Grand Rapids, MI, United States.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, United States
| |
Collapse
|
229
|
Sun Y, Liang L, Dong M, Li C, Liu Z, Gao H. Cofilin 2 in Serum as a Novel Biomarker for Alzheimer's Disease in Han Chinese. Front Aging Neurosci 2019; 11:214. [PMID: 31447667 PMCID: PMC6696795 DOI: 10.3389/fnagi.2019.00214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
The identification of biomarkers of Alzheimer’s disease (AD) is an important and urgent area of study, not only to aid in the early diagnosis of AD, but also to evaluate potentially new anti-AD drugs. The aim of this study was to explore cofilin 2 in serum as a novel biomarker for AD. The upregulation was observed in AD patients and different AD animal models compared to the controls, as well as in AD cell models. Memantine and donepezil can attenuate the upregulation of cofilin 2 expression in APP/PS1 mice. The serum levels of cofilin 2 in AD or mild cognitive impairment (MCI) patients were significantly higher compared to controls (AD: 167.9 ± 35.3 pg/mL; MCI: 115.9 ± 15.4 pg/mL; Control: 90.5 ± 27.1 pg/mL; p < 0.01). A significant correlation between cofilin 2 levels and cognitive decline was observed (r = –0.792; p < 0.001). The receiver operating characteristic curve (ROC) analysis showed the area under the curve (AUC) of cofilin 2 was 0.957, and the diagnostic accuracy was 80%, with 93% sensitivity and 87% specificity. The optimal cut-off value was 130.4 pg/ml. Our results indicate the possibility of serum cofilin 2 as a novel and non-invasive biomarker for AD. In addition, the expression of cofilin 2 was found to be significantly increased in AD compared to vascular dementia (VaD), and only an increased trend but not significant was detected in VaD compared to the controls. ROC analysis between AD and VaD showed that the AUC was 0.824, which could indicate a role of cofilin 2 as a biomarker in the differential diagnosis between AD and VaD.
Collapse
Affiliation(s)
- Yingni Sun
- School of Life Sciences, Ludong University, Yantai, China
| | - Lisheng Liang
- Department of Pain, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Meili Dong
- Central Sterile Supply Department, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Cong Li
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, United States
| | - Zhenzhen Liu
- Chemical Engineering and Materials Science, College of Chemistry, Shandong Normal University, Jinan, China
| | - Hongwei Gao
- School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
230
|
Scanning ultrasound in the absence of blood-brain barrier opening is not sufficient to clear β-amyloid plaques in the APP23 mouse model of Alzheimer's disease. Brain Res Bull 2019; 153:8-14. [PMID: 31400496 DOI: 10.1016/j.brainresbull.2019.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
A major challenge in treating brain diseases is presented by the blood-brain barrier (BBB) that constitutes an efficient barrier not only for toxins but also a wide range of therapeutic agents. In overcoming this impediment, ultrasound in combination with intravenously injected microbubbles has emerged as a powerful technology that allows for the selective brain uptake of blood-borne factors and therapeutic agents by transient opening of the blood-brain barrier. We have previously shown that ultrasound in combination with microbubbles, but in the absence of a therapeutic agent, can effectively clear protein aggregates such as the hallmark lesions of Alzheimer's disease, amyloid-β (Aβ) plaques and Tau-containing neurofibrillary tangles. We have also demonstrated that the associated memory and motor impairments can be ameliorated or even restored. These studies included a negative sham control that received microbubbles in the absence of ultrasound. However, considering that ultrasound on its own is a pressure wave which has bioeffects, the possibility remained that ultrasound, without microbubbles, would also clear amyloid. We addressed this by performing repeated ultrasound only treatments of one brain hemisphere of Aβ-depositing APP23 mice, using the contralateral hemisphere as the unsonicated control. This was followed by an extensive histological analysis of fibrillar and non-fibrillar amyloid. We found that ultrasound on its own was not sufficient to clear amyloid. This implies that although ultrasound on its own has neuromodulatory effects, exogenously supplied microbubbles are required for the clearance of Aβ deposits.
Collapse
|
231
|
The search for improved animal models of Alzheimer's disease and novel strategies for therapeutic intervention. Future Med Chem 2019; 11:1853-1857. [DOI: 10.4155/fmc-2019-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
232
|
Ittner A, Ittner LM. Dendritic Tau in Alzheimer's Disease. Neuron 2019; 99:13-27. [PMID: 30001506 DOI: 10.1016/j.neuron.2018.06.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
The microtubule-associated protein tau and amyloid-β (Aβ) are key players in Alzheimer's disease (AD). Aβ and tau are linked in a molecular pathway at the post-synapse with tau-dependent synaptic dysfunction being a major pathomechanism in AD. Recent work on site-specific modification of dendritic and more specifically post-synaptic tau has revealed new endogenous functions of tau that limits synaptic Aβ toxicity. Thus, molecular studies opened a new perspective on tau, placing it at the center of neurotoxic and neuroprotective signaling at the post-synapse. Here, we review recent advances on tau in the dendritic compartments, with implications for understanding and treatment of AD and related neurological conditions.
Collapse
Affiliation(s)
- Arne Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia; Neuroscience Research Australia, Sydney, New South Wales 2031, Australia; Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| |
Collapse
|
233
|
Rocha NP, Toledo A, Corgosinho LTS, de Souza LC, Guimarães HC, Resende EPF, Braz NFT, Gomes KB, Simoes E Silva AC, Caramelli P, Teixeira AL. Cerebrospinal Fluid Levels of Angiotensin-Converting Enzyme Are Associated with Amyloid-β42 Burden in Alzheimer's Disease. J Alzheimers Dis 2019; 64:1085-1090. [PMID: 30040721 DOI: 10.3233/jad-180282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was designed to determine whether the levels of renin-angiotensin system (RAS) components are associated with Alzheimer's disease (AD) pathology. Cerebrospinal fluid levels of Angiotensin (Ang) II, Ang-(1-7), angiotensin-converting enzyme (ACE), ACE2, Amyloid-β (Aβ)40, Aβ42, total tau (hTau), and phospho-tau (pTau) were measured in 18 patients with AD and 10 controls. Patients with AD presented decreased levels of ACE when compared with controls. We found a significant positive correlation between ACE and Aβ42 levels among patients. Our results strengthen the hypothesis that ACE is associated with Aβ pathology in AD.
Collapse
Affiliation(s)
- Natalia P Rocha
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Andre Toledo
- Cognitive and Behavioral Neurology Unit, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laiane T S Corgosinho
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo C de Souza
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Cognitive and Behavioral Neurology Unit, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Henrique C Guimarães
- Cognitive and Behavioral Neurology Unit, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elisa P F Resende
- Cognitive and Behavioral Neurology Unit, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Global Brain Health Institute, The University of California, San Francisco (UCSF) Memory and Aging Center, San Francisco, CA, USA
| | - Nayara F T Braz
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karina B Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana C Simoes E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paulo Caramelli
- Cognitive and Behavioral Neurology Unit, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio L Teixeira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
234
|
Gaudreault R, Mousseau N. Mitigating Alzheimer’s Disease with Natural Polyphenols: A Review. Curr Alzheimer Res 2019; 16:529-543. [DOI: 10.2174/1567205016666190315093520] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
:According to Alzheimer’s Disease International (ADI), nearly 50 million people worldwide were living with dementia in 2017, and this number is expected to triple by 2050. Despite years of research in this field, the root cause and mechanisms responsible for Alzheimer’s disease (AD) have not been fully elucidated yet. Moreover, promising preclinical results have repeatedly failed to translate into patient treatments. Until now, none of the molecules targeting AD has successfully passed the Phase III trial. Although natural molecules have been extensively studied, they normally require high concentrations to be effective; alternately, they are too large to cross the blood-brain barrier (BBB).:In this review, we report AD treatment strategies, with a virtually exclusive focus on green chemistry (natural phenolic molecules). These include therapeutic strategies for decreasing amyloid-β (Aβ) production, preventing and/or altering Aβ aggregation, and reducing oligomers cytotoxicity such as curcumin, (-)-epigallocatechin-3-gallate (EGCG), morin, resveratrol, tannic acid, and other natural green molecules. We also examine whether consideration should be given to potential candidates used outside of medicine and nutrition, through a discussion of two intermediate-sized green molecules, with very similar molecular structures and key properties, which exhibit potential in mitigating Alzheimer’s disease.
Collapse
Affiliation(s)
- Roger Gaudreault
- Department of Physics, Universit�© de Montr�©al, Case Postale 6128, Succursale Centre-ville, Montreal (QC), Canada
| | - Normand Mousseau
- Department of Physics, Universit�© de Montr�©al, Case Postale 6128, Succursale Centre-ville, Montreal (QC), Canada
| |
Collapse
|
235
|
Espinosa-Parrilla Y, Gonzalez-Billault C, Fuentes E, Palomo I, Alarcón M. Decoding the Role of Platelets and Related MicroRNAs in Aging and Neurodegenerative Disorders. Front Aging Neurosci 2019; 11:151. [PMID: 31312134 PMCID: PMC6614495 DOI: 10.3389/fnagi.2019.00151] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Platelets are anucleate cells that circulate in blood and are essential components of the hemostatic system. During aging, platelet numbers decrease and their aggregation capacity is reduced. Platelet dysfunctions associated with aging can be linked to molecular alterations affecting several cellular systems that include cytoskeleton rearrangements, signal transduction, vesicular trafficking, and protein degradation. Age platelets may adopt a phenotype characterized by robust secretion of extracellular vesicles that could in turn account for about 70-90% of blood circulating vesicles. Interestingly these extracellular vesicles are loaded with messenger RNAs and microRNAs that may have a profound impact on protein physiology at the systems level. Age platelet dysfunction is also associated with accumulation of reactive oxygen species. Thereby understanding the mechanisms of aging in platelets as well as their age-dependent dysfunctions may be of interest when evaluating the contribution of aging to the onset of age-dependent pathologies, such as those affecting the nervous system. In this review we summarize the findings that link platelet dysfunctions to neurodegenerative diseases including Alzheimer's Disease, Parkinson's Disease, Multiple Sclerosis, Huntington's Disease, and Amyotrophic Lateral Sclerosis. We discuss the role of platelets as drivers of protein dysfunctions observed in these pathologies, their association with aging and the potential clinical significance of platelets, and related miRNAs, as peripheral biomarkers for diagnosis and prognosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Espinosa-Parrilla
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
- Laboratory of Molecular Medicine-LMM, Center for Education, Healthcare and Investigation-CADI, Universidad de Magallanes, Punta Arenas, Chile
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
| | - Christian Gonzalez-Billault
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism GERO, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA, United States
| | - Eduardo Fuentes
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Ivan Palomo
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| |
Collapse
|
236
|
Alzheimer's disease: Key developments support promising perspectives for therapy. Pharmacol Res 2019; 146:104316. [PMID: 31260730 DOI: 10.1016/j.phrs.2019.104316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's is the neurodegenerative disease affecting the largest number of patients in the world. In spite of the intense research of the last decades, progress about its knowledge and therapy was limited. In particular, various cytotoxic processes remained debated, while the few drugs approved for therapy were of only marginal relevance. Recent studies have identified key aspects of the disease, such as the mechanisms governing the development of pathology. In order to operate the Aβ peptide, known as the key factor, requires a complex assembled by its high affinity binding to PrPc, a cell surface prion protein, and mGluR5, a metabotropic glutamate receptor. Aβ and its associates bind also phosphorylated tau transferred to the extracellular space, with final activation of intracellular cytotoxic signals. Pathology is further affected by factors (including genes, receptors and their agonists) and by glial cells governing (via vesicles, cytokines and enzymes) cell immunology, inflammation and oxidative stress. Concomitant to pathology studies, strong attempts have been made for the development of new, effective therapies. Critical for this are biomarkers, by which Alzheimer's patients are recognized even before appearance of their symptoms. The question was whether patients take advantage from drugs not yet approved. The latter, first identified in mice, were found effective also in men, however only before appearance or at early stage of the disease. In other words, the drugs not yet approved induce effective protection of patients still healthy or in a preliminary stage of the disease. In contrast, developed Alzheimer's disease is practically irreversible.
Collapse
|
237
|
Antimony, a novel nerve poison, triggers neuronal autophagic death via reactive oxygen species-mediated inhibition of the protein kinase B/mammalian target of rapamycin pathway. Int J Biochem Cell Biol 2019; 114:105561. [PMID: 31228582 DOI: 10.1016/j.biocel.2019.105561] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/30/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
Antimony (Sb), a naturally occurring metal present in air and drinking water, has been found in the human brain, and there is evidence of its toxic effects on neurobehavioral perturbations, suggesting that Sb is a potential nerve poison. Here, we provide the first study on the molecular mechanism underlying Sb-associated neurotoxicity. Mice exposed to antimony potassium tartrate hydrate showed significantly increased neuronal apoptosis. In vitro, Sb triggered apoptosis in PC12 cells in a dose-dependent manner. Mechanically, Sb triggered autophagy as indicated by increased expression of microtubule-associated protein 1 light chain 3-II (LC3-II) and accumulation of green fluorescent protein-tagged LC3 dots. Moreover, Sb enhanced autophagic flux and sequestosome 1 (p62) degradation. Subsequent analyses showed that Sb treatment decreased phosphorylation of protein kinase B (Akt) as well as the mammalian target of rapamycin (mTOR), while an Akt activator protected PC12 cells from autophagy. Moreover, the antioxidant N-acetylcysteine attenuated Sb-induced Akt/mTOR inhibition and decreased autophagy and apoptosis, with autophagy inhibition also playing a cytoprotective role. In vivo, mice treated with Sb showed higher expression of LC3-II and p62 in the brain, consistent with the in vitro results. In summary, Sb induced autophagic cell death through reactive oxygen species-mediated inhibition of the Akt/mTOR pathway.
Collapse
|
238
|
Esmieu C, Guettas D, Conte-Daban A, Sabater L, Faller P, Hureau C. Copper-Targeting Approaches in Alzheimer’s Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorg Chem 2019; 58:13509-13527. [DOI: 10.1021/acs.inorgchem.9b00995] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | | | - Peter Faller
- LCC−CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | |
Collapse
|
239
|
Use of human pluripotent stem cell-derived cells for neurodegenerative disease modeling and drug screening platform. Future Med Chem 2019; 11:1305-1322. [DOI: 10.4155/fmc-2018-0520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most neurodegenerative diseases are characterized by a complex and mostly still unresolved pathology. This fact, together with the lack of reliable disease models, has precluded the development of effective therapies counteracting the disease progression. The advent of human pluripotent stem cells has revolutionized the field allowing the generation of disease-relevant neural cell types that can be used for disease modeling, drug screening and, possibly, cell transplantation purposes. In this Review, we discuss the applications of human pluripotent stem cells, the development of efficient protocols for the derivation of the different neural cells and their applicability for robust in vitro disease modeling and drug screening platforms for most common neurodegenerative conditions.
Collapse
|
240
|
The Role of Neuronal NLRP1 Inflammasome in Alzheimer's Disease: Bringing Neurons into the Neuroinflammation Game. Mol Neurobiol 2019; 56:7741-7753. [PMID: 31111399 DOI: 10.1007/s12035-019-1638-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
The innate immune system and inflammatory response in the brain have critical impacts on the pathogenesis of many neurodegenerative diseases including Alzheimer's disease (AD). In the central nervous system (CNS), the innate immune response is primarily mediated by microglia. However, non-glial cells such as neurons could also partake in inflammatory response independently through inflammasome signalling. The NLR family pyrin domain-containing 1 (NLRP1) inflammasome in the CNS is primarily expressed by pyramidal neurons and oligodendrocytes. NLRP1 is activated in response to amyloid-β (Aβ) aggregates, and its activation subsequently cleaves caspase-1 into its active subunits. The activated caspase-1 proteolytically processes interleukin-1β (IL-1β) and interleukin-18 (IL-18) into maturation whilst co-ordinately triggers caspase-6 which is responsible for apoptosis and axonal degeneration. In addition, caspase-1 activation induces pyroptosis, an inflammatory form of programmed cell death. Studies in murine AD models indicate that the Nlrp1 inflammasome is indeed upregulated in AD and neuronal death is observed leading to cognitive decline. However, the mechanism of NLRP1 inflammasome activation in AD is particularly elusive, given its structural and functional complexities. In this review, we examine the implications of the human NLRP1 inflammasome and its signalling pathways in driving neuroinflammation in AD.
Collapse
|
241
|
Siedlecki-Wullich D, Català-Solsona J, Fábregas C, Hernández I, Clarimon J, Lleó A, Boada M, Saura CA, Rodríguez-Álvarez J, Miñano-Molina AJ. Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:46. [PMID: 31092279 PMCID: PMC6521366 DOI: 10.1186/s13195-019-0501-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Several evidences suggest that failure of synaptic function occurs at preclinical stages of Alzheimer's disease (AD) preceding neuronal loss and the classical AD pathological hallmarks. Nowadays, there is an urgent need to identify reliable biomarkers that could be obtained with non-invasive methods to improve AD diagnosis at early stages. Here, we have examined plasma levels of a group of miRNAs related to synaptic proteins in a cohort composed of cognitive healthy controls (HC), mild cognitive impairment (MCI) and AD subjects. METHODS Plasma and brain levels of miRNAs were analysed in two different cohorts including 38 HC, 26 MCI, 56 AD dementia patients and 27 frontotemporal dementia (FTD) patients. D'Agostino and Pearson and Shapiro-Wilk tests were used to evaluate data normality. miRNA levels between groups were compared using a two-sided nonparametric Mann-Whitney test and sensitivity and specificity was determined by receiver operating characteristic curve analysis. RESULTS Significant upregulation of miR-92a-3p, miR-181c-5p and miR-210-3p was found in the plasma of both MCI and AD subjects. MCI patients that progress to AD showed higher plasma levels of these miRNAs. By contrast, no changes in miR-92a-3p, miR-181c-5p or miR-210-3p levels were observed in plasma obtained from a cohort of FTD. CONCLUSION Our study shows that plasma miR-92a-3p, miR-181c-5p and miR-210-3p constitute a specific molecular signature potentially useful as a potential biomarker for AD.
Collapse
Affiliation(s)
- Dolores Siedlecki-Wullich
- Institut de Neurociències and Dpt. Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Judit Català-Solsona
- Institut de Neurociències and Dpt. Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Fábregas
- Institut de Neurociències and Dpt. Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jordi Clarimon
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Lleó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Merce Boada
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Carlos A Saura
- Institut de Neurociències and Dpt. Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Rodríguez-Álvarez
- Institut de Neurociències and Dpt. Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| | - Alfredo J Miñano-Molina
- Institut de Neurociències and Dpt. Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
242
|
|
243
|
Sun J, Liu S, Ling Z, Wang F, Ling Y, Gong T, Fang N, Ye S, Si J, Liu J. Fructooligosaccharides Ameliorating Cognitive Deficits and Neurodegeneration in APP/PS1 Transgenic Mice through Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3006-3017. [PMID: 30816709 DOI: 10.1021/acs.jafc.8b07313] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is closely related to gut microbial alteration. Prebiotic fructooligosaccharides (FOS) play major roles by regulating gut microbiota. The present study aimed to explore the effect and mechanism of FOS protection against AD via regulating gut microbiota. Male Apse/PSEN 1dE9 (APP/PS1) transgenic (Tg) mice were administrated with FOS for 6 weeks. Cognitive deficits and amyloid deposition were evaluated. The levels of synaptic plasticity markers including postsynaptic density protein 95 (PSD-95) and synapsin I, as well as phosphorylation of c-Jun N-terminal kinase (JNK), were determined. The intestinal microbial constituent was detected by 16S rRNA sequencing. Moreover, the levels of glucagon-like peptide-1 (GLP-1) in the gut and GLP-1 receptor (GLP-1R) in the brain were measured. The results indicated that FOS treatment ameliorated cognitive deficits and pathological changes in the Tg mice. FOS significantly upregulated the expression levels of synapsin I and PSD-95, as well as decreased phosphorylated level of JNK. The sequencing results showed that FOS reversed the altered microbial composition. Furthermore, FOS increased the level of GLP-1 and decreased the level of GLP-1R in the Tg mice. These findings indicated that FOS exerted beneficial effects against AD via regulating the gut microbiota-GLP-1/GLP-1R pathway.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
| | - Suzhi Liu
- Department of Neurology, The Affiliated Taizhou Hospital , Wenzhou Medical University , 150# Ximen Road , Linhai District, Taizhou 317000 , Zhejiang China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , Zhejiang 310003 , China
| | - Fangyan Wang
- Departments of Pathophysiology, School of Basic Medicine Science , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Yi Ling
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
| | - Tianyu Gong
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Na Fang
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Shiqing Ye
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jue Si
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jiaming Liu
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| |
Collapse
|
244
|
Amyloid β oligomers suppress excitatory transmitter release via presynaptic depletion of phosphatidylinositol-4,5-bisphosphate. Nat Commun 2019; 10:1193. [PMID: 30867420 PMCID: PMC6416269 DOI: 10.1038/s41467-019-09114-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Amyloid β (Aβ) oligomer-induced aberrant neurotransmitter release is proposed to be a crucial early event leading to synapse dysfunction in Alzheimer's disease (AD). In the present study, we report that the release probability (Pr) at the synapse between the Schaffer collateral (SC) and CA1 pyramidal neurons is significantly reduced at an early stage in mouse models of AD with elevated Aβ production. High nanomolar synthetic oligomeric Aβ42 also suppresses Pr at the SC-CA1 synapse in wild-type mice. This Aβ-induced suppression of Pr is mainly due to an mGluR5-mediated depletion of phosphatidylinositol-4,5-bisphosphate (PIP2) in axons. Selectively inhibiting Aβ-induced PIP2 hydrolysis in the CA3 region of the hippocampus strongly prevents oligomeric Aβ-induced suppression of Pr at the SC-CA1 synapse and rescues synaptic and spatial learning and memory deficits in APP/PS1 mice. These results first reveal the presynaptic mGluR5-PIP2 pathway whereby oligomeric Aβ induces early synaptic deficits in AD.
Collapse
|
245
|
Sasaki R, Tainaka R, Ando Y, Hashi Y, Deepak HV, Suga Y, Murai Y, Anetai M, Monde K, Ohta K, Ito I, Kikuchi H, Oshima Y, Endo Y, Nakao H, Sakono M, Uwai K, Tokuraku K. An automated microliter-scale high-throughput screening system (MSHTS) for real-time monitoring of protein aggregation using quantum-dot nanoprobes. Sci Rep 2019; 9:2587. [PMID: 30796247 PMCID: PMC6384891 DOI: 10.1038/s41598-019-38958-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
Protein aggregation is the principal component of numerous protein misfolding pathologies termed proteinopathies, such as Alzheimer’s disease, Parkinson’s disease, prion disease, and AA amyloidosis with unmet treatment needs. Protein aggregation inhibitors have great potential for the prevention and treatment of proteinopathies. Here we report the development of an automated real-time microliter-scale high throughput screening (MSHTS) system for amyloid aggregation inhibitors using quantum-dot nanoprobes. Screening 504 crude extracts and 134 low molecular weight aromatic compounds revealed the relationship of amyloid-β (Aβ) aggregation inhibitory activities of plant extracts using a plant-based classification. Within the eudicots, rosids, Geraniales and Myrtales showed higher activity. Screening low molecular weight aromatic compounds demonstrated that the structure of tropolone endows it with potential Aβ aggregation inhibitory activity. The activity of the most active tropolone derivative was higher than that of rosmarinic acid. MSHTS also identified three chaperone molecules as tau aggregation inhibitors. These results demonstrate that our automated MSHTS system is a novel and robust tool that can be adapted to a wide range of compounds and aggregation-prone polypeptides.
Collapse
Affiliation(s)
- Rina Sasaki
- Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, Japan
| | - Reina Tainaka
- Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, Japan
| | - Yuichi Ando
- Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, Japan
| | - Yurika Hashi
- Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, Japan.,Yamano College of Aesthetics, Hachioji, Tokyo, Japan
| | - Hadya V Deepak
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshiko Suga
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuta Murai
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaki Anetai
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiminori Ohta
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.,School of Pharmacy, Showa University, Tokyo, Japan
| | - Ikuko Ito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hitomi Nakao
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Masafumi Sakono
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Koji Uwai
- Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, Japan
| | - Kiyotaka Tokuraku
- Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, Japan.
| |
Collapse
|
246
|
Sleep Disturbance as a Potential Modifiable Risk Factor for Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20040803. [PMID: 30781802 PMCID: PMC6412395 DOI: 10.3390/ijms20040803] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbance is a common symptom in patients with various neurodegenerative diseases, including Alzheimer’s disease (AD), and it can manifest in the early stages of the disease. Impaired sleep in patients with AD has been attributed to AD pathology that affects brain regions regulating the sleep–wake or circadian rhythm. However, recent epidemiological and experimental studies have demonstrated an association between impaired sleep and an increased risk of AD. These studies have led to the idea of a bidirectional relationship between AD and impaired sleep; in addition to the conventional concept that impaired sleep is a consequence of AD pathology, various evidence strongly suggests that impaired sleep is a risk factor for the initiation and progression of AD. Despite this recent progress, much remains to be elucidated in order to establish the benefit of therapeutic interventions against impaired sleep to prevent or alleviate the disease course of AD. In this review, we provide an overview of previous studies that have linked AD and sleep. We then highlight the studies that have tested the causal relationship between impaired sleep and AD and will discuss the molecular and cellular mechanisms underlying this link. We also propose future works that will aid the development of a novel disease-modifying therapy and prevention of AD via targeting impaired sleep through non-pharmacological and pharmacological interventions.
Collapse
|
247
|
Rosenzweig N, Dvir-Szternfeld R, Tsitsou-Kampeli A, Keren-Shaul H, Ben-Yehuda H, Weill-Raynal P, Cahalon L, Kertser A, Baruch K, Amit I, Weiner A, Schwartz M. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun 2019; 10:465. [PMID: 30692527 PMCID: PMC6349941 DOI: 10.1038/s41467-019-08352-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous disorder with multiple etiologies. Harnessing the immune system by blocking the programmed cell death receptor (PD)-1 pathway in an amyloid beta mouse model was shown to evoke a sequence of immune responses that lead to disease modification. Here, blocking PD-L1, a PD-1 ligand, was found to have similar efficacy to that of PD-1 blocking in disease modification, in both animal models of AD and of tauopathy. Targeting PD-L1 in a tau-driven disease model resulted in increased immunomodulatory monocyte-derived macrophages within the brain parenchyma. Single cell RNA-seq revealed that the homing macrophages expressed unique scavenger molecules including macrophage scavenger receptor 1 (MSR1), which was shown here to be required for the effect of PD-L1 blockade in disease modification. Overall, our results demonstrate that immune checkpoint blockade targeting the PD-1/PD-L1 pathway leads to modification of common factors that go awry in AD and dementia, and thus can potentially provide an immunotherapy to help combat these diseases.
Collapse
Affiliation(s)
- Neta Rosenzweig
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Raz Dvir-Szternfeld
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Hila Ben-Yehuda
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Pierre Weill-Raynal
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liora Cahalon
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alex Kertser
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kuti Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Assaf Weiner
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
248
|
Panza F, Lozupone M, Seripa D, Imbimbo BP. Amyloid-β immunotherapy for alzheimer disease: Is it now a long shot? Ann Neurol 2019; 85:303-315. [PMID: 30635926 DOI: 10.1002/ana.25410] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
The amyloid-β (Aβ) cascade hypothesis of Alzheimer disease (AD) holds that brain accumulation of Aβ initiates the disease process. Accordingly, drug research has targeted Aβ production, clearance, and deposition as therapeutic strategies. Unfortunately, candidate drugs have failed to show clinical benefit in established, early, or prodromal disease, or in those with high AD risk. Currently, monoclonal antibodies specifically directed against the most neurotoxic Aβ forms are undergoing large-scale trials to confirm initially encouraging results. However, recent findings on the normal physiology of Aβ suggest that accumulation may be compensatory rather than the pathological initiator. If this is true, alternative strategies will be needed to defeat this devastating disease. ANN NEUROL 2019;85:303-315.
Collapse
Affiliation(s)
- Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Neurodegenerative Disease Unit, Department of Clinical Research in Neurology, University of Bari Aldo Moro, Cardinal G. Panico Pious Foundation, Tricase, Italy.,Geriatric Unit, Home Relief of Suffering, Institute of Hospitalization and Scientific Care Foundation, San Giovanni Rotondo, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Davide Seripa
- Geriatric Unit, Home Relief of Suffering, Institute of Hospitalization and Scientific Care Foundation, San Giovanni Rotondo, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Pharmaceuticals, Parma, Italy
| |
Collapse
|
249
|
Tauopathy in veterans with long-term posttraumatic stress disorder and traumatic brain injury. Eur J Nucl Med Mol Imaging 2019; 46:1139-1151. [PMID: 30617964 PMCID: PMC6451714 DOI: 10.1007/s00259-018-4241-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) have emerged as independent risk factors for an earlier onset of Alzheimer's disease (AD), although the pathophysiology underlying this risk is unclear. Postmortem studies have revealed extensive cerebral accumulation of tau following multiple and single TBI incidents. We hypothesized that a history of TBI and/or PTSD may induce an AD-like pattern of tau accumulation in the brain of nondemented war veterans. METHODS Vietnam War veterans (mean age 71.4 years) with a history of war-related TBI and/or PTSD underwent [18F]AV145 PET as part of the US Department of Defense Alzheimer's Disease Neuroimaging Initiative. Subjects were classified into the following four groups: healthy controls (n = 21), TBI (n = 10), PTSD (n = 32), and TBI+PTSD (n = 17). [18F]AV1451 reference tissue-normalized standardized uptake value (SUVr) maps, scaled to the cerebellar grey matter, were tested for differences in tau accumulation between groups using voxel-wise and region of interest approaches, and the SUVr results were correlated with neuropsychological test scores. RESULTS Compared to healthy controls, all groups showed widespread tau accumulation in neocortical regions overlapping with typical and atypical patterns of AD-like tau distribution. The TBI group showed higher tau accumulation than the other clinical groups. The extent of tauopathy was positively correlated with the neuropsychological deficit scores in the TBI+PTSD and PTSD groups. CONCLUSION A history of TBI and/or PTSD may manifest in neurocognitive deficits in association with increased tau deposition in the brain of nondemented war veterans decades after their trauma. Further investigation is required to establish the burden of increased risk of dementia imparted by earlier TBI and/or PTSD.
Collapse
|
250
|
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15:73-88. [DOI: 10.1038/s41582-018-0116-6] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|