201
|
Jacobson DH, Pan S, Fisher J, Secrier M. Multi-scale characterisation of homologous recombination deficiency in breast cancer. Genome Med 2023; 15:90. [PMID: 37919776 PMCID: PMC10621207 DOI: 10.1186/s13073-023-01239-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Homologous recombination is a robust, broadly error-free mechanism of double-strand break repair, and deficiencies lead to PARP inhibitor sensitivity. Patients displaying homologous recombination deficiency can be identified using 'mutational signatures'. However, these patterns are difficult to reliably infer from exome sequencing. Additionally, as mutational signatures are a historical record of mutagenic processes, this limits their utility in describing the current status of a tumour. METHODS We apply two methods for characterising homologous recombination deficiency in breast cancer to explore the features and heterogeneity associated with this phenotype. We develop a likelihood-based method which leverages small insertions and deletions for high-confidence classification of homologous recombination deficiency for exome-sequenced breast cancers. We then use multinomial elastic net regression modelling to develop a transcriptional signature of heterogeneous homologous recombination deficiency. This signature is then applied to single-cell RNA-sequenced breast cancer cohorts enabling analysis of homologous recombination deficiency heterogeneity and differential patterns of tumour microenvironment interactivity. RESULTS We demonstrate that the inclusion of indel events, even at low levels, improves homologous recombination deficiency classification. Whilst BRCA-positive homologous recombination deficient samples display strong similarities to those harbouring BRCA1/2 defects, they appear to deviate in microenvironmental features such as hypoxic signalling. We then present a 228-gene transcriptional signature which simultaneously characterises homologous recombination deficiency and BRCA1/2-defect status, and is associated with PARP inhibitor response. Finally, we show that this signature is applicable to single-cell transcriptomics data and predict that these cells present a distinct milieu of interactions with their microenvironment compared to their homologous recombination proficient counterparts, typified by a decreased cancer cell response to TNFα signalling. CONCLUSIONS We apply multi-scale approaches to characterise homologous recombination deficiency in breast cancer through the development of mutational and transcriptional signatures. We demonstrate how indels can improve homologous recombination deficiency classification in exome-sequenced breast cancers. Additionally, we demonstrate the heterogeneity of homologous recombination deficiency, especially in relation to BRCA1/2-defect status, and show that indications of this feature can be captured at a single-cell level, enabling further investigations into interactions between DNA repair deficient cells and their tumour microenvironment.
Collapse
Affiliation(s)
- Daniel H Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Shi Pan
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
202
|
Yue S, Wang Q, Zhang J, Hu Q, Liu C. Understanding cervical cancer at single-cell resolution. Cancer Lett 2023; 576:216408. [PMID: 37769795 DOI: 10.1016/j.canlet.2023.216408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Cervical cancer is now the fourth most prevalent malignancy in women worldwide, representing a tremendous burden of cancer. The heterogeneity of complex tumor ecosystem impacts tumorigenesis, malignant progression, and response to treatment; thus, a thorough understanding of the tumor ecosystem is vital for enhancing the prognosis of patients with cervical cancer. The rapid development and widespread use of single-cell sequencing have generated a new paradigm of cancer research, providing a comprehensive and in-depth understanding of cancers. In this review, we give an overview of the recent advances made by leveraging single-cell sequencing studies in the dissection of cervical cancer ecosystem heterogeneity. We highlight the evolution of the cervical cancer ecosystem during tumor initiation, progression, and treatment. High-resolution dissection of cervical cancer at the single-cell level has the potential to drive the development of targeted therapies and enable the realization of personalized medicine.
Collapse
Affiliation(s)
- Shengqin Yue
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiajun Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Chao Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
203
|
Chen S, Zhou Z, Li Y, Du Y, Chen G. Application of single-cell sequencing to the research of tumor microenvironment. Front Immunol 2023; 14:1285540. [PMID: 37965341 PMCID: PMC10641410 DOI: 10.3389/fimmu.2023.1285540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Single-cell sequencing is a technique for detecting and analyzing genomes, transcriptomes, and epigenomes at the single-cell level, which can detect cellular heterogeneity lost in conventional sequencing hybrid samples, and it has revolutionized our understanding of the genetic heterogeneity and complexity of tumor progression. Moreover, the tumor microenvironment (TME) plays a crucial role in the formation, development and response to treatment of tumors. The application of single-cell sequencing has ushered in a new age for the TME analysis, revealing not only the blueprint of the pan-cancer immune microenvironment, but also the heterogeneity and differentiation routes of immune cells, as well as predicting tumor prognosis. Thus, the combination of single-cell sequencing and the TME analysis provides a unique opportunity to unravel the molecular mechanisms underlying tumor development and progression. In this review, we summarize the recent advances in single-cell sequencing and the TME analysis, highlighting their potential applications in cancer research and clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
204
|
Zheng H, Wang G, Wang Y, Liu J, Ma G, Du J. Systematic analysis reveals a pan-cancer SNHG family signature predicting prognosis and immunotherapy response. iScience 2023; 26:108055. [PMID: 37854704 PMCID: PMC10579433 DOI: 10.1016/j.isci.2023.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Small nucleolar RNA host genes (SNHGs) are a special family of long non-coding RNAs (lncRNAs), which not only function in a way similar to other lncRNAs but also influence the intracellular level of small nucleolar RNAs to modulate cancers. However, the features of SNHGs and their role in the prognosis and immunotherapeutic response of human cancer have not been explored. We found that SNHGs were commonly deregulated and correlated with patient survival in various cancers. The critical role of DNA methylation and somatic alterations on deregulation was also identified. SNHG family score was significantly associated with survival, multiple tumor characteristics, and tumor microenvironment. SNHG-related risk score could serve as a prognostic and immunotherapeutic response biomarker based on multiple databases. This study emphasizes the potential of SNHGs as biomarkers for prognosis and immunotherapeutic response, enabling further research into the immune regulatory mechanism and therapeutic potentials of SNHGs in cancer.
Collapse
Affiliation(s)
- Haotian Zheng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Guanghui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Yadong Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jichang Liu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Guoyuan Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
205
|
Chen X, Liu X, Du S. Unveiling the Role of Tumor-Infiltrating T Cells and Immunotherapy in Hepatocellular Carcinoma: A Comprehensive Review. Cancers (Basel) 2023; 15:5046. [PMID: 37894413 PMCID: PMC10605632 DOI: 10.3390/cancers15205046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a rapidly rising global health concern, ranking as the third-leading cause of cancer-related mortality. Despite medical advancements, the five-year survival rate remains a dismal 18%, with a daunting 70% recurrence rate within a five-year period. Current systematic treatments, including first-line sorafenib, yield an overall response rate (ORR) below 10%. In contrast, immunotherapies have shown promise by improving ORR to approximately 30%. The IMbravel150 clinical trial demonstrates that combining atezolizumab and bevacizumab surpasses sorafenib in terms of median progression-free survival (PFS) and overall survival (OS). However, the therapeutic efficacy for HCC patients remains unsatisfactory, highlighting the urgent need for a comprehensive understanding of antitumor responses and immune evasion mechanisms in HCC. In this context, understanding the immune landscape of HCC is of paramount importance. Tumor-infiltrating T cells, including cytotoxic T cells, regulatory T cells, and natural killer T cells, are key components in the antitumor immune response. This review aims to shed light on their intricate interactions within the immunosuppressive tumor microenvironment and explores potential strategies for revitalizing dysfunctional T cells. Additionally, current immune checkpoint inhibitor (ICI)-based trials, ICI-based combination therapies, and CAR-T- or TCR-T-cell therapies for HCC are summarized, which might further improve OS and transform the management of HCC in the future.
Collapse
Affiliation(s)
- Xiaokun Chen
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (X.C.); (X.L.)
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiao Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (X.C.); (X.L.)
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (X.C.); (X.L.)
| |
Collapse
|
206
|
Yang J, Wang C, Zhang Y, Cheng S, Wu M, Gu S, Xu S, Wu Y, Sheng J, Voon DCC, Wang Y. Clinical significance and immune infiltration analyses of a novel coagulation-related signature in ovarian cancer. Cancer Cell Int 2023; 23:232. [PMID: 37803446 PMCID: PMC10559580 DOI: 10.1186/s12935-023-03040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 10/08/2023] Open
Abstract
Ovarian cancer (OV) is the most lethal gynecological malignancies worldwide. The coagulation cascade could induce tumor cell infiltration and contribute to OV progression. However, coagulation-related gene (CRG) signature for OV prognosis hasn't been determined yet. In this study, we evaluated the prognostic value of coagulation scores through receiver operating characteristics (ROC) analysis and K-M curves, among OV patients at our institution. Based on the transcriptome data of TCGA-OV cohort, we stratified two coagulation-related subtypes with distinct differences in prognosis and tumor immune microenvironment (p < 0.05). Moreover, from the 6406 differentially-expressed genes (DEGs) between the GTEx (n = 180) and TCGA-OV cohorts (n = 376), we identified 138 potential CRGs. Through LASSO-Cox algorithm, we finally distinguished a 3-gene signature (SERPINA10, CD38, and ZBTB16), with promising prognostic ability in both TCGA (p < 0.001) and ICGC cohorts (p = 0.040). Stepwise, we constructed a nomogram based on the clinical features and coagulation-related signature for overall survival prediction, with the C-index of 0.6761, which was evaluated by calibration curves. Especially, based on tissue microarrays analysis, Quantitative real-time fluorescence PCR (qRT-PCR), and Western Blot, we found that aberrant upregulation of CRGs was related to poor prognosis in OV at both mRNA and protein level (p < 0.05). Collectively, the coagulation-related signature was a robust prognostic biomarker, which could provide therapeutic benefits for chemotherapy/immunotherapy and assist clinical decision in OV patients.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Chao Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yue Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meixuan Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sijia Gu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shilin Xu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yongsong Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jindan Sheng
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Dominic Chih-Cheng Voon
- Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 9201192 Japan
- Institute of Frontier Sciences Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192 Japan
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| |
Collapse
|
207
|
Launonen IM, Vähärautio A, Färkkilä A. The Emerging Role of the Single-Cell and Spatial Tumor Microenvironment in High-Grade Serous Ovarian Cancer. Cold Spring Harb Perspect Med 2023; 13:a041314. [PMID: 37553211 PMCID: PMC10547388 DOI: 10.1101/cshperspect.a041314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The development of single-cell and spatial technologies has enabled a more detailed understanding of the tumor microenvironment and its role in therapy response and clinical outcome of high-grade serous ovarian cancer (HGSC). Interestingly, emerging evidence suggests that HGSCs with different genetic drivers harbor distinct tumor-immune microenvironments. Further, spatial cell-cell interactions have been shown to shape the CD8+ T-cell phenotypes and responses to immune checkpoint blockade therapies. The heterogeneous stroma consisting of cancer-associated fibroblast (CAF) subtypes, endothelia, and site-specific stromal types such as mesothelium modulates treatment responses via increasing stiffness and by producing ligands that promote drug resistance, angiogenesis, or immune escape. Chemotherapy itself shifts CAFs toward an inflammatory phenotype that associates with poor survival and immune-suppressive signaling. New emerging immunotherapies include combinational approaches and agents targeting, for example, the tumor-intrinsic endoplasmic reticulum pathway. A more detailed understanding of the spatial interplay of tumor, immune, and stromal cells in the tumor microenvironment is needed to develop more efficient immunotherapeutic strategies for HGSC.
Collapse
Affiliation(s)
- Inga-Maria Launonen
- Research Program in Systems Oncology, University of Helsinki, 00014 Helsinki, Finland
| | - Anna Vähärautio
- Research Program in Systems Oncology, University of Helsinki, 00014 Helsinki, Finland
- Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, University of Helsinki, 00014 Helsinki, Finland
- FIMM and HiLIfe, 00014 Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, 00290 Helsinki, Finland
| |
Collapse
|
208
|
Guo W, Zhou B, Bie F, Huai Q, Xue X, Guo L, Tan F, Xue Q, Zhao L, Gao S. Single-cell RNA sequencing analysis reveals transcriptional heterogeneity of multiple primary lung cancer. Clin Transl Med 2023; 13:e1453. [PMID: 37846760 PMCID: PMC10580343 DOI: 10.1002/ctm2.1453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
INTRODUCTION With the advancements in early diagnosis, more and more patients with multiple primary lung cancer (MPLC) have been identified. However, the progression of MPLC involves complex changes in cell composition and metabolic function, which remains largely controversial. OBJECTIVE Our study aims to comprehensively reveal the cellular characteristics and inter-cellular connections of MPLC. METHODS We performed scRNA-seq from 23 samples of six MPLC patients, combined with bulk whole-exome sequencing. We performed trajectory analysis to investigate the transition of different cell types during the development of MPLC. RESULTS A total of 1 67 397 cells were sequenced derived from tumour and adjacent tissues of MPLC patients, and tumour, normal, immune and stromal cells were identified. Two states of epithelial cells were identified, which were associated with immune response and cell death, respectively. Furthermore, both CD8+ naïve and memory T cells participated in the differentiation of CD8+ T cells. The terminal states of CD8+ T cells were exhausted T cells and cytotoxic T cells, which positively regulated cell death and were implicated in the regulation of cytokine production, respectively. Two main subpopulations of B cells with distinct functions were identified, which participate in the regulation of the immune response and antigen presentation, respectively. In addition, we found a specific type of endothelial cells that were abundant in tumour samples, with an increasing trend from normal to tumour samples. CONCLUSIONS Our study showed the comprehensive landscape of different cells of MPLC, which might reveal the key cellular mechanisms and, therefore, may provide new insights into the early diagnosis and treatment of MPLC.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
- Key Laboratory of Minimally Invasive Therapy Research for Lung CancerChinese Academy of Medical SciencesBeijingP. R. China
| | - Bolun Zhou
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Fenglong Bie
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
- Department of Thoracic SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Qilin Huai
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Xuemin Xue
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Lei Guo
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Fengwei Tan
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
- Key Laboratory of Minimally Invasive Therapy Research for Lung CancerChinese Academy of Medical SciencesBeijingP. R. China
| | - Qi Xue
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
- Key Laboratory of Minimally Invasive Therapy Research for Lung CancerChinese Academy of Medical SciencesBeijingP. R. China
| | - Liang Zhao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Shugeng Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
- Key Laboratory of Minimally Invasive Therapy Research for Lung CancerChinese Academy of Medical SciencesBeijingP. R. China
| |
Collapse
|
209
|
Fan K, Wei Y, Ou Y, Gong J. Integrated analysis of multiple methods reveals characteristics of the immune microenvironment in medulloblastoma. Brain Tumor Pathol 2023; 40:191-203. [PMID: 37558814 DOI: 10.1007/s10014-023-00467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
To explore the characteristics of the immune microenvironment (IME) of medulloblastoma (MB) by four methods: flow cytometry (FCM), immunohistochemical (IHC), bulk RNA expression and single cell RNA sequencing (scRNA-seq), we collected the intraoperative specimens of MB, ependymoma (EPN), high-grade glioma (HGG), and low-grade glioma (LGG) to make a cross-cancer comparison. The specimens were subjected to FCM and IHC respectively, and deconvolution from bulk RNA expression data and scRNA-seq analysis were performed in MB from the GEO database. FCM and IHC analysis found that the proportion of lymphocytes (LC) and T cells between MB and other brain tumors were significantly different. The deconvolution of bulk RNA expression data showed that only the proportion of cell types in MCPCOUNTER changed greatly. scRNA-seq found that the proportion of various immune cells in the IME of MB differed between different subtypes. Techniques such as FCM, IHC, bulk RNA expression, and scRNA-seq can sort out different immune cell subsets to a certain extent and quantify their proportions. The four methods have their own strengthens and limitations, but for highly heterogeneous tumor such as MB, integrated analysis of multiple methods is a better choice.
Collapse
Affiliation(s)
- Kaiyu Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yifan Wei
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yunwei Ou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Neurosurgical Institute, Beijing, 100070, China
| | - Jian Gong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Beijing Neurosurgical Institute, Beijing, 100070, China.
| |
Collapse
|
210
|
Potenza A, Balestrieri C, Spiga M, Albarello L, Pedica F, Manfredi F, Cianciotti BC, De Lalla C, Botrugno OA, Faccani C, Stasi L, Tassi E, Bonfiglio S, Scotti GM, Redegalli M, Biancolini D, Camisa B, Tiziano E, Sirini C, Casucci M, Iozzi C, Abbati D, Simeoni F, Lazarevic D, Elmore U, Fiorentini G, Di Lullo G, Casorati G, Doglioni C, Tonon G, Dellabona P, Rosati R, Aldrighetti L, Ruggiero E, Bonini C. Revealing and harnessing CD39 for the treatment of colorectal cancer and liver metastases by engineered T cells. Gut 2023; 72:1887-1903. [PMID: 37399271 DOI: 10.1136/gutjnl-2022-328042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/02/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. DESIGN We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. RESULTS We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCRED)) and the CD39 encoding gene (ENTPD1), thus generating TCREDENTPD1KOHER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2+ patient-derived organoids in vitro and in vivo. CONCLUSION HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.
Collapse
Affiliation(s)
- Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Balestrieri
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Spiga
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pedica
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudia De Lalla
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Oronza A Botrugno
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Faccani
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Stasi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bonfiglio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Maria Scotti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Redegalli
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Donatella Biancolini
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Camisa
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tiziano
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Sirini
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Iozzi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Simeoni
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ugo Elmore
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido Fiorentini
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Di Lullo
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Tonon
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Rosati
- Vita-Salute San Raffaele University, Milan, Italy
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Aldrighetti
- Vita-Salute San Raffaele University, Milan, Italy
- Hepatobiliary Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
211
|
Qin Y, Zu X, Li Y, Han Y, Tan J, Cai C, Shen E, Liu P, Deng G, Feng Z, Wu W, Peng Y, Liu Y, Ma J, Zeng S, Chen Y, Shen H. A cancer-associated fibroblast subtypes-based signature enables the evaluation of immunotherapy response and prognosis in bladder cancer. iScience 2023; 26:107722. [PMID: 37694141 PMCID: PMC10485638 DOI: 10.1016/j.isci.2023.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Bladder cancer (BLCA) is one of the most prevalent and heterogeneous urinary malignant tumors. Previous researches have reported a significant association between cancer-associated fibroblasts (CAFs) and poor prognosis of tumor patients. However, uncertainty surrounds the role of CAFs in the BLCA tumor microenvironment, necessitating further investigation into the CAFs-related gene signatures in BLCA. In this study, we identified three CAF subtypes in BLCA according to single-cell RNA-seq data and constructed CAFs-related risk score (CRRS) by screening 102,714 signatures. The survival analysis, ROC curves, and nomogram suggested that CRRS was a valuable predictor in 2,042 patients from 9 available public datasets and Xiangya real-world cohort. We further revealed the significant correlation between CRRS and clinicopathological characteristics, genome alterations, and epithelial-mesenchymal transition (EMT). A high CRRS indicated a non-inflamed phenotype and a lower remission rate of immunotherapy in BLCA. In conclusion, the CRRS had the potential to predict the prognosis and immunotherapy response of BLCA patients.
Collapse
Affiliation(s)
- Yiming Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiongbing Zu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Edward Shen
- Department of Life Science, McMaster University, Hamilton L8S 4L8, ON, Canada
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ganlu Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, Guangxi, China
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
212
|
Shan F, Cillo AR, Cardello C, Yuan DY, Kunning SR, Cui J, Lampenfeld C, Williams AM, McDonough AP, Pennathur A, Luketich JD, Kirkwood JM, Ferris RL, Bruno TC, Workman CJ, Benos PV, Vignali DAA. Integrated BATF transcriptional network regulates suppressive intratumoral regulatory T cells. Sci Immunol 2023; 8:eadf6717. [PMID: 37713508 PMCID: PMC11045170 DOI: 10.1126/sciimmunol.adf6717] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Human regulatory T cells (Tregs) are crucial regulators of tissue repair, autoimmune diseases, and cancer. However, it is challenging to inhibit the suppressive function of Tregs for cancer therapy without affecting immune homeostasis. Identifying pathways that may distinguish tumor-restricted Tregs is important, yet the transcriptional programs that control intratumoral Treg gene expression, and that are distinct from Tregs in healthy tissues, remain largely unknown. We profiled single-cell transcriptomes of CD4+ T cells in tumors and peripheral blood from patients with head and neck squamous cell carcinomas (HNSCC) and those in nontumor tonsil tissues and peripheral blood from healthy donors. We identified a subpopulation of activated Tregs expressing multiple tumor necrosis factor receptor (TNFR) genes (TNFR+ Tregs) that is highly enriched in the tumor microenvironment (TME) compared with nontumor tissue and the periphery. TNFR+ Tregs are associated with worse prognosis in HNSCC and across multiple solid tumor types. Mechanistically, the transcription factor BATF is a central component of a gene regulatory network that governs key aspects of TNFR+ Tregs. CRISPR-Cas9-mediated BATF knockout in human activated Tregs in conjunction with bulk RNA sequencing, immunophenotyping, and in vitro functional assays corroborated the central role of BATF in limiting excessive activation and promoting the survival of human activated Tregs. Last, we identified a suite of surface molecules reflective of the BATF-driven transcriptional network on intratumoral Tregs in patients with HNSCC. These findings uncover a primary transcriptional regulator of highly suppressive intratumoral Tregs, highlighting potential opportunities for therapeutic intervention in cancer without affecting immune homeostasis.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Integrative Systems Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R. Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Daniel Y. Yuan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheryl R. Kunning
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Caleb Lampenfeld
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Asia M. Williams
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Alexandra P. McDonough
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Arjun Pennathur
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James D. Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John M. Kirkwood
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert L. Ferris
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tullia C. Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
213
|
Riley-Gillis B, Tsaih SW, King E, Wollenhaupt S, Reeb J, Peck AR, Wackman K, Lemke A, Rui H, Dezso Z, Flister MJ. Machine learning reveals genetic modifiers of the immune microenvironment of cancer. iScience 2023; 26:107576. [PMID: 37664640 PMCID: PMC10470213 DOI: 10.1016/j.isci.2023.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/01/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Heritability in the immune tumor microenvironment (iTME) has been widely observed yet remains largely uncharacterized. Here, we developed a machine learning approach to map iTME modifiers within loci from genome-wide association studies (GWASs) for breast cancer (BrCa) incidence. A random forest model was trained on a positive set of immune-oncology (I-O) targets, and then used to assign I-O target probability scores to 1,362 candidate genes in linkage disequilibrium with 155 BrCa GWAS loci. Cluster analysis of the most probable candidates revealed two subfamilies of genes related to effector functions and adaptive immune responses, suggesting that iTME modifiers impact multiple aspects of anticancer immunity. Two of the top ranking BrCa candidates, LSP1 and TLR1, were orthogonally validated as iTME modifiers using BrCa patient biopsies and comparative mapping studies, respectively. Collectively, these data demonstrate a robust and flexible framework for functionally fine-mapping GWAS risk loci to identify translatable therapeutic targets.
Collapse
Affiliation(s)
- Bridget Riley-Gillis
- Genomics Research Center, AbbVie Inc, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Shirng-Wern Tsaih
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emily King
- Genomics Research Center, AbbVie Inc, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Amy R. Peck
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kelsey Wackman
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela Lemke
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zoltan Dezso
- Genomics Research Center, AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Michael J. Flister
- Genomics Research Center, AbbVie Inc, 1 North Waukegan Road, North Chicago, IL 60064, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
214
|
Chen W, Song T, Zou F, Xia Y, Xing J, Yu W, Rao T, Zhou X, Li C, Ning J, Zhao S, Ruan Y, Cheng F. Prognostic and immunological roles of IL18RAP in human cancers. Aging (Albany NY) 2023; 15:9059-9085. [PMID: 37698530 PMCID: PMC10522399 DOI: 10.18632/aging.205017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
Across several cancers, IL18 receptor accessory protein (IL18RAP) is abnormally expressed, and this abnormality is related to tumor immunity and heterogeneous clinical outcomes. In this study, based on bioinformatics analysis, we discovered that IL18RAP is related to the human tumor microenvironment and promotes various immune cells infiltration. Additionally, the multiple immunofluorescence staining revealed that with the increased expression of IL18RAP, the number of infiltrated M1 macrophages increased. This finding was confirmed by coculture migration analysis using three human cancer cell lines (MDA-MB-231, U251, and HepG2) with IL18RAP knockdown. We discovered a positive link between IL18RAP and the majority of immunostimulators, immunoinhibitors, major histocompatibility complex (MHC) molecules, chemokines, and chemokine receptor genes using Spearman correlation analysis. Additionally, functional IL18RAP's gene set enrichment analysis (GSEA) revealed that it is related to a variety of immunological processes, such as positive regulation of interferon gamma production and positive regulation of NK cell-mediated immunity. Moreover, we used single-cell RNA sequencing analysis to detect that IL18RAP was mainly expressed in immune cells, and HALLMARK analysis confirmed that the INF-γ gene set expression was upregulated in CD8Tex cells. In addition, in human and mouse cancer cohorts, we found that the level of IL18RAP can predict the immunotherapy response. In short, our study showed that IL18RAP is a new tumor biomarker and may become a potential immunotherapeutic target in cancer.
Collapse
Affiliation(s)
- Wu Chen
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Tianbao Song
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Fan Zou
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Yuqi Xia
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Ji Xing
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Weimin Yu
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Ting Rao
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Xiangjun Zhou
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Chenglong Li
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Jinzhuo Ning
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Sheng Zhao
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Yuan Ruan
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Fan Cheng
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| |
Collapse
|
215
|
Xu LI, Bai Y, Cheng Y, Sheng X, Sun D. Pan-cancer Analysis Reveals Cancer-dependent Expression of SOX17 and Associated Clinical Outcomes. Cancer Genomics Proteomics 2023; 20:433-447. [PMID: 37643784 PMCID: PMC10464944 DOI: 10.21873/cgp.20395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND/AIM SRY-box containing gene 17 (SOX17) plays a pivotal role in cancer onset and progression and is considered a potential target for cancer diagnosis and treatment. However, the expression pattern of SOX17 in cancer and its clinical relevance remains unknown. Here, we explored the relationship between the expression of SOX17 and drug response by examining SOX17 expression patterns across multiple cancer types. MATERIALS AND METHODS Single-cell and bulk RNA-seq analyses were used to explore the expression profile of SOX17. Analysis results were verified with qPCR and immunohistochemistry. Survival, drug response, and co-expression analyses were performed to illustrate its correlation with clinical outcomes. RESULTS The results revealed that abnormal expression of SOX17 is highly heterogenous across multiple cancer types, indicating that SOX17 manifests as a cancer type-dependent feature. Furthermore, the expression pattern of SOX17 is also associated with cancer prognosis in certain cancer types. Strong SOX17 expression correlates with the potency of small molecule drugs that affect PI3K/mTOR signaling. FGF18, a gene highly relevant to SOX17, is involved in the PI3K-AKT signaling pathway. Single-cell RNA-seq analysis demonstrated that SOX17 is mainly expressed in endothelial cells and barely expressed in other cells but spreads to other cell types during the development of ovarian cancer. CONCLUSION Our study revealed the expression pattern of SOX17 in pan-cancer through bulk and single-cell RNA-seq analyses and determined that SOX17 is related to the diagnosis, staging, and prognosis of some tumors. These findings have clinical implications and may help identify mechanistic pathways amenable to pharmacological interventions.
Collapse
Affiliation(s)
- L I Xu
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R. China
| | - Youhuang Bai
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R. China
| | - Yihang Cheng
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R. China
| | - Xiujie Sheng
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Deqiang Sun
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R. China;
| |
Collapse
|
216
|
Zhang X, Shi X, Xie F, Liu Y, Wei X, Cai Y, Chao J. Dissecting pulmonary fibroblasts heterogeneity in lung development, health and diseases. Heliyon 2023; 9:e19428. [PMID: 37674845 PMCID: PMC10477496 DOI: 10.1016/j.heliyon.2023.e19428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Lung fibroblasts are the major components in the connective tissue of the pulmonary interstitium and play essential roles in the developing of postnatal lung, synthesizing the extracellular matrix and maintaining the integrity of the lung architecture. Fibroblasts are activated in various disease conditions and exhibit functional heterogeneities according to their origin, spatial location, activated state and microenvironment. In recent years, advances in technology have enabled researchers to identify fibroblast subpopulations in both mouse and human. Here, we discuss pulmonary fibroblast heterogeneity, focusing on the developing, healthy and pathological lung conditions. We firstly review the expression profiles of fibroblasts during lung development, and then consider fibroblast diversity according to different anatomical sites of lung architecture. Subsequently, we discuss fibroblast heterogeneity in genetic lineage. Finally, we focus on how fibroblast heterogeneity may shed light on different pathological lung conditions such as fibrotic diseases, infectious diseases including COVID-19, and lung cancers. We emphasize the importance of comparative studies to illuminate the overlapping characteristics, expression profiles and signaling pathways of the fibroblast subpopulations across disease conditions, a better characterization of the functional complexity rather than the expression of a particular gene may have important therapeutic applications.
Collapse
Affiliation(s)
- Xinxin Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Xiaoni Shi
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Feiyan Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yaping Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xinyan Wei
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yu Cai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
217
|
Zilbauer M, James KR, Kaur M, Pott S, Li Z, Burger A, Thiagarajah JR, Burclaff J, Jahnsen FL, Perrone F, Ross AD, Matteoli G, Stakenborg N, Sujino T, Moor A, Bartolome-Casado R, Bækkevold ES, Zhou R, Xie B, Lau KS, Din S, Magness ST, Yao Q, Beyaz S, Arends M, Denadai-Souza A, Coburn LA, Gaublomme JT, Baldock R, Papatheodorou I, Ordovas-Montanes J, Boeckxstaens G, Hupalowska A, Teichmann SA, Regev A, Xavier RJ, Simmons A, Snyder MP, Wilson KT. A Roadmap for the Human Gut Cell Atlas. Nat Rev Gastroenterol Hepatol 2023; 20:597-614. [PMID: 37258747 PMCID: PMC10527367 DOI: 10.1038/s41575-023-00784-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 06/02/2023]
Abstract
The number of studies investigating the human gastrointestinal tract using various single-cell profiling methods has increased substantially in the past few years. Although this increase provides a unique opportunity for the generation of the first comprehensive Human Gut Cell Atlas (HGCA), there remains a range of major challenges ahead. Above all, the ultimate success will largely depend on a structured and coordinated approach that aligns global efforts undertaken by a large number of research groups. In this Roadmap, we discuss a comprehensive forward-thinking direction for the generation of the HGCA on behalf of the Gut Biological Network of the Human Cell Atlas. Based on the consensus opinion of experts from across the globe, we outline the main requirements for the first complete HGCA by summarizing existing data sets and highlighting anatomical regions and/or tissues with limited coverage. We provide recommendations for future studies and discuss key methodologies and the importance of integrating the healthy gut atlas with related diseases and gut organoids. Importantly, we critically overview the computational tools available and provide recommendations to overcome key challenges.
Collapse
Affiliation(s)
- Matthias Zilbauer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- University Department of Paediatrics, University of Cambridge, Cambridge, UK.
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Cambridge, UK.
| | - Kylie R James
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sebastian Pott
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zhixin Li
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Albert Burger
- Department of Computer Science, Heriot-watt University, Edinburgh, UK
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University', Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Frode L Jahnsen
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Francesca Perrone
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Alexander D Ross
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
- University Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Tomohisa Sujino
- Center for the Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Andreas Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Raquel Bartolome-Casado
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Wellcome Sanger Institute, Hinxton, UK
| | - Espen S Bækkevold
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ran Zhou
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shahida Din
- Edinburgh IBD Unit, Western General Hospital, NHS Lothian, Edinburgh, UK
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University', Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qiuming Yao
- Department of Computer Science and Engineering, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Semir Beyaz
- Cold Spring Harbour Laboratory, Cold Spring Harbour, New York, NY, USA
| | - Mark Arends
- Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Cancer and Genetics, University of Edinburgh, Edinburgh, UK
| | - Alexandre Denadai-Souza
- Laboratory of Mucosal Biology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Lori A Coburn
- Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | | | | | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Guy Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | | | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, UK
| | - Aviv Regev
- Genentech, San Francisco, CA, USA
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alison Simmons
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Keith T Wilson
- Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
218
|
Playoust E, Remark R, Vivier E, Milpied P. Germinal center-dependent and -independent immune responses of tumor-infiltrating B cells in human cancers. Cell Mol Immunol 2023; 20:1040-1050. [PMID: 37419983 PMCID: PMC10468534 DOI: 10.1038/s41423-023-01060-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
B cells play essential roles in immunity, mainly through the production of high affinity plasma cells (PCs) and memory B (Bmem) cells. The affinity maturation and differentiation of B cells rely on the integration of B-cell receptor (BCR) intrinsic and extrinsic signals provided by antigen binding and the microenvironment, respectively. In recent years, tumor infiltrating B (TIL-B) cells and PCs (TIL-PCs) have been revealed as important players in antitumor responses in human cancers, but their interplay and dynamics remain largely unknown. In lymphoid organs, B-cell responses involve both germinal center (GC)-dependent and GC-independent pathways for Bmem cell and PC production. Affinity maturation of BCR repertoires occurs in GC reactions with specific spatiotemporal dynamics of signal integration by B cells. In general, the reactivation of high-affinity Bmem cells by antigens triggers GC-independent production of large numbers of PC without BCR rediversification. Understanding B-cell dynamics in immune responses requires the integration of multiple tools and readouts such as single-cell phenotyping and RNA-seq, in situ analyses, BCR repertoire analysis, BCR specificity and affinity assays, and functional tests. Here, we review how those tools have recently been applied to study TIL-B cells and TIL-PC in different types of solid tumors. We assessed the published evidence for different models of TIL-B-cell dynamics involving GC-dependent or GC-independent local responses and the resulting production of antigen-specific PCs. Altogether, we highlight the need for more integrative B-cell immunology studies to rationally investigate TIL-B cells as a leverage for antitumor therapies.
Collapse
Affiliation(s)
- Eve Playoust
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Innate Pharma, Marseille, France
| | - Pierre Milpied
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
219
|
Cho SJ, Oh JH, Baek J, Shin Y, Kim W, Ko J, Jun E, Lee D, Kim SH, Sohn I, Sung CO. Intercellular cross-talk through lineage-specific gap junction of cancer-associated fibroblasts related to stromal fibrosis and prognosis. Sci Rep 2023; 13:14230. [PMID: 37648762 PMCID: PMC10469165 DOI: 10.1038/s41598-023-40957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
Stromal fibrosis in cancer is usually associated with poor prognosis and chemotherapy resistance. It is thought to be caused by fibroblasts; however, the exact mechanism is not yet well understood. The study aimed to identify lineage-specific cancer-associated fibroblast (CAF) subgroup and their associations with extracellular matrix remodeling and clinical significances in various tumor types using single-cell and bulk RNA sequencing data. Through unsupervised clustering, six subclusters of CAFs were identified, including a cluster with exclusively high gap junction protein beta-2 (GJB2) expression. This cluster was named GJB2-positive CAF. It was found to be a unique subgroup of terminally differentiated CAFs associated with collagen gene expression and extracellular matrix remodeling. GJB2-positive CAFs showed higher communication frequency with vascular endothelial cells and cancer cells than GJB2-negative CAFs. Moreover, GJB2 was poorly expressed in normal tissues, indicating that its expression is dependent on interaction with other cells, including vascular endothelial cells and cancer cells. Finally, the study investigated the clinical significance of GJB2 signature score for GJB2-positive CAFs in cancer and found a correlation with poor prognosis. These results suggest that GJB2-positive CAF is a unique fibroblast subtype involved in extracellular matrix remodeling, with significant clinical implications in cancer.
Collapse
Affiliation(s)
- Seong Ju Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Arontier Inc., Gangnam-Daero 241, Seocho-Gu, Seoul, Republic of Korea
| | - Ji-Hye Oh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olymphic-Ro 43-Gil, Seoul, 05505, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaehoon Baek
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Arontier Inc., Gangnam-Daero 241, Seocho-Gu, Seoul, Republic of Korea
| | - Yunsu Shin
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Arontier Inc., Gangnam-Daero 241, Seocho-Gu, Seoul, Republic of Korea
| | - Wonkyung Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olymphic-Ro 43-Gil, Seoul, 05505, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Junsu Ko
- Arontier Inc., Gangnam-Daero 241, Seocho-Gu, Seoul, Republic of Korea
| | - Eunsung Jun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Ulsan University College of Medicine and Asan Medical Center, Seoul, Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| | - Insuk Sohn
- Arontier Inc., Gangnam-Daero 241, Seocho-Gu, Seoul, Republic of Korea.
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olymphic-Ro 43-Gil, Seoul, 05505, South Korea.
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
220
|
Zhang Q, Liu Y, Wang X, Zhang C, Hou M, Liu Y. Integration of single-cell RNA sequencing and bulk RNA transcriptome sequencing reveals a heterogeneous immune landscape and pivotal cell subpopulations associated with colorectal cancer prognosis. Front Immunol 2023; 14:1184167. [PMID: 37675100 PMCID: PMC10477986 DOI: 10.3389/fimmu.2023.1184167] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a highly heterogeneous cancer. The molecular and cellular characteristics differ between the colon and rectal cancer type due to the differences in their anatomical location and pathological properties. With the advent of single-cell sequencing, it has become possible to analyze inter- and intra-tumoral tissue heterogeneities. Methods A comprehensive CRC immune atlas, comprising 62,398 immune cells, was re-structured into 33 immune cell clusters at the single-cell level. Further, the immune cell lineage heterogeneity of colon, rectal, and paracancerous tissues was explored. Simultaneously, we characterized the TAM phenotypes and analyzed the transcriptomic factor regulatory network of each macrophage subset using SCENIC. In addition, monocle2 was used to elucidate the B cell developmental trajectory. The crosstalk between immune cells was explored using CellChat and the patterns of incoming and outgoing signals within the overall immune cell population were identified. Afterwards, the bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) were combined and the relative infiltration abundance of the identified subpopulations was analyzed using CIBERSORT. Moreover, cell composition patterns could be classified into five tumor microenvironment (TME) subtypes by employing a consistent non-negative matrix algorithm. Finally, the co-expression and interaction between SPP1+TAMs and Treg cells in the tumor microenvironment were analyzed by multiplex immunohistochemistry. Results In the T cell lineage, we found that CXCL13+T cells were more widely distributed in colorectal cancer tissues, and the proportion of infiltration was increased. In addition, Th17 was found accounted for the highest proportion in CD39+CD101+PD1+T cells. Mover, Ma1-SPP1 showed the characteristics of M2 phenotypes and displayed an increased proportion in tumor tissues, which may promote angiogenesis. Plasma cells (PCs) displayed a significantly heterogeneous distribution in tumor as well as normal tissues. Specifically, the IgA+ PC population could be shown to be decreased in colorectal tumor tissues whereas the IgG+ PC one was enriched. In addition, information flow mediated by SPP1 and CD44, regulate signaling pathways of tumor progression. Among the five TME subtypes, the TME-1 subtype displayed a markedly reduced proportion of T-cell infiltration with the highest proportion of macrophages which was correlated to the worst prognosis. Finally, the co-expression and interaction between SPP1+TAMs and Treg cells were observed in the CD44 enriched region. Discussion The heterogeneity distribution and phenotype of immune cells were analyzed in colon cancer and rectal cancer at the single-cell level. Further, the prognostic role of major tumor-infiltrating lymphocytes and TME subtypes in CRC was evaluated by integrating bulk RNA. These findings provide novel insight into the immunotherapy of CRC.
Collapse
Affiliation(s)
- Qian Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| | - Yang Liu
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xinyu Wang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Cheng Zhang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Mingxiao Hou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
221
|
Thakur S, Haider S, Natrajan R. Implications of tumour heterogeneity on cancer evolution and therapy resistance: lessons from breast cancer. J Pathol 2023; 260:621-636. [PMID: 37587096 DOI: 10.1002/path.6158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 08/18/2023]
Abstract
Tumour heterogeneity is pervasive amongst many cancers and leads to disease progression, and therapy resistance. In this review, using breast cancer as an exemplar, we focus on the recent advances in understanding the interplay between tumour cells and their microenvironment using single cell sequencing and digital spatial profiling technologies. Further, we discuss the utility of lineage tracing methodologies in pre-clinical models of breast cancer, and how these are being used to unravel new therapeutic vulnerabilities and reveal biomarkers of breast cancer progression. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shefali Thakur
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| |
Collapse
|
222
|
Zhou Y, Jiang X, Wang X, Huang J, Li T, Jin H, He J. Promise of spatially resolved omics for tumor research. J Pharm Anal 2023; 13:851-861. [PMID: 37719191 PMCID: PMC10499658 DOI: 10.1016/j.jpha.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tumors are spatially heterogeneous tissues that comprise numerous cell types with intricate structures. By interacting with the microenvironment, tumor cells undergo dynamic changes in gene expression and metabolism, resulting in spatiotemporal variations in their capacity for proliferation and metastasis. In recent years, the rapid development of histological techniques has enabled efficient and high-throughput biomolecule analysis. By preserving location information while obtaining a large number of gene and molecular data, spatially resolved metabolomics (SRM) and spatially resolved transcriptomics (SRT) approaches can offer new ideas and reliable tools for the in-depth study of tumors. This review provides a comprehensive introduction and summary of the fundamental principles and research methods used for SRM and SRT techniques, as well as a review of their applications in cancer-related fields.
Collapse
Affiliation(s)
- Yanhe Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinyi Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jianpeng Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 10050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing, 10050, China
| |
Collapse
|
223
|
Li S, Pan T, Xu G, Gao Y, Zhang Y, Xu Q, Pan J, Zhou W, Xu J, Li Q, Li Y. Deep immunophenotyping reveals clinically distinct cellular states and ecosystems in large-scale colorectal cancer. Commun Biol 2023; 6:785. [PMID: 37500893 PMCID: PMC10374645 DOI: 10.1038/s42003-023-05117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Determining the diverse cell types in the tumor microenvironment (TME) and their organization into cellular communities, is critical for understanding the biological heterogeneity and therapy of cancer. Here, we deeply immunophenotype the colorectal cancer (CRC) by integrative analysis of large-scale bulk and single cell transcriptome of 2350 patients and 53,137 cells. A rich landscape of 42 cellular states and 7 ecosystems in TMEs is uncovered and extend the previous immune classifications of CRC. Functional pathways and potential transcriptional regulators analysis of cellular states and ecosystems reveal cancer hallmark-related pathways and several critical transcription factors in CRC. High-resolution characterization of the TMEs, we discover the potential utility of cellular states (i.e., Monocytes/Macrophages and CD8 T cell) and ecosystems for prognosis and clinical therapy selection of CRC. Together, our results expand our understanding of cellular organization in TMEs of CRC, with potential implications for the development of biomarkers and precision therapies.
Collapse
Affiliation(s)
- Si Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China
| | - Tao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Gang Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yueying Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China
| | - Ya Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Qi Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Jiwei Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Qifu Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China.
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
224
|
Zhang X, Peng W, Fan J, Luo R, Liu S, Du W, Luo C, Zheng J, Pan X, Ge H. Regulatory role of Chitinase 3-like 1 gene in papillary thyroid carcinoma proved by integration analyses of single-cell sequencing with cohort and experimental validations. Cancer Cell Int 2023; 23:145. [PMID: 37480002 PMCID: PMC10362555 DOI: 10.1186/s12935-023-02987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is one of the most common thyroid carcinomas. The gross extrathyroidal extension and extensive metastases of PTC lead to high rates of recurrence and poor clinical outcomes. However, the mechanisms underlying PTC development are poorly understood. In this study, using single-cell RNA sequencing, the transcriptome profiles of two PTC patients were addressed, including PTC1 with low malignancy and good prognosis and PTC2 with high malignancy and poor prognosis. We found that epithelial subcluster Epi02 was the most associated with the malignant development of PTC cells, with which the fold change of Chitinase 3-like 1 (CHI3L1) is on the top of the differentially expressed genes between PTC1 and PTC2 (P < 0.001). However CHI3L1 is rarely investigated in PTC as far. We then studied its role in PTC with a series of experiments. Firstly, qRT-PCR analysis of 14 PTC patients showed that the expression of CHI3L1 was positively correlated with malignancy. In addition, overexpression or silencing of CHI3L1 in TPC-1 cells, a PTC cell line, cultured in vitro showed that the proliferation, invasion, and metastasis of the cells were promoted or alleviated by CHI3L1. Further, immunohistochemistry analysis of 110 PTC cases revealed a significant relationship between CHI3L1 protein expression and PTC progression, especially the T (P < 0.001), N (P < 0.001), M stages (P = 0.007) and gross ETE (P < 0.001). Together, our results prove that CHI3L1 is a positive regulator of malignant development of PTC, and it promotes proliferation, invasion, and metastasis of PTC cells. Our study improves understanding of the molecular mechanisms underlying the progression of PTC and provides new insights for the clinical diagnosis and treatment of PTC.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Wanwan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, 510515, Guangzhou, China
| | - Jie Fan
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Ruihua Luo
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Shanting Liu
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Wei Du
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Chaochao Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, 510515, Guangzhou, China
| | - Jiawen Zheng
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, 510515, Guangzhou, China.
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China.
| |
Collapse
|
225
|
Wang HJ, Jiang YP, Zhang JY, Tang XQ, Lou JS, Huang XY. Roles of Fascin in Dendritic Cells. Cancers (Basel) 2023; 15:3691. [PMID: 37509352 PMCID: PMC10378208 DOI: 10.3390/cancers15143691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a crucial role in activating naive T cells through presenting antigen information, thereby influencing immunity and anti-cancer responses. Fascin, a 55-kDa actin-bundling protein, is highly expressed in mature DCs and serves as a marker protein for their identification. However, the precise role of fascin in intratumoral DCs remains poorly understood. In this review, we aim to summarize the role of fascin in both normal and intratumoral DCs. In normal DCs, fascin promotes immune effects through facilitating DC maturation and migration. Through targeting intratumoral DCs, fascin inhibitors enhance anti-tumor immune activity. These roles of fascin in different DC populations offer valuable insights for future research in immunotherapy and strategies aimed at improving cancer treatments.
Collapse
Affiliation(s)
- Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun-Ying Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Qi Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
226
|
Koncina E, Nurmik M, Pozdeev VI, Gilson C, Tsenkova M, Begaj R, Stang S, Gaigneaux A, Weindorfer C, Rodriguez F, Schmoetten M, Klein E, Karta J, Atanasova VS, Grzyb K, Ullmann P, Halder R, Hengstschläger M, Graas J, Augendre V, Karapetyan YE, Kerger L, Zuegel N, Skupin A, Haan S, Meiser J, Dolznig H, Letellier E. IL1R1 + cancer-associated fibroblasts drive tumor development and immunosuppression in colorectal cancer. Nat Commun 2023; 14:4251. [PMID: 37460545 DOI: 10.1038/s41467-023-39953-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Fibroblasts have a considerable functional and molecular heterogeneity and can play various roles in the tumor microenvironment. Here we identify a pro-tumorigenic IL1R1+, IL-1-high-signaling subtype of fibroblasts, using multiple colorectal cancer (CRC) patient single cell sequencing datasets. This subtype of fibroblasts is linked to T cell and macrophage suppression and leads to increased cancer cell growth in 3D co-culture assays. Furthermore, both a fibroblast-specific IL1R1 knockout and IL-1 receptor antagonist Anakinra administration reduce tumor growth in vivo. This is accompanied by reduced intratumoral Th17 cell infiltration. Accordingly, CRC patients who present with IL1R1-expressing cancer-associated-fibroblasts (CAFs), also display elevated levels of immune exhaustion markers, as well as an increased Th17 score and an overall worse survival. Altogether, this study underlines the therapeutic value of targeting IL1R1-expressing CAFs in the context of CRC.
Collapse
Affiliation(s)
- E Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Nurmik
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - V I Pozdeev
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - C Gilson
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Tsenkova
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - R Begaj
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - S Stang
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - A Gaigneaux
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - C Weindorfer
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - F Rodriguez
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - M Schmoetten
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - E Klein
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - J Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - V S Atanasova
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - K Grzyb
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - P Ullmann
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - R Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - M Hengstschläger
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - J Graas
- Clinical and Epidemiological Investigation Center, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - V Augendre
- National Center of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg
| | | | - L Kerger
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - N Zuegel
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - A Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - S Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - J Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - H Dolznig
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | - E Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg.
| |
Collapse
|
227
|
Shuptrine CW, Perez VM, Selitsky SR, Schreiber TH, Fromm G. Shining a LIGHT on myeloid cell targeted immunotherapy. Eur J Cancer 2023; 187:147-160. [PMID: 37167762 DOI: 10.1016/j.ejca.2023.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Despite over a decade of clinical trials combining inhibition of emerging checkpoints with a PD-1/L1 inhibitor backbone, meaningful survival benefits have not been shown in PD-1/L1 inhibitor resistant or refractory solid tumours, particularly tumours dominated by a myelosuppressive microenvironment. Achieving durable anti-tumour immunity will therefore likely require combination of adaptive and innate immune stimulation, myeloid repolarisation, enhanced APC activation and antigen processing/presentation, lifting of the CD47/SIRPα (Cluster of Differentiation 47/signal regulatory protein alpha) 'do not eat me' signal, provision of an apoptotic 'pro-eat me' or 'find me' signal, and blockade of immune checkpoints. The importance of effectively targeting mLILRB2 and SIRPAyeloid cells to achieve improved response rates has recently been emphasised, given myeloid cells are abundant in the tumour microenvironment of most solid tumours. TNFSF14, or LIGHT, is a tumour necrosis superfamily ligand with a broad range of adaptive and innate immune activities, including (1) myeloid cell activation through Lymphotoxin Beta Receptor (LTβR), (2) T/NK (T cell and natural killer cell) induced anti-tumour immune activity through Herpes virus entry mediator (HVEM), (3) potentiation of proinflammatory cytokine/chemokine secretion through LTβR on tumour stromal cells, (4) direct induction of tumour cell apoptosis in vitro, and (5) the reorganisation of lymphatic tissue architecture, including within the tumour microenvironment (TME), by promoting high endothelial venule (HEV) formation and induction of tertiary lymphoid structures. LTBR (Lymphotoxin beta receptor) and HVEM rank highly amongst a range of costimulatory receptors in solid tumours, which raises interest in considering how LIGHT-mediated costimulation may be distinct from a growing list of immunotherapy targets which have failed to provide survival benefit as monotherapy or in combination with PD-1 inhibitors, particularly in the checkpoint acquired resistant setting.
Collapse
Affiliation(s)
- Casey W Shuptrine
- Shattuck Labs Inc., Austin, TX, USA; Shattuck Labs Inc., Durham, NC, USA
| | | | | | - Taylor H Schreiber
- Shattuck Labs Inc., Austin, TX, USA; Shattuck Labs Inc., Durham, NC, USA
| | - George Fromm
- Shattuck Labs Inc., Austin, TX, USA; Shattuck Labs Inc., Durham, NC, USA.
| |
Collapse
|
228
|
Bod L, Kye YC, Shi J, Torlai Triglia E, Schnell A, Fessler J, Ostrowski SM, Von-Franque MY, Kuchroo JR, Barilla RM, Zaghouani S, Christian E, Delorey TM, Mohib K, Xiao S, Slingerland N, Giuliano CJ, Ashenberg O, Li Z, Rothstein DM, Fisher DE, Rozenblatt-Rosen O, Sharpe AH, Quintana FJ, Apetoh L, Regev A, Kuchroo VK. B-cell-specific checkpoint molecules that regulate anti-tumour immunity. Nature 2023; 619:348-356. [PMID: 37344597 PMCID: PMC10795478 DOI: 10.1038/s41586-023-06231-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
The role of B cells in anti-tumour immunity is still debated and, accordingly, immunotherapies have focused on targeting T and natural killer cells to inhibit tumour growth1,2. Here, using high-throughput flow cytometry as well as bulk and single-cell RNA-sequencing and B-cell-receptor-sequencing analysis of B cells temporally during B16F10 melanoma growth, we identified a subset of B cells that expands specifically in the draining lymph node over time in tumour-bearing mice. The expanding B cell subset expresses the cell surface molecule T cell immunoglobulin and mucin domain 1 (TIM-1, encoded by Havcr1) and a unique transcriptional signature, including multiple co-inhibitory molecules such as PD-1, TIM-3, TIGIT and LAG-3. Although conditional deletion of these co-inhibitory molecules on B cells had little or no effect on tumour burden, selective deletion of Havcr1 in B cells both substantially inhibited tumour growth and enhanced effector T cell responses. Loss of TIM-1 enhanced the type 1 interferon response in B cells, which augmented B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion of tumour-specific effector T cells. Our results demonstrate that manipulation of TIM-1-expressing B cells enables engagement of the second arm of adaptive immunity to promote anti-tumour immunity and inhibit tumour growth.
Collapse
Affiliation(s)
- Lloyd Bod
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoon-Chul Kye
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jingwen Shi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- BeiGene, Beijing, China
| | - Elena Torlai Triglia
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Johannes Fessler
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | - Max Y Von-Franque
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Juhi R Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Rocky M Barilla
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Zaghouani
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Elena Christian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toni Marie Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheng Xiao
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Nadine Slingerland
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology and Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arlene H Sharpe
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology and Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lionel Apetoh
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Department of Biology and Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Genentech, San Francisco, CA, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
229
|
Zeng Q, Mousa M, Nadukkandy AS, Franssens L, Alnaqbi H, Alshamsi FY, Safar HA, Carmeliet P. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat Rev Cancer 2023:10.1038/s41568-023-00591-5. [PMID: 37349410 DOI: 10.1038/s41568-023-00591-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Anti-angiogenic therapies (AATs) are used to treat different types of cancers. However, their success is limited owing to insufficient efficacy and resistance. Recently, single-cell omics studies of tumour endothelial cells (TECs) have provided new mechanistic insight. Here, we overview the heterogeneity of human TECs of all tumour types studied to date, at the single-cell level. Notably, most human tumour types contain varying numbers but only a small population of angiogenic TECs, the presumed targets of AATs, possibly contributing to the limited efficacy of and resistance to AATs. In general, TECs are heterogeneous within and across all tumour types, but comparing TEC phenotypes across tumours is currently challenging, owing to the lack of a uniform nomenclature for endothelial cells and consistent single-cell analysis protocols, urgently raising the need for a more consistent approach. Nonetheless, across most tumour types, universal TEC markers (ACKR1, PLVAP and IGFBP3) can be identified. Besides angiogenesis, biological processes such as immunomodulation and extracellular matrix organization are among the most commonly predicted enriched signatures of TECs across different tumour types. Although angiogenesis and extracellular matrix targets have been considered for AAT (without the hoped success), the immunomodulatory properties of TECs have not been fully considered as a novel anticancer therapeutic approach. Therefore, we also discuss progress, limitations, solutions and novel targets for AAT development.
Collapse
Affiliation(s)
- Qun Zeng
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Aisha Shigna Nadukkandy
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lies Franssens
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Fatima Yousif Alshamsi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
230
|
Sokol L, Cuypers A, Truong ACK, Bouché A, Brepoels K, Souffreau J, Rohlenova K, Vinckier S, Schoonjans L, Eelen G, Dewerchin M, de Rooij LPMH, Carmeliet P. Prioritization and functional validation of target genes from single-cell transcriptomics studies. Commun Biol 2023; 6:648. [PMID: 37330599 PMCID: PMC10276815 DOI: 10.1038/s42003-023-05006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/01/2023] [Indexed: 06/19/2023] Open
Abstract
Translation of academic results into clinical practice is a formidable unmet medical need. Single-cell RNA-sequencing (scRNA-seq) studies generate long descriptive ranks of markers with predicted biological function, but without functional validation, it remains challenging to know which markers truly exert the putative function. Given the lengthy/costly nature of validation studies, gene prioritization is required to select candidates. We address these issues by studying tip endothelial cell (EC) marker genes because of their importance for angiogenesis. Here, by tailoring Guidelines On Target Assessment for Innovative Therapeutics, we in silico prioritize previously unreported/poorly described, high-ranking tip EC markers. Notably, functional validation reveals that four of six candidates behave as tip EC genes. We even discover a tip EC function for a gene lacking in-depth functional annotation. Thus, validating prioritized genes from scRNA-seq studies offers opportunities for identifying targets to be considered for possible translation, but not all top-ranked scRNA-seq markers exert the predicted function.
Collapse
Affiliation(s)
- Liliana Sokol
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anne Cuypers
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anh-Co K Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Katleen Brepoels
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Joris Souffreau
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
231
|
Lu H, Lou H, Wengert G, Paudel R, Patel N, Desai S, Crum B, Linton-Reid K, Chen M, Li D, Ip J, Mauri F, Pinato DJ, Rockall A, Copley SJ, Ghaem-Maghami S, Aboagye EO. Tumor and local lymphoid tissue interaction determines prognosis in high-grade serous ovarian cancer. Cell Rep Med 2023:101092. [PMID: 37348499 PMCID: PMC10394173 DOI: 10.1016/j.xcrm.2023.101092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Tertiary lymphoid structure (TLS) is associated with prognosis in copy-number-driven tumors, including high-grade serous ovarian cancer (HGSOC), although the function of TLS and its interaction with copy-number alterations in HGSOC are not fully understood. In the current study, we confirm that TLS-high HGSOC patients show significantly better progression-free survival (PFS). We show that the presence of TLS in HGSOC tumors is associated with B cell maturation and cytotoxic tumor-specific T cell activation and proliferation. In addition, the copy-number loss of IL15 and CXCL10 may limit TLS formation in HGSOC; a list of genes that may dysregulate TLS function is also proposed. Last, a radiomics-based signature is developed to predict the presence of TLS, which independently predicts PFS in both HGSOC patients and immune checkpoint inhibitor (ICI)-treated non-small cell lung cancer (NSCLC) patients. Overall, we reveal that TLS coordinates intratumoral B cell and T cell response to HGSOC tumor, while the cancer genome evolves to counteract TLS formation and function.
Collapse
Affiliation(s)
- Haonan Lu
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Hantao Lou
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, OX3 7DQ Oxford, UK
| | - Georg Wengert
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Reema Paudel
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Naina Patel
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Saral Desai
- Imperial College Healthcare NHS Trust, Du Cane Road, W12 0HS London, UK
| | - Bill Crum
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Kristofer Linton-Reid
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Mitchell Chen
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK; Imperial College Healthcare NHS Trust, Du Cane Road, W12 0HS London, UK
| | - Dongyang Li
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Jacey Ip
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK; Imperial College Healthcare NHS Trust, Du Cane Road, W12 0HS London, UK
| | - Francesco Mauri
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Andrea Rockall
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK
| | - Susan J Copley
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK; Imperial College Healthcare NHS Trust, Du Cane Road, W12 0HS London, UK
| | - Sadaf Ghaem-Maghami
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK; Imperial College Healthcare NHS Trust, Du Cane Road, W12 0HS London, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College, Hammersmith Campus, The Commonwealth Building, Du Cane Road, W12 0NN London, UK.
| |
Collapse
|
232
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
233
|
Lv S, Tao L, Liao H, Huang Z, Lu Y. Comprehensive analysis of single-cell RNA-seq and bulk RNA-seq revealed the heterogeneity and convergence of the immune microenvironment in renal cell carcinoma. Funct Integr Genomics 2023; 23:193. [PMID: 37264263 DOI: 10.1007/s10142-023-01113-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Substantial progress has been made in cancer biology and treatment in recent years, but the clinical outcome of patients with renal cell carcinoma (RCC) remains unsatisfactory. The tumor microenvironment (TME) is a potential target. By analyzing single-cell RNA sequencing (sc-RNAseq) data from six RCC tumor samples, this study identified 11 different cell types in the RCC cellular microenvironment, indicating a high degree of intratumoral heterogeneity. Through re-dimensionality reduction clustering of epithelial cells, neutrophils, macrophages, and T cells, we deeply reveal differences in the RCC tumor microenvironment. By analyzing differentially expressed genes in normal epithelial cells and malignant epithelial cells, we identify RNASET2 and GATM as potential prognostic biomarkers in RCC. In addition, by transcriptional factor analysis, we found significant differences in the expression of GZMK-CD8 T cell and B cell transcription factors between cancer tissues and normal tissues. By cell correlation analysis, we found significant correlations between neutrophils and macrophages and between IL7R-CD4 T cells and T regulatory (Treg) cells in RCC, which may be involved in the formation of immune TMEs. By cell developmental trajectory analysis, we showed that macrophages may be derived from neutrophils, whereas Treg cells may be derived from IL7R-CD4 T cells. By cell communication analysis, we found a clear interaction between macrophages and endothelial cells, neutrophils, and GZMK-CD8 T cells. In addition, we found that ADGRE5 signaling was mainly derived from mast cells and GZMK-CD8 T cells, and had a significant communication effect with neutrophils. The COLLAGEN signaling pathway is mainly derived from fibroblasts and has a significant communication effect with mast cells. Finally, we verified that RNASET2, which is highly expressed in epithelial cells, promotes proliferation and migration of RCC in vitro. RNASET2 is likely to be a potential target for renal cell carcinoma therapy. The results based on sc-RNAseq data analysis help to further elucidate the cellular microenvironment of RCC and provide help for cancer heterogeneity studies. This will help to provide more accurate personalized treatment for patients in clinical diagnosis.
Collapse
Affiliation(s)
- Shihui Lv
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Liping Tao
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hongbing Liao
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhiming Huang
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yongyong Lu
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
234
|
Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, Wang Y, Pollard J, Mendez M, Hill J, Kumar N, Cao X, Chen X, Khaladkar M, Wen J, Leach A, Ferran E. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov 2023; 22:496-520. [PMID: 37117846 PMCID: PMC10141847 DOI: 10.1038/s41573-023-00688-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/30/2023]
Abstract
Single-cell technologies, particularly single-cell RNA sequencing (scRNA-seq) methods, together with associated computational tools and the growing availability of public data resources, are transforming drug discovery and development. New opportunities are emerging in target identification owing to improved disease understanding through cell subtyping, and highly multiplexed functional genomics screens incorporating scRNA-seq are enhancing target credentialling and prioritization. ScRNA-seq is also aiding the selection of relevant preclinical disease models and providing new insights into drug mechanisms of action. In clinical development, scRNA-seq can inform decision-making via improved biomarker identification for patient stratification and more precise monitoring of drug response and disease progression. Here, we illustrate how scRNA-seq methods are being applied in key steps in drug discovery and development, and discuss ongoing challenges for their implementation in the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | - Bart Naughton
- Computational Neurobiology, Eisai, Cambridge, MA, USA
| | - Wendi Bacon
- EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
- The Open University, Milton Keynes, UK
| | | | - Yong Wang
- Precision Bioinformatics, Prometheus Biosciences, San Diego, CA, USA
| | | | - Melissa Mendez
- Genomic Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Jon Hill
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Namit Kumar
- Informatics & Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Xiaohong Cao
- Genomic Research Center, AbbVie Inc., Cambridge, MA, USA
| | - Xiao Chen
- Magnet Biomedicine, Cambridge, MA, USA
| | - Mugdha Khaladkar
- Human Genetics and Computational Biology, GlaxoSmithKline, Collegeville, PA, USA
| | - Ji Wen
- Oncology Research and Development Unit, Pfizer, La Jolla, CA, USA
| | | | | |
Collapse
|
235
|
Agrawal P, Jain N, Gopalan V, Timon A, Singh A, Rajagopal PS, Hannenhalli S. Network-based approach elucidates critical genes in BRCA subtypes and chemotherapy response in Triple Negative Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.21.541618. [PMID: 37425784 PMCID: PMC10327220 DOI: 10.1101/2023.05.21.541618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Breast cancers exhibit substantial transcriptional heterogeneity, posing a significant challenge to the prediction of treatment response and prognostication of outcomes. Especially, translation of TNBC subtypes to the clinic remains a work in progress, in part because of a lack of clear transcriptional signatures distinguishing the subtypes. Our recent network-based approach, PathExt, demonstrates that global transcriptional changes in a disease context are likely mediated by a small number of key genes, and these mediators may better reflect functional or translationally relevant heterogeneity. We apply PathExt to 1059 BRCA tumors and 112 healthy control samples across 4 subtypes to identify frequent, key-mediator genes in each BRCA subtype. Compared to conventional differential expression analysis, PathExt-identified genes (1) exhibit greater concordance across tumors, revealing shared as well as BRCA subtype-specific biological processes, (2) better recapitulate BRCA-associated genes in multiple benchmarks, and (3) exhibit greater dependency scores in BRCA subtype-specific cancer cell lines. Single cell transcriptomes of BRCA subtype tumors reveal a subtype-specific distribution of PathExt-identified genes in multiple cell types from the tumor microenvironment. Application of PathExt to a TNBC chemotherapy response dataset identified TNBC subtype-specific key genes and biological processes associated with resistance. We described putative drugs that target top novel genes potentially mediating drug resistance. Overall, PathExt applied to breast cancer refines previous views of gene expression heterogeneity and identifies potential mediators of TNBC subtypes, including potential therapeutic targets.
Collapse
Affiliation(s)
- Piyush Agrawal
- Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Vishaka Gopalan
- Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Annan Timon
- University of Pennsylvania, Philadelphia, PA, USA
| | - Arashdeep Singh
- Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Padma S Rajagopal
- Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, MD, USA
| | | |
Collapse
|
236
|
Luo LZ, Li S, Wei C, Ma J, Qian LM, Chen YX, Wang SX, Zhao Q. Unveiling the interplay between mutational signatures and tumor microenvironment: a pan-cancer analysis. Front Immunol 2023; 14:1186357. [PMID: 37283742 PMCID: PMC10239828 DOI: 10.3389/fimmu.2023.1186357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Background While recent studies have separately explored mutational signatures and the tumor microenvironment (TME), there is limited research on the associations of both factors in a pan-cancer context. Materials and methods We performed a pan-cancer analysis of over 8,000 tumor samples from The Cancer Genome Atlas (TCGA) project. Machine learning methods were employed to systematically explore the relationship between mutational signatures and TME and develop a risk score based on TME-associated mutational signatures to predict patient survival outcomes. We also constructed an interaction model to explore how mutational signatures and TME interact and influence cancer prognosis. Results Our analysis revealed a varied association between mutational signatures and TME, with the Clock-like signature showing the most widespread influence. Risk scores based on mutational signatures mainly induced by Clock-like and AID/APOBEC activity exhibited strong pan-cancer survival stratification ability. We also propose a novel approach to predict transcriptome decomposed infiltration levels using genome-derived mutational signatures as an alternative approach for exploring TME cell types when transcriptome data are unavailable. Our comprehensive analysis revealed that certain mutational signatures and their interaction with immune cells significantly impact clinical outcomes in particular cancer types. For instance, T cell infiltration levels only served as a prognostic biomarker in melanoma patients with high ultraviolet radiation exposure, breast cancer patients with high homologous recombination deficiency signature, and lung adenocarcinoma patients with high tobacco-associated mutational signature. Conclusion Our study comprehensively explains the complex interplay between mutational signatures and immune infiltration in cancer. The results highlight the importance of considering both mutational signatures and immune phenotypes in cancer research and their significant implications for developing personalized cancer treatments and more effective immunotherapy.
Collapse
Affiliation(s)
- Li-Zhi Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Sheng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Chen Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Jiao Ma
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Li-Mei Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Xing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Xiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
237
|
Zhang T, Zhuang L, Muaibati M, Wang D, Abasi A, Tong Q, Ma D, Jin L, Huang X. Identification of cervical cancer stem cells using single-cell transcriptomes of normal cervix, cervical premalignant lesions, and cervical cancer. EBioMedicine 2023; 92:104612. [PMID: 37224771 DOI: 10.1016/j.ebiom.2023.104612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Cervical cancer is the fourth leading cause of mortality among gynecological malignancies. However, the identification of cervical cancer stem cells remains unclear. METHODS We performed single-cell mRNA sequencing on ∼122,400 cells from 20 cervical biopsies, including 5 healthy controls, 4 high-grade intraepithelial neoplasias, 5 microinvasive carcinomas of the cervix, and 6 invasive cervical squamous carcinomas. Bioinformatic results were validated by multiplex immunohistochemistry (mIHC) in cervical cancer tissue microarrays (TMA) (n = 85). FINDINGS We identified cervical cancer stem cells and highlighted the functional changes in cervical stem cells during malignant transformation. The original non-malignant stem cell properties (characterized by high proliferation) gradually diminished, whereas the tumor stem cell properties (characterized by epithelial-mesenchymal transformation and invasion) were enhanced. The mIHC results of our TMA cohort confirmed the existence of stem-like cells and indicated that cluster correlated with neoplastic recurrence. Subsequently, we investigated malignant and immune cell heterogeneity in the cervical multicellular ecosystem across different disease stages. We observed global upregulation of interferon responses in the cervical microenvironment during lesion progression. INTERPRETATION Our results provide more insights into cervical premalignant and malignant lesion microenvironments. FUNDING This research was supported by the Guangdong Provincial Natural Science Foundation of China (2023A1515010382), Grant 2021YFC2700603 from the National Key Research & Development Program of China and the Hubei Provincial Natural Science Foundation of China (2022CFB174 and 2022CFB893).
Collapse
Affiliation(s)
- Tao Zhang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China; Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030, People's Republic of China
| | - Liang Zhuang
- Department of Oncology, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030, People's Republic of China
| | - Munawaer Muaibati
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Dan Wang
- Department of Ophthalmology, Wuhan Children's Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan 430015, People's Republic of China
| | - Abuduyilimu Abasi
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Qing Tong
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030, People's Republic of China.
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China.
| |
Collapse
|
238
|
Parashar D. Unlocking multidimensional cancer therapeutics using geometric data science. Sci Rep 2023; 13:8255. [PMID: 37217528 DOI: 10.1038/s41598-023-34853-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Personalised approaches to cancer therapeutics primarily involve identification of patient sub-populations most likely to benefit from targeted drugs. Such a stratification has led to plethora of designs of clinical trials that are often too complex due to the need for incorporating biomarkers and tissue types. Many statistical methods have been developed to address these issues; however, by the time such methodology is available research in cancer has moved on to new challenges and therefore in order to avoid playing catch-up it is necessary to develop new analytic tools alongside. One of the challenges facing cancer therapy is to effectively and appropriately target multiple therapies for sensitive patient population based on a panel of biomarkers across multiple cancer types, and matched future trial designs. We present novel geometric methods (mathematical theory of hypersurfaces) to visualise complex cancer therapeutics data as multidimensional, as well as geometric representation of oncology trial design space in higher dimensions. The hypersurfaces are used to describe master protocols, with application to a specific example of a basket trial design for melanoma, and thus setup a framework for further incorporating multi-omics data as multidimensional therapeutics.
Collapse
Affiliation(s)
- Deepak Parashar
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
- Warwick Cancer Research Centre, University of Warwick, Coventry, UK.
- The Alan Turing Institute for Data Science and Artificial Intelligence, The British Library, London, UK.
| |
Collapse
|
239
|
Wu SY, Zhang SW, Ma D, Xiao Y, Liu Y, Chen L, Song XQ, Ma XY, Xu Y, Chai WJ, Jin X, Shao ZM, Jiang YZ. CCL19 + dendritic cells potentiate clinical benefit of anti-PD-(L)1 immunotherapy in triple-negative breast cancer. MED 2023:S2666-6340(23)00140-X. [PMID: 37201522 DOI: 10.1016/j.medj.2023.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/23/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND The extensive involvement of dendritic cells (DCs) in immune contexture indicates their potent value in cancer immunotherapy. Understanding DC diversity in patient cohorts may strengthen the clinical benefit of immune checkpoint inhibitors (ICIs). METHODS Single-cell profiling of breast tumors from two clinical trials was performed to investigate DC heterogeneity. Multiomics, tissue characterization, and pre-clinical experiments were used to evaluate the role of the identified DCs in the tumor microenvironment. Four independent clinical trials were leveraged to explore biomarkers to predict ICI and chemotherapy outcomes. FINDINGS We identified a distinct CCL19-expressing functional state of DCs associated with favorable responses to anti-programmed death (ligand)-1 (PD-(L)1), which displayed migratory and immunomodulatory phenotypes. These cells were correlated with antitumor T cell immunity and the presence of tertiary lymphoid structures and lymphoid aggregates, defining immunogenic microenvironments in triple-negative breast cancer. In vivo, CCL19+ DC deletion by Ccl19 gene ablation dampened CCR7+CD8+ T cells and tumor elimination in response to anti-PD-1. Notably, high circulating and intratumoral CCL19 levels were associated with superior response and survival in patients receiving anti-PD-1 but not chemotherapy. CONCLUSIONS We uncovered a critical role of DC subsets in immunotherapy, which has implications for designing novel therapies and patient stratification strategies. FUNDING This study was funded by the National Key Research and Development Project of China, the National Natural Science Foundation of China, the Program of Shanghai Academic/Technology Research Leader, the Natural Science Foundation of Shanghai, the Shanghai Key Laboratory of Breast Cancer, the Shanghai Hospital Development Center (SHDC), and the Shanghai Health Commission.
Collapse
Affiliation(s)
- Song-Yang Wu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Si-Wei Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Qing Song
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Jun Chai
- Laboratory Animal Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xi Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 201315, China.
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai 201315, China.
| |
Collapse
|
240
|
Wen R, Zhou L, Peng Z, Fan H, Zhang T, Jia H, Gao X, Hao L, Lou Z, Cao F, Yu G, Zhang W. Single-cell sequencing technology in colorectal cancer: a new technology to disclose the tumor heterogeneity and target precise treatment. Front Immunol 2023; 14:1175343. [PMID: 37256123 PMCID: PMC10225552 DOI: 10.3389/fimmu.2023.1175343] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Colorectal Cancer (CRC) is one of the most common gastrointestinal tumors, and its high tumor heterogeneity makes traditional sequencing methods incapable of obtaining information about the heterogeneity of individual cancer cells in CRC. Therefore, single-cell sequencing technology can be applied to better analyze the differences in genetic and protein information between cells, to obtain genomic sequence information of single cells, and to more thoroughly analyze the cellular characteristics and interactions in the CRC microenvironment. This will provide a more comprehensive understanding of colorectal cancer development and metastasis and indicate the treatment plan and prognosis. In this study, we review the application of single-cell sequencing to analyze the tumor microenvironment of CRC, explore the mechanisms involved in CRC metastasis and progression, and provide a reference for potential treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fuao Cao
- *Correspondence: Wei Zhang, ; Guanyu Yu, ; Fuao Cao,
| | - Guanyu Yu
- *Correspondence: Wei Zhang, ; Guanyu Yu, ; Fuao Cao,
| | - Wei Zhang
- *Correspondence: Wei Zhang, ; Guanyu Yu, ; Fuao Cao,
| |
Collapse
|
241
|
Lareau CA, Liu V, Muus C, Praktiknjo SD, Nitsch L, Kautz P, Sandor K, Yin Y, Gutierrez JC, Pelka K, Satpathy AT, Regev A, Sankaran VG, Ludwig LS. Mitochondrial single-cell ATAC-seq for high-throughput multi-omic detection of mitochondrial genotypes and chromatin accessibility. Nat Protoc 2023; 18:1416-1440. [PMID: 36792778 PMCID: PMC10317201 DOI: 10.1038/s41596-022-00795-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/11/2022] [Indexed: 02/17/2023]
Abstract
Natural sequence variation within mitochondrial DNA (mtDNA) contributes to human phenotypes and may serve as natural genetic markers in human cells for clonal and lineage tracing. We recently developed a single-cell multi-omic approach, called 'mitochondrial single-cell assay for transposase-accessible chromatin with sequencing' (mtscATAC-seq), enabling concomitant high-throughput mtDNA genotyping and accessible chromatin profiling. Specifically, our technique allows the mitochondrial genome-wide inference of mtDNA variant heteroplasmy along with information on cell state and accessible chromatin variation in individual cells. Leveraging somatic mtDNA mutations, our method further enables inference of clonal relationships among native ex vivo-derived human cells not amenable to genetic engineering-based clonal tracing approaches. Here, we provide a step-by-step protocol for the use of mtscATAC-seq, including various cell-processing and flow cytometry workflows, by using primary hematopoietic cells, subsequent single-cell genomic library preparation and sequencing that collectively take ~3-4 days to complete. We discuss experimental and computational data quality control metrics and considerations for the extension to other mammalian tissues. Overall, mtscATAC-seq provides a broadly applicable platform to map clonal relationships between cells in human tissues, investigate fundamental aspects of mitochondrial genetics and enable additional modes of multi-omic discovery.
Collapse
Affiliation(s)
- Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| | - Vincent Liu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Christoph Muus
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Samantha D Praktiknjo
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Lena Nitsch
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Pauline Kautz
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Yajie Yin
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Karin Pelka
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Aviv Regev
- Genentech, South San Francisco, CA, USA.
| | - Vijay G Sankaran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Leif S Ludwig
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
| |
Collapse
|
242
|
Sharma GP, Kosuru R, Lakshmikanthan S, Zheng S, Chen Y, Burns R, Xin G, Cui W, Chrzanowska M. Endothelial Rap1B mediates T-cell exclusion to promote tumor growth: a novel mechanism underlying vascular immunosuppression. Angiogenesis 2023; 26:265-278. [PMID: 36403190 DOI: 10.1007/s10456-022-09862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
Overcoming vascular immunosuppression: lack of endothelial cell (EC) responsiveness to inflammatory stimuli in the proangiogenic environment of tumors, is essential for successful cancer immunotherapy. The mechanisms through which Vascular Endothelial Growth Factor A(VEGF-A) modulates tumor EC response to exclude T-cells are not well understood. Here, we demonstrate that EC-specific deletion of small GTPase Rap1B, previously implicated in normal angiogenesis, restricts tumor growth in endothelial-specific Rap1B-knockout (Rap1BiΔEC) mice. EC-specific Rap1B deletion inhibits angiogenesis, but also leads to an altered tumor microenvironment with increased recruitment of leukocytes and increased activity of tumor CD8+ T-cells. Depletion of CD8+ T-cells restored tumor growth in Rap1BiΔEC mice. Mechanistically, global transcriptome and functional analyses indicated upregulation of signaling by a tumor cytokine, TNF-α, and increased NF-κB transcription in Rap1B-deficient ECs. Rap1B-deficiency led to elevated proinflammatory chemokine and Cell Adhesion Molecules (CAMs) expression in TNF-α stimulated ECs. Importantly, CAM expression was elevated in tumor ECs from Rap1BiΔEC mice. Significantly, Rap1B deletion prevented VEGF-A-induced immunosuppressive downregulation of CAM expression, demonstrating that Rap1B is essential for VEGF-A-suppressive signaling. Thus, our studies identify a novel endothelial-endogenous mechanism underlying VEGF-A-dependent desensitization of EC to proinflammatory stimuli. Significantly, they identify EC Rap1B as a potential novel vascular target in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
| | | | - Shikan Zheng
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
| | - Yao Chen
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Burns
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
| | - Gang Xin
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI, 53201-2178, USA.
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
243
|
Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D, Sozzani S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol 2023; 20:432-447. [PMID: 36949244 PMCID: PMC10203372 DOI: 10.1038/s41423-023-00990-6] [Citation(s) in RCA: 205] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023] Open
Abstract
Dendritic cells (DCs) exhibit a specialized antigen-presenting function and play crucial roles in both innate and adaptive immune responses. Due to their ability to cross-present tumor cell-associated antigens to naïve T cells, DCs are instrumental in the generation of specific T-cell-mediated antitumor effector responses in the control of tumor growth and tumor cell dissemination. Within an immunosuppressive tumor microenvironment, DC antitumor functions can, however, be severely impaired. In this review, we focus on the mechanisms of DC capture and activation by tumor cell antigens and the role of the tumor microenvironment in shaping DC functions, taking advantage of recent studies showing the phenotype acquisition, transcriptional state and functional programs revealed by scRNA-seq analysis. The therapeutic potential of DC-mediated tumor antigen sensing in priming antitumor immunity is also discussed.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Humanitas Clinical and Research Center-IRCCS Rozzano, Milano, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Soriani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mattia Laffranchi
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Sozio
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
- IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
244
|
Fernandez-Rodriguez L, Cianciaruso C, Bill R, Trefny MP, Klar R, Kirchhammer N, Buchi M, Festag J, Michel S, Kohler RH, Jones E, Maaske A, Vom Berg J, Kobold S, Kashyap AS, Jaschinski F, Dixon KO, Pittet MJ, Zippelius A. Dual TLR9 and PD-L1 targeting unleashes dendritic cells to induce durable antitumor immunity. J Immunother Cancer 2023; 11:e006714. [PMID: 37208130 PMCID: PMC10201251 DOI: 10.1136/jitc-2023-006714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors have been a breakthrough in clinical oncology, these therapies fail to produce durable responses in a significant fraction of patients. This lack of long-term efficacy may be due to a poor pre-existing network linking innate and adaptive immunity. Here, we present an antisense oligonucleotide (ASO)-based strategy that dually targets toll-like receptor 9 (TLR9) and programmed cell death ligand 1 (PD-L1), aiming to overcome resistance to anti-PD-L1 monoclonal therapy. METHODS We designed a high-affinity immunomodulatory IM-TLR9:PD-L1-ASO antisense oligonucleotide (hereafter, IM-T9P1-ASO) targeting mouse PD-L1 messenger RNA and activating TLR9. Then, we performed in vitro and in vivo studies to validate the IM-T9P1-ASO activity, efficacy, and biological effects in tumors and draining lymph nodes. We also performed intravital imaging to study IM-T9P1-ASO pharmacokinetics in the tumor. RESULTS IM-T9P1-ASO therapy, unlike PD-L1 antibody therapy, results in durable antitumor responses in multiple mouse cancer models. Mechanistically, IM-T9P1-ASO activates a state of tumor-associated dendritic cells (DCs), referred to here as DC3s, which have potent antitumor potential but express the PD-L1 checkpoint. IM-T9P1-ASO has two roles: it triggers the expansion of DC3s by engaging with TLR9 and downregulates PD-L1, thereby unleashing the antitumor functions of DC3s. This dual action leads to tumor rejection by T cells. The antitumor efficacy of IM-T9P1-ASO depends on the antitumor cytokine interleukin-12 (IL-12), produced by DC3s, and Batf3, a transcription factor required for DC development. CONCLUSIONS By simultaneously targeting TLR9 and PD-L1, IM-T9P1-ASO amplifies antitumor responses via DC activation, leading to sustained therapeutic efficacy in mice. By highlighting differences and similarities between mouse and human DCs, this study could serve to develop similar therapeutic strategies for patients with cancer.
Collapse
Affiliation(s)
| | - Chiara Cianciaruso
- Department of Pathology and Immunology, University of Geneva, Geneve, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Ruben Bill
- Department of Pathology and Immunology, University of Geneva, Geneve, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Marcel P Trefny
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Richard Klar
- Secarna Pharmaceuticals GmbH & Co KG, Planegg Martinsried, Germany
| | - Nicole Kirchhammer
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Mélanie Buchi
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Julia Festag
- Secarna Pharmaceuticals GmbH & Co KG, Planegg Martinsried, Germany
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co KG, Planegg Martinsried, Germany
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Elham Jones
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Andre Maaske
- Secarna Pharmaceuticals GmbH & Co KG, Planegg Martinsried, Germany
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Zürich, Switzerland
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
- German Center for Lung Research (DZL), German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany
| | - Abhishek S Kashyap
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Frank Jaschinski
- Secarna Pharmaceuticals GmbH & Co KG, Planegg Martinsried, Germany
| | - Karen O Dixon
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, Geneve, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Ludwig Institute for Cancer Research Lausanne Branch, Lausanne, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
245
|
Plebanek MP, Xue Y, Nguyen YV, DeVito NC, Wang X, Holtzhausen A, Beasley GM, Yarla N, Thievanthiran B, Hanks BA. A SREBF2-dependent gene program drives an immunotolerant dendritic cell population during cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538456. [PMID: 37162965 PMCID: PMC10168385 DOI: 10.1101/2023.04.26.538456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Dendritic cells (cDCs) are essential mediators of anti-tumor immunity. Cancers have developed mechanisms to render DCs dysfunctional within the tumor microenvironment. Utilizing CD63 as a unique surface marker, we demonstrate that mature regulatory DCs (mregDCs) suppress DC antigen cross-presentation while driving T H 2 and regulatory T cell differentiation within tumor-draining lymph node tissues. Transcriptional and metabolic studies show that mregDC functionality is dependent upon the mevalonate biosynthetic pathway and the master transcription factor, SREBP2. Melanoma-derived lactate activates DC SREBP2 in the tumor microenvironment (TME) and drives mregDC development from conventional DCs. DC-specific genetic silencing and pharmacologic inhibition of SREBP2 promotes anti-tumor CD8 + T cell activation and suppresses melanoma progression. CD63 + mregDCs reside within the sentinel lymph nodes of melanoma patients. Collectively, this work describes a tumor-driven SREBP2-dependent program that promotes CD63 + mregDC development and function while serving as a promising therapeutic target for overcoming immune tolerance in the TME. One Sentence Summary The metabolic transcription factor, SREBF2, regulates the development and tolerogenic function of the mregDC population within the tumor microenvironment.
Collapse
|
246
|
Zhou C, Wu Y, Wang Z, Liu Y, Yu J, Wang W, Chen S, Wu W, Wang J, Qian G, He A. Standardization of organoid culture in cancer research. Cancer Med 2023. [PMID: 37081739 DOI: 10.1002/cam4.5943] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023] Open
Abstract
Establishing a valid in vitro model to represent tumor heterogeneity and biology is critical but challenging. Tumor organoids are self-assembled three-dimensional cell clusters which are of great significance for recapitulating the histopathological, genetic, and phenotypic characteristics of primary tissues. The organoid has emerged as an attractive in vitro platform for tumor biology research and high-throughput drug screening in cancer medicine. Organoids offer unique advantages over cell lines and patient-derived xenograft models, but there are no standardized methods to guide the culture of organoids, leading to confusion in organoid studies that may affect accurate judgments of tumor biology. This review summarizes the shortcomings of current organoid culture methods, presents the latest research findings on organoid standardization, and proposes an outlook for organoid modeling.
Collapse
Affiliation(s)
- Changchun Zhou
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuanbo Wu
- Department of Ultrasound, Yangxin County People's Hospital, Huangshi, Hubei, China
| | - Zeyu Wang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanli Liu
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiaqi Yu
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Sunrui Chen
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Weihua Wu
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Jidong Wang
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Guowei Qian
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Aina He
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
247
|
Puram SV, Mints M, Pal A, Qi Z, Reeb A, Gelev K, Barrett TF, Gerndt S, Liu P, Parikh AS, Ramadan S, Law T, Mroz EA, Rocco JW, Adkins D, Thorstad WL, Gay HA, Ding L, Paniello RC, Pipkorn P, Jackson RS, Wang X, Mazul A, Chernock R, Zevallos JP, Silva-Fisher J, Tirosh I. Cellular states are coupled to genomic and viral heterogeneity in HPV-related oropharyngeal carcinoma. Nat Genet 2023; 55:640-650. [PMID: 37012457 PMCID: PMC10191634 DOI: 10.1038/s41588-023-01357-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/27/2023] [Indexed: 04/05/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) includes a subset of cancers driven by human papillomavirus (HPV). Here we use single-cell RNA-seq to profile both HPV-positive and HPV-negative oropharyngeal tumors, uncovering a high level of cellular diversity within and between tumors. First, we detect diverse chromosomal aberrations within individual tumors, suggesting genomic instability and enabling the identification of malignant cells even at pathologically negative margins. Second, we uncover diversity with respect to HNSCC subtypes and other cellular states such as the cell cycle, senescence and epithelial-mesenchymal transitions. Third, we find heterogeneity in viral gene expression within HPV-positive tumors. HPV expression is lost or repressed in a subset of cells, which are associated with a decrease in HPV-associated cell cycle phenotypes, decreased response to treatment, increased invasion and poor prognosis. These findings suggest that HPV expression diversity must be considered during diagnosis and treatment of HPV-positive tumors, with important prognostic ramifications.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| | - Michael Mints
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Ananya Pal
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zongtai Qi
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashley Reeb
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyla Gelev
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas F Barrett
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Sophie Gerndt
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ping Liu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anuraag S Parikh
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Salma Ramadan
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Travis Law
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Edmund A Mroz
- Department of Otolaryngology-Head and Neck Surgery, Ohio State University, Columbus, OH, USA
| | - James W Rocco
- Department of Otolaryngology-Head and Neck Surgery, Ohio State University, Columbus, OH, USA
| | - Doug Adkins
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Wade L Thorstad
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hiram A Gay
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Randal C Paniello
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Patrik Pipkorn
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan S Jackson
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiaowei Wang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Angela Mazul
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca Chernock
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jose P Zevallos
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jessica Silva-Fisher
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
248
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Jere M, Unkenholz C, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534769. [PMID: 37034687 PMCID: PMC10081210 DOI: 10.1101/2023.03.29.534769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alterations in tumor stroma influence prostate cancer progression and metastatic potential. However, the molecular underpinnings of this stromal-epithelial crosstalk are largely unknown. Here, we compare mesenchymal cells from four genetically engineered mouse models (GEMMs) of prostate cancer representing different stages of the disease to their wild-type (WT) counterparts by single-cell RNA sequencing (scRNA-seq) and, ultimately, to human tumors with comparable genotypes. We identified 8 transcriptionally and functionally distinct stromal populations responsible for common and GEMM-specific transcriptional programs. We show that stromal responses are conserved in mouse models and human prostate cancers with the same genomic alterations. We noted striking similarities between the transcriptional profiles of the stroma of murine models of advanced disease and those of of human prostate cancer bone metastases. These profiles were then used to build a robust gene signature that can predict metastatic progression in prostate cancer patients with localized disease and is also associated with progression-free survival independent of Gleason score. Taken together, this offers new evidence that stromal microenvironment mediates prostate cancer progression, further identifying tissue-based biomarkers and potential therapeutic targets of aggressive and metastatic disease.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Pier V. Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nicholas J. Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mohammad K. Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francisca Nunes de Almeida
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - David S. Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher E. Barbieri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| |
Collapse
|
249
|
Melssen MM, Sheybani ND, Leick KM, Slingluff CL. Barriers to immune cell infiltration in tumors. J Immunother Cancer 2023; 11:jitc-2022-006401. [PMID: 37072352 PMCID: PMC10124321 DOI: 10.1136/jitc-2022-006401] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
Increased immune cell infiltration into tumors is associated with improved patient survival and predicts response to immune therapies. Thus, identification of factors that determine the extent of immune infiltration is crucial, so that methods to intervene on these targets can be developed. T cells enter tumor tissues through the vasculature, and under control of interactions between homing receptors on the T cells and homing receptor ligands (HRLs) expressed by tumor vascular endothelium and tumor cell nests. HRLs are often deficient in tumors, and there also may be active barriers to infiltration. These remain understudied but may be crucial for enhancing immune-mediated cancer control. Multiple intratumoral and systemic therapeutic approaches show promise to enhance T cell infiltration, including both approved therapies and experimental therapies. This review highlights the intracellular and extracellular determinants of immune cell infiltration into tumors, barriers to infiltration, and approaches for intervention to enhance infiltration and response to immune therapies.
Collapse
Affiliation(s)
- Marit M Melssen
- Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Natasha D Sheybani
- Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
250
|
Landais Y, Vallot C. Multi-modal quantification of pathway activity with MAYA. Nat Commun 2023; 14:1668. [PMID: 36966153 PMCID: PMC10039856 DOI: 10.1038/s41467-023-37410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Signaling pathways can be activated through various cascades of genes depending on cell identity and biological context. Single-cell atlases now provide the opportunity to inspect such complexity in health and disease. Yet, existing reference tools for pathway scoring resume activity of each pathway to one unique common metric across cell types. Here, we present MAYA, a computational method that enables the automatic detection and scoring of the diverse modes of activation of biological pathways across cell populations. MAYA improves the granularity of pathway analysis by detecting subgroups of genes within reference pathways, each characteristic of a cell population and how it activates a pathway. Using multiple single-cell datasets, we demonstrate the biological relevance of identified modes of activation, the robustness of MAYA to noisy pathway lists and batch effect. MAYA can also predict cell types starting from lists of reference markers in a cluster-free manner. Finally, we show that MAYA reveals common modes of pathway activation in tumor cells across patients, opening the perspective to discover shared therapeutic vulnerabilities.
Collapse
Affiliation(s)
| | - Céline Vallot
- CNRS UMR3244, Institut Curie, PSL University, Paris, France.
- Translational Research Department, Institut Curie, PSL University, Paris, France.
- Single Cell Initiative, Institut Curie, PSL University, Paris, France.
| |
Collapse
|