201
|
Kumar R, Ansari A, Comba P, Rajaraman G. Rebound or Cage Escape? The Role of the Rebound Barrier for the Reactivity of Non-Heme High-Valent Fe IV =O Species. Chemistry 2024; 30:e202303300. [PMID: 37929771 DOI: 10.1002/chem.202303300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
Owing to their high reactivity and selectivity, variations in the spin ground state and a range of possible pathways, high-valent FeIV =O species are popular models with potential bioinspired applications. An interesting example of a structure-reactivity pattern is the detailed study with five nonheme amine-pyridine pentadentate ligand FeIV =O species, including N4py: [(L1 )FeIV =O]2+ (1), bntpen: [(L2 )FeIV =O]2+ (2), py2 tacn: [(L3 )FeIV =O]2+ (3), and two isomeric bispidine derivatives: [(L4 )FeIV =O]2+ (4) and [(L5 )FeIV =O]2+ (5). In this set, the order of increasing reactivity in the hydroxylation of cyclohexane differs from that with cyclohexadiene as substrate. A comprehensive DFT, ab initio CASSCF/NEVPT2 and DLPNO-CCSD(T) study is presented to untangle the observed patterns. These are well reproduced when both activation barriers for the C-H abstraction and the OH rebound are taken into account. An MO, NBO and deformation energy analysis reveals the importance of π(pyr) → π*xz (FeIII -OH) electron donation for weakening the FeIII -OH bond and thus reducing the rebound barrier. This requires that pyridine rings are oriented perpendicularly to the FeIII -OH bond and this is a subtle but crucial point in ligand design for non-heme iron alkane hydroxylation.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai, 400076, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Haryana, 123031, India
| | - Peter Comba
- Institute of Inorganic Chemistry &, Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120, Heidelberg, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai, 400076, India
| |
Collapse
|
202
|
Zhang C, Lipparini F, Stopkowicz S, Gauss J, Cheng L. Cholesky Decomposition-Based Implementation of Relativistic Two-Component Coupled-Cluster Methods for Medium-Sized Molecules. J Chem Theory Comput 2024; 20:787-798. [PMID: 38198515 DOI: 10.1021/acs.jctc.3c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A Cholesky decomposition (CD)-based implementation of relativistic two-component coupled-cluster (CC) and equation-of-motion CC (EOM-CC) methods using an exact two-component Hamiltonian augmented with atomic-mean-field spin-orbit integrals (the X2CAMF scheme) is reported. The present CD-based implementation of X2CAMF-CC and EOM-CC methods employs atomic-orbital-based algorithms to avoid the construction of two-electron integrals and intermediates involving three and four virtual indices. Our CD-based implementation extends the applicability of X2CAMF-CC and EOM-CC methods to medium-sized molecules with the possibility to correlate around 1000 spinors. Benchmark calculations for uranium-containing small molecules were performed to assess the dependence of the CC results on the Cholesky threshold. A Cholesky threshold of 10-4 is shown to be sufficient to maintain chemical accuracy. Example calculations to illustrate the capability of the CD-based relativistic CC methods are reported for the bond-dissociation energy of the uranium hexafluoride molecule, UF6, with up to quadruple-ζ basis sets, and the lowest excitation energy in the solvated uranyl ion [UO22+(H2O)12].
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, the Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa I-56124, Italy
| | - Stella Stopkowicz
- Fachrichtung Chemie, Universität des Saarlandes, Saarbrücken D-66123, Germany
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Lan Cheng
- Department of Chemistry, the Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
203
|
Yang J, Zhang P, Shen Z, Yu ZX. Rh(I)-Catalyzed [4+3]/[4+1] Cycloaddition of Diene-Vinylcyclopropanes and Carbon Monoxide to Access Angular 5/7/5 Tricycles. Chemistry 2024; 30:e202303407. [PMID: 37917044 DOI: 10.1002/chem.202303407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Report here is a Rh-catalyzed [4+3]/[4+1] cycloaddition of diene-vinylcyclopropanes (diene-VCPs) and carbon monoxide to access compounds with angular 5/7/5 tricyclic skeleton found in natural products. The reaction has broad scope and further transformation of the [4+3]/[4+1] cycloadduct was also investigated. How this [4+3]/[4+1] reaction occurs and why its competing [4+3] reaction is disfavored have been investigated computationally.
Collapse
Affiliation(s)
- Jun Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Pan Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zeyuan Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| |
Collapse
|
204
|
Pasik D, Iyer S, Myllys N. Cost-effective approach for atmospheric accretion reactions: a case of peroxy radical addition to isoprene. Phys Chem Chem Phys 2024; 26:2560-2567. [PMID: 38170853 DOI: 10.1039/d3cp04308h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We present an accurate and cost-effective method for investigating the accretion reactions between unsaturated hydrocarbons and oxidized organic radicals. We use accretion between isoprene and primary, secondary and tertiary alkyl peroxy radicals as model reactions. We show that a systematic semiempirical transition state search can lead to better transition state structures than relaxed scanning with density functional theory with a significant gain in computational efficiency. Additionally, we suggest accurate and effective quantum chemical methods to study accretion reactions between large unsaturated hydrocarbons and oxidized organic radicals. Furthermore, we examine the atmospheric relevance of these types of reactions by calculating the bimolecular reaction rate coefficients and formation rates under atmospheric conditions from the quantum chemical reaction energy barriers.
Collapse
Affiliation(s)
- Dominika Pasik
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki 00014, Finland
| | - Siddharth Iyer
- Aerosol Physics Laboratory, Tampere University, Tampere FI-3720, Finland
| | - Nanna Myllys
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
- Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
205
|
Abaeva M, Ieritano C, Hopkins WS, Schipper DJ. Unsymmetrical Imidazopyrimidine-Based Ligand and Bimetallic Complexes. Inorg Chem 2024; 63:1010-1019. [PMID: 38055895 DOI: 10.1021/acs.inorgchem.3c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
With bimetallic catalysts becoming increasingly important, the development of electronically and structurally diverse binucleating ligands is desired. This work describes the synthesis of unsymmetric ligand 2,7-di(pyridin-2-yl)imidazo[1,2-a]pyrimidine (dpip) that is achieved in four steps on a multigram scale in an overall 54% yield. The ability of dpip to act as a scaffold for the formation of bimetallic complexes is demonstrated with the one-step syntheses of the dicopper complex [Cu2(dpip)(μ-OH)(CF3COO)3] (4), the dipalladium complex [Pd2(dpip)(μ-OH)(CF3COO)2](CF3COO)·CF3COOH (5), and the dimeric dinickel complex [Ni4(dpip)2(μ-Cl)4Cl2MeOH6][2Cl] (6) in good yields (79-92%). All bimetallic complexes were characterized by spectroscopic methods and X-ray crystallography, which revealed metal-metal distances between 3.4821(9) and 4.106(2) Å. Additionally, quantum chemical calculations were conducted on complex 4 and an analogous 1,8-naphthyridine-based dicopper complex to investigate the differences between the imidazopyrimidine motif reported here and the widely used 1,8-naphthyridine motif. Natural bonding orbital (NBO) and Mayer bond order (MBO) analyses validated the ability of dpip to coordinate metals more strongly. Finally, NBO calculations quantified the differences in the binding energy between the two pockets of the unsymmetrical dpip ligand.
Collapse
Affiliation(s)
- Mila Abaeva
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Christian Ieritano
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - Derek J Schipper
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
206
|
Sinha S, Giri S. In Silico Investigation of the Mechanism of Disulfide Bond Dissociation by New Frustrated Lewis Pairs. J Phys Chem A 2024; 128:97-106. [PMID: 38149919 DOI: 10.1021/acs.jpca.3c06351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Understanding the mechanism of disulfide bond cleavage is important in various scientific disciplines including organic synthesis, catalysis, and biochemistry. In this study, an in silico investigation has been carried out for the dissociation of disulfide bonds using newly designed frustrated Lewis pairs (FLPs). The study revealed that the cleavage of the disulfide bond by the FLP P(tBu)3/B(C2NBSHF2)3 can also be used like the conventional FLP (tBu)3P/B(C6F5)3. It has been observed that the reaction is almost thermoneutral in the gas phase but exothermic in nonpolar solvents, such as toluene, heptane, and hexane. Furthermore, the natural bond orbital (NBO) describes insights into the role of FLPs in facilitating this reaction. Additionally, reaction force and force constant studies shed light on the energy requirements for completing the reaction and the synchronous nature of the dissociation process, respectively. Reaction electronic flux (REF) and its separations give the pattern of electronic activity during the chemical reaction. Extended transition state-natural orbitals for chemical valence (ETS-NOCV) and principal interacting orbital (PIO) analysis provide valuable information about the orbital interactions during the chemical reaction.
Collapse
Affiliation(s)
- Swapan Sinha
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia 721657, India
- Maulana Abul Kalam Azad University of Technology, Haringhata 741249, India
| | - Santanab Giri
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia 721657, India
| |
Collapse
|
207
|
Dasgupta S, Palos E, Pan Y, Paesani F. Balance between Physical Interpretability and Energetic Predictability in Widely Used Dispersion-Corrected Density Functionals. J Chem Theory Comput 2024; 20:49-67. [PMID: 38150541 DOI: 10.1021/acs.jctc.3c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
We assess the performance of different dispersion models for several popular density functionals across a diverse set of noncovalent systems, ranging from the benzene dimer to molecular crystals. By analyzing the interaction energies and their individual components, we demonstrate that there exists variability across different systems for empirical dispersion models, which are calibrated for reproducing the interaction energies of specific systems. Thus, parameter fitting may undermine the underlying physics, as dispersion models rely on error compensation among the different components of the interaction energy. Energy decomposition analyses reveal that, the accuracy of revPBE-D3 for some aqueous systems originates from significant compensation between dispersion and charge transfer energies. However, revPBE-D3 is less accurate in describing systems where error compensation is incomplete, such as the benzene dimer. Such cases highlight the propensity for unpredictable behavior in various dispersion-corrected density functionals across a wide range of molecular systems, akin to the behavior of force fields. On the other hand, we find that SCAN-rVV10, a targeted-dispersion approach, affords significant reductions in errors associated with the lattice energies of molecular crystals, while it has limited accuracy in reproducing structural properties. Given the ubiquitous nature of noncovalent interactions and the key role of density functional theory in computational sciences, the future development of dispersion models should prioritize the faithful description of the dispersion energy, a shift that promises greater accuracy in capturing the underlying physics across diverse molecular and extended systems.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Yuanhui Pan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
208
|
Kurian JS, Ye HZ, Mahajan A, Berkelbach TC, Sharma S. Toward Linear Scaling Auxiliary-Field Quantum Monte Carlo with Local Natural Orbitals. J Chem Theory Comput 2024; 20:134-142. [PMID: 38113195 DOI: 10.1021/acs.jctc.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We develop a local correlation variant of auxiliary-field quantum Monte Carlo (AFQMC) based on local natural orbitals (LNO-AFQMC). In LNO-AFQMC, independent AFQMC calculations are performed for each localized occupied orbital using a truncated set of tailored orbitals. Because the size of this space does not grow with the system size for a target accuracy, the method has linear scaling. Applying LNO-AFQMC to molecular problems containing a few hundred to a thousand orbitals, we demonstrate convergence of total energies with significantly reduced costs. The savings are more significant for larger systems and larger basis sets. However, even for our smallest system studied, we find that LNO-AFQMC is cheaper than canonical AFQMC, in contrast with many other reduced-scaling methods. Perhaps most significantly, we show that energy differences converge much more quickly than total energies, making the method ideal for applications in chemistry and material science. Our work paves the way for linear scaling AFQMC calculations of strongly correlated systems, which would have a transformative effect on ab initio quantum chemistry.
Collapse
Affiliation(s)
- Jo S Kurian
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| | - Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
209
|
Nguyen DB, Jackson KA, Peralta JE. Bond length alternation of π-conjugated polymers predicted by the Fermi-Löwdin orbital self-interaction correction method. J Chem Phys 2024; 160:014101. [PMID: 38165094 DOI: 10.1063/5.0178251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
π-conjugated polymers have been used in a wide range of practical applications, partly due to their unique properties that originate in the delocalization of electrons through the polymer backbone. The level of delocalization can be characterized by the induced bond length alternation (BLA), with shorter BLA connected with strong delocalization and vice versa. The accurate description of this structural parameter can be considered a benchmark for testing the capability of different electronic structure methods for self-interaction error (SIE) removal and electron correlation inclusion. Density functional theory (DFT), in its local or semi-local flavors, suffers from SIE and, thus, underestimates the BLA compared to self-interaction-free methods. In this work, we utilize the Fermi-Löwdin orbital self-interaction correction (FLOSIC) method for one-electron self-interaction removal to characterize the BLA of five oligomers with increasing length extrapolated to the polymeric limit. We compare the self-interaction-free BLA to several DFT approximations, Møller-Plesset second-order perturbation theory (MP2), and the BLA obtained with the domain based local pair natural orbital CCSD(T) [DLPNO-CCSD(T)] approximation. Our findings show that FLOSIC corrects for the small BLA given by (semi-)local DFT approximations, but it tends to overcorrect with respect to CAM-B3LYP, MP2, and DLPNO-CCSD(T).
Collapse
Affiliation(s)
- Duyen B Nguyen
- Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Koblar A Jackson
- Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| | - Juan E Peralta
- Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| |
Collapse
|
210
|
Czernek J, Brus J. Reliable Dimerization Energies for Modeling of Supramolecular Junctions. Int J Mol Sci 2024; 25:602. [PMID: 38203773 PMCID: PMC10778993 DOI: 10.3390/ijms25010602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Accurate estimates of intermolecular interaction energy, ΔE, are crucial for modeling the properties of organic electronic materials and many other systems. For a diverse set of 50 dimers comprising up to 50 atoms (Set50-50, with 7 of its members being models of single-stacking junctions), benchmark ΔE data were compiled. They were obtained by the focal-point strategy, which involves computations using the canonical variant of the coupled cluster theory with singles, doubles, and perturbative triples [CCSD(T)] performed while applying a large basis set, along with extrapolations of the respective energy components to the complete basis set (CBS) limit. The resulting ΔE data were used to gauge the performance for the Set50-50 of several density-functional theory (DFT)-based approaches, and of one of the localized variants of the CCSD(T) method. This evaluation revealed that (1) the proposed "silver standard" approach, which employs the localized CCSD(T) method and CBS extrapolations, can be expected to provide accuracy better than two kJ/mol for absolute values of ΔE, and (2) from among the DFT techniques, computationally by far the cheapest approach (termed "ωB97X-3c/vDZP" by its authors) performed remarkably well. These findings are directly applicable in cost-effective yet reliable searches of the potential energy surfaces of noncovalent complexes.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 16200 Prague, Czech Republic;
| | | |
Collapse
|
211
|
Craciunescu L, Asbach M, Wirsing S, Hammer S, Unger F, Broch K, Schreiber F, Witte G, Dreuw A, Tegeder P, Fantuzzi F, Engels B. Cluster-Based Approach Utilizing Optimally Tuned TD-DFT to Calculate Absorption Spectra of Organic Semiconductor Thin Films. J Chem Theory Comput 2023; 19:9369-9387. [PMID: 38073092 DOI: 10.1021/acs.jctc.3c01107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The photophysics of organic semiconductor (OSC) thin films or crystals has garnered significant attention in recent years since a comprehensive theoretical understanding of the various processes occurring upon photoexcitation is crucial for assessing the efficiency of OSC materials. To date, research in this area has relied on methods using Frenkel-Holstein Hamiltonians, calculations of the GW-Bethe-Salpeter equation with periodic boundaries, or cluster-based approaches using quantum chemical methods, with each of the three approaches having distinct advantages and disadvantages. In this work, we introduce an optimally tuned, range-separated time-dependent density functional theory approach to accurately reproduce the total and polarization-resolved absorption spectra of pentacene, tetracene, and perylene thin films, all representative OSC materials. Our approach achieves excellent agreement with experimental data (mostly ≤0.1 eV) when combined with the utilization of clusters comprising multiple monomers and a standard polarizable continuum model to simulate the thin-film environment. Our protocol therefore addresses a major drawback of cluster-based approaches and makes them attractive tools for OSC investigations. Its key advantages include its independence from external, system-specific fitting parameters and its straightforward application with well-known quantum chemical program codes. It demonstrates how chemical intuition can help to reduce computational cost and still arrive at chemically meaningful and almost quantitative results.
Collapse
Affiliation(s)
- Luca Craciunescu
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, U.K
| | - Maximilian Asbach
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Sara Wirsing
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Sebastian Hammer
- Experimentelle Physik VI, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for the Physics of Materials, Department of Physics and Department of Chemistry, McGill University, 801 Sherbrooke St. W, Montreal, H3A 2K6 Québec, Canada
| | - Frederik Unger
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Katharina Broch
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Gregor Witte
- Molekulare Festkörperphysik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Petra Tegeder
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, CT2 7NH Canterbury, U.K
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| |
Collapse
|
212
|
Inostroza D, Leyva-Parra L, Pino-Rios R, Solar-Encinas J, Vásquez-Espinal A, Pan S, Merino G, Yañez O, Tiznado W. Li 6 E 5 Li 6 : Tetrel Sandwich Complexes with 10-π-Electrons. Angew Chem Int Ed Engl 2023:e202317848. [PMID: 38087836 DOI: 10.1002/anie.202317848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 12/29/2023]
Abstract
When (4n +2) π-electrons are located in single planar ring, it conventionally qualifies as aromatic. According Hückel's rule, systems possessing ten π-electrons should be aromatic. Herein we report a series of D5h Li6 E5 Li6 sandwich structures, representing the first global minima featuring ten π-electrons E5 10- ring (E=Si-Pb). However, these π-electrons localize as five π-lone-pairs rather than delocalized orbitals. The high symmetry structure achieved is a direct consequence of σ-aromaticity, particularly favored in elements from Si to Pb, resulting in a pronounced diatropic ring current flow that contributes to the enhanced stability of these systems.
Collapse
Affiliation(s)
- Diego Inostroza
- Centro de Química Teórica & Computacional (CQT&C), Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Avenida República 275, 8370146, Santiago de Chile, Chile
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, 8370146, Santiago, Chile
| | - Luis Leyva-Parra
- Centro de Química Teórica & Computacional (CQT&C), Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Avenida República 275, 8370146, Santiago de Chile, Chile
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, 8370146, Santiago, Chile
| | - Ricardo Pino-Rios
- Instituto de Estudios de la Salud, Universidad Arturo Prat, 1100000, Iquique, Chile
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, 1100000, Iquique, Chile
| | - José Solar-Encinas
- Centro de Química Teórica & Computacional (CQT&C), Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Avenida República 275, 8370146, Santiago de Chile, Chile
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, 8370146, Santiago, Chile
| | - Alejandro Vásquez-Espinal
- Instituto de Estudios de la Salud, Universidad Arturo Prat, 1100000, Iquique, Chile
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, 1100000, Iquique, Chile
| | - Sudip Pan
- Institute of Atomic and Molecular Physics, Jilin University, 130023, Changchun, China
| | - Gabriel Merino
- Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados Merida, Km. 6 Antigua carretera a Progreso Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México
| | - Osvaldo Yañez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, 7500000, Santiago, Chile
| | - William Tiznado
- Centro de Química Teórica & Computacional (CQT&C), Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello, Avenida República 275, 8370146, Santiago de Chile, Chile
| |
Collapse
|
213
|
Verma P, Mukherjee M, Bhattacharya D, Haritan I, Dutta AK. Shape resonance induced electron attachment to cytosine: The effect of aqueous media. J Chem Phys 2023; 159:214303. [PMID: 38038205 DOI: 10.1063/5.0157576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/31/2023] [Indexed: 12/02/2023] Open
Abstract
We have investigated the impact of microsolvation on shape-type resonance states of nucleobases, taking cytosine as a case study. To characterize the resonance position and decay width of the metastable states, we employed the newly developed DLPNO-based EA-EOM-CCSD method in conjunction with the resonance via Padé (RVP) method. Our calculations show that the presence of water molecules causes a redshift in the resonance position and an increase in the lifetime for the three lowest-lying resonance states of cytosine. Furthermore, there are some indications that the lowest resonance state in isolated cytosine may get converted to a bound state in the presence of an aqueous environment. The obtained results are extremely sensitive to the basis set used for the calculations.
Collapse
Affiliation(s)
- Pooja Verma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Madhubani Mukherjee
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Debarati Bhattacharya
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Idan Haritan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
214
|
Vennelakanti V, Li GL, Kulik HJ. Why Nonheme Iron Halogenases Do Not Fluorinate C-H Bonds: A Computational Investigation. Inorg Chem 2023; 62:19758-19770. [PMID: 37972340 DOI: 10.1021/acs.inorgchem.3c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Selective halogenation is necessary for a range of fine chemical applications, including the development of therapeutic drugs. While synthetic processes to achieve C-H halogenation require harsh conditions, enzymes such as nonheme iron halogenases carry out some types of C-H halogenation, i.e., chlorination or bromination, with ease, while others, i.e., fluorination, have never been observed in natural or engineered nonheme iron enzymes. Using density functional theory and correlated wave function theory, we investigate the differences in structural and energetic preferences of the smaller fluoride and the larger chloride or bromide intermediates throughout the catalytic cycle. Although we find that the energetics of rate-limiting hydrogen atom transfer are not strongly impacted by fluoride substitution, the higher barriers observed during the radical rebound reaction for fluoride relative to chloride and bromide contribute to the difficulty of C-H fluorination. We also investigate the possibility of isomerization playing a role in differences in reaction selectivity, and our calculations reveal crucial differences in terms of isomer energetics of the key ferryl intermediate between fluoride and chloride/bromide intermediates. While formation of monodentate isomers believed to be involved in selective catalysis is shown for chloride and bromide intermediates, we find that formation of the fluoride monodentate intermediate is not possible in our calculations, which lack additional stabilizing interactions with the greater protein environment. Furthermore, the shorter Fe-F bonds are found to increase isomerization reaction barriers, suggesting that incorporation of residues that form a halogen bond with F and elongate Fe-F bonds could make selective C-H fluorination possible in nonheme iron halogenases. Our work highlights the differences between the fluoride and chloride/bromide intermediates and suggests potential steps toward engineering nonheme iron halogenases to enable selective C-H fluorination.
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Grace L Li
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
215
|
Byun S, Hwang MU, Wise HR, Bay AV, Cheong PHY, Scheidt KA. Light-Driven Enantioselective Carbene-Catalyzed Radical-Radical Coupling. Angew Chem Int Ed Engl 2023; 62:e202312829. [PMID: 37845183 PMCID: PMC10841513 DOI: 10.1002/anie.202312829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
An enantioselective carbene-catalyzed radical-radical coupling of acyl imidazoles and racemic Hantzsch esters is disclosed. This method involves the coupling of an N-heterocyclic carbene-derived ketyl radical and a secondary sp3 -carbon radical and allows access to chiral α-aryl aliphatic ketones in moderate-to-good yields and enantioselectivities without any competitive epimerization. The utility of this protocol is highlighted by the late-stage functionalization of various pharmaceutical compounds and is further demonstrated by the transformation of the enantioenriched products to biologically relevant molecules. Computational investigations reveal the N-heterocyclic carbene controls the double-facial selectivity of the ketyl radical and the alkyl radicals, respectively.
Collapse
Affiliation(s)
- Seunghwan Byun
- Department of Chemistry, Northwestern University Silverman Hall, Evanston, Illinois 60208 (USA)
| | - Meemie U. Hwang
- Department of Chemistry, Northwestern University Silverman Hall, Evanston, Illinois 60208 (USA)
| | - Henry R. Wise
- Department of Chemistry, Oregon State University 153 Gilbert Hall, Corvallis, Oregon 97331 (USA)
| | - Anna V. Bay
- Department of Chemistry, Northwestern University Silverman Hall, Evanston, Illinois 60208 (USA)
| | - Paul H.-Y. Cheong
- Department of Chemistry, Oregon State University 153 Gilbert Hall, Corvallis, Oregon 97331 (USA)
| | | |
Collapse
|
216
|
Sanyam, Khatua R, Mondal A. Constructing Multiresonance Thermally Activated Delayed Fluorescence Emitters for Organic LEDs: A Computational Investigation. J Phys Chem A 2023. [PMID: 38048094 DOI: 10.1021/acs.jpca.3c05056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials have acquired substantial attention due to their high electroluminescence efficiency with narrow emission spectra. However, the existing MR-TADF emitters suffer from substantial efficiency roll-off due to insufficient rate constants of the reverse intersystem crossing (kRISC) process compared to the traditional TADF materials. Herein, we employ the DLPNO-STEOM-CCSD method, which is computationally less expensive than the wave function-based EOM-CCSD method, to evaluate the electronic and photophysical properties of MR-TADF materials accurately. The predicted singlet-triplet energy gap (ΔEST), one of the critical parameters governing the TADF efficiency, exhibits remarkable agreement with the experimental measurement, with a standard deviation value of 0.026 eV (obtained based on five experimentally synthesized MR-TADF systems). The proposed technique was utilized to determine the suitability of 15 newly designed MR-TADF emitters via their computed radiative and nonradiative rates, luminescence efficiencies, and exciton characteristics. Moreover, most conceived molecules exhibit blue emission with decent to strong oscillator strengths, making them potential candidates for practical light-emitting applications. The proposed computational route will undoubtedly accelerate the designing and prescreening of potential MR-TADF emitters before their expensive laboratory synthesis and characterization.
Collapse
Affiliation(s)
- Sanyam
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Rudranarayan Khatua
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Anirban Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
217
|
Stylianakis I, Zervos N, Lii JH, Pantazis DA, Kolocouris A. Conformational energies of reference organic molecules: benchmarking of common efficient computational methods against coupled cluster theory. J Comput Aided Mol Des 2023; 37:607-656. [PMID: 37597063 PMCID: PMC10618395 DOI: 10.1007/s10822-023-00513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/03/2023] [Indexed: 08/21/2023]
Abstract
We selected 145 reference organic molecules that include model fragments used in computer-aided drug design. We calculated 158 conformational energies and barriers using force fields, with wide applicability in commercial and free softwares and extensive application on the calculation of conformational energies of organic molecules, e.g. the UFF and DREIDING force fields, the Allinger's force fields MM3-96, MM3-00, MM4-8, the MM2-91 clones MMX and MM+, the MMFF94 force field, MM4, ab initio Hartree-Fock (HF) theory with different basis sets, the standard density functional theory B3LYP, the second-order post-HF MP2 theory and the Domain-based Local Pair Natural Orbital Coupled Cluster DLPNO-CCSD(T) theory, with the latter used for accurate reference values. The data set of the organic molecules includes hydrocarbons, haloalkanes, conjugated compounds, and oxygen-, nitrogen-, phosphorus- and sulphur-containing compounds. We reviewed in detail the conformational aspects of these model organic molecules providing the current understanding of the steric and electronic factors that determine the stability of low energy conformers and the literature including previous experimental observations and calculated findings. While progress on the computer hardware allows the calculations of thousands of conformations for later use in drug design projects, this study is an update from previous classical studies that used, as reference values, experimental ones using a variety of methods and different environments. The lowest mean error against the DLPNO-CCSD(T) reference was calculated for MP2 (0.35 kcal mol-1), followed by B3LYP (0.69 kcal mol-1) and the HF theories (0.81-1.0 kcal mol-1). As regards the force fields, the lowest errors were observed for the Allinger's force fields MM3-00 (1.28 kcal mol-1), ΜΜ3-96 (1.40 kcal mol-1) and the Halgren's MMFF94 force field (1.30 kcal mol-1) and then for the MM2-91 clones MMX (1.77 kcal mol-1) and MM+ (2.01 kcal mol-1) and MM4 (2.05 kcal mol-1). The DREIDING (3.63 kcal mol-1) and UFF (3.77 kcal mol-1) force fields have the lowest performance. These model organic molecules we used are often present as fragments in drug-like molecules. The values calculated using DLPNO-CCSD(T) make up a valuable data set for further comparisons and for improved force field parameterization.
Collapse
Affiliation(s)
- Ioannis Stylianakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771, Athens, Greece
| | - Nikolaos Zervos
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771, Athens, Greece
| | - Jenn-Huei Lii
- Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Antonios Kolocouris
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771, Athens, Greece.
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece.
| |
Collapse
|
218
|
Yue S, Nandy A, Kulik HJ. Discovering Molecular Coordination Environment Trends for Selective Ion Binding to Molecular Complexes Using Machine Learning. J Phys Chem B 2023. [PMID: 38038675 DOI: 10.1021/acs.jpcb.3c06416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The design of ion-selective materials with improved separation efficacy and efficiency is paramount, as current technologies fail to meet real-world deployment challenges. Selectivity in these materials can be informed by local ion binding in confined membrane ion channels. In this study, we utilize a data-driven approach to investigate design features in small molecular complexes coordinating ions as simplified models of ion channels. We curate a data set of 563 alkali metal coordinating molecular complexes (i.e., with Li+, Na+, or K+) from the Cambridge Structural Database and calculate differential ion binding energies using density functional theory. Using this information, we probe when and why structures favor exchange with alternate ions. Our analysis reveals that energetic preferences are related to ion size but are largely due to chemical interactions rather than structural reorganization. We identify unique trends in the selectivity for Li+ over other alkali ions, including the presence of N coordination atoms, planar coordination geometry, and small coordinating ring sizes. We use machine learning models to identify the key contributions of both geometric and electronic features in predicting selective ion binding. These physical insights offer preliminary guidance into the design of optimal membranes for ion selectivity.
Collapse
Affiliation(s)
- Shuwen Yue
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
219
|
Akhmetshina ES, Khursan SL. Theoretical determination of the standard enthalpies of formation of alkyl radicals using the concept of a complete set of homodesmotic reactions. J Mol Graph Model 2023; 125:108615. [PMID: 37647723 DOI: 10.1016/j.jmgm.2023.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The complete sets of homodesmotic reactions (HDR) for 107 acyclic alkyl free radicals С4-С9 of normal and branched structure were constructed using the graph-theoretic representation and analysis of a tested compound. The absolute enthalpies of the studied compounds and HDR reference structures were calculated using the M062X/cc-pVTZ level of theory. Based on these data, the thermal effects of HDRs were calculated and then applied to determine the standard enthalpies of formation of the studied radicals using the known enthalpies of formation of reference structures. The dissociation energies of BDE C-H and C-CH3 bonds were also calculated. The effect of radical structure on the BDE value is discussed, and a new effect of stabilization of the radical center in the skewed conformation of free radical is established; this effect has not been previously described in the scientific literature.
Collapse
Affiliation(s)
- Ekaterina S Akhmetshina
- Institution of Russian Academy of Sciences Institute of Organic Chemistry, Ufa Scientific Centre of the RAS, 71 Prospect Oktyabrya, 450054, Ufa, Russian Federation
| | - Sergey L Khursan
- Institution of Russian Academy of Sciences Institute of Organic Chemistry, Ufa Scientific Centre of the RAS, 71 Prospect Oktyabrya, 450054, Ufa, Russian Federation.
| |
Collapse
|
220
|
Lu Q, Bian W. The Decay of Dispersion Interaction and Its Remarkable Effects on the Kinetics of Activation Reactions Involving Alkyl Chains. J Phys Chem Lett 2023; 14:10642-10647. [PMID: 38031665 DOI: 10.1021/acs.jpclett.3c02925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The importance of dispersion interactions in many chemical processes is well recognized. It is known that the dispersion strength would decay with the increasing separation between the interacting groups; however, its effects on chemical reactivity have not been well understood. Here we reveal the decay law of dispersion interactions along the n-alkyl chain, its effective interaction ranges for common functional groups, and their remarkable effects on the kinetics of activation reactions involving alkyl chains. This is achieved by DLPNO-CCSD(T) calculations and the local energy decomposition analysis and is supported by experimental findings. In particular, our calculations indicate that the lifetime of alkyl-substituted cis-azobenzenes increases with the alkyl chain length but reaches a steady value when alkyl chains are longer than butyl groups, which is in satisfactory accordance with experimental measurements. We also propose a concise expression to describe the dispersion decay, which shows excellent agreement with our computed results.
Collapse
Affiliation(s)
- Qing Lu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
221
|
Kubečka J, Besel V, Neefjes I, Knattrup Y, Kurtén T, Vehkamäki H, Elm J. Computational Tools for Handling Molecular Clusters: Configurational Sampling, Storage, Analysis, and Machine Learning. ACS OMEGA 2023; 8:45115-45128. [PMID: 38046354 PMCID: PMC10688175 DOI: 10.1021/acsomega.3c07412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Computational modeling of atmospheric molecular clusters requires a comprehensive understanding of their complex configurational spaces, interaction patterns, stabilities against fragmentation, and even dynamic behaviors. To address these needs, we introduce the Jammy Key framework, a collection of automated scripts that facilitate and streamline molecular cluster modeling workflows. Jammy Key handles file manipulations between varieties of integrated third-party programs. The framework is divided into three main functionalities: (1) Jammy Key for configurational sampling (JKCS) to perform systematic configurational sampling of molecular clusters, (2) Jammy Key for quantum chemistry (JKQC) to analyze commonly used quantum chemistry output files and facilitate database construction, handling, and analysis, and (3) Jammy Key for machine learning (JKML) to manage machine learning methods in optimizing molecular cluster modeling. This automation and machine learning utilization significantly reduces manual labor, greatly speeds up the search for molecular cluster configurations, and thus increases the number of systems that can be studied. Following the example of the Atmospheric Cluster Database (ACDB) of Elm (ACS Omega, 4, 10965-10984, 2019), the molecular clusters modeled in our group using the Jammy Key framework have been stored in an improved online GitHub repository named ACDB 2.0. In this work, we present the Jammy Key package alongside its assorted applications, which underline its versatility. Using several illustrative examples, we discuss how to choose appropriate combinations of methodologies for treating particular cluster types, including reactive, multicomponent, charged, or radical clusters, as well as clusters containing flexible or multiconformer monomers or heavy atoms. Finally, we present a detailed example of using the tools for atmospheric acid-base clusters.
Collapse
Affiliation(s)
- Jakub Kubečka
- Aarhus
University, Department of Chemistry, Langelandsgade 140, Aarhus 8000, Denmark
| | - Vitus Besel
- University
of Helsinki, Institute for Atmospheric and
Earth System Research/Physics, Faculty of Science, P.O. Box 64, Helsinki 00140, Finland
| | - Ivo Neefjes
- University
of Helsinki, Institute for Atmospheric and
Earth System Research/Physics, Faculty of Science, P.O. Box 64, Helsinki 00140, Finland
| | - Yosef Knattrup
- Aarhus
University, Department of Chemistry, Langelandsgade 140, Aarhus 8000, Denmark
| | - Theo Kurtén
- University
of Helsinki, Institute for Atmospheric and
Earth System Research/Chemistry, Faculty of Science, P.O. Box 64, Helsinki 00140, Finland
| | - Hanna Vehkamäki
- University
of Helsinki, Institute for Atmospheric and
Earth System Research/Physics, Faculty of Science, P.O. Box 64, Helsinki 00140, Finland
| | - Jonas Elm
- Aarhus
University, Department of Chemistry, Langelandsgade 140, Aarhus 8000, Denmark
| |
Collapse
|
222
|
Folkestad SD, Koch H. Triplet Excited States with Multilevel Coupled Cluster Theory. J Chem Theory Comput 2023; 19:8108-8117. [PMID: 37966896 PMCID: PMC10687868 DOI: 10.1021/acs.jctc.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 11/17/2023]
Abstract
We extend the multilevel coupled cluster framework with triplet excitation energies at the singles and perturbative doubles (MLCC2) and singles and doubles (MLCCSD) levels of theory. In multilevel coupled cluster theory, we partition the orbitals and restrict the higher-order excitations in the cluster operator to a set of active orbitals. With an appropriate choice of these orbitals, the multilevel approach can give significant computational savings while maintaining the high accuracy of standard coupled cluster theory. In this work, we generated active orbitals from approximate correlated natural transition orbitals (CNTOs). The CNTOs form a compact orbital space specifically tailored to describe the triplet excited states of interest. We compare the performance of MLCCSD and MLCC2, in terms of cost and accuracy, to those of their standard coupled cluster counterparts (CC2 and CCSD) and finally show proof-of-concept calculations of the singlet-triplet gaps of molecules that are of interest for their potential use in organic light-emitting diodes.
Collapse
Affiliation(s)
- Sarai Dery Folkestad
- Department
of Chemistry, Norwegian University of Science
and Technology, Trondheim 7491, Norway
| | - Henrik Koch
- Department
of Chemistry, Norwegian University of Science
and Technology, Trondheim 7491, Norway
- Scuola
Normale Superiore, Piazza dei Cavaleri 7, Pisa 56126, Italy
| |
Collapse
|
223
|
Wu H, Engsvang M, Knattrup Y, Kubečka J, Elm J. Improved Configurational Sampling Protocol for Large Atmospheric Molecular Clusters. ACS OMEGA 2023; 8:45065-45077. [PMID: 38046341 PMCID: PMC10688134 DOI: 10.1021/acsomega.3c06794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
The nucleation process leading to the formation of new atmospheric particles plays a crucial role in aerosol research. Quantum chemical (QC) calculations can be used to model the early stages of aerosol formation, where atmospheric vapor molecules interact and form stable molecular clusters. However, QC calculations heavily depend on the chosen computational method, and when dealing with large systems, striking a balance between accuracy and computational cost becomes essential. We benchmarked the binding energies and structures and found the B97-3c method to be a good compromise between the accuracy and computational cost for studying large cluster systems. Further, we carefully assessed configurational sampling procedures for targeting large atmospheric molecular clusters containing up to 30 molecules (approximately 2 nm in diameter) and proposed a funneling approach with highly improved accuracy. We find that several parallel ABCluster explorations lead to better guesses for the cluster global energy minimum structures than one long exploration. This methodology allows us to bridge computational studies of molecular clusters, which typically reach only around 1 nm, with experimental studies that often measure particles larger than 2 nm. By employing this workflow, we searched for low-energy configurations of large sulfuric acid-ammonia and sulfuric acid-dimethylamine clusters. We find that the binding free energies of clusters containing dimethylamine are unequivocally more stable than those of the ammonia-containing clusters. Our improved configurational sampling protocol can in the future be applied to study the growth and dynamics of large clusters of arbitrary compositions.
Collapse
Affiliation(s)
- Haide Wu
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Morten Engsvang
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Yosef Knattrup
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jakub Kubečka
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
224
|
Wang Y, Guo Y, Neese F, Valeev EF, Li W, Li S. Cluster-in-Molecule Approach with Explicitly Correlated Methods for Large Molecules. J Chem Theory Comput 2023; 19:8076-8089. [PMID: 37920973 DOI: 10.1021/acs.jctc.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In this article, we present a series of explicitly correlated local correlation methods developed under the cluster-in-molecule (CIM) framework, including explicitly correlated second-order Møller-Plesset perturbation (MP2), coupled-cluster singles and doubles (CCSD), domain-based local pair natural orbital CCSD (DLPNO-CCSD), and DLPNO-CCSD with perturbative triples (DLPNO-CCSD(T)). In these methods, F12 correction is decomposed into contributions from each occupied local molecular orbital and then evaluated independently in a given cluster, which consists of a subset of localized orbitals. These newly developed methods allow F12 calculations of large molecules (up to 145 atoms for quasi-one-dimensional systems) on a single node. We use these methods to investigate the relative stability between extended and folded alkane C30H62, the relative stability of four secondary structures of a polyglycine Ace(Gly)10NH2, and the binding energies of two host-guest complexes. The results demonstrate that the combination of CIM with F12 methods is a promising way to investigate large molecules with small basis set errors.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, New Cornerstone Science Laboratory, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
225
|
Inai N, Yamaguchi S, Yanai T. Theoretical Insight into the Effect of Phosphorus Oxygenation on Nonradiative Decays: Comparative Analysis of P-Bridged Stilbene Analogs. ACS PHYSICAL CHEMISTRY AU 2023; 3:540-552. [PMID: 38034034 PMCID: PMC10683489 DOI: 10.1021/acsphyschemau.3c00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023]
Abstract
Incorporation of the phosphorus element into a π-conjugated skeleton offers valuable prospects for adjusting the electronic structure of the resulting functional π-electron systems. Trivalent phosphorus has the potential to decrease the LUMO level through σ*-π* interaction, which is further enhanced by its oxygenation to the pentavalent P center. This study shows that utilizing our computational analysis to examine excited-state dynamics based on radiative/nonradiative rate constants and fluorescence quantum yield (ΦF) is effective for analyzing the photophysical properties of P-containing organic dyes. We theoretically investigate how the trivalent phosphanyl group and pentavalent phosphine oxide moieties affect radiative and nonradiative decay processes. We evaluate four variations of P-bridged stilbene analogs. Our analysis reveals that the primary decay pathway for photoexcited bis-phosphanyl-bridged stilbene is the intersystem crossing (ISC) to the triplet state and nonradiative. The oxidation of the phosphine moiety, however, suppresses the ISC due to the relative destabilization of the triplet states. The calculated rate constants match an increase in experimental ΦF from 0.07 to 0.98, as simulated from 0.23 to 0.94. The reduced HOMO-LUMO gap supports a red shift in the fluorescence spectra relative to the phosphine analog. The thiophene-fused variant with the nonoxidized trivalent P center exhibits intense emission with a high ΦF, 0.95. Our prediction indicates that the ISC transfer is obstructed owing to the relatively destabilized triplet state induced by the thiophene substitution. Conversely, the thiophene-fused analog with the phosphine oxide moieties triggers a high-rate internal conversion mediated by conical intersection, leading to a decreased ΦF.
Collapse
Affiliation(s)
- Naoto Inai
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department
of Chemistry, Graduate School of Science and Integrated Research Consortium
on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules, (WPI-ITbM), Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Department
of Chemistry, Graduate School of Science and Integrated Research Consortium
on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules, (WPI-ITbM), Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
226
|
Shi B, Zen A, Kapil V, Nagy PR, Grüneis A, Michaelides A. Many-Body Methods for Surface Chemistry Come of Age: Achieving Consensus with Experiments. J Am Chem Soc 2023; 145:25372-25381. [PMID: 37948071 PMCID: PMC10683001 DOI: 10.1021/jacs.3c09616] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
The adsorption energy of a molecule onto the surface of a material underpins a wide array of applications, spanning heterogeneous catalysis, gas storage, and many more. It is the key quantity where experimental measurements and theoretical calculations meet, with agreement being necessary for reliable predictions of chemical reaction rates and mechanisms. The prototypical molecule-surface system is CO adsorbed on MgO, but despite intense scrutiny from theory and experiment, there is still no consensus on its adsorption energy. In particular, the large cost of accurate many-body methods makes reaching converged theoretical estimates difficult, generating a wide range of values. In this work, we address this challenge, leveraging the latest advances in diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] to obtain accurate predictions for CO on MgO. These reliable theoretical estimates allow us to evaluate the inconsistencies in published temperature-programed desorption experiments, revealing that they arise from variations in employed pre-exponential factors. Utilizing this insight, we derive new experimental estimates of the (electronic) adsorption energy with a (more) precise pre-exponential factor. As a culmination of all of this effort, we are able to reach a consensus between multiple theoretical calculations and multiple experiments for the first time. In addition, we show that our recently developed cluster-based CCSD(T) approach provides a low-cost route toward achieving accurate adsorption energies. This sets the stage for affordable and reliable theoretical predictions of chemical reactions on surfaces to guide the realization of new catalysts and gas storage materials.
Collapse
Affiliation(s)
- Benjamin
X. Shi
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Andrea Zen
- Dipartimento
di Fisica Ettore Pancini, Università
di Napoli Federico II, Monte S. Angelo, I-80126 Napoli, Italy
- Department
of Earth Sciences, University College London, Gower Street, WC1E 6BT London, U.K.
| | - Venkat Kapil
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Péter R. Nagy
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME
Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Andreas Grüneis
- Institute
for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Angelos Michaelides
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| |
Collapse
|
227
|
Huang CI, Feng JY, Lee YP, Ebata T. Structures and Anharmonic Analyses of the O-H Stretching Vibrations of Jet-Cooled Benzoic Acid (BA), (BA)(H 2O) n, and (BA) 2(H 2O) n ( n = 1, 2) Clusters, and Their Ring-Deuterated Isotopologues Measured with IR-VUV Spectroscopy─Unraveling the Complex Anharmonic Couplings in the Cyclic Structures. J Phys Chem A 2023; 127:9550-9563. [PMID: 37930654 DOI: 10.1021/acs.jpca.3c06581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The IR spectra of benzoic acid (BA), (BA)(H2O)n and (BA)2(H2O)n (n = 1, 2) clusters, and their ring-deuterated isotopologues in the 2800-3750 cm-1 region were measured with IR-vacuum ultraviolet spectroscopy under the jet-cooled condition. For (BA)(H2O) and (BA)(H2O)2, only a single isomer was observed for each species, whereas for (BA)2(H2O) and (BA)2(H2O)2, more than one isomers were present. The observed IR spectra were very complex and showed similar structures between (BA)m(H2O)n and their ring-deuterated isotopologues (BA-d5)m(H2O)n for specific values of m and n. The anharmonic analysis based on the vibrational second-order perturbation theory indicated that the complexity of the IR spectra in these clusters was due to the appearance of many bands of (i) the overtone and combination modes involving the O-H bend of H2O and the in-plane C-O-H bends and the C═O stretch of BA, and (ii) the combination modes involving the hydrogen-bonded O-H stretch and low-frequency intermolecular vibrations, with considerable intensities.
Collapse
Affiliation(s)
- Chia-I Huang
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Jun-Ying Feng
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Takayuki Ebata
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
228
|
Datta D, Gordon MS. Accelerating Coupled-Cluster Calculations with GPUs: An Implementation of the Density-Fitted CCSD(T) Approach for Heterogeneous Computing Architectures Using OpenMP Directives. J Chem Theory Comput 2023; 19:7640-7657. [PMID: 37878756 DOI: 10.1021/acs.jctc.3c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
An algorithm is presented for the coupled-cluster singles, doubles, and perturbative triples correction [CCSD(T)] method based on the density fitting or the resolution-of-the-identity (RI) approximation for performing calculations on heterogeneous computing platforms composed of multicore CPUs and graphics processing units (GPUs). The directive-based approach to GPU offloading offered by the OpenMP application programming interface has been employed to adapt the most compute-intensive terms in the RI-CCSD amplitude equations with computational costs scaling as O ( N O 2 N V 4 ) , O ( N O 3 N V 3 ) , and O ( N O 4 N V 2 ) (where NO and NV denote the numbers of correlated occupied and virtual orbitals, respectively) and the perturbative triples correction to execute on GPU architectures. The pertinent tensor contractions are performed using an accelerated math library such as cuBLAS or hipBLAS. Optimal strategies are discussed for splitting large data arrays into tiles to fit them into the relatively small memory space of the GPUs, while also minimizing the low-bandwidth CPU-GPU data transfers. The performance of the hybrid CPU-GPU RI-CCSD(T) code is demonstrated on pre-exascale supercomputers composed of heterogeneous nodes equipped with NVIDIA Tesla V100 and A100 GPUs and on the world's first exascale supercomputer named "Frontier", the nodes of which consist of AMD MI250X GPUs. Speedups within the range 4-8× relative to the recently reported CPU-only algorithm are obtained for the GPU-offloaded terms in the RI-CCSD amplitude equations. Applications to polycyclic aromatic hydrocarbons containing 16-66 carbon atoms demonstrate that the acceleration of the hybrid CPU-GPU code for the perturbative triples correction relative to the CPU-only code increases with the molecule size, attaining a speedup of 5.7× for the largest circumovalene molecule (C66H20). The GPU-offloaded code enables the computation of the perturbative triples correction for the C60 molecule using the cc-pVDZ/aug-cc-pVTZ-RI basis sets in 7 min on Frontier when using 12,288 AMD GPUs with a parallel efficiency of 83.1%.
Collapse
Affiliation(s)
- Dipayan Datta
- Department of Chemistry and Ames Laboratory, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011-2416, United States
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011-2416, United States
| |
Collapse
|
229
|
Neugebauer H, Pinski P, Grimme S, Neese F, Bursch M. Assessment of DLPNO-MP2 Approximations in Double-Hybrid DFT. J Chem Theory Comput 2023; 19:7695-7703. [PMID: 37862406 PMCID: PMC10653103 DOI: 10.1021/acs.jctc.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Indexed: 10/22/2023]
Abstract
The unfavorable scaling (N5) of the conventional second-order Møller-Plesset theory (MP2) typically prevents the application of double-hybrid (DH) density functionals to large systems with more than 100 atoms. A prominent approach to reduce the computational demand of electron correlation methods is the domain-based local pair natural orbital (DLPNO) approximation that is successfully used in the framework of DLPNO-CCSD(T). Its extension to MP2 [Pinski P.; Riplinger, C.; Valeev, E. F.; Neese, F. J. Chem. Phys. 2015, 143, 034108.] paved the way for DLPNO-based DH (DLPNO-DH) methods. In this work, we assess the accuracy of the DLPNO-DH approximation compared to conventional DHs on a large number of 7925 data points for thermochemistry and 239 data points for structural features, including main-group and transition-metal systems. It is shown that DLPNO-DH-DFT can be applied successfully to perform energy calculations and geometry optimizations for large molecules at a drastically reduced computational cost. Furthermore, PNO space extrapolation is shown to be applicable, similar to its DLPNO-CCSD(T) counterpart, to reduce the remaining error.
Collapse
Affiliation(s)
- Hagen Neugebauer
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstraße 4, D-53115 Bonn, Germany
| | - Peter Pinski
- HQS
Quantum Simulations GmbH, Rintheimer Straße 23, D-76131 Karlsruhe, Germany
| | - Stefan Grimme
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstraße 4, D-53115 Bonn, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Bursch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
230
|
Polukeev AV, Capelli SC, Wendt OF. Unravelling strong temperature-dependence of JHD in transition metal hydrides: solvation and non-covalent interactions versus temperature-elastic H-H bonds. Chem Sci 2023; 14:12308-12320. [PMID: 37969611 PMCID: PMC10631239 DOI: 10.1039/d3sc04197b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
A number of transition metal hydrides reveal intriguing temperature-dependent JHD in their deuterated derivatives and possibly the temperature dependent hydrogen-hydrogen distance (r(H-H)) as well. Previously, theoretical studies rationalized JHD and r(H-H) changes in such compounds through a "temperature-elastic" structure model with a significant population of vibrational states in an anharmonic potential. Based on the first variable temperature neutron diffraction study of a relevant complex, (p-H-POCOP)IrH2, observation of its elusive counterpart with longer r(H-H), crystallized as an adduct with C6F5I, and thorough spectroscopic and computational study, we argue that the model involving isomeric species in solution at least in some cases is more relevant. The existence of such isomers is enabled or enhanced by solvation and weak non-covalent interactions with solvent, such as halogen or dihydrogen bonds. "Non-classical" hydrides with r(H-H) ≈ 1.0-1.6 Å are especially sensitive to the above-mentioned factors.
Collapse
Affiliation(s)
- Alexey V Polukeev
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University PO Box 124 22100 Lund Sweden
| | - Silvia C Capelli
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Harwell Science Campus Didcot OX11 0QX UK
| | - Ola F Wendt
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University PO Box 124 22100 Lund Sweden
| |
Collapse
|
231
|
Sirohiwal A, Pantazis DA. Reaction Center Excitation in Photosystem II: From Multiscale Modeling to Functional Principles. Acc Chem Res 2023; 56:2921-2932. [PMID: 37844298 PMCID: PMC10634305 DOI: 10.1021/acs.accounts.3c00392] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 10/18/2023]
Abstract
Oxygenic photosynthesis is the fundamental energy-converting process that utilizes sunlight to generate molecular oxygen and the organic compounds that sustain life. Protein-pigment complexes harvest light and transfer excitation energy to specialized pigment assemblies, reaction centers (RC), where electron transfer cascades are initiated. A molecular-level understanding of the primary events is indispensable for elucidating the principles of natural photosynthesis and enabling development of bioinspired technologies. The primary enzyme in oxygenic photosynthesis is Photosystem II (PSII), a membrane-embedded multisubunit complex, that catalyzes the light-driven oxidation of water. The RC of PSII consists of four chlorophyll a and two pheophytin a pigments symmetrically arranged along two core polypeptides; only one branch participates in electron transfer. Despite decades of research, fundamental questions remain, including the origin of this functional asymmetry, the nature of primary charge-transfer states and the identity of the initial electron donor, the origin of the capability of PSII to enact charge separation with far-red photons, i.e., beyond the "red limit" where individual chlorophylls absorb, and the role of protein conformational dynamics in modulating charge-separation pathways.In this Account, we highlight developments in quantum-chemistry based excited-state computations for multipigment assemblies and the refinement of protocols for computing protein-induced electrochromic shifts and charge-transfer excitations calibrated with modern local correlation coupled cluster methods. We emphasize the importance of multiscale atomistic quantum-mechanics/molecular-mechanics and large-scale molecular dynamics simulations, which enabled direct and accurate modeling of primary processes in RC excitation at the quantum mechanical level.Our findings show how differential protein electrostatics enable spectral tuning of RC pigments and generate functional asymmetry in PSII. A chlorophyll pigment on the active branch (ChlD1) has the lowest site energy in PSII and is the primary electron donor. The complete absence of low-lying charge-transfer states within the central pair of chlorophylls excludes a long-held assumption about the initial charge separation. Instead, we identify two primary charge separation pathways, both with the same pheophytin acceptor (PheoD1): a fast pathway with ChlD1 as the primary electron donor (short-range charge-separation) and a slow pathway with PD1PD2 as the initial donor (long-range charge separation). The low-energy spectrum is dominated by two states with significant charge-transfer character, ChlD1δ+PheoD1δ- and PD1δ+PheoD1δ-. The conformational dynamics of PSII allows these charge-transfer states to span wide energy ranges, pushing oxygenic photosynthesis beyond the "red limit". These results provide a quantum mechanical picture of the primary events in the RC of oxygenic photosynthesis, forming a solid basis for interpreting experimental observations and for extending photosynthesis research in new directions.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Department
of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
232
|
Focke K, Jacob CR. Coupled-Cluster Density-Based Many-Body Expansion. J Phys Chem A 2023; 127:9139-9148. [PMID: 37871170 PMCID: PMC10626589 DOI: 10.1021/acs.jpca.3c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
While CCSD(T) is often considered the "gold standard" of computational chemistry, the scaling of its computational cost as N7 limits its applicability for large and complex molecular systems. In this work, we apply the density-based many-body expansion [ Int. J. Quantum Chem. 2020, 120, e26228] in combination with CCSD(T). The accuracy of this approach is assessed for neutral, protonated, and deprotonated water hexamers, as well as (H2O)16 and (H2O)17 clusters. For the neutral water clusters, we find that already with a density-based two-body expansion, we are able to approximate the supermolecular CCSD(T) energies within chemical accuracy (4 kJ/mol). This surpasses the accuracy that is achieved with a conventional, energy-based three-body expansion. We show that this accuracy can be maintained even when approximating the electron densities using Hartree-Fock instead of using coupled-cluster densities. The density-based many-body expansion thus offers a simple, resource-efficient, and highly parallelizable approach that makes CCSD(T)-quality calculations feasible where they would otherwise be prohibitively expensive.
Collapse
Affiliation(s)
- Kevin Focke
- Institute of Physical and
Theoretical Chemistry, Technische Universität
Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R. Jacob
- Institute of Physical and
Theoretical Chemistry, Technische Universität
Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
233
|
Deraet X, Desmedt E, Van Lommel R, Van Speybroeck V, De Proft F. The electrophilic aromatic bromination of benzenes: mechanistic and regioselective insights from density functional theory. Phys Chem Chem Phys 2023; 25:28581-28594. [PMID: 37703074 DOI: 10.1039/d3cp03137c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The HBr-assisted electrophilic aromatic bromination of benzene, anisole and nitrobenzene was investigated using static DFT calculations in gas phase and implicit apolar (CCl4) and polar (acetonitrile) solvent models at the ωB97X-D/cc-pVTZ level of theory. The reaction profiles corresponding to either a direct substitution reaction or an addition-elimination process were constructed and insight into the preferred regioselectivity was provided using a combination of conceptual DFT reactivity indices, aromaticity indices, Wiberg bond indices and the non-covalent interaction index. Our results show that under the considered reaction conditions the bromination reaction preferentially occurs through an addition-elimination mechanism and without formation of a stable charged Wheland intermediate. The ortho/para directing effect of the electron-donating methoxy-group in anisole was ascribed to a synergy between strong electron delocalisation and attractive interactions. In contrast, the preferred meta-addition on nitrobenzene could not be traced back to any of these effects, nor to the intrinsic reactivity property of the reactant. In this case, an electrostatic clash between the ipso-carbon of the ring and the nitrogen atom resulting from the later nature of the rate-determining step, with respect to anisole, appeared to play a crucial role.
Collapse
Affiliation(s)
- Xavier Deraet
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Brussels, Belgium.
| | - Eline Desmedt
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Brussels, Belgium.
| | - Ruben Van Lommel
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Brussels, Belgium.
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F Leuven Chem&Tech, Box 2404, 3001 Leuven, Belgium
| | | | - Frank De Proft
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Brussels, Belgium.
| |
Collapse
|
234
|
Harold SE, Warf SL, Shields GC. Prebiotic dimer and trimer peptide formation in gas-phase atmospheric nanoclusters of water. Phys Chem Chem Phys 2023; 25:28517-28532. [PMID: 37847315 DOI: 10.1039/d3cp02915h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Insight into the origin of prebiotic molecules is key to our understanding of how living systems evolved into the complex network of biological processes on Earth. By modelling diglycine and triglycine peptide formation in the prebiotic atmosphere, we provide a plausible pathway for peptide growth. By examining different transition states (TSs), we conclude that the formation of diglycine and triglycine in atmospheric nanoclusters of water in the prebiotic atmosphere kinetically favors peptide growth by an N-to-C synthesis of glycines through a trans conformation. Addition of water stabilizes the TS structures and lowers the Gibbs free activation energies. At temperatures that model the prebiotic atmosphere, the free energies of activation with a six water nanocluster as part of the TS are predicted to be 16 kcal mol-1 relative to the prereactive complex. Examination of the trans vs. cis six water transition states reveals that a homodromic water network that maximizes the acceptor/donor nature of the six waters is responsible for enhanced kinetic favorability of the trans N-to-C pathway. Compared to the non-hydrated trans TS, the trans six-water TS accelerates the reaction of diglycine and glycine to form triglycine by 13 orders of magnitude at 217 K. Nature uses the trans N-to-C pathway to synthesize proteins in the ribosome, and we note the similarities in hydrogen bond stabilization between the transition state for peptide synthesis in the ribosome and the transition states formed in nanoclusters of water in the same pathway. These results support the hypothesis that small oligomers formed in the prebiotic atmosphere and rained onto earth's surface.
Collapse
Affiliation(s)
- Shannon E Harold
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA.
| | - Skyler L Warf
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA.
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA.
| |
Collapse
|
235
|
Werner HJ, Hansen A. Accurate Calculation of Isomerization and Conformational Energies of Larger Molecules Using Explicitly Correlated Local Coupled Cluster Methods in Molpro and ORCA. J Chem Theory Comput 2023; 19:7007-7030. [PMID: 37486154 DOI: 10.1021/acs.jctc.3c00270] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An overview of the approximations in the explicitly correlated local coupled cluster methods PNO-LCCSD(T)-F12 in Molpro and DLPNO-CCSD(T)F12 in ORCA is given. Options to select the domains of projected atomic orbitals (PAOs), pair natural orbitals (PNOs), and triples natural orbitals (TNOs) in both programs are described and compared in detail. The two programs are applied to compute isomerization and conformational energies of the ISOL24 and ACONFL test sets, where the former is part of the GMTKN55 benchmark suite. Thorough studies of basis set effects are presented for selected systems. These revealed large intramolecular basis set superposition effects that make it practically impossible to reliably determine the complete basis set (CBS) limits without including explicitly correlated terms. The latter strongly reduce the basis set dependence and at the same time also errors caused by the local domain approximations. On the basis of these studies, the PNO-LCCSD(T)-F12 method is applied to determine new reference energies for the above-mentioned benchmark sets. We are confident that our results should agree within a few tenths of a kcal mol-1 with the (unknown) CCSD(T)/CBS values, which therefore allowed us to define computational settings for accurate explicitly correlated local coupled cluster methods with moderate computational effort. With these protocols, especially PNO-LCCSD(T)-F12b/AVTZ', reliable reference values for comprehensive benchmark sets can be generated efficiently. This can significantly advance the development and evaluation of the performance of approximate electronic structure methods, especially improved density functional approximations or machine learning approaches.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| |
Collapse
|
236
|
Di Felice R, Mayes ML, Richard RM, Williams-Young DB, Chan GKL, de Jong WA, Govind N, Head-Gordon M, Hermes MR, Kowalski K, Li X, Lischka H, Mueller KT, Mutlu E, Niklasson AMN, Pederson MR, Peng B, Shepard R, Valeev EF, van Schilfgaarde M, Vlaisavljevich B, Windus TL, Xantheas SS, Zhang X, Zimmerman PM. A Perspective on Sustainable Computational Chemistry Software Development and Integration. J Chem Theory Comput 2023; 19:7056-7076. [PMID: 37769271 PMCID: PMC10601486 DOI: 10.1021/acs.jctc.3c00419] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 09/30/2023]
Abstract
The power of quantum chemistry to predict the ground and excited state properties of complex chemical systems has driven the development of computational quantum chemistry software, integrating advances in theory, applied mathematics, and computer science. The emergence of new computational paradigms associated with exascale technologies also poses significant challenges that require a flexible forward strategy to take full advantage of existing and forthcoming computational resources. In this context, the sustainability and interoperability of computational chemistry software development are among the most pressing issues. In this perspective, we discuss software infrastructure needs and investments with an eye to fully utilize exascale resources and provide unique computational tools for next-generation science problems and scientific discoveries.
Collapse
Affiliation(s)
- Rosa Di Felice
- Departments
of Physics and Astronomy and Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- CNR-NANO
Modena, Modena 41125, Italy
| | - Maricris L. Mayes
- Department
of Chemistry and Biochemistry, University
of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, United States
| | | | | | - Garnet Kin-Lic Chan
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Wibe A. de Jong
- Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Niranjan Govind
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Martin Head-Gordon
- Pitzer Center
for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew R. Hermes
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Karol Kowalski
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Karl T. Mueller
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Erdal Mutlu
- Advanced
Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Anders M. N. Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mark R. Pederson
- Department
of Physics, The University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Bo Peng
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Ron Shepard
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Edward F. Valeev
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Bess Vlaisavljevich
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Theresa L. Windus
- Department
of Chemistry, Iowa State University and
Ames Laboratory, Ames, Iowa 50011, United States
| | - Sotiris S. Xantheas
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Advanced
Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xing Zhang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Paul M. Zimmerman
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
237
|
Roth A, Wamsley CE, Haynes SM, Thamattoor DM. Adamantylidenecarbene: Photochemical Generation, Trapping, and Theoretical Studies. J Org Chem 2023; 88:14413-14422. [PMID: 37768172 PMCID: PMC10594661 DOI: 10.1021/acs.joc.3c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 09/29/2023]
Abstract
Photolysis of 1-(2-adamantylidene)-1a,9b-dihydro-1H-cyclopropa[l]phenanthrene in benzene (or benzene-d6) at ambient temperature produces adamantylidenecarbene. The carbene undergoes dimerization to a cumulene and may also be trapped in a stereospecific fashion by cis- and trans-4-methyl-2-pentene. No products attributable to 4-homoadamantyne, resulting from ring expansion of the carbene, could be detected. Coupled cluster/density functional theory calculations place the singlet carbene ∼49 kcal/mol below the triplet and show that the former must overcome a barrier of ∼13.5 kcal/mol to rearrange into 4-homoadamantyne.
Collapse
Affiliation(s)
- Alexander
D. Roth
- Department of Chemistry, Colby College, Waterville, Maine 04901, United States
| | | | - Sarah M. Haynes
- Department of Chemistry, Colby College, Waterville, Maine 04901, United States
| | - Dasan M. Thamattoor
- Department of Chemistry, Colby College, Waterville, Maine 04901, United States
| |
Collapse
|
238
|
Dabringhaus P, Heizmann T, Krossing I. Activation of the Ga I Cation for Bond Activation: from Oxidative Additions into C-Cl and H-P Bonds to Reversible Insertion into P 4. Chemistry 2023; 29:e202302212. [PMID: 37583347 DOI: 10.1002/chem.202302212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Although the discovery of the GaI complex salt [Ga(PhF)2-3 ][Al(ORF )4 ] (RF =C(CF3 )3 , PhF=C6 H5 F) invoked the preparation of a diverse library of cationic Ga(I) coordination complexes and clusters, studies on small molecule activation with low-valent GaI cations are scarce. Herein, a first experimental study on the reactivity of a monomeric Ga(I) cation activated with a pyridine-diimine pincer ligand (in [Ga(PDIdipp )][Al(ORF )4 ]) towards small-molecules is reported. First controlled oxidative additions of the GaI cation into C-Cl, H-P and P-P bonds are presented. Moreover, the [4+1]cycloaddition to butadienes was achieved. Intriguingly, the isolated, blue insertion product into the P-P bond of P4 allows for the quantitative release of the P4 molecule upon reaction with AlEt3 and butadienes. Reversible P4 insertion of main-group metals has previously been reported for Ge and Sn, respectively. The experimental study is supported by high-level computational analysis of the in-part reversible oxidative additions at the DLPNO-CCSD(T)/def2-TZVPP//PBEh-3c/def2-mSVP level of theory with COSMO-RS solvation in 1,2-difluorobenzene.
Collapse
Affiliation(s)
- Philipp Dabringhaus
- Albert-Ludwigs-Universität Freiburg, Institute for Inorganic and Analytical Chemistry, Freiburg Materials Research Center FMF, Albertstrasse 21, 79104, Freiburg i. Br., Germany
| | - Tim Heizmann
- Albert-Ludwigs-Universität Freiburg, Institute for Inorganic and Analytical Chemistry, Freiburg Materials Research Center FMF, Albertstrasse 21, 79104, Freiburg i. Br., Germany
| | - Ingo Krossing
- Albert-Ludwigs-Universität Freiburg, Institute for Inorganic and Analytical Chemistry, Freiburg Materials Research Center FMF, Albertstrasse 21, 79104, Freiburg i. Br., Germany
| |
Collapse
|
239
|
Herbstritt D, Tomar P, Müller R, Kaupp M, Braun T. A 2,2-Difluoroimidazolidine Derivative for Deoxyfluorination Reactions: Mechanistic Insights by Experimental and Computational Studies. Chemistry 2023; 29:e202301556. [PMID: 37341145 DOI: 10.1002/chem.202301556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
A N-heterocyclic deoxyfluorinating agent SIMesF2 was synthesized by nucleophilic fluorination of N,N-1,3-dimesityl-2-chloroimidazolidinium chloride (3) at room temperature. SIMesF2 was applied to deoxyfluorinate carboxylic acids and alcohols and convert benzaldehyde into difluorotoluene. Mechanistic studies by NMR spectroscopy suggest reaction pathways of the carboxylic acid to acyl fluoride via outer-sphere fluorinations at an imidazolidinium ion by polyfluoride. DFT studies give further insight by exploring mechanistic details which distinguish the fluorination of aldehydes from that of carboxylic acids. Furthermore, a consecutive reaction sequence for the oxidation of an aldehyde followed by in situ fluorination of the generated carboxylic acid was developed.
Collapse
Affiliation(s)
- Domenique Herbstritt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Pooja Tomar
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Robert Müller
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr.C7, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
240
|
Peyton BG, Wang Z, Crawford TD. Reduced Scaling Real-Time Coupled Cluster Theory. J Phys Chem A 2023; 127:8486-8499. [PMID: 37782945 DOI: 10.1021/acs.jpca.3c05151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Real-time coupled cluster (CC) methods have several advantages over their frequency-domain counterparts, namely, response and equation of motion CC theories. Broadband spectra, strong fields, and pulse manipulation allow for the simulation of complex spectroscopies that are unreachable using frequency-domain approaches. Due to the high-order polynomial scaling, the required numerical time propagation of the CC residual expressions is a computationally demanding process. This scaling may be reduced by local correlation schemes, which aim to reduce the size of the (virtual) orbital space by truncation according to user-defined parameters. We present the first application of local correlation to real-time CC. As in previous studies of locally correlated frequency-domain CC, traditional local correlation schemes are of limited utility for field-dependent properties; however, a perturbation-aware scheme proves promising. A detailed analysis of the amplitude dynamics suggests that the main challenge is a strong time dependence of the wave function sparsity.
Collapse
Affiliation(s)
- Benjamin G Peyton
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhe Wang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - T Daniel Crawford
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
241
|
Singh HK, Nath U, Keot N, Sarma M. Exploring π-π interactions and electron transport in complexes involving a hexacationic host and PAH guest: a promising avenue for molecular devices. Phys Chem Chem Phys 2023; 25:26767-26778. [PMID: 37781849 DOI: 10.1039/d3cp03389a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Single isolated molecules and supramolecular host-guest systems, which consist of π-π stacking interactions, are emerging as promising building blocks for creating molecular electronic devices. In this article, we have investigated the noncovalent π-π interaction and intermolecular electron charge transport involved in a series of host-guest complexes formed between a cage-like host (H6+) and polycyclic aromatic hydrocarbon (PAH) guests (G1-G7) using different quantum chemical approaches. The host (H6+) consists of two triscationic π-electron-deficient trispyridiniumtriazine (TPZ3+) units that are bridged face-to-face by three ethylene-triazole-ethylene. Our theoretical calculations show that the perylene and naphthalene inclusion complexes G7⊂H and G1⊂H have the highest and lowest interaction energies, respectively. In addition, energy decomposition analysis (EDA) indicated that the dispersion interaction term, ΔEdisp, significantly contributes to the host-guest interaction and is correlated with the existence of π-π van der Waals interaction. Using the nonequilibrium Greens function (NEGF) method in combination with density functional theory (DFT), the current-voltage (I-V) curves of the complexes were estimated. The conductance values increased when the guests were embedded inside the host cavity. Notably, the complex G7⊂H has the maximum conductance value. Overall, this study provided the electron transport of the PAH inclusion host-guest complex through π-π interaction and provided a direction for the fabrication of future supramolecular molecular devices.
Collapse
Affiliation(s)
- Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology Guwahati, North-Guwahati, Guwahati-781039, India.
| | - Upasana Nath
- Department of Chemistry, Indian Institute of Technology Guwahati, North-Guwahati, Guwahati-781039, India.
| | - Niharika Keot
- Department of Chemistry, Indian Institute of Technology Guwahati, North-Guwahati, Guwahati-781039, India.
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, North-Guwahati, Guwahati-781039, India.
| |
Collapse
|
242
|
Martín-Fernández C, Ferrer M, Alkorta I, Montero-Campillo MM, Elguero J, Mandado M. Metastable Charged Dimers in Organometallic Species: A Look into Hydrogen Bonding between Metallocene Derivatives. Inorg Chem 2023; 62:16523-16537. [PMID: 37755334 DOI: 10.1021/acs.inorgchem.3c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Multiply charged complexes bound by noncovalent interactions have been previously described in the literature, although they were mostly focused on organic and main group inorganic systems. In this work, we show that similar complexes can also be found for organometallic systems containing transition metals and deepen in the reasons behind the existence of these species. We have studied the structures, binding energies, and dissociation profiles in the gas phase of a series of charged hydrogen-bonded dimers of metallocene (Ru, Co, Rh, and Mn) derivatives isoelectronic with the ferrocene dimer. Our results indicate that the carboxylic acid-containing dimers are more strongly bonded and present larger barriers to dissociation than the amide ones and that the cationic complexes tend to be more stable than the anionic ones. Additionally, we describe for the first time the symmetric proton transfer that can occur while in the metastable phase. Finally, we use a density-based energy decomposition analysis to shine light on the nature of the interaction between the dimers.
Collapse
Affiliation(s)
| | - Maxime Ferrer
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
- PhD Programme in Theoretical Chemistry and Computational Modelling, Doctoral School, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - M Merced Montero-Campillo
- Departamento de Química (Módulo 13, Facultad de Ciencias), Campus de Excelencia UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Marcos Mandado
- Departamento de Química Física, Universidade de Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| |
Collapse
|
243
|
Ehlert C, Piras A, Gryn’ova G. CO 2 on Graphene: Benchmarking Computational Approaches to Noncovalent Interactions. ACS OMEGA 2023; 8:35768-35778. [PMID: 37810719 PMCID: PMC10551916 DOI: 10.1021/acsomega.3c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Designing and optimizing graphene-based gas sensors in silico entail constructing appropriate atomistic representations for the physisorption complex of an analyte on an infinite graphene sheet, then selecting accurate yet affordable methods for geometry optimizations and energy computations. In this work, diverse density functionals (DFs), coupled cluster theory, and symmetry-adapted perturbation theory (SAPT) in conjunction with a range of finite and periodic surface models of bare and supported graphene were tested for their ability to reproduce the experimental adsorption energies of CO2 on graphene in a low-coverage regime. Periodic results are accurately reproduced by the interaction energies extrapolated from finite clusters to infinity. This simple yet powerful scheme effectively removes size dependence from the data obtained using finite models, and the latter can be treated at more sophisticated levels of theory relative to periodic systems. While for small models inexpensive DFs such as PBE-D3 afford surprisingly good agreement with the gold standard of quantum chemistry, CCSD(T), interaction energies closest to experiment are obtained by extrapolating the SAPT results and with nonlocal van der Waals functionals in the periodic setting. Finally, none of the methods and models reproduce the experimentally observed CO2 tilted adsorption geometry on the Pt(111) support, calling for either even more elaborate theoretical approaches or a revision of the experiment.
Collapse
Affiliation(s)
- Christopher Ehlert
- Heidelberg
Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Interdisciplinary
Center for Scientific Computing (IWR), Heidelberg
University, Im Neuenheimer
Feld 368, 69120 Heidelberg, Germany
| | - Anna Piras
- Heidelberg
Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Interdisciplinary
Center for Scientific Computing (IWR), Heidelberg
University, Im Neuenheimer
Feld 368, 69120 Heidelberg, Germany
| | - Ganna Gryn’ova
- Heidelberg
Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Interdisciplinary
Center for Scientific Computing (IWR), Heidelberg
University, Im Neuenheimer
Feld 368, 69120 Heidelberg, Germany
| |
Collapse
|
244
|
Iwanek W. Complexes of resorcin[4]arene with secondary amines: synthesis, solvent influence on "in-out" structure, and theoretical calculations of non-covalent interactions. Beilstein J Org Chem 2023; 19:1525-1536. [PMID: 37799176 PMCID: PMC10548251 DOI: 10.3762/bjoc.19.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
Resorcin[4]arenes (R[4]A) are macrocyclic compounds with a cavity structure. Despite a relatively small cavity, these compounds are capable of forming complexes with small organic molecules. The current paper focuses on the synthesis of complexes between R[4]A and secondary aliphatic amines (sec-amines). Through NMR spectroscopy, it was observed that "in-out" complexes are formed depending on the solvent. It was also found that the stoichiometry of the formed complexes depends on the size of the amine molecule. The automated interaction sites screening (aISS) made it possible to generate molecular ensembles of complexes. The geometry of the ensembles was first optimized with the r2scan-3c functional and, finally, the structure with the lowest energy, with the functional PBE0-D4/mTZVPP/CPCM. The Hartree-Fock plus London dispersion (HFLD) method was used for the study of non-covalent interactions (NCI). The calculations lead to the conclusion that a reduction in electrostatic interactions and an increase in exchange and dispersion interactions in CHCl3 in relation to DMSO are the driving forces behind the placement of sec-amine molecules into the R[4]A cavity and the formation of "in" type complexes.
Collapse
Affiliation(s)
- Waldemar Iwanek
- Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
245
|
Lorpaiboon W, Ho J. High-Level Quantum Chemical Prediction of C-F Bond Dissociation Energies of Perfluoroalkyl Substances. J Phys Chem A 2023; 127:7943-7953. [PMID: 37722129 DOI: 10.1021/acs.jpca.3c04750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
In this study, 550 C-F bond dissociation energies (BDEs) of a variety of per- and polyfluoroalkyl substances (PFASs) obtained from high-level DLPNO-CCSD(T)/CBS calculations were used to assess the accuracy of contemporary density functional theory (DFT) and semiempirical methods. DLPNO-CCSD(T)/CBS gas phase C-F BDEs fall between 404.9-550.7 kJ mol-1 and M06-2X and ωB97M-V in conjunction with the aug-cc-pVTZ basis set predicted BDEs closest to the benchmark level with a mean absolute deviation (MAD) of 7.3 and 8.3 kJ mol-1, respectively. It was observed that DFT prediction errors increase with the degree of fluorination and system size. As such, previous model chemistry recommendations based on smaller nonfluorinated systems may not be carried over to modeling the energetics of PFASs and related systems.
Collapse
Affiliation(s)
- Wanutcha Lorpaiboon
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Junming Ho
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
246
|
Tripathy V, Raghavachari K. Fragment-based models for dissociation of strong acids in water: Electrostatic embedding minimizes the dependence on the fragmentation schemes. J Chem Phys 2023; 159:124106. [PMID: 38127382 DOI: 10.1063/5.0164089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 12/23/2023] Open
Abstract
Fragmentation methods such as MIM (Molecules-in-Molecules) provide a route to accurately model large systems and have been successful in predicting their structures, energies, and spectroscopic properties. However, their use is often limited to systems at equilibrium due to the inherent complications in the choice of fragments in systems away from equilibrium. Furthermore, the presence of charges resulting from any heterolytic bond breaking may increase the fragmentation error. We have previously suggested EE-MIM (Electrostatically Embedded Molecules-In-Molecules) as a method to mitigate the errors resulting from the missing long-range interactions in molecular clusters in equilibrium. Here, we show that the same method can be applied to improve the performance of MIM to solve the longstanding problem of dependency of the fragmentation energy error on the choice of the fragmentation scheme. We chose four widely used acid dissociation reactions (HCl, HClO4, HNO3, and H2SO4) as test cases due to their importance in chemical processes and complex reaction potential energy surfaces. Electrostatic embedding improves the performance at both one and two-layer MIM as shown by lower EE-MIM1 and EE-MIM2 errors. The EE-MIM errors are also demonstrated to be less dependent on the choice of the fragmentation scheme by analyzing the variation in fragmentation energy at the points with more than one possible fragmentation scheme (points where the fragmentation scheme changes). EE-MIM2 with M06-2X as the low-level resulted in a variation of less than 1 kcal/mol for all the cases and 1 kJ/mol for all but three cases, rendering our method fragmentation scheme-independent for acid dissociation processes.
Collapse
Affiliation(s)
- Vikrant Tripathy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
247
|
Engsvang M, Kubečka J, Elm J. Toward Modeling the Growth of Large Atmospheric Sulfuric Acid-Ammonia Clusters. ACS OMEGA 2023; 8:34597-34609. [PMID: 37779982 PMCID: PMC10536041 DOI: 10.1021/acsomega.3c03521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Studying large atmospheric molecular clusters is needed to understand the transition between clusters and aerosol particles. In this work, we studied the (SA)n(AM)n clusters with n up to 30 and the (SA)m(AM)m±2 clusters, with m = 6-20. The cluster configurations are sampled using the ABCluster program, and the cluster geometries and thermochemical parameters are calculated using GFN1-xTB. The cluster binding energies are calculated using B97-3c. We find that the addition of sulfuric acid is preferred to the addition of ammonia. The addition free energies were found to have large uncertainties, which could potentially be attributed to errors in the applied level of theory. Based on DLPNO-CCSD(T0)/aug-cc-pVTZ benchmarks of the binding energies of the large (SA)8-9(AM)10 and (SA)10(AM)10-11 clusters, we find that ωB97X-D3BJ with a large basis set is required to yield accurate binding and addition energies. However, based on recalculations of the single-point energy at r2SCAN-3c and ωB97X-D3BJ/6-311++G(3df,3pd), we show that the single-point energy contribution is not the primary source of error. We hypothesize that a larger source of error might be present in the form of insufficient configurational sampling. Finally, we train Δ machine learning model on (SA)n(AM)n clusters with n up to 5 and show that we can predict the binding energies of clusters up to sizes of (SA)30(AM)30 with a binding energy error below 0.6 %. This is an encouraging approach for accurately modeling the binding energies of large acid-base clusters in the future.
Collapse
Affiliation(s)
- Morten Engsvang
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jakub Kubečka
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department
of Chemistry, iClimate, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
248
|
Gómez-Suárez A, Neumann CN. Stereochemistry in All Its Shapes and Forms: The 56 th Bürgenstock Conference. Angew Chem Int Ed Engl 2023; 62:e202309468. [PMID: 37590448 DOI: 10.1002/anie.202309468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Acknowledging the crucial role of stereochemistry in fields as diverse as total synthesis, synthetic methodology, spectroscopy, and the study of the origin of life, the 56th SCS Conference on Stereochemistry, better known as the BÃ1/4rgenstock Conference, brought together a diverse range of chemistry expertise in Brunnen, Switzerland.
Collapse
Affiliation(s)
- Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
249
|
Martins GF, Castro TS, Ferreira DAC. Theoretical investigation of anion perfluorocubane. J Mol Model 2023; 29:319. [PMID: 37725189 DOI: 10.1007/s00894-023-05725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
CONTEXT In this work, we did a theoretical exploration of C8F8 (Ib) and its anion radical analogue (IIb) in this work. By investigating the thermochemistry of electron capture, we find that the free energy associated with the conversion of C8H8 (Ia) into its anion radical analogue IIa is of the order of + 92.83 kcal.mol-1, while the conversion of Ib into IIb is - 6.42 kcal.mol-1. Therefore, species IIb is thermodynamically more stable than its neutral analogue. Natural bond orbitals (NBO) analyses revealed that compound Ib exhibits a relative electronic stability as a function of intramolecular delocalisations of the type [Formula: see text] of the order of 2.70 kcal.mol-1. Similar delocalizations for Ia are energetically lower (1.45 kcal.mol-1). Topological analyses of compounds Ib and IIb indicate that the addition of an electron to Ib enhances the covalency of the C-C bond, as can be seen by the reduction in the ellipticity of the C-C bond. The opposite is observed for Ia, whose addition of the electron (leading to IIa) reduces the covalency of the C-C bond. By comparing the free and packaged forms of the species, it is found that, in the crystalline form, the system will present greater relative stability due to the dispersive interactions involved, as evidenced by non-covalent interactions (NCI) analysis. Finally, it was possible to verify that the manifestation of the current density with a lower paratropic and less antiaromatic character in Ib and IIb point to C8F8 as a strong candidate for electron capture. METHODS Geometry optimization calculations were carried out, for all monomer structures using the hybrid functional B3LYP-D3 and the 6-31+G(d,p) basis set. To determine the formation thermochemistry of the ions, electronic energy corrections was performed using the DLPNO-CCSD(T)/aug-cc-pVTZ/C method. Starting from the optimised forms, shielding, nuclear magnetic resonance (NMR) spectra employing gauge-independent atomic orbital (GIAO), and NBO calculations were performed for these monomers, using the PBE0 functional and the pCSseg-2 atomic basis set. The magnetochemical analysis of ring currents was performed using the GIMIC formalism. For the topological analysis, it was applied the combination DLPNO-CCSD(T)/aug-cc-pVTZ/C, previously used for correcting the electronic energy.
Collapse
Affiliation(s)
- Guilherme Ferreira Martins
- Instituto de Química, Laboratório de Dinâmica e Reatividade Molecular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília-DF, CEP, 70910-900, Brazil
| | - Thiago Sampaio Castro
- Instituto de Química, Laboratório de Dinâmica e Reatividade Molecular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília-DF, CEP, 70910-900, Brazil
- Instituto Federal do Tocantins-Campus Gurupi, Gurupi, TO, CEP, 77410-470, Brazil
| | - Daví Alexsandro Cardoso Ferreira
- Instituto de Química, Laboratório de Dinâmica e Reatividade Molecular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília-DF, CEP, 70910-900, Brazil.
| |
Collapse
|
250
|
Zhao LJ, Xu HG, Xu XL, Zheng WJ. Anion Photoelectron Spectroscopy and Theoretical Studies of Ge 3n+1O ( n = 1-3) Clusters with the C3v Symmetric Ge 3 Structural Unit. Inorg Chem 2023; 62:15164-15172. [PMID: 37672772 DOI: 10.1021/acs.inorgchem.3c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We investigate Ge3n+1O-/0 (n = 1-3) clusters using anion photoelectron spectroscopy and theoretical calculations. The results show that the lowest energy structure of Ge4O- is a bent Cs symmetric trigonal bipyramidal structure, while Ge4O has a C3v symmetric trigonal bipyramidal structure. Ge7O- has two coexisting low-lying isomers, the first one can be viewed as a Ge2O unit interacting with a Ge5 trigonal bipyramid, the second one can be regarded as an O atom interacting with a Ge7 pentagonal bipyramid; whereas Ge7O has a C3v symmetric structure with a Ge atom and an O atom capping a Ge6 trigonal antiprism from the bottom and top, respectively. The structures of Ge10O- and Ge10O can be obtained by adding an O atom to different binding sites of a C3v symmetric Ge10. Chemical bonding analyses of Ge3n+1O (n = 1-3) reveal that the O atom interacts with its neighboring three Ge atoms forming one 4c-2e σ bond and two 4c-2e π bonds in the top Ge3O trigonal pyramid, while the terminal Ge atom forms one 4c-2e σ bond in the bottom Ge4 trigonal pyramid. The large HOMO-LUMO gaps of Ge3n+1O (n = 1-3) indicate that they have good stabilities. Ab initio molecular dynamics simulations suggest that both Ge7O and Ge10O are dynamically stable in general at 300 and 500 K. The current work suggests that the C3v symmetric Ge3 units and the insertion growth pattern may be viable for constructing 1D germanium oxide nanostructures with the chemical formula of Ge3n+1O.
Collapse
Affiliation(s)
- Li-Juan Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|