201
|
Saul D, Kosinsky RL, Atkinson EJ, Doolittle ML, Zhang X, LeBrasseur NK, Pignolo RJ, Robbins PD, Niedernhofer LJ, Ikeno Y, Jurk D, Passos JF, Hickson LJ, Xue A, Monroe DG, Tchkonia T, Kirkland JL, Farr JN, Khosla S. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun 2022; 13:4827. [PMID: 35974106 PMCID: PMC9381717 DOI: 10.1038/s41467-022-32552-1] [Citation(s) in RCA: 402] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/05/2022] [Indexed: 02/01/2023] Open
Abstract
Although cellular senescence drives multiple age-related co-morbidities through the senescence-associated secretory phenotype, in vivo senescent cell identification remains challenging. Here, we generate a gene set (SenMayo) and validate its enrichment in bone biopsies from two aged human cohorts. We further demonstrate reductions in SenMayo in bone following genetic clearance of senescent cells in mice and in adipose tissue from humans following pharmacological senescent cell clearance. We next use SenMayo to identify senescent hematopoietic or mesenchymal cells at the single cell level from human and murine bone marrow/bone scRNA-seq data. Thus, SenMayo identifies senescent cells across tissues and species with high fidelity. Using this senescence panel, we are able to characterize senescent cells at the single cell level and identify key intercellular signaling pathways. SenMayo also represents a potentially clinically applicable panel for monitoring senescent cell burden with aging and other conditions as well as in studies of senolytic drugs.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany.
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Madison L Doolittle
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Robert J Pignolo
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yuji Ikeno
- Department of Pathology, University of Texas Health, San Antonio, TX, USA
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - João F Passos
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Ailing Xue
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - David G Monroe
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
202
|
Wu K, Han L, Zhao Y, Xiao Q, Zhang Z, Lin X. Deciphering the molecular mechanism underlying the effects of epimedium on osteoporosis through system bioinformatic approach. Medicine (Baltimore) 2022; 101:e29844. [PMID: 35960074 PMCID: PMC9371495 DOI: 10.1097/md.0000000000029844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epimedium has gained widespread clinical application in Traditional Chinese Medicine, with the functions of promoting bone reproduction, regulating cell cycle and inhibiting osteoclastic activity. However, its precise cellular pharmacological therapeutic mechanism on osteoporosis (OP) remains elusive. This study aims to elucidate the molecular mechanism of epimedium in the treatment of OP based on system bioinformatic approach. Predicted targets of epimedium were collected from TCMSP, BATMAN-TCM and ETCM databases. Differentially expressed mRNAs of OP patients were obtained from Gene Expression Omnibus database by performing Limma package of R software. Epimedium-OP common targets were obtained by Venn diagram package for further analysis. The protein-protein interaction network was constructed using Cytoscape software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out by using clusterProfiler package. Molecular docking analysis was conducted by AutoDock 4.2 software to validate the binding affinity between epimedium and top 3 proteins based on the result of protein-protein interaction. A total of 241 unique identified epimedium targets were screened from databases, of which 62 overlapped with the targets of OP and were considered potential therapeutic targets. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that these targets were positive regulation of cell cycle, cellular response to oxidative stress and positive regulation of cell cycle process as well as cellular senescence, FoxO, PI3K-Akt, and NF-kappa B signaling pathways. Molecular docking showed that epimedium have a good binding activity with key targets. Our study demonstrated the multitarget and multi-pathway characteristics of epimedium on OP, which elucidates the potential mechanisms of epimedium against OP and provides theoretical basis for further drug development.
Collapse
Affiliation(s)
- Keliang Wu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong Province, China
| | - Linjing Han
- Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| | - Qinghua Xiao
- Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, Bao’an District, Shenzhen, Guangdong Province, China
| | - Zhen Zhang
- Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, Bao’an District, Shenzhen, Guangdong Province, China
| | - Xiaosheng Lin
- Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, Bao’an District, Shenzhen, Guangdong Province, China
- *Correspondence: Xiaosheng Lin, Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, 3rd Shajin Road, Bao’an District, Shenzhen, Guangdong Province, 518104, China (e-mail: )
| |
Collapse
|
203
|
Abstract
PURPOSE OF REVIEW Better understanding of the mechanisms underlying skeletal dysfunction in the context of diabetes is needed to guide the development of therapeutic interventions to reduce the burden of diabetic fractures. Osteocytes, the 'master regulators' of bone remodeling, have emerged as key culprits in the pathogenesis of diabetes-related skeletal fragility. RECENT FINDINGS Both type 1 diabetes and type 2 diabetes cause chronic hyperglycemia that, over time, reduces bone quality and bone formation. In addition to acting as mechanosensors, osteocytes are important regulators of osteoblast and osteoclast activities; however, diabetes leads to osteocyte dysfunction. Indeed, diabetes causes the accumulation of advanced glycation end-products and senescent cells that can affect osteocyte viability and functions via increased receptor for advanced glycation endproducts (RAGE) signaling or the production of a pro-inflammatory senescence-associated secretory phenotype. These changes may increase osteocyte-derived sclerostin production and decrease the ability of osteocytes to sense mechanical stimuli thereby contributing to poor bone quality in humans with diabetes. SUMMARY Osteocyte dysfunction exists at the nexus of diabetic skeletal disease. Therefore, interventions targeting the RAGE signaling pathway, senescent cells, and those that inhibit sclerostin or mechanically stimulate osteocytes may alleviate the deleterious effects of diabetes on osteocytes and bone quality.
Collapse
Affiliation(s)
| | | | - Joshua N. Farr
- Correspondence: Joshua N. Farr, , Mayo Clinic, Guggenheim 7-11D, 200 First Street SW, Rochester, MN 55905, Telephone: 507-538-0085
| |
Collapse
|
204
|
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med 2022; 28:1556-1568. [PMID: 35953721 PMCID: PMC9599677 DOI: 10.1038/s41591-022-01923-y] [Citation(s) in RCA: 516] [Impact Index Per Article: 172.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023]
Abstract
Interlinked and fundamental aging processes appear to be a root-cause contributor to many disorders and diseases. One such process is cellular senescence, which entails a state of cell cycle arrest in response to damaging stimuli. Senescent cells can arise throughout the lifespan and, if persistent, can have deleterious effects on tissue function due to the many proteins they secrete. In preclinical models, interventions targeting those senescent cells that are persistent and cause tissue damage have been shown to delay, prevent or alleviate multiple disorders. In line with this, the discovery of small-molecule senolytic drugs that selectively clear senescent cells has led to promising strategies for preventing or treating multiple diseases and age-related conditions in humans. In this Review, we outline the rationale for senescent cells as a therapeutic target for disorders across the lifespan and discuss the most promising strategies-including recent and ongoing clinical trials-for translating small-molecule senolytics and other senescence-targeting interventions into clinical use.
Collapse
Affiliation(s)
- Selim Chaib
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
205
|
Xu J, Liu D, Zhao D, Jiang X, Meng X, Jiang L, Yu M, Zhang L, Jiang H. Role of low-dose radiation in senescence and aging: A beneficial perspective. Life Sci 2022; 302:120644. [PMID: 35588864 DOI: 10.1016/j.lfs.2022.120644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023]
Abstract
Cellular senescence refers to the permanent arrest of cell cycle caused by intrinsic and/or extrinsic stressors including oncogene activation, irradiation, DNA damage, oxidative stress, and certain cytokines (including senescence associated secretory phenotype). Cellular senescence is an important factor in aging. Accumulation of senescent cells has been implicated in the causation of various age-related organ disorders, tissue dysfunction, and chronic diseases. It is widely accepted that the biological effects triggered by low-dose radiation (LDR) are different from those caused by high-dose radiation. Experimental evidence suggests that LDR may promote growth and development, enhance longevity, induce embryo production, and delay the progression of chronic diseases. The underlying mechanisms of these effects include modulation of immune response, stimulation of hematopoietic system, antioxidative effect, reduced DNA damage and improved ability for DNA damage repair. In this review, we discuss the possible mechanisms by which LDR prevents senescence and aging from the perspectives of inhibiting cellular senescence and promoting the removal of senescent cells. We review a wide broad of evidence about the beneficial impact of LDR in senescence and aging models (including cardiovascular diseases, neurological diseases, arthritis and osteoporosis, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis) to highlight the potential value of LDR in preventing aging and age-related diseases. However, there is no consensus on the effect of LDR on human health, and several important aspects require further investigation.
Collapse
Affiliation(s)
- Jing Xu
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Dandan Liu
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Xin Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Xinxin Meng
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Lili Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Meina Yu
- Department of Special Clinic, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Long Zhang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China.
| |
Collapse
|
206
|
Jin F, Zhu Y, Liu M, Wang R, Cui Y, Wu Y, Liu G, Wang Y, Wang X, Ren Z. Babam2 negatively regulates osteoclastogenesis by interacting with Hey1 to inhibit Nfatc1 transcription. Int J Biol Sci 2022; 18:4482-4496. [PMID: 35864959 PMCID: PMC9295054 DOI: 10.7150/ijbs.72487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoclast-mediated excessive bone resorption was highly related to diverse bone diseases including osteoporosis. BRISC and BRCA1-A complex member 2 (Babam2) was an evolutionarily conserved protein that is highly expressed in bone tissues. However, whether Babam2 is involved in osteoclast formation is still unclear. In this study, we identify Babam2 as an essential negative regulator of osteoclast formation. We demonstrate that Babam2 knockdown significantly accelerated osteoclast formation and activity, while Babam2 overexpression blocked osteoclast formation and activity. Moreover, we demonstrate that the bone resorption activity was significantly downregulated in Babam2-transgenic mice as compared with wild-type littermates. Consistently, the bone mass of the Babam2-transgenic mice was increased. Furthermore, we found that Babam2-transgenic mice were protected from LPS-induced bone resorption activation and thus reduced the calvarial bone lesions. Mechanistically, we demonstrate that the inhibitory effects of Babam2 on osteoclast differentiation were dependent on Hey1. As silencing Hey1 largely diminished the effects of Babam2 on osteoclastogenesis. Finally, we show that Babam2 interacts with Hey1 to inhibit Nfatc1 transcription. In sum, our results suggested that Babam2 negatively regulates osteoclastogenesis and bone resorption by interacting with Hey1 to inhibit Nfatc1 transcription. Therefore, targeting Babam2 may be a novel therapeutic approach for osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Fujun Jin
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China.,Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yexuan Zhu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meijing Liu
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi Cui
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaogang Wang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
207
|
Clarke TL, Mostoslavsky R. DNA repair as a shared hallmark in cancer and ageing. Mol Oncol 2022; 16:3352-3379. [PMID: 35834102 PMCID: PMC9490147 DOI: 10.1002/1878-0261.13285] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/23/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence demonstrates that DNA damage and genome instability play a crucial role in ageing. Mammalian cells have developed a wide range of complex and well‐orchestrated DNA repair pathways to respond to and resolve many different types of DNA lesions that occur from exogenous and endogenous sources. Defects in these repair pathways lead to accelerated or premature ageing syndromes and increase the likelihood of cancer development. Understanding the fundamental mechanisms of DNA repair will help develop novel strategies to treat ageing‐related diseases. Here, we revisit the processes involved in DNA damage repair and how these can contribute to diseases, including ageing and cancer. We also review recent mechanistic insights into DNA repair and discuss how these insights are being used to develop novel therapeutic strategies for treating human disease. We discuss the use of PARP inhibitors in the clinic for the treatment of breast and ovarian cancer and the challenges associated with acquired drug resistance. Finally, we discuss how DNA repair pathway‐targeted therapeutics are moving beyond PARP inhibition in the search for ever more innovative and efficacious cancer therapies.
Collapse
Affiliation(s)
- Thomas L Clarke
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, 02114, Boston, MA, USA.,The Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, 02114, Boston, MA, USA.,The Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA
| |
Collapse
|
208
|
Skou ST, Mair FS, Fortin M, Guthrie B, Nunes BP, Miranda JJ, Boyd CM, Pati S, Mtenga S, Smith SM. Multimorbidity. Nat Rev Dis Primers 2022; 8:48. [PMID: 35835758 PMCID: PMC7613517 DOI: 10.1038/s41572-022-00376-4] [Citation(s) in RCA: 478] [Impact Index Per Article: 159.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Multimorbidity (two or more coexisting conditions in an individual) is a growing global challenge with substantial effects on individuals, carers and society. Multimorbidity occurs a decade earlier in socioeconomically deprived communities and is associated with premature death, poorer function and quality of life and increased health-care utilization. Mechanisms underlying the development of multimorbidity are complex, interrelated and multilevel, but are related to ageing and underlying biological mechanisms and broader determinants of health such as socioeconomic deprivation. Little is known about prevention of multimorbidity, but focusing on psychosocial and behavioural factors, particularly population level interventions and structural changes, is likely to be beneficial. Most clinical practice guidelines and health-care training and delivery focus on single diseases, leading to care that is sometimes inadequate and potentially harmful. Multimorbidity requires person-centred care, prioritizing what matters most to the individual and the individual's carers, ensuring care that is effectively coordinated and minimally disruptive, and aligns with the patient's values. Interventions are likely to be complex and multifaceted. Although an increasing number of studies have examined multimorbidity interventions, there is still limited evidence to support any approach. Greater investment in multimorbidity research and training along with reconfiguration of health care supporting the management of multimorbidity is urgently needed.
Collapse
Affiliation(s)
- Søren T Skou
- Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
- The Research Unit PROgrez, Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, Region Zealand, Slagelse, Denmark.
| | - Frances S Mair
- Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Martin Fortin
- Department of Family Medicine and Emergency Medicine, Université de Sherbrooke, Quebec, Canada
| | - Bruce Guthrie
- Advanced Care Research Centre, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Bruno P Nunes
- Postgraduate Program in Nursing, Faculty of Nursing, Universidade Federal de Pelotas, Pelotas, Brazil
| | - J Jaime Miranda
- CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Medicine, School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Cynthia M Boyd
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Epidemiology and Health Policy & Management, Johns Hopkins University, Baltimore, MD, USA
| | - Sanghamitra Pati
- ICMR Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sally Mtenga
- Department of Health System Impact Evaluation and Policy, Ifakara Health Institute (IHI), Dar Es Salaam, Tanzania
| | - Susan M Smith
- Discipline of Public Health and Primary Care, Institute of Population Health, Trinity College Dublin, Russell Building, Tallaght Cross, Dublin, Ireland
| |
Collapse
|
209
|
Pharmacological Approaches to Decelerate Aging: A Promising Path. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201533. [PMID: 35860429 PMCID: PMC9293537 DOI: 10.1155/2022/4201533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
Biological aging or senescence is a course in which cellular function decreases over a period of time and is a consequence of altered signaling mechanisms that are triggered in stressed cells leading to cell damage. Aging is among the principal risk factors for many chronic illnesses such as cancer, cardiovascular disorders, and neurodegenerative diseases. Taking this into account, targeting fundamental aging mechanisms therapeutically may effectively impact numerous chronic illnesses. Selecting ideal therapeutic options in order to hinder the process of aging and decelerate the progression of age-related diseases is valuable. Along therapeutic options, life style modifications may well render the process of aging. The process of aging is affected by alteration in many cellular and signaling pathways amid which mTOR, SIRT1, and AMPK pathways are the most emphasized. Herein, we have discussed the mechanisms of aging focusing mainly on the mentioned pathways as well as the role of inflammation and autophagy in aging. Moreover, drugs and natural products with antiaging properties are discussed in detail.
Collapse
|
210
|
Zhang X, Habiballa L, Aversa Z, Ng YE, Sakamoto AE, Englund DA, Pearsall VM, White TA, Robinson MM, Rivas DA, Dasari S, Hruby AJ, Lagnado AB, Jachim SK, Granic A, Sayer AA, Jurk D, Lanza IR, Khosla S, Fielding RA, Nair KS, Schafer MJ, Passos JF, LeBrasseur NK. Characterization of cellular senescence in aging skeletal muscle. NATURE AGING 2022; 2:601-615. [PMID: 36147777 PMCID: PMC9491365 DOI: 10.1038/s43587-022-00250-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/08/2022] [Indexed: 01/10/2023]
Abstract
Senescence is a cell fate that contributes to multiple aging-related pathologies. Despite profound age-associated changes in skeletal muscle (SkM), whether its constituent cells are prone to senesce has not been methodically examined. Herein, using single cell and bulk RNA-sequencing and complementary imaging methods on SkM of young and old mice, we demonstrate that a subpopulation of old fibroadipogenic progenitors highly expresses p16 Ink4a together with multiple senescence-related genes and, concomitantly, exhibits DNA damage and chromatin reorganization. Through analysis of isolated myofibers, we also detail a senescence phenotype within a subset of old cells, governed instead by p2 Cip1 . Administration of a senotherapeutic intervention to old mice countered age-related molecular and morphological changes and improved SkM strength. Finally, we found that the senescence phenotype is conserved in SkM from older humans. Collectively, our data provide compelling evidence for cellular senescence as a hallmark and potentially tractable mediator of SkM aging.
Collapse
Affiliation(s)
- Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- These authors equally contributed to this work
| | - Leena Habiballa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Mayo clinic graduate school of biomedical science, rochester, MN, USA
- These authors equally contributed to this work
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Yan Er Ng
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Ayumi E. Sakamoto
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Davis A. Englund
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Thomas A. White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Matthew M. Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Donato A. Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Adam J. Hruby
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Anthony B. Lagnado
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Sarah K. Jachim
- Mayo clinic graduate school of biomedical science, rochester, MN, USA
| | - Antoneta Granic
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Avan A. Sayer
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Ian R. Lanza
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Roger A. Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts, USA
| | - K. Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Marissa J. Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - João F. Passos
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
211
|
Gebre AK, Prince RL, Schousboe JT, Kiel DP, Thompson PL, Zhu K, Lim WH, Sim M, Lewis JR. Calcaneal quantitative ultrasound is associated with all-cause and cardiovascular disease mortality independent of hip bone mineral density. Osteoporos Int 2022; 33:1557-1567. [PMID: 35147712 PMCID: PMC9187548 DOI: 10.1007/s00198-022-06317-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/20/2022] [Indexed: 11/26/2022]
Abstract
Osteoporosis has been linked with increased risk of cardiovascular disease previously. However, few studies have detailed bone and vascular information. In a prospective study of older women, we demonstrated heel quantitative ultrasound measures were associated with increased cardiovascular and all-cause mortality, independent of established cardiovascular risk factors. INTRODUCTION Osteoporosis and low bone mineral density (BMD) have been previously linked to cardiovascular disease (CVD) and mortality. Calcaneal quantitative ultrasound (QUS) is used to evaluate bone material properties, especially in older women. However, it is uncertain whether it is related to risk of mortality. This study was aimed to investigate the association between calcaneal QUS measurements and 15-year all-cause and CVD mortality in 1404 older women (mean age 75.2 ± 2.7 years). METHODS One thousand four hundred four older women, participants of Calcium Intake Fracture Outcome study (CAIFOS), had calcaneal bone measured at baseline (1998) and followed for 15 years. The primary outcomes, any deaths, and deaths attributable to cardiovascular causes ascertained by using linked data were obtained from Western Australia data linkage system. RESULTS Over the 15 years of follow-up (17,955 person years), 584 of the women died, and 223 from CVD. For every standard deviation (SD), reduction in broadband ultrasound attenuation (BUA) in minimally and multivariable-adjusted model including cardiovascular risk factors increased relative hazards for all-cause (multivariable-adjusted HR 1.15; 95%CI: 1.06-1.26, p = 0.001) and CVD mortality (multivariable-adjusted HR 1.20; 95%CI: 1.04-1.38, p = 0.010). Such relationships also persisted when hip BMD was included in the model (all-cause mortality HR 1.19; 95%CI: 1.07-1.33, p = 0.002; CVD mortality HR 1.28; 95%CI: 1.07-1.53, p = 0.008). CONCLUSION BUA is associated with all-cause and CVD mortality in older women independent of BMD and established CVD risk factors. Understanding why and how these are related may provide further insights about the bone-vascular nexus as well as therapeutic targets benefiting both systems.
Collapse
Affiliation(s)
- A K Gebre
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
- School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - R L Prince
- Medical School, The University of Western Australia, Perth, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Perth, Australia
| | - J T Schousboe
- Park Nicollet Osteoporosis Center and HealthPartners Institute, HealthPartners, Minneapolis, MN, 55416, USA
- Division of Health Policy and Management, University of Minnesota, Minneapolis, MN, 55455, USA
| | - D P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - P L Thompson
- Medical School, The University of Western Australia, Perth, Australia
- Department of Cardiology, Sir Charles Gairdner Hospital, Perth, Australia
| | - K Zhu
- Medical School, The University of Western Australia, Perth, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Perth, Australia
| | - W H Lim
- Medical School, The University of Western Australia, Perth, Australia
- Renal Department, Sir Charles Gairdner Hospital, Perth, Australia
| | - M Sim
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - J R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
- Medical School, The University of Western Australia, Perth, Australia.
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia.
| |
Collapse
|
212
|
Leslie J, Geh D, Elsharkawy AM, Mann DA, Vacca M. Metabolic dysfunction and cancer in HCV: Shared pathways and mutual interactions. J Hepatol 2022; 77:219-236. [PMID: 35157957 DOI: 10.1016/j.jhep.2022.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
HCV hijacks many host metabolic processes in an effort to aid viral replication. The resulting hepatic metabolic dysfunction underpins many of the hepatic and extrahepatic manifestations of chronic hepatitis C (CHC). However, the natural history of CHC is also substantially influenced by the host metabolic status: obesity, insulin resistance and hepatic steatosis are major determinants of CHC progression toward hepatocellular carcinoma (HCC). Direct-acting antivirals (DAAs) have transformed the treatment and natural history of CHC. While DAA therapy effectively eradicates the virus, the long-lasting overlapping metabolic disease can persist, especially in the presence of obesity, increasing the risk of liver disease progression. This review covers the mechanisms by which HCV tunes hepatic and systemic metabolism, highlighting how systemic metabolic disturbance, lipotoxicity and chronic inflammation favour disease progression and a precancerous niche. We also highlight the therapeutic implications of sustained metabolic dysfunction following sustained virologic response as well as considerations for patients who develop HCC on the background of metabolic dysfunction.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ahmed M Elsharkawy
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Birmingham, B15 2TH UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey.
| | - Michele Vacca
- Interdisciplinary Department of Medicine, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
213
|
Tong X, Li WX, Liang J, Zheng Y, Dai SX. Two different aging paths in human blood revealed by integrated analysis of gene Expression, mutation and alternative splicing. Gene 2022; 829:146501. [PMID: 35452709 DOI: 10.1016/j.gene.2022.146501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
Aging is a complex life process that human organs and tissues steadily and continuously decline. Aging has huge heterogeneity, which shows different aging rates among different individuals and in different tissues of the same individual. Many studies of aging are often contradictory and show little common signature. The integrated analysis of these transcriptome datasets will provide an unbiased global view of the aging process. Here, we integrated 8 transcriptome datasets including 757 samples from healthy human blood to study aging from three aspects of gene expression, mutations, and alternative splicing. Surprisingly, we found that transcriptome changes in blood are relatively independent of the chronological age. Further pseudotime analysis revealed two different aging paths (AgingPath1 and AgingPath2) in human blood. The differentially expressed genes (DEGs) along the two paths showed a limited overlap and are enriched in different biological processes. The mutations of DEGs in AgingPath1 are significantly increased in the aging process, while the opposite trend was observed in AgingPath2. Expression quantitative trait loci (eQTL) and splicing quantitative trait loci (sQTL) analysis identified 304 important mutations that can affect both gene expression and alternative splicing during aging. Finally, by comparison between aging and Alzheimer's disease, we identified 37 common DEGs in AgingPath1, AgingPath2 and Alzheimer's disease. These genes may contribute to the shift from aging state to Alzheimer's disease. In summary, this study revealed the two aging paths and the related genes and mutations, which provides a new insight into aging and aging-related disease.
Collapse
Affiliation(s)
- Xin Tong
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Wen-Xing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jihao Liang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Shao-Xing Dai
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
214
|
Kaur J, Saul D, Doolittle ML, Rowsey JL, Vos SJ, Farr JN, Khosla S, Monroe DG. Identification of a suitable endogenous control miRNA in bone aging and senescence. Gene X 2022; 835:146642. [PMID: 35700807 PMCID: PMC9533812 DOI: 10.1016/j.gene.2022.146642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/15/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022] Open
Abstract
MicroRNAs (miRNAs) are promising tools as biomarkers and therapeutic agents in various chronic diseases such as osteoporosis, cancers, type I and II diabetes, and cardiovascular diseases. Considering the rising interest in the regulatory role of miRNAs in bone metabolism, aging, and cellular senescence, accurate normalization of qPCR-based miRNA expression data using an optimal endogenous control becomes crucial. We used a systematic approach to select candidate endogenous control miRNAs that exhibit high stability with aging from our miRNA sequence data and literature search. Validation of miRNA expression was performed using qPCR and their comprehensive stability was assessed using the RefFinder tool which is based on four statistical algorithms: GeNorm, NormFinder, BestKeeper, and comparative delta CT. The selected endogenous control was then validated for its stability in mice and human bone tissues, and in bone marrow stromal cells (BMSCs) following induction of senescence and senolytic treatment. Finally, the utility of selected endogenous control versus U6 was tested by using each as a normalizer to measure the expression of miR-34a, a miRNA known to increase with age and senescence. Our results show that Let-7f did not change across the groups with aging, senescence or senolytic treatment, and was the most stable miRNA, whereas U6 was the least stable. Moreover, using Let-7f as a normalizer resulted in significantly increased expression of miR-34a with aging and senescence and decreased expression following senolytic treatment. However, the expression pattern for miR-34a reversed for each of these conditions when U6 was used as a normalizer. We show that optimal endogenous control miRNAs, such as Let-7f, are essential for accurate normalization of miRNA expression data to increase the reliability of results and prevent misinterpretation. Moreover, we present a systematic strategy that is transferrable and can easily be used to identify endogenous control miRNAs in other biological systems and conditions.
Collapse
Affiliation(s)
- Japneet Kaur
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Dominik Saul
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Madison L Doolittle
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Jennifer L Rowsey
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Stephanie J Vos
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA.
| |
Collapse
|
215
|
Hu X, Ni S, Zhao K, Qian J, Duan Y. Bioinformatics-Led Discovery of Osteoarthritis Biomarkers and Inflammatory Infiltrates. Front Immunol 2022; 13:871008. [PMID: 35734177 PMCID: PMC9207185 DOI: 10.3389/fimmu.2022.871008] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
The molecular mechanisms of osteoarthritis, the most common chronic disease, remain unexplained. This study aimed to use bioinformatic methods to identify the key biomarkers and immune infiltration in osteoarthritis. Gene expression profiles (GSE55235, GSE55457, GSE77298, and GSE82107) were selected from the Gene Expression Omnibus database. A protein-protein interaction network was created, and functional enrichment analysis and genomic enrichment analysis were performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) databases. Immune cell infiltration between osteoarthritic tissues and control tissues was analyzed using the CIBERSORT method. Identify immune patterns using the ConsensusClusterPlus package in R software using a consistent clustering approach. Molecular biological investigations were performed to discover the important genes in cartilage cells. A total of 105 differentially expressed genes were identified. Differentially expressed genes were enriched in immunological response, chemokine-mediated signaling pathway, and inflammatory response revealed by the analysis of GO and KEGG databases. Two distinct immune patterns (ClusterA and ClusterB) were identified using the ConsensusClusterPlus. Cluster A patients had significantly lower resting dendritic cells, M2 macrophages, resting mast cells, activated natural killer cells and regulatory T cells than Cluster B patients. The expression levels of TCA1, TLR7, MMP9, CXCL10, CXCL13, HLA-DRA, and ADIPOQSPP1 were significantly higher in the IL-1β-induced group than in the osteoarthritis group in an in vitro qPCR experiment. Explaining the differences in immune infiltration between osteoarthritic tissues and normal tissues will contribute to the understanding of the development of osteoarthritis.
Collapse
Affiliation(s)
- Xinyue Hu
- Department of Clinical Laboratory, Kunming First People’s Hospital, Kunming Medical University, Kunming, China
| | - Songjia Ni
- Department of Orthopedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhao
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Qian
- Department of Clinical Laboratory, Kunming First People’s Hospital, Kunming Medical University, Kunming, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yang Duan,
| |
Collapse
|
216
|
Li L, Hu G, Xie R, Yang J, Shi X, Jia Z, Qu X, Wang M, Wu Y. Salubrinal-mediated activation of eIF2α signaling improves oxidative stress-induced BMSCs senescence and senile osteoporosis. Biochem Biophys Res Commun 2022; 610:70-76. [DOI: 10.1016/j.bbrc.2022.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 11/26/2022]
|
217
|
Sfeir JG, Drake MT, Khosla S, Farr JN. Skeletal Aging. Mayo Clin Proc 2022; 97:1194-1208. [PMID: 35662432 PMCID: PMC9179169 DOI: 10.1016/j.mayocp.2022.03.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Aging represents the single greatest risk factor for chronic diseases, including osteoporosis, a skeletal fragility syndrome that increases fracture risk. Optimizing bone strength throughout life reduces fracture risk. Factors critical for bone strength include nutrition, physical activity, and vitamin D status, whereas unhealthy lifestyles, illnesses, and certain medications (eg, glucocorticoids) are detrimental. Hormonal status is another important determinant of skeletal health, with sex steroid concentrations, particularly estrogen, having major effects on bone remodeling. Aging exacerbates bone loss in both sexes and results in imbalanced bone resorption relative to formation; it is associated with increased marrow adiposity, osteoblast/osteocyte apoptosis, and accumulation of senescent cells. The mechanisms underlying skeletal aging are as diverse as the factors that determine the strength (and thus fragility) of bone. This review updates our current understanding of the epidemiology, pathophysiology, and treatment of osteoporosis and provides an overview of the underlying hallmark mechanisms that drive skeletal aging.
Collapse
Affiliation(s)
- Jad G Sfeir
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Matthew T Drake
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Joshua N Farr
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN.
| |
Collapse
|
218
|
da Silva A, Silveira BKS, Hermsdorff HHM, da Silva W, Bressan J. Effect of omega-3 fatty acid supplementation on telomere length and telomerase activity: A systematic review of clinical trials. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102451. [PMID: 35661999 DOI: 10.1016/j.plefa.2022.102451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Evidence suggests antioxidant and anti-inflammatory properties of omega-3 polyunsaturated fatty acids (n-3 PUFA). However, the effect of supplementation of this fatty acid profile on the telomere length and the telomerase enzyme activity was not revised yet. The PubMed and Embase® databases were used to search for clinical trials. A total of six clinical trials were revised. Omega-3 PUFA supplementation did not statistically affect telomere length in three out of three studies but affected telomerase activity in two out of four studies. The supplementation increased telomerase enzyme activity in subjects with first-episode schizophrenia. Besides, it decreased telomerase enzyme activity without modulating the effects of Pro12Ala polymorphism on the PPARγ gene in type 2 diabetes subjects. The methodological differences between the studies and the limited number of studies on the theme suggest that further studies are needed to elucidate the effects of n-3 PUFA supplementation on telomere length and telomerase enzyme activity in humans.
Collapse
Affiliation(s)
- Alessandra da Silva
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Brenda Kelly Souza Silveira
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Walmir da Silva
- Laboratory of Animal Biotechnology. Animal Science Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Josefina Bressan
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
219
|
Sun Y, Wang X, Liu T, Zhu X, Pan X. The multifaceted role of the SASP in atherosclerosis: from mechanisms to therapeutic opportunities. Cell Biosci 2022; 12:74. [PMID: 35642067 PMCID: PMC9153125 DOI: 10.1186/s13578-022-00815-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The global population of older individuals is growing, and ageing is a key risk factor for atherosclerotic cardiovascular diseases. Abnormal accumulation of senescent cells can cause potentially deleterious effects on the organism with age. As a vital marker of cellular senescence, the senescence-associated secretory phenotype (SASP) is a novel mechanism to link cellular senescence with atherosclerosis. MAIN BODY In this review, we concretely describe the characteristics of the SASP and its regulation mechanisms. Importantly, we provide novel perspectives on how the SASP can promote atherosclerosis. The SASP from different types of senescent cells have vital roles in atherosclerosis progression. As a significant mediator of the harmful effects of senescent cells, it can play a pro-atherogenic role by producing inflammation and immune dysfunction. Furthermore, the SASP can deliver senescence signals to the surrounding vascular cells, gradually contributing to the development of atherosclerosis. Finally, we focus on a variety of novel therapeutic strategies aimed to reduce the burden of atherosclerosis in elderly individuals by targeting senescent cells and inhibiting the regulatory mechanisms of the SASP. CONCLUSION This review systematically summarizes the multiple roles of the SASP in atherosclerosis and can contribute to the exploration of new therapeutic opportunities.
Collapse
Affiliation(s)
- Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tianwei Liu
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
220
|
Aguado J, Gómez-Inclán C, Leeson HC, Lavin MF, Shiloh Y, Wolvetang EJ. The hallmarks of aging in Ataxia-Telangiectasia. Ageing Res Rev 2022; 79:101653. [PMID: 35644374 DOI: 10.1016/j.arr.2022.101653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
Abstract
Ataxia-telangiectasia (A-T) is caused by absence of the catalytic activity of ATM, a protein kinase that plays a central role in the DNA damage response, many branches of cellular metabolism, redox and mitochondrial homeostasis, and cell cycle regulation. A-T is a complex disorder characterized mainly by progressive cerebellar degeneration, immunodeficiency, radiation sensitivity, genome instability, and predisposition to cancer. It is increasingly recognized that the premature aging component of A-T is an important driver of this disease, and A-T is therefore an attractive model to study the aging process. This review outlines the current state of knowledge pertaining to the molecular and cellular signatures of aging in A-T and proposes how these new insights can guide novel therapeutic approaches for A-T.
Collapse
Affiliation(s)
- Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia.
| | - Cecilia Gómez-Inclán
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | - Hannah C Leeson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
| | - Yosef Shiloh
- The David and Inez Myers Laboratory of Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
221
|
De Fano M, Bartolini D, Tortoioli C, Vermigli C, Malara M, Galli F, Murdolo G. Adipose Tissue Plasticity in Response to Pathophysiological Cues: A Connecting Link between Obesity and Its Associated Comorbidities. Int J Mol Sci 2022; 23:ijms23105511. [PMID: 35628322 PMCID: PMC9141504 DOI: 10.3390/ijms23105511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
Adipose tissue (AT) is a remarkably plastic and active organ with functional pleiotropism and high remodeling capacity. Although the expansion of fat mass, by definition, represents the hallmark of obesity, the dysregulation of the adipose organ emerges as the forefront of the link between adiposity and its associated metabolic and cardiovascular complications. The dysfunctional fat displays distinct biological signatures, which include enlarged fat cells, low-grade inflammation, impaired redox homeostasis, and cellular senescence. While these events are orchestrated in a cell-type, context-dependent and temporal manner, the failure of the adipose precursor cells to form new adipocytes appears to be the main instigator of the adipose dysregulation, which, ultimately, poses a deleterious milieu either by promoting ectopic lipid overspill in non-adipose targets (i.e., lipotoxicity) or by inducing an altered secretion of different adipose-derived hormones (i.e., adipokines and lipokines). This “adipocentric view” extends the previous “expandability hypothesis”, which implies a reduced plasticity of the adipose organ at the nexus between unhealthy fat expansion and the development of obesity-associated comorbidities. In this review, we will briefly summarize the potential mechanisms by which adaptive changes to variations of energy balance may impair adipose plasticity and promote fat organ dysfunction. We will also highlight the conundrum with the perturbation of the adipose microenvironment and the development of cardio-metabolic complications by focusing on adipose lipoxidation, inflammation and cellular senescence as a novel triad orchestrating the conspiracy to adipose dysfunction. Finally, we discuss the scientific rationale for proposing adipose organ plasticity as a target to curb/prevent adiposity-linked cardio-metabolic complications.
Collapse
Affiliation(s)
- Michelatonio De Fano
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Desirèe Bartolini
- Department of Pharmaceutical Sciences, Human Anatomy Laboratory, University of Perugia, 06132 Perugia, Italy; (D.B.); (F.G.)
| | - Cristina Tortoioli
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Cristiana Vermigli
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Massimo Malara
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Human Anatomy Laboratory, University of Perugia, 06132 Perugia, Italy; (D.B.); (F.G.)
| | - Giuseppe Murdolo
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
- Correspondence: ; Tel.: +39-(0)75-578-3301; Fax: +39-75-573-0855
| |
Collapse
|
222
|
Yuan Y, Zhang Y, Zheng R, Yuan H, Zhou R, Jia S, Liu J. Elucidating the anti-aging mechanism of Si Jun Zi Tang by integrating network pharmacology and experimental validation in vivo. Aging (Albany NY) 2022; 14:3941-3955. [PMID: 35537009 PMCID: PMC9134961 DOI: 10.18632/aging.204055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
Si Jun Zi Tang (SJZT) is a classic Traditional Chinese Medicine (TCM) prescription used to treat aging-related diseases. However, the potential molecular mechanisms of the anti-aging effects of the bioactive compounds and their targets remain elusive. In this study, we combined network pharmacology and molecular docking with in vivo experiments to elucidate the anti-aging molecular mechanism of SJZT. A series of network pharmacology strategies were used to predict potential targets and therapeutic mechanisms of SJZT, including compound screening, pathway enrichment analysis and molecular docking studies. Based on the network pharmacology predictions and observation of outward signs of aging, the expression levels of selected genes and proteins and possible key targets were subsequently validated and analysed using qRT-PCR and immunoblotting. Using a data mining approach, 235 effective targets of SJZT and aging were obtained. AKT1, STAT3, JUN, MAPK3, TP53, MAPK1, TNF, RELA, MAPK14 and IL6 were identified as core genes in the Protein-Protein Interaction Networks (PPI) analysis. The results of the effective target Gene Ontology (Go) functional enrichment analysis suggested that SJZT may be involved aging and antiapoptotic biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the anti-aging mechanism of SJZT may be associated with the PI3K-AKT and P38 MAPK signalling pathways. Molecular docking analysis suggested that kaempferol and quercetin could fit in the binding pockets of the core targets. In addition, SJZT alleviated the aging symptoms of mice such as osteoporosis and hair loss. In conclusion, the anti-aging effect of SJZT was associated with the inhibition of the PI3K-AKT and P38 MAPK signalling pathways, and these findings were consistent with the network pharmacology prediction.
Collapse
Affiliation(s)
- Yang Yuan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Hongjun Yuan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Ruoyu Zhou
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
223
|
Cailleaux PE, Cohen-Solal M. Managing Musculoskeletal and Kidney Aging: A Call for Holistic Insights. Clin Interv Aging 2022; 17:717-732. [PMID: 35548383 PMCID: PMC9081621 DOI: 10.2147/cia.s357501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Martine Cohen-Solal
- Inserm UMR-S 1132 Bioscar, Université Paris Cité - Hôpital Lariboisiere, Paris, F-75010, France
| |
Collapse
|
224
|
López-Delgado L, Del Real A, Sañudo C, Garcia-Ibarbia C, Laguna E, Menendez G, Garcia-Montesinos B, Santurtun A, Merino J, Pérez-Núñez MI, Riancho JA. Osteogenic capacity of mesenchymal stem cells from patients with osteoporotic hip fractures in vivo. Connect Tissue Res 2022; 63:243-255. [PMID: 33618587 DOI: 10.1080/03008207.2021.1894140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Human mesenchymal stem cells (MSCs) have the ability to differentiate into bone-forming osteoblasts. The aim of this study was to elucidate if MSCs from patients with OP show a senescent phenotype and explore their bone-forming ability in vivo. MATERIALS AND METHODS MSCs from patients with OP and controls with osteoarthritis (OA) were implanted into the subcutaneous tissue of immunodeficient mice for histological analysis and expression of human genes by RT-PCR. The expression of senescence-associated phenotype (SASP) genes, as well as p16, p21, and galactosidase, was studied in cultures of MSCs. RESULTS In vivo bone formation was evaluated in 103 implants (47 OP, 56 OA). New bone was observed in 45% of the implants with OP cells and 46% of those with OA cells (p = 0.99). The expression of several bone-related genes (collagen, osteocalcin, alkaline phosphatase, sialoprotein) was also similar in both groups. There were no differences between groups in SASP gene expression, p16, and p21 expression, or in senescence-associated galactosidase activity. CONCLUSION Senescence markers and the osteogenic capacity in vivo of MSCs from patients with OP are not inferior to that of cells from controls of similar age with OA. This supports the interest of future studies to evaluate the potential use of autologous MSCs from OP patients in bone regeneration procedures.
Collapse
Affiliation(s)
- Laura López-Delgado
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Alvaro Del Real
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Carolina Sañudo
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Carmen Garcia-Ibarbia
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Esther Laguna
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Guillermo Menendez
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | | | - Ana Santurtun
- Unit of Legal Medicine, University of Cantabria, IDIVAL, Santander, Spain
| | - Jesus Merino
- Department of Molecular Biology, University of Cantabria, IDIVAL, Santander, Spain
| | - María I Pérez-Núñez
- Department of Traumatology and Orthopedic Surgery, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Jose A Riancho
- Department of Internal Medicine, Hospital Universitario Marqués De Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
225
|
Chandra A, Lagnado AB, Farr JN, Doolittle M, Tchkonia T, Kirkland JL, LeBrasseur NK, Robbins PD, Niedernhofer LJ, Ikeno Y, Passos JF, Monroe DG, Pignolo RJ, Khosla S. Targeted clearance of p21- but not p16-positive senescent cells prevents radiation-induced osteoporosis and increased marrow adiposity. Aging Cell 2022; 21:e13602. [PMID: 35363946 PMCID: PMC9124310 DOI: 10.1111/acel.13602] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/09/2022] [Accepted: 03/20/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence, which is a major cause of tissue dysfunction with aging and multiple other conditions, is known to be triggered by p16Ink4a or p21Cip1 , but the relative contributions of each pathway toward inducing senescence are unclear. Here, we directly addressed this issue by first developing and validating a p21-ATTAC mouse with the p21Cip1 promoter driving a "suicide" transgene encoding an inducible caspase-8 which, upon induction, selectively kills p21Cip1 -expressing senescent cells. Next, we used the p21-ATTAC mouse and the established p16-INK-ATTAC mouse to directly compare the contributions of p21Cip1 versus p16Ink4a in driving cellular senescence in a condition where a tissue phenotype (bone loss and increased marrow adiposity) is clearly driven by cellular senescence-specifically, radiation-induced osteoporosis. Using RNA in situ hybridization, we confirmed the reduction in radiation-induced p21Cip1 - or p16Ink4a -driven transcripts following senescent cell clearance in both models. However, only clearance of p21Cip1 +, but not p16Ink4a +, senescent cells prevented both radiation-induced osteoporosis and increased marrow adiposity. Reduction in senescent cells with dysfunctional telomeres following clearance of p21Cip1 +, but not p16Ink4a +, senescent cells also reduced several of the radiation-induced pro-inflammatory senescence-associated secretory phenotype factors. Thus, by directly comparing senescent cell clearance using two parallel genetic models, we demonstrate that radiation-induced osteoporosis is driven predominantly by p21Cip1 - rather than p16Ink4a -mediated cellular senescence. Further, this approach can be used to dissect the contributions of these pathways in other senescence-associated conditions, including aging across tissues.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - Anthony B. Lagnado
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - Joshua N. Farr
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| | - Madison Doolittle
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| | - Tamara Tchkonia
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - James L. Kirkland
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Department of Physical Medicine and RehabilitationMayo ClinicRochesterMinnesotaUSA
| | - Paul D. Robbins
- Institute on the Biology of Aging and MetabolismDepartment of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and MetabolismDepartment of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Yuji Ikeno
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - João F. Passos
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - David G. Monroe
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| | - Robert J. Pignolo
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| | - Sundeep Khosla
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
226
|
Cui J, Shibata Y, Zhu T, Zhou J, Zhang J. Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Res Rev 2022; 77:101608. [PMID: 35283289 DOI: 10.1016/j.arr.2022.101608] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Osteocytes play a critical role in maintaining bone homeostasis and in regulating skeletal response to hormones and mechanical loading. Substantial evidence have demonstrated that osteocytes and their lacunae exhibit morphological changes in aged bone, indicating the underlying involvement of osteocytes in bone aging. Notably, recent studies have deciphered aged osteocytes to have characteristics such as impaired mechanosensitivity, accumulated cellular senescence, dysfunctional perilacunar/canalicular remodeling, and degenerated lacuna-canalicular network. However, detailed molecular mechanisms of osteocytes remain unclear. Nonetheless, osteocyte transcriptomes analyzed via advanced RNA sequencing (RNA-seq) techniques have identified several bone aging-related genes and signaling pathways, such as Wnt, Bmp/TGF, and Jak-STAT. Moreover, inflammation, immune dysfunction, energy shortage, and impaired hormone responses possibly affect osteocytes in age-related bone deterioration. In this review, we summarize the hallmarks of aging bone and osteocytes and discuss osteocytic mechanisms in age-related bone loss and impaired bone quality. Furthermore, we provide insights into the challenges faced and their possible solutions when investigating osteocyte transcriptomes. We also highlight that single-cell RNA-seq can decode transcriptomic messages in aged osteocytes; therefore, this technique can promote novel single cell-based investigations in osteocytes once a well-established standardized protocol specific for osteocytes is developed. Interestingly, improved understanding of osteocytic mechanisms have helped identify promising targets and effective therapies for aging-related osteoporosis and fragile fractures.
Collapse
|
227
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
228
|
Lee JH, Lee J. Endoplasmic Reticulum (ER) Stress and Its Role in Pancreatic β-Cell Dysfunction and Senescence in Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23094843. [PMID: 35563231 PMCID: PMC9104816 DOI: 10.3390/ijms23094843] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
An increased life span and accompanying nutritional affluency have led to a rapid increase in diseases associated with aging, such as obesity and type 2 diabetes, imposing a tremendous economic and health burden on society. Pancreatic β-cells are crucial for controlling glucose homeostasis by properly producing and secreting the glucose-lowering hormone insulin, and the dysfunction of β-cells determines the outcomes for both type 1 and type 2 diabetes. As the native structure of insulin is formed within the endoplasmic reticulum (ER), ER homeostasis should be appropriately maintained to allow for the proper metabolic homeostasis and functioning of β-cells. Recent studies have found that cellular senescence is critically linked with cellular stresses, including ER stress, oxidative stress, and mitochondrial stress. These studies implied that β-cell senescence is caused by ER stress and other cellular stresses and contributes to β-cells’ dysfunction and the impairment of glucose homeostasis. This review documents and discusses the current understanding of cellular senescence, β-cell function, ER stress, its associated signaling mechanism (unfolded protein response), and the effect of ER stress on β-cell senescence and dysfunction.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence:
| |
Collapse
|
229
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
230
|
Ohtani N. The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis? Inflamm Regen 2022; 42:11. [PMID: 35365245 PMCID: PMC8976373 DOI: 10.1186/s41232-022-00197-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that can be induced by a variety of potentially oncogenic stimuli, including DNA damage. Hence, senescence has long been considered to suppress tumorigenesis, acting as a guardian of homeostasis. However, recent studies have revealed that senescent cells exhibit the secretion of a series of inflammatory cytokines, chemokines, growth factors, and matrix remodeling factors that alter the local tissue environment and contribute to chronic inflammation and cancer. This senescence phenotype is termed as senescence-associated secretory phenotype (SASP) and is observed not only in cultured cells in vitro but also in vivo. Recently, the physiological and pathological roles of SASP have been increasingly clarified. Notably, several studies have reported that the intrinsic mechanism of SASP factor production is predominantly mediated through the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway by aberrantly accumulated DNA fragments from the nucleus of senescent cells. In contrast, various extrinsic triggers of SASP also exist in vivo, for example, the SASP induction in hepatic stellate cells in the tumor microenvironment of obesity-associated liver cancer by the translocated gut microbial metabolites. Recently, the strategy for the elimination of senescent cells (senolysis) has attracted increasing attention. Thus, the role of SASP and the effects and outcomes of senolysis in vivo will be also discussed in this review.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, 1-4-3, Abeno-ku, Osaka, Japan.
| |
Collapse
|
231
|
Mehdizadeh M, Aguilar M, Thorin E, Ferbeyre G, Nattel S. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat Rev Cardiol 2022; 19:250-264. [PMID: 34667279 DOI: 10.1038/s41569-021-00624-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence, classically defined as stable cell cycle arrest, is implicated in biological processes such as embryogenesis, wound healing and ageing. Senescent cells have a complex senescence-associated secretory phenotype (SASP), involving a range of pro-inflammatory factors with important paracrine and autocrine effects on cell and tissue biology. Clinical evidence and experimental studies link cellular senescence, senescent cell accumulation, and the production and release of SASP components with age-related cardiac pathologies such as heart failure, myocardial ischaemia and infarction, and cancer chemotherapy-related cardiotoxicity. However, the precise role of senescent cells in these conditions is unclear and, in some instances, both detrimental and beneficial effects have been reported. The involvement of cellular senescence in other important entities, such as cardiac arrhythmias and remodelling, is poorly understood. In this Review, we summarize the basic biology of cellular senescence and discuss what is known about the role of cellular senescence and the SASP in heart disease. We then consider the various approaches that are being developed to prevent the accumulation of senescent cells and their consequences. Many of these strategies are applicable in vivo and some are being investigated for non-cardiac indications in clinical trials. We end by considering important knowledge gaps, directions for future research and the potential implications for improving the management of patients with heart disease.
Collapse
Affiliation(s)
- Mozhdeh Mehdizadeh
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Martin Aguilar
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Eric Thorin
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.,Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal and CRCHUM, Montreal, QC, Canada
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, Canada. .,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. .,IHU LIRYC and Fondation Bordeaux, Université Bordeaux, Bordeaux, France.
| |
Collapse
|
232
|
Fraser HC, Kuan V, Johnen R, Zwierzyna M, Hingorani AD, Beyer A, Partridge L. Biological mechanisms of aging predict age-related disease co-occurrence in patients. Aging Cell 2022; 21:e13524. [PMID: 35259281 PMCID: PMC9009120 DOI: 10.1111/acel.13524] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022] Open
Abstract
Genetic, environmental, and pharmacological interventions into the aging process can confer resistance to multiple age-related diseases in laboratory animals, including rhesus monkeys. These findings imply that individual mechanisms of aging might contribute to the co-occurrence of age-related diseases in humans and could be targeted to prevent these conditions simultaneously. To address this question, we text mined 917,645 literature abstracts followed by manual curation and found strong, non-random associations between age-related diseases and aging mechanisms in humans, confirmed by gene set enrichment analysis of GWAS data. Integration of these associations with clinical data from 3.01 million patients showed that age-related diseases associated with each of five aging mechanisms were more likely than chance to be present together in patients. Genetic evidence revealed that innate and adaptive immunity, the intrinsic apoptotic signaling pathway and activity of the ERK1/2 pathway were associated with multiple aging mechanisms and diverse age-related diseases. Mechanisms of aging hence contribute both together and individually to age-related disease co-occurrence in humans and could potentially be targeted accordingly to prevent multimorbidity.
Collapse
Affiliation(s)
- Helen C. Fraser
- Department of Genetics, Evolution and EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
| | - Valerie Kuan
- Institute of Health InformaticsUniversity College LondonLondonUK
- Health Data Research UK LondonUniversity College LondonLondonUK
- University College London British Heart Foundation Research AcceleratorLondonUK
| | - Ronja Johnen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)Medical Faculty & Faculty of Mathematics and Natural SciencesUniversity of CologneCologneGermany
| | | | - Aroon D. Hingorani
- Health Data Research UK LondonUniversity College LondonLondonUK
- University College London British Heart Foundation Research AcceleratorLondonUK
- Institute of Cardiovascular ScienceUniversity College LondonUK
| | - Andreas Beyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)Medical Faculty & Faculty of Mathematics and Natural SciencesUniversity of CologneCologneGermany
- Centre for Molecular MedicineUniversity of CologneCologneGermany
| | - Linda Partridge
- Department of Genetics, Evolution and EnvironmentInstitute of Healthy AgeingUniversity College LondonLondonUK
- Max Planck Institute for Biology of AgeingCologneGermany
| |
Collapse
|
233
|
Kiousi DE, Kouroutzidou AZ, Neanidis K, Matthaios D, Pappa A, Galanis A. Evaluating the Role of Probiotics in the Prevention and Management of Age-Related Diseases. Int J Mol Sci 2022; 23:3628. [PMID: 35408987 PMCID: PMC8999082 DOI: 10.3390/ijms23073628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
The human lifespan has been significantly increased due to scientific advancements in the management of disease; however, the health span of the aging population does not follow the same trend. Aging is the major risk factor for multimorbidity that is derived from the progressive loss of homeostasis, immunological and stem cell exhaustion, as well as exacerbated inflammation responses. Age-related diseases presenting with high frequencies include neurodegenerative, musculoskeletal, cardiovascular, metabolic diseases and cancer. These diseases can be co-morbid and are usually managed using a disease-specific approach that can eventually lead to polypharmacy, low medication adherence rates and undesired drug-drug interactions. Novel studies suggest targeting the shared biological basis of age-related diseases to retard the onset and manage their manifestations. Harvesting the anti-inflammatory and immunomodulatory capacity of probiotics to tackle the root cause of these diseases, could pose a viable alternative. In this article, a comprehensive review of the effects of probiotic supplementation on the molecular pathogenesis of age-related diseases, and the potential of probiotic treatments as preventative or alleviatory means is attempted. Furthermore, issues on the safety and efficiency of probiotic supplementation, as well as the pitfalls of current clinical studies are discussed, while new perspectives for systematic characterization of probiotic benefits on aged hosts are outlined.
Collapse
Affiliation(s)
- Despoina E. Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| | - Antonia Z. Kouroutzidou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| | - Konstantinos Neanidis
- Oncology Department, 424 General Military Training Hospital, 56429 Thessaloniki, Greece;
| | | | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| |
Collapse
|
234
|
Teissier T, Temkin V, Pollak RD, Cox LS. Crosstalk Between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility During Chronological Age and in Diabetes. Front Physiol 2022; 13:812157. [PMID: 35388291 PMCID: PMC8978545 DOI: 10.3389/fphys.2022.812157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023] Open
Abstract
Bone is a complex organ serving roles in skeletal support and movement, and is a source of blood cells including adaptive and innate immune cells. Structural and functional integrity is maintained through a balance between bone synthesis and bone degradation, dependent in part on mechanical loading but also on signaling and influences of the tissue microenvironment. Bone structure and the extracellular bone milieu change with age, predisposing to osteoporosis and increased fracture risk, and this is exacerbated in patients with diabetes. Such changes can include loss of bone mineral density, deterioration in micro-architecture, as well as decreased bone flexibility, through alteration of proteinaceous bone support structures, and accumulation of senescent cells. Senescence is a state of proliferation arrest accompanied by marked morphological and metabolic changes. It is driven by cellular stress and serves an important acute tumor suppressive mechanism when followed by immune-mediated senescent cell clearance. However, aging and pathological conditions including diabetes are associated with accumulation of senescent cells that generate a pro-inflammatory and tissue-destructive secretome (the SASP). The SASP impinges on the tissue microenvironment with detrimental local and systemic consequences; senescent cells are thought to contribute to the multimorbidity associated with advanced chronological age. Here, we assess factors that promote bone fragility, in the context both of chronological aging and accelerated aging in progeroid syndromes and in diabetes, including senescence-dependent alterations in the bone tissue microenvironment, and glycation changes to the tissue microenvironment that stimulate RAGE signaling, a process that is accelerated in diabetic patients. Finally, we discuss therapeutic interventions targeting RAGE signaling and cell senescence that show promise in improving bone health in older people and those living with diabetes.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Vladislav Temkin
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Dresner Pollak
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
235
|
Song S, Guo Y, Yang Y, Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther 2022; 237:108168. [PMID: 35283172 DOI: 10.1016/j.pharmthera.2022.108168] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Osteoporosis, is the most common bone disorder worldwide characterized by low bone mineral density, leaving affected bones vulnerable to fracture. Bone homeostasis depends on the precise balance between bone resorption by osteoclasts and bone matrix formation by mesenchymal lineage osteoblasts, and involves a series of complex and highly regulated steps. Bone homeostasis will be disrupted when the speed of bone resorption is faster than bone formation. Based on various regulatory mechanisms of bone homeostasis, a series of drugs targeting osteoporosis have emerged in clinical practice, including bisphosphonates, selective estrogen receptor modulators, calcitonin, molecular-targeted drugs and so on. However, many drugs have major adverse effects or are unsuitable for long-term use. Therefore, it is very urgent to find more effective therapeutic drugs based on the new pathogenesis of osteoporosis. In this review, we summarize novel mechanisms involved in the pathological process of osteoporosis, including the roles of gut microbiome, autophagy, iron balance and cellular senescence. Based on the above pathological mechanism, we found promising drugs for osteoporosis treatment, such as: probiotics, alpha-ketoglutarate, senolytics and hydrogen sulfide. This new finding may provide an important basis for elucidating the complex pathological mechanisms of osteoporosis and provide promising drugs for clinical osteoporosis treatment.
Collapse
Affiliation(s)
- Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430077, PR China
| | - Yuehua Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
236
|
Role of senescence in the chronic health consequences of COVID-19. Transl Res 2022; 241:96-108. [PMID: 34695606 PMCID: PMC8532377 DOI: 10.1016/j.trsl.2021.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
While the full impact of COVID-19 is not yet clear, early studies have indicated that upwards of 10% of patients experience COVID-19 symptoms longer than 3 weeks, known as Long-Hauler's Syndrome or PACS (postacute sequelae of SARS-CoV-2 infection). There is little known about risk factors or predictors of susceptibility for Long-Hauler's Syndrome, but older adults are at greater risk for severe outcomes and mortality from COVID-19. The pillars of aging (including cellular senescence, telomere dysfunction, impaired proteostasis, mitochondrial dysfunction, deregulated nutrient sensing, genomic instability, progenitor cell exhaustion, altered intercellular communication, and epigenetic alterations) that contribute to age-related dysfunction and chronic diseases (the "Geroscience Hypothesis") may interfere with defenses against viral infection and consequences of these infections. Heightening of the low-grade inflammation that is associated with aging may generate an exaggerated response to an acute COVID-19 infection. Innate immune system dysfunction that leads to decreased senescent cell removal and/or increased senescent cell formation could contribute to accumulation of senescent cells with both aging and viral infections. These processes may contribute to increased risk for long-term COVID-19 sequelae in older or chronically ill patients. Hence, senolytics and other geroscience interventions that may prolong healthspan and alleviate chronic diseases and multimorbidity linked to fundamental aging processes might be an option for delaying, preventing, or alleviating Long-Hauler's Syndrome.
Collapse
Key Words
- ampk, amp-activated protein kinase
- covid-19, coronavirus disease 2019
- covid-fis, a phase 2 placebo-controlled pilot study in covid-19 of fisetin to alleviate dysfunction and excessive inflammatory response in older adults in nursing homes
- cr, caloric restriction
- fga, facility for geroscience analysis
- icu, intensive care unit
- if, intermittent fasting
- ltcf, long-term care facility
- mcc, multiple chronic conditions
- mers-cov, middle east respiratory syndrome coronavirus
- mtor, mammalian target of rapamycin
- nad+, nicotinamide adenine dinucleotide
- nmn, nicotinamide mononucleotide
- nr, nicotinamide riboside
- pacs, postacute sequalae of sars-cov-2 infection
- pamps, pathogen-associated molecular profile factors
- ros, reactive oxygen species
- sars, severe acute respiratory syndrome
- sars-cov-1, severe acute respiratory syndrome coronavirus 1
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- sasp, senescence-associated secretory phenotype
- snf, skilled nursing facility
- tgn, translational geroscience network
- who, world health organization
Collapse
|
237
|
Xu X, Chen Z, Wu W, Tian X. Polyadenylated Telomeric Noncoding RNA Functions as a Pivotal Therapeutic Target of Anti-Ageing to Stabilize Telomere Length of Chromosomes Via Collaborating With Zscan4c. Front Pharmacol 2022; 12:822779. [PMID: 35222015 PMCID: PMC8863872 DOI: 10.3389/fphar.2021.822779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Telomeres are closely associated with the development of cell aging. Shortening or erosion of telomeres will cause cell mortality, suggesting that the maintenance of telomere integrity facilitates cell anti-senescence. However, the mechanism of how to keep the telomere length remains fragmentary. Here, we found that polyadenylated telomeric noncoding RNA (TERRA) can promote the self-renewal when overexpressed in mouse embryonic stem cells (mESCs), implying that TERRA with polyadenylation is critical for mESC maintenance. Further studies revealed that TERRA with a polyadenylated tail plays an important role in the sustenance of telomere length. High-throughput sequencing and quantitative real-time PCR show that zinc finger and SCAN domain containing 4C (Zscan4c) may be a potential target of TERRA. Zscan4c is negatively regulated by TERRA and collaborates with TERRA to stabilize the telomere length of chromosomes in mESCs. Our study not only identifies TERRA as a potential novel factor of telomere length regulation and uncovers the new molecular mechanism of cell anti-aging, but also indicates that Zscan4c could be a key therapeutic target candidate for therapy in dysfunctional chromosome diseases. These data will expand our understanding of the cell fate regulatory network and will be beneficial to drug discovery and theragnostics for antiaging and anticancer therapy in the future.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,School of Life Sciences, Hefei Normal University, Hefei, China
| | - Zhengju Chen
- School of Life Sciences, Hefei Normal University, Hefei, China
| | - Wei Wu
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiaohe Tian
- School of Life Sciences, Hefei Normal University, Hefei, China
| |
Collapse
|
238
|
Rosa-Mercado NA, Steitz JA. Who let the DoGs out? - biogenesis of stress-induced readthrough transcripts. Trends Biochem Sci 2022; 47:206-217. [PMID: 34489151 PMCID: PMC8840951 DOI: 10.1016/j.tibs.2021.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023]
Abstract
Readthrough transcription caused by inefficient 3'-end cleavage of nascent mRNAs has emerged as a hallmark of the mammalian cellular stress response and results in the production of long noncoding RNAs known as downstream-of-gene (DoG)-containing transcripts. DoGs arise from around 10% of human protein-coding genes and are retained in the nucleus. They are produced minutes after cell exposure to stress and can be detected hours after stress removal. However, their biogenesis and the role(s) that DoGs or their production play in the cellular stress response are incompletely understood. We discuss findings that implicate host and viral proteins in the mechanisms underlying DoG production, as well as the transcriptional landscapes that accompany DoG induction under different stress conditions.
Collapse
Affiliation(s)
- Nicolle A Rosa-Mercado
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
239
|
Spinelli R, Florese P, Parrillo L, Zatterale F, Longo M, D’Esposito V, Desiderio A, Nerstedt A, Gustafson B, Formisano P, Miele C, Raciti GA, Napoli R, Smith U, Beguinot F. ZMAT3 hypomethylation contributes to early senescence of preadipocytes from healthy first-degree relatives of type 2 diabetics. Aging Cell 2022; 21:e13557. [PMID: 35146866 PMCID: PMC8920444 DOI: 10.1111/acel.13557] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 12/18/2022] Open
Abstract
Senescence of adipose precursor cells (APC) impairs adipogenesis, contributes to the age-related subcutaneous adipose tissue (SAT) dysfunction, and increases risk of type 2 diabetes (T2D). First-degree relatives of T2D individuals (FDR) feature restricted adipogenesis, reflecting the detrimental effects of APC senescence earlier in life and rendering FDR more vulnerable to T2D. Epigenetics may contribute to these abnormalities but the underlying mechanisms remain unclear. In previous methylome comparison in APC from FDR and individuals with no diabetes familiarity (CTRL), ZMAT3 emerged as one of the top-ranked senescence-related genes featuring hypomethylation in FDR and associated with T2D risk. Here, we investigated whether and how DNA methylation changes at ZMAT3 promote early APC senescence. APC from FDR individuals revealed increases in multiple senescence markers compared to CTRL. Senescence in these cells was accompanied by ZMAT3 hypomethylation, which caused ZMAT3 upregulation. Demethylation at this gene in CTRL APC led to increased ZMAT3 expression and premature senescence, which were reverted by ZMAT3 siRNA. Furthermore, ZMAT3 overexpression in APC determined senescence and activation of the p53/p21 pathway, as observed in FDR APC. Adipogenesis was also inhibited in ZMAT3-overexpressing APC. In FDR APC, rescue of ZMAT3 methylation through senolytic exposure simultaneously downregulated ZMAT3 expression and improved adipogenesis. Interestingly, in human SAT, aging and T2D were associated with significantly increased expression of both ZMAT3 and the P53 senescence marker. Thus, DNA hypomethylation causes ZMAT3 upregulation in FDR APC accompanied by acquisition of the senescence phenotype and impaired adipogenesis, which may contribute to FDR predisposition for T2D.
Collapse
Affiliation(s)
- Rosa Spinelli
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Pasqualina Florese
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Luca Parrillo
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Federica Zatterale
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Michele Longo
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Vittoria D’Esposito
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Antonella Desiderio
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Annika Nerstedt
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Birgit Gustafson
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Pietro Formisano
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Claudia Miele
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Gregory Alexander Raciti
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| | - Raffaele Napoli
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
| | - Ulf Smith
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Francesco Beguinot
- Department of Translational Medical SciencesFederico II University of NaplesNaplesItaly
- URT Genomics of DiabetesInstitute of Experimental Endocrinology and OncologyNational Research CouncilNaplesItaly
| |
Collapse
|
240
|
Föger-Samwald U, Kerschan-Schindl K, Butylina M, Pietschmann P. Age Related Osteoporosis: Targeting Cellular Senescence. Int J Mol Sci 2022; 23:ijms23052701. [PMID: 35269841 PMCID: PMC8910503 DOI: 10.3390/ijms23052701] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Age-related chronic diseases are an enormous burden to modern societies worldwide. Among these, osteoporosis, a condition that predisposes individuals to an increased risk of fractures, substantially contributes to increased mortality and health-care costs in elderly. It is now well accepted that advanced chronical age is one of the main risk factors for chronical diseases. Hence, targeting fundamental aging mechanisms such as senescence has become a promising option in the treatment of these diseases. Moreover, for osteoporosis, the main pathophysiological concepts arise from menopause causing estrogen deficiency, and from aging. Here, we focus on recent advances in the understanding of senescence-related mechanisms contributing to age-related bone loss. Furthermore, treatment options for senile osteoporosis targeting senescent cells are reviewed.
Collapse
Affiliation(s)
- Ursula Föger-Samwald
- Medical Science and Human Medicine Study Programme, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
- Correspondence:
| | | | - Maria Butylina
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| |
Collapse
|
241
|
Liu RM. Aging, Cellular Senescence, and Alzheimer's Disease. Int J Mol Sci 2022; 23:1989. [PMID: 35216123 PMCID: PMC8874507 DOI: 10.3390/ijms23041989] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
Aging is the greatest risk factor for late-onset Alzheimer's disease (LOAD), which accounts for >95% of Alzheimer's disease (AD) cases. The mechanism underlying the aging-related susceptibility to LOAD is unknown. Cellular senescence, a state of permanent cell growth arrest, is believed to contribute importantly to aging and aging-related diseases, including AD. Senescent astrocytes, microglia, endothelial cells, and neurons have been detected in the brain of AD patients and AD animal models. Removing senescent cells genetically or pharmacologically ameliorates β-amyloid (Aβ) peptide and tau-protein-induced neuropathologies, and improves memory in AD model mice, suggesting a pivotal role of cellular senescence in AD pathophysiology. Nonetheless, although accumulated evidence supports the role of cellular senescence in aging and AD, the mechanisms that promote cell senescence and how senescent cells contribute to AD neuropathophysiology remain largely unknown. This review summarizes recent advances in this field. We believe that the removal of senescent cells represents a promising approach toward the effective treatment of aging-related diseases, such as AD.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| |
Collapse
|
242
|
Khosla S, Farr JN, Monroe DG. Cellular senescence and the skeleton: pathophysiology and therapeutic implications. J Clin Invest 2022; 132:154888. [PMID: 35104801 PMCID: PMC8803328 DOI: 10.1172/jci154888] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a fundamental aging mechanism that is currently the focus of considerable interest as a pathway that could be targeted to ameliorate aging across multiple tissues, including the skeleton. There is now substantial evidence that senescent cells accumulate in the bone microenvironment with aging and that targeting these cells prevents age-related bone loss, at least in mice. Cellular senescence also plays important roles in mediating the skeletal fragility associated with diabetes mellitus, radiation, and chemotherapy. As such, there are ongoing efforts to develop "senolytic" drugs that kill senescent cells by targeting key survival mechanisms in these cells without affecting normal cells. Because senescent cells accumulate across tissues with aging, senolytics offer the attractive possibility of treating multiple age-related comorbidities simultaneously.
Collapse
|
243
|
Shibu MA, Lin YJ, Chiang CY, Lu CY, Goswami D, Sundhar N, Agarwal S, Islam MN, Lin PY, Lin SZ, Ho TJ, Tsai WT, Kuo WW, Huang CY. Novel anti-aging herbal formulation Jing Si displays pleiotropic effects against aging associated disorders. Pharmacotherapy 2022; 146:112427. [DOI: 10.1016/j.biopha.2021.112427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 01/07/2023]
|
244
|
Jiang D, Sun W, Wu T, Zou M, Vasamsetti SB, Zhang X, Zhao Y, Phillippi JA, Sawalha AH, Tavakoli S, Dutta P, Florentin J, Chan SY, Tollison TS, Di Wu, Cui J, Huntress I, Peng X, Finkel T, Li G. Post-GWAS functional analysis identifies CUX1 as a regulator of p16 INK4a and cellular senescence. NATURE AGING 2022; 2:140-154. [PMID: 37117763 PMCID: PMC10154215 DOI: 10.1038/s43587-022-00177-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/21/2021] [Indexed: 04/30/2023]
Abstract
Accumulation of senescent cells with age is an important driver of aging and age-related diseases. However, the mechanisms and signaling pathways that regulate senescence remain elusive. In this report, we performed post-genome-wide association studies (GWAS) functional studies on the CDKN2A/B locus, a locus known to be associated with multiple age-related diseases and overall human lifespan. We demonstrate that transcription factor CUX1 (Cut-Like Homeobox 1) specifically binds to an atherosclerosis-associated functional single-nucleotide polymorphism (fSNP) (rs1537371) within the locus and regulates the CDKN2A/B-encoded proteins p14ARF, p15INK4b and p16INK4a and the antisense noncoding RNA in the CDK4 (INK4) locus (ANRIL) in endothelial cells (ECs). Endothelial CUX1 expression correlates with telomeric length and is induced by both DNA-damaging agents and oxidative stress. Moreover, induction of CUX1 expression triggers both replicative and stress-induced senescence via activation of p16INK4a expression. Thus, our studies identify CUX1 as a regulator of p16INK4a-dependent endothelial senescence and a potential therapeutic target for atherosclerosis and other age-related diseases.
Collapse
Affiliation(s)
- Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Meijuan Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Sathish Babu Vasamsetti
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiaoyu Zhang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yihan Zhao
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amr H Sawalha
- Departments of Pediatrics Medicine, and Immunology & Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Departments of Radiology and Medicine, University of Pittsburgh, UPMC Presbyterian Hospital, Pittsburg, PA, USA
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tammy S Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oral and Craniofacial Health Sciences, Adam School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Cui
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Ian Huntress
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
245
|
Wu T, Jiang D, Zou M, Sun W, Wu D, Cui J, Huntress I, Peng X, Li G. Coupling high-throughput mapping with proteomics analysis delineates cis-regulatory elements at high resolution. Nucleic Acids Res 2022; 50:e5. [PMID: 34634809 PMCID: PMC8754656 DOI: 10.1093/nar/gkab890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
Growing evidence suggests that functional cis-regulatory elements (cis-REs) not only exist in epigenetically marked but also in unmarked sites of the human genome. While it is already difficult to identify cis-REs in the epigenetically marked sites, interrogating cis-REs residing within the unmarked sites is even more challenging. Here, we report adapting Reel-seq, an in vitro high-throughput (HTP) technique, to fine-map cis-REs at high resolution over a large region of the human genome in a systematic and continuous manner. Using Reel-seq, as a proof-of-principle, we identified 408 candidate cis-REs by mapping a 58 kb core region on the aging-related CDKN2A/B locus that harbors p16INK4a. By coupling Reel-seq with FREP-MS, a proteomics analysis technique, we characterized two cis-REs, one in an epigenetically marked site and the other in an epigenetically unmarked site. These elements are shown to regulate the p16INK4a expression over an ∼100 kb distance by recruiting the poly(A) binding protein PABPC1 and the transcription factor FOXC2. Downregulation of either PABPC1 or FOXC2 in human endothelial cells (ECs) can induce the p16INK4a-dependent cellular senescence. Thus, we confirmed the utility of Reel-seq and FREP-MS analyses for the systematic identification of cis-REs at high resolution over a large region of the human genome.
Collapse
Affiliation(s)
- Ting Wu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Meijuan Zou
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Di Wu
- Division of Oral Craniofacial Health Science, Adams School of Dentistry, Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina, NC 27599, USA
| | - Jing Cui
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ian Huntress
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Xinxia Peng
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15223, USA
| |
Collapse
|
246
|
A Complexed Crystal Structure of a Single-Stranded DNA-Binding Protein with Quercetin and the Structural Basis of Flavonol Inhibition Specificity. Int J Mol Sci 2022; 23:ijms23020588. [PMID: 35054774 PMCID: PMC8775380 DOI: 10.3390/ijms23020588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Single-stranded DNA (ssDNA)-binding protein (SSB) plays a crucial role in DNA replication, repair, and recombination as well as replication fork restarts. SSB is essential for cell survival and, thus, is an attractive target for potential antipathogen chemotherapy. Whether naturally occurring products can inhibit SSB remains unknown. In this study, the effect of the flavonols myricetin, quercetin, kaempferol, and galangin on the inhibition of Pseudomonas aeruginosa SSB (PaSSB) was investigated. Furthermore, SSB was identified as a novel quercetin-binding protein. Through an electrophoretic mobility shift analysis, myricetin could inhibit the ssDNA binding activity of PaSSB with an IC50 of 2.8 ± 0.4 μM. The effect of quercetin, kaempferol, and galangin was insignificant. To elucidate the flavonol inhibition specificity, the crystal structure of PaSSB complexed with the non-inhibitor quercetin was solved using the molecular replacement method at a resolution of 2.3 Å (PDB entry 7VUM) and compared with a structure with the inhibitor myricetin (PDB entry 5YUN). Although myricetin and quercetin bound PaSSB at a similar site, their binding poses were different. Compared with myricetin, the aromatic ring of quercetin shifted by a distance of 4.9 Å and an angle of 31° for hydrogen bonding to the side chain of Asn108 in PaSSB. In addition, myricetin occupied and interacted with the ssDNA binding sites Lys7 and Glu80 in PaSSB whereas quercetin did not. This result might explain why myricetin could, but quercetin could not, strongly inhibit PaSSB. This molecular evidence reveals the flavonol inhibition specificity and also extends the interactomes of the natural anticancer products myricetin and quercetin to include the OB-fold protein SSB.
Collapse
|
247
|
Faye AS, Colombel JF. Aging and IBD: A New Challenge for Clinicians and Researchers. Inflamm Bowel Dis 2022; 28:126-132. [PMID: 33904578 DOI: 10.1093/ibd/izab039] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Evidence from recent epidemiological data suggests that the patient population with inflammatory bowel disease (IBD) is chronologically aging. As these individuals become older, cellular senescence leads to a state of chronic inflammation. This process, known as inflammaging, is thought to be closely linked with biological aging and may be upregulated within IBD. As a consequence, we see an increased risk of aging-related disorders within IBD. In addition, we see that frailty, which results from physiologic decline, is increasing in prevalence and is associated with adverse clinical outcomes in IBD. As such, in this review we explore the potential overlapping biology of IBD and aging, discuss the risk of aging-related disorders in IBD, and describe frailty and its relation to clinical outcomes within IBD. Finally, we discuss current considerations for clinical care and potential research avenues for further investigation.
Collapse
Affiliation(s)
- Adam S Faye
- Department of Medicine, Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean-Frederic Colombel
- Department of Medicine, Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
248
|
Zhou X, Cong R, Yao L, Zhou X, Luan J, Zhang Q, Zhang X, Ren X, Zhang T, Meng X, Song N. Comparative Transcriptome Analyses of Geriatric Rats Associate Age-Related Erectile Dysfunction With a lncRNA-miRNA-mRNA Regulatory Network. Front Endocrinol (Lausanne) 2022; 13:887486. [PMID: 35898462 PMCID: PMC9309694 DOI: 10.3389/fendo.2022.887486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The key regulatory roles of long non-coding RNAs (lncRNAs) in age-related erectile dysfunction (A-ED) are unknown. AIM This study aimed to identify putative lncRNAs that regulate age-related erectile dysfunction via transcriptome analyses, and to predict their specific regulatory routes via bioinformatics methods. METHODS 22 geriatric male SD rats were divided into age-related erectile dysfunction (A-ED) and negative control (NC) groups after evaluations of intracavernous pressure (ICP). By comparative analysis of transcriptomes of cavernosal tissues from both groups, we identified differentially expressed lncRNAs, miRNAs, and mRNAs. Seven differentially expressed lncRNAs were selected and further verified by quantitative real-time polymerase chain reactions (RT-qPCR). The construction of the lncRNA-miRNA-mRNA network, the Gene Ontology (GO) term enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed in Cytoscape. RESULTS From comparative transcriptome analyses of A-ED and NC groups, 69, 29, and 364 differentially expressed lncRNAs, miRNAs, and mRNAs were identified respectively. Differentially expressed lncRNAs were culled to seven, which were all verified by qPCR. Three of these lncRNAs (ENSRNOT00000090050, ENSRNOT00000076482, and ENSRNOT00000029245) were used to build regulatory networks, of which only ENSRNOT00000029245 was successful. Moreover, GO and KEGG analyses demonstrated that these lncRNAs possibly regulated muscle myosin complex, muscle cell cellular homeostasis, and ultimately erectile function in rats through PI3K-Akt, fluid shear stress, and atherosclerosis pathways. CONCLUSION Our study identified differentially expressed lncRNAs, miRNAs, and mRNAs through comparisons of transcriptomes of geriatric rats. An identified lncRNA verified by qPCR, was used to construct a lncRNA-miRNA-mRNA regulatory network. LncRNA ENSRNOT00000029245 possibly regulated downstream mRNAs through this regulatory network, leading to apoptosis in the cavernous tissue, fibrosis, and endothelial dysfunction, which ultimately caused ED. These findings provide seminal insights into the molecular biology of aging-related ED, which could spur the development of effective therapeutics.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liangyu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qijie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohan Ren
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tongtong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianghu Meng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xianghu Meng, ; Ninghong Song,
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People’s Hospital of Nanjing Medical University, Artux, China
- *Correspondence: Xianghu Meng, ; Ninghong Song,
| |
Collapse
|
249
|
Abstract
Replicative senescence occurs due to an inability to repair DNA damage and activation of p53/p21 and p16INK4 pathways. It is considered a preventive mechanism for arresting proliferation of DNA-damaged cells. Stably senescent cells are characterized by a senescence-associated secretory phenotype (SASP), which produces and secretes cytokines, chemokines, and/or matrix metalloproteinases depending on the cell type. SASP proteins may increase cell proliferation, facilitating conversion of premalignant to malignant tumor cells, triggering DNA damage, and altering the tissue microenvironment. Further, senescent cells accumulate with age, thereby aggravating age-related tissue damage. Here, we review a heretofore unappreciated role for growth hormone (GH) as a SASP component, acting in an autocrine and paracrine fashion. In senescent cells, GH is activated by DNA-damage-induced p53 and inhibits phosphorylation of DNA repair proteins ATM, Chk2, p53, and H2AX. Somatotroph adenomas containing abundant intracellular GH exhibit increased somatic copy number alterations, indicative of DNA damage, and are associated with induced p53/p21. As this pathway restrains proliferation of DNA-damaged cells, these mechanisms may underlie the senescent phenotype and benign nature of slowly proliferating pituitary somatotroph adenomas. In highly proliferative cells, such as colon epithelial cells, GH induced in response to DNA damage suppresses p53, thereby triggering senescent cell proliferation. As senescent cells harbor unrepaired DNA damage, GH may enable senescent cells to evade senescence and reenter the cell cycle, resulting in acquisition of harmful mutations. These mechanisms, at least in part, may underlie pro-aging effects of GH observed in animal models and in patients with chronically elevated GH levels.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
250
|
Triposkiadis F, Xanthopoulos A, Parissis J, Butler J, Farmakis D. Pathogenesis of chronic heart failure: cardiovascular aging, risk factors, comorbidities, and disease modifiers. Heart Fail Rev 2022; 27:337-344. [DOI: 10.1007/s10741-020-09987-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|