201
|
Golumbeanu M, Cristinelli S, Rato S, Munoz M, Cavassini M, Beerenwinkel N, Ciuffi A. Single-Cell RNA-Seq Reveals Transcriptional Heterogeneity in Latent and Reactivated HIV-Infected Cells. Cell Rep 2019; 23:942-950. [PMID: 29694901 DOI: 10.1016/j.celrep.2018.03.102] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/12/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023] Open
Abstract
Despite effective treatment, HIV can persist in latent reservoirs, which represent a major obstacle toward HIV eradication. Targeting and reactivating latent cells is challenging due to the heterogeneous nature of HIV-infected cells. Here, we used a primary model of HIV latency and single-cell RNA sequencing to characterize transcriptional heterogeneity during HIV latency and reactivation. Our analysis identified transcriptional programs leading to successful reactivation of HIV expression.
Collapse
Affiliation(s)
- Monica Golumbeanu
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; SIB Swiss Institute of Bioinformatics, Basel 4058, Switzerland
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Sylvie Rato
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Miguel Munoz
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Matthias Cavassini
- Service of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland; SIB Swiss Institute of Bioinformatics, Basel 4058, Switzerland.
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland.
| |
Collapse
|
202
|
Rapid Elimination of Broadly Neutralizing Antibodies Correlates with Treatment Failure in the Acute Phase of Simian-Human Immunodeficiency Virus Infection. J Virol 2019; 93:JVI.01077-19. [PMID: 31375583 DOI: 10.1128/jvi.01077-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023] Open
Abstract
Early human immunodeficiency virus type 1 (HIV-1) treatment during the acute period of infection can significantly limit the seeding of viral reservoirs and modify the course of disease. However, while a number of HIV-1 broadly neutralizing antibodies (bnAbs) have demonstrated remarkable efficacy as prophylaxis in macaques chronically infected with simian-human immunodeficiency virus (SHIV), intriguingly, their inhibitory effects were largely attenuated in the acute period of SHIV infection. To investigate the mechanism for the disparate performance of bnAbs in different periods of SHIV infection, we used LSEVh-LS-F, a bispecific bnAb targeting the CD4 binding site and CD4-induced epitopes, as a representative bnAb and assessed its potential therapeutic benefit in controlling virus replication in acutely or chronically SHIV-infected macaques. We found that a single infusion of LSEVh-LS-F resulted in rapid decline of plasma viral loads to undetectable levels without emergence of viral resistance in the chronically infected macaques. In contrast, the inhibitory effect was robust but transient in the acutely infected macaques, despite the fact that all macaques had comparable plasma viral loads initially. Infusing multiple doses of LSEVh-LS-F did not extend its inhibitory duration. Furthermore, the pharmacokinetics of the infused LSEVh-LS-F in the acutely SHIV-infected macaques significantly differed from that in the uninfected or chronically infected macaques. Host SHIV-specific immune responses may play a role in the viremia-dependent pharmacokinetics. Our results highlight the correlation between the fast clearance of infused bnAbs and the treatment failure in the acute period of SHIV infection and may have important implications for the therapeutic use of bnAbs to treat acute HIV infections.IMPORTANCE Currently, there is no bnAb-based monotherapy that has been reported to clear the virus in the acute SHIV infection period. Since early HIV treatment is considered critical to restricting the establishment of viral reservoirs, investigation into the mechanism for treatment failure in acutely infected macaques would be important for the therapeutic use of bnAbs and eventually towards the functional cure of HIV/AIDS. Here we report the comparative study of the therapeutic efficacy of a bnAb in acutely and chronically SHIV-infected macaques. This study revealed the correlation between the fast clearance of infused bnAbs and treatment failure during the acute period of infection.
Collapse
|
203
|
Chao TC, Zhang Q, Li Z, Tiwari SK, Qin Y, Yau E, Sanchez A, Singh G, Chang K, Kaul M, Karris MAY, Rana TM. The Long Noncoding RNA HEAL Regulates HIV-1 Replication through Epigenetic Regulation of the HIV-1 Promoter. mBio 2019; 10:e02016-19. [PMID: 31551335 PMCID: PMC6759764 DOI: 10.1128/mbio.02016-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023] Open
Abstract
A major challenge in finding a cure for HIV-1/AIDS is the difficulty in identifying and eradicating persistent reservoirs of replication-competent provirus. Long noncoding RNAs (lncRNAs, >200 nucleotides) are increasingly recognized to play important roles in pathophysiology. Here, we report the first genome-wide expression analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs). We identified an lncRNA, which we named HIV-1-enhanced lncRNA (HEAL), that is upregulated by HIV-1 infection of MDMs, microglia, and T lymphocytes. Peripheral blood mononuclear cells of HIV-1-infected individuals show elevated levels of HEAL Importantly, HEAL is a broad enhancer of multiple HIV-1 strains because depletion of HEAL inhibited X4, R5, and dual-tropic HIV replications and the inhibition was rescued by HEAL overexpression. HEAL forms a complex with the RNA-binding protein FUS, which facilitates HIV replication through at least two mechanisms: (i) HEAL-FUS complex binds the HIV promoter and enhances recruitment of the histone acetyltransferase p300, which positively regulates HIV transcription by increasing histone H3K27 acetylation and P-TEFb enrichment on the HIV promoter, and (ii) HEAL-FUS complex is enriched at the promoter of the cyclin-dependent kinase 2 gene, CDK2, to enhance CDK2 expression. Notably, HEAL knockdown and knockout mediated by RNA interference (RNAi) and CRISPR-Cas9, respectively, prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment in vitro Our results suggest that silencing of HEAL or perturbation of the HEAL-FUS ribonucleoprotein complex could provide a new epigenetic silencing strategy to eradicate viral reservoirs and effect a cure for HIV-1/AIDS.IMPORTANCE Despite our increased understanding of the functions of lncRNAs, their potential to develop HIV/AIDS cure strategies remains unexplored. A genome-wide analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs) was performed, and 1,145 differentially expressed lncRNAs were identified. An lncRNA named HIV-1-enhanced lncRNA (HEAL) is upregulated by HIV-1 infection and promotes HIV replication in T cells and macrophages. HEAL forms a complex with the RNA-binding protein FUS to enhance transcriptional coactivator p300 recruitment to the HIV promoter. Furthermore, HEAL knockdown and knockout prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment, suggesting HEAL as a potential therapeutic target to cure HIV-1/AIDS.
Collapse
Affiliation(s)
- Ti-Chun Chao
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Qiong Zhang
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Zhonghan Li
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Yue Qin
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Edwin Yau
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Ana Sanchez
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Gatikrushna Singh
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Kungyen Chang
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Marcus Kaul
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Maile Ann Young Karris
- Division of Infectious Diseases, UCSD Center for AIDS Research, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, UCSD Center for AIDS Research, and Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
204
|
Darcis G, Berkhout B, Pasternak AO. The Quest for Cellular Markers of HIV Reservoirs: Any Color You Like. Front Immunol 2019; 10:2251. [PMID: 31616425 PMCID: PMC6763966 DOI: 10.3389/fimmu.2019.02251] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) replication and improves immune function, but is unable to eradicate the virus. Therefore, development of an HIV cure has become one of the main priorities of the HIV research field. The main obstacle for an HIV cure is the formation of latent viral reservoirs, where the virus is able to “hide” despite decades of therapy, just to reignite active replication once therapy is stopped. Revealing HIV hiding places is thus central to HIV cure research, but the absence of markers of these reservoir cells greatly complicates the search for a cure. Identification of one or several marker(s) of latently infected cells would represent a significant step forward toward a better description of the cell types involved and improved understanding of HIV latency. Moreover, it could provide a “handle” for selective therapeutic targeting of the reservoirs. A number of cellular markers of HIV reservoir have recently been proposed, including immune checkpoint molecules, CD2, and CD30. CD32a is perhaps the most promising of HIV reservoir markers as it is reported to be associated with a very prominent enrichment in HIV DNA, although this finding has been challenged. In this review, we provide an update on the current knowledge about HIV reservoir markers. We specifically highlight studies that characterized markers of persistently infected cells in the lymphoid tissues.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
205
|
Verdikt R, Darcis G, Ait-Ammar A, Van Lint C. Applications of CRISPR/Cas9 tools in deciphering the mechanisms of HIV-1 persistence. Curr Opin Virol 2019; 38:63-69. [PMID: 31509794 DOI: 10.1016/j.coviro.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
HIV-1 infection can be controlled but not cured by combination antiretroviral therapy. Indeed, the virus persists in treated individuals in viral reservoirs, the best described of which consisting in latently infected central memory CD4+ T cells. However, other cell types in other body compartments than in the peripheral blood contribute to HIV-1 persistence. Addressing the molecular mechanisms of HIV-1 persistence and their cell-specific and tissue-specific variations is thus crucial to develop HIV-1 curative strategies. CRISPR/Cas9 editing technologies have revolutionized genetic engineering by their high specificity and their versatility. Multiple applications now allow to investigate the molecular mechanisms of HIV-1 persistence. Here, we review recent advances in CRISPR-based technologies in deciphering HIV-1 gene expression regulation during persistence.
Collapse
Affiliation(s)
- Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, 4000 Liège, Belgium
| | - Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium.
| |
Collapse
|
206
|
Panaampon J, Kudo E, Kariya R, Okada S. Ephedrine enhances HIV-1 reactivation from latency through elevating tumor necrosis factor receptor II (TNFRII) expression. Heliyon 2019; 5:e02490. [PMID: 31687583 PMCID: PMC6819846 DOI: 10.1016/j.heliyon.2019.e02490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-1 persists during antiretroviral therapy (ART) due to long-lived and proliferating latently-infected host cells, with the outcome being an incomplete cure. The latently-infected cells, or reservoir cells, are transcriptionally absent and invisible to the immune response. Elimination of latency is one strategy in activating virus production, making it visible to immune clearance. We previously showed that Ephedrae herba reactivated HIV-1 from latency. In this study, we used ephedrine, a major component of Ephedra herba, to reactivate HIV-1 from latency. The results showed that ephedrine enhances HIV-1 reactivation in the presence of TNFα. Combination treatment demonstrates a synergistic effect of HIV-1 reactivation compared to TNFα alone. Ephedrine treatment shows a higher TNFRII expression level, which is related to increased HIV-1 reactivation. However, the mechanism of ephedrine in HIV-1 reactivation is still unclear, and may be related to TNFRII receptor expression. Our results indicate that ephedrine enhances HIV-1 reactivation from latency in combination with TNFα treatment. This new reagent could be a promising latency reversal agent (LRA).
Collapse
Affiliation(s)
| | | | | | - Seiji Okada
- Division of Hematopoiesis, Graduate School of Medical Sciences, and Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| |
Collapse
|
207
|
Frank I, Acharya A, Routhu NK, Aravantinou M, Harper JL, Maldonado S, Sole Cigoli M, Semova S, Mazel S, Paiardini M, Derby N, Byrareddy SN, Martinelli E. A Tat/Rev Induced Limiting Dilution Assay to Measure Viral Reservoirs in Non-Human Primate Models of HIV Infection. Sci Rep 2019; 9:12078. [PMID: 31427605 PMCID: PMC6700126 DOI: 10.1038/s41598-019-48354-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/02/2019] [Indexed: 01/11/2023] Open
Abstract
The establishment of latent infection and poorly characterized viral reservoirs in tissues represent major obstacles to a definitive cure for HIV. Non-human primate (NHP) models of HIV infection are critical to elucidate pathogenic processes and an essential tool to test novel therapeutic strategies. Thus, the availability of novel assays to measure residual viral replication and reservoirs in NHP models may increase their utility in the search for an HIV cure. We developed a tat/rev induced limiting dilution assay to measure the frequency of CD4+ T cells that express multiply-spliced(ms)_SIV RNA in presence and absence of stimulation. We validated the assay using cell lines and cells from blood and lymph nodes of SIV infected macaques. In vitro, SIV/SHIV TILDA detects only cells expressing viral proteins. In SIV/SHIV-infected macaques, CD4+ T cells that express msSIV/SHIV RNA (TILDA data) were detected also in the setting of very low/undetectable viremia. TILDA data were significantly higher after stimulation and correlated with plasma viral load (pVL). Interestingly, TILDA data from early cART initiation correlated with peak and AUC pVL post-cART interruption. In summary, we developed an assay that may be useful in characterizing viral reservoirs and determining the effect of HIV interventions in NHP models.
Collapse
Affiliation(s)
- Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical Center, Omaha, USA
| | - Nanda K Routhu
- Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical Center, Omaha, USA
| | | | - Justin L Harper
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | - Maria Sole Cigoli
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Stanka Semova
- Flow Cytometry Resource Center, Rockefeller University, New York, NY, USA
| | - Svetlana Mazel
- Flow Cytometry Resource Center, Rockefeller University, New York, NY, USA
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical Center, Omaha, USA
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, USA.
| |
Collapse
|
208
|
Liu Q, Cheng YY, Li W, Huang L, Asada Y, Hsieh MT, Morris-Natschke SL, Chen CH, Koike K, Lee KH. Synthesis and Structure-Activity Relationship Correlations of Gnidimacrin Derivatives as Potent HIV-1 Inhibitors and HIV Latency Reversing Agents. J Med Chem 2019; 62:6958-6971. [PMID: 31343875 PMCID: PMC7442216 DOI: 10.1021/acs.jmedchem.9b00339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, due to the HIV latency mechanism, the search continues for effective drugs to combat this issue and provide a cure for AIDS. Gnidimacrin activates latent HIV-1 replication and inhibits HIV-1 infection at picomolar concentrations. This natural diterpene was able to markedly reduce the latent HIV-1 DNA level and the frequency of latently infected cells. Therefore, gnidimacrin is an excellent lead compound, and its anti-HIV potential merits further investigation. Twenty-nine modified gnidimacrin derivatives were synthesized and evaluated in assays for HIV replication and latency activation to establish which molecular structures must be maintained and which can tolerate changes that may be needed for better pharmacological properties. The results indicated that hydroxyl substituents at C-5 and C-20 are essential, while derivatives modified at 3-OH with aromatic esters retain anti-HIV replication and latent activation activities. The half-lives of the potent GM derivatives are over 20 h, which implies that they are stable in the plasm even though they contain ester linkages. The established structure-activity relationship should be useful in the development of gnidimacrin or structurally related compounds as clinical trial candidates.
Collapse
Affiliation(s)
- Qingbo Liu
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| | - Li Huang
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Yoshihisa Asada
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| | - Min-Tsang Hsieh
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
209
|
Huang SH, McCann CD, Mota TM, Wang C, Lipkin SM, Jones RB. Have Cells Harboring the HIV Reservoir Been Immunoedited? Front Immunol 2019; 10:1842. [PMID: 31447850 PMCID: PMC6691121 DOI: 10.3389/fimmu.2019.01842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Immunoediting is an important concept in oncology, delineating the mechanisms through which tumors are selected for resistance to immune-mediated elimination. The recent emergence of immunotherapies, such as checkpoint inhibitors, as pillars of cancer therapy has intensified interest in immunoediting as a constraint limiting the efficacy of these approaches. Immunoediting manifests at a number of levels for different cancers, for example through the establishment of immunosuppressive microenvironments within solid tumors. Of particular interest to the current review, selection also occurs at the cellular level; and recent studies have revealed novel mechanisms by which tumor cells acquire intrinsic resistance to immune recognition and elimination. While the selection of escape mutations in viral epitopes by HIV-specific T cells, which is a hallmark of chronic HIV infection, can be considered a form of immunoediting, few studies have considered the possibility that HIV-infected cells themselves may parallel tumors in having differential intrinsic susceptibilities to immune-mediated elimination. Such selection, on the level of an infected cell, may not play a significant role in untreated HIV, where infection is propagated by high levels of cell-free virus produced by cells that quickly succumb to viral cytopathicity. However, it may play an unappreciated role in individuals treated with effective antiretroviral therapy where viral replication is abrogated. In this context, an "HIV reservoir" persists, comprising long-lived infected cells which undergo extensive and dynamic clonal expansion. The ability of these cells to persist in infected individuals has generally been attributed to viral latency, thought to render them invisible to immune recognition, and/or to their compartmentalization in anatomical sites that are poorly accessible to immune effectors. Recent data from ex vivo studies have led us to propose that reservoir-harboring cells may additionally have been selected for intrinsic resistance to CD8+ T cells, limiting their elimination even in the context of antigen expression. Here, we draw on knowledge from tumor immunoediting to discuss potential mechanisms by which clones of HIV reservoir-harboring cells may resist elimination by CD8+ T cells. The establishment of such parallels may provide a premise for testing therapeutics designed to sensitize tumor cells to immune-mediated elimination as novel approaches aimed at curing HIV infection.
Collapse
Affiliation(s)
- Szu-Han Huang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chase D. McCann
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - Talia M. Mota
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Chao Wang
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Steven M. Lipkin
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| |
Collapse
|
210
|
Barclay RA, Khatkar P, Mensah G, DeMarino C, Chu JSC, Lepene B, Zhou W, Gillevet P, Torkzaban B, Khalili K, Liotta L, Kashanchi F. An Omics Approach to Extracellular Vesicles from HIV-1 Infected Cells. Cells 2019; 8:cells8080787. [PMID: 31362387 PMCID: PMC6724219 DOI: 10.3390/cells8080787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Human Immunodeficiency Virus-1 (HIV-1) is the causative agent of Acquired Immunodeficiency Syndrome (AIDS), infecting nearly 37 million people worldwide. Currently, there is no definitive cure, mainly due to HIV-1's ability to enact latency. Our previous work has shown that exosomes, a small extracellular vesicle, from uninfected cells can activate HIV-1 in latent cells, leading to increased mostly short and some long HIV-1 RNA transcripts. This is consistent with the notion that none of the FDA-approved antiretroviral drugs used today in the clinic are transcription inhibitors. Furthermore, these HIV-1 transcripts can be packaged into exosomes and released from the infected cell. Here, we examined the differences in protein and nucleic acid content between exosomes from uninfected and HIV-1-infected cells. We found increased cyclin-dependent kinases, among other kinases, in exosomes from infected T-cells while other kinases were present in exosomes from infected monocytes. Additionally, we found a series of short antisense HIV-1 RNA from the 3' LTR that appears heavily mutated in exosomes from HIV-1-infected cells along with the presence of cellular noncoding RNAs and cellular miRNAs. Both physical and functional validations were performed on some of the key findings. Collectively, our data indicate distinct differences in protein and RNA content between exosomes from uninfected and HIV-1-infected cells, which can lead to different functional outcomes in recipient cells.
Collapse
Affiliation(s)
- Robert A Barclay
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Gifty Mensah
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA
| | - Jeffery S C Chu
- Applied Biological Materials Inc., 1-3671 Viking Way, Richmond, BC V6V 2J5, Canada
| | | | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Patrick Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, VA 20110, USA
| | - Bahareh Torkzaban
- Center for Neurovirology, Temple University, Philadelphia, PA 19122, USA
| | - Kamel Khalili
- Center for Neurovirology, Temple University, Philadelphia, PA 19122, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
211
|
Yang H, Li X, Yang X, Lu P, Wang Y, Jiang Z, Pan H, Zhao L, Zhu Y, Khan IU, Shen Y, Lu H, Zhang T, Jiang G, Ma Z, Wu H, Zhu H. Dual effects of the novel ingenol derivatives on the acute and latent HIV-1 infections. Antiviral Res 2019; 169:104555. [PMID: 31295520 DOI: 10.1016/j.antiviral.2019.104555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 11/29/2022]
Abstract
The latent reservoir of HIV-1 in resting memory CD4+ T cells serves as a major barrier to curing HIV-1 infection. Reactivation of latent HIV-1 is proposed as a promising strategy for the clearance of the viral reservoirs. Because of the limitations of current latency reversal agents (LRAs), identification of new LRAs is urgently required. Here, we analyzed Euphorbia kansui extracts and obtained three ingenol derivative compounds named EK-1A, EK-5A and EK-15A. We found that ingenol derivatives can effectively reactivate latent HIV-1 at very low (nanomolar) concentrations in HIV latency model in vitro. Furthermore, ingenol derivatives exhibited synergy with other LRAs in reactivating latent HIV-1. We verified that EK-15A can promote latent HIV-1 reactivation in the ex vivo resting CD4+ T cells isolated from the peripheral blood of HIV-infected individuals on suppressive antiretroviral therapy. In addition, ingenol derivatives down-regulated the expression of cell surface HIV co-receptors CCR5 and CXCR4, therefore potentially preventing new infection of HIV-1. Our results indicated that the ingenol derivatives extracted from Euphorbia kansui have dual functions: reactivation of latent HIV-1 and inhibition of HIV-1 infection.
Collapse
Affiliation(s)
- He Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xian Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhengtao Jiang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lin Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Inam Ullah Khan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yinzhong Shen
- Department of Infectious Diseases, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, 100069, China
| | - Guochun Jiang
- UNC HIV Cure Center, IGHID, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhongjun Ma
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou, 310058, China.
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, 100069, China.
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
212
|
Chun TW, Eisinger RW, Fauci AS. Durable Control of HIV Infection in the Absence of Antiretroviral Therapy: Opportunities and Obstacles. JAMA 2019; 322:27-28. [PMID: 31169893 DOI: 10.1001/jama.2019.5397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tae-Wook Chun
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert W Eisinger
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Anthony S Fauci
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
213
|
Abstract
DESIGN This was an exploratory, single-arm clinical trial that tested the immune enhancement effects of 24-weeks of Toll-like receptor 9 (TLR9) agonist (MGN1703; Lefitolimod; 60 mg × 2 weekly) therapy. METHODS We enrolled HIV-1-infected individuals on suppressive combination antiretroviral therapy. Safety was assessed throughout the study. The primary outcome was reduction in total CD4 T-cell viral DNA levels. Secondary outcomes included safety, detailed immunological and virological analyses, and time to viral rebound (viral load > 5000 copies/ml) after randomization into an analytical treatment interruption (ATI). RESULTS A total of 12 individuals completed the treatment phase and nine completed the ATI. Adverse events were limited and consistent with previous reports for MGN1703. Although the dosing regimen led to potent T-cell activation and increased HIV-1-specific T-cell responses, there were no cohort-wide changes in persistent virus (total CD4 T cells viral DNA; P = 0.34). No difference in time to rebound was observed between the ATI arms (log rank P = 0.25). One of nine ATI participants, despite harboring a large replication-competent reservoir, controlled viremia for 150 days via both HIV-1-specific cellular and antibody-mediated immune responses. CONCLUSION A period of 24 weeks of MGN1703 treatment was safe and improved innate as well as HIV-1-specific adaptive immunity in HIV-1+ individuals. These findings support the incorporation of TLR9 agonism into combination HIV-1 cure strategies. TRIAL NAME AND REGISTRATION TLR9 Enhancement of antiviral immunity in chronic HIV-1 infection: a phase 1B/2A trial; ClinicalTrials.gov NCT02443935.
Collapse
|
214
|
Conway JM, Perelson AS, Li JZ. Predictions of time to HIV viral rebound following ART suspension that incorporate personal biomarkers. PLoS Comput Biol 2019; 15:e1007229. [PMID: 31339888 PMCID: PMC6682162 DOI: 10.1371/journal.pcbi.1007229] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 08/05/2019] [Accepted: 06/30/2019] [Indexed: 01/31/2023] Open
Abstract
Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. Suspension of therapy is followed by rebound of viral loads to high, pre-therapy levels. However, there is significant heterogeneity in speed of rebound, with some rebounds occurring within days, weeks, or sometimes years. We present a stochastic mathematical model to gain insight into these post-treatment dynamics, specifically characterizing the dynamics of short term viral rebounds (≤ 60 days). Li et al. (2016) report that the size of the expressed HIV reservoir, i.e., cell-associated HIV RNA levels, and drug regimen correlate with the time between ART suspension and viral rebound to detectable levels. We incorporate this information and viral rebound times to parametrize our model. We then investigate insights offered by our model into the underlying dynamics of the latent reservoir. In particular, we refine previous estimates of viral recrudescence after ART interruption by accounting for heterogeneity in infection rebound dynamics, and determine a recrudescence rate of once every 2-4 days. Our parametrized model can be used to aid in design of clinical trials to study viral dynamics following analytic treatment interruption. We show how to derive informative personalized testing frequencies from our model and offer a proof-of-concept example. Our results represent first steps towards a model that can make predictions on a person living with HIV (PLWH)'s rebound time distribution based on biomarkers, and help identify PLWH with long viral rebound delays.
Collapse
Affiliation(s)
- Jessica M. Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jonathan Z. Li
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
215
|
Pandey HS, Seth P. Friends Turn Foe-Astrocytes Contribute to Neuronal Damage in NeuroAIDS. J Mol Neurosci 2019; 69:286-297. [PMID: 31236774 DOI: 10.1007/s12031-019-01357-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes play a wide variety of roles in the central nervous system (CNS). Various facets of astrocyte-neuron interplay, investigated for the past few decades, have placed these most abundant and important glial cell types to be of supreme importance for the maintenance of the healthy CNS. Interestingly, glial dysfunctions have proven to be the major contributor to neuronal loss in several CNS disorders and pathologies. Specifically, in the field of neuroAIDS, glial dysfunction-mediated neuronal stress is a major factor contributing to the HIV-1 neuropathogenesis. As there is increasing evidence that astrocytes harbor HIV-1 and serve as "safe haven" for the dormant virus in the brain, the indirect pathway of neuronal damage has taken over the direct neuronal damage in its contribution to HIV-1 neuropathogenesis. In this review, we provide a brief insight into the astrocyte functions and dysfunctions in different CNS conditions with an elaborated insight into neuroAIDS. Detailed understanding of the role of astrocytes in neuroAIDS will help in the better therapeutic management of the neurological problems associated with HIV-1 patients.
Collapse
Affiliation(s)
- Hriday Shanker Pandey
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
216
|
Abstract
PURPOSE OF REVIEW This review summarizes the recent landscape of HIV therapeutic vaccine research, emphasizing the results of randomized controlled trials that included analytical treatment interruption (ATI) to assess efficacy. RECENT FINDINGS Therapeutic vaccines for HIV are designed to re-educate the host immune response in HIV-infected individuals to better control viral replication in the absence of antiretroviral therapy. No therapeutic vaccine has yet to induce long-term HIV remission following ATI in a randomized controlled trial. This is likely because the vaccines have not elicited a broad enough immune response to suppress the diverse escape variants that emerge during viral rebound, and have not been used with effective agents to reduce the HIV reservoir. Recent studies in nonhuman primates using combination approaches are showing significant successes, with several candidates eliciting significant antiviral activity following ATI. Future studies pairing these vaccines with effective reservoir reduction hold great promise. SUMMARY Therapeutic vaccines aim to modulate the immune system of HIV-infected individuals to elicit sustained virologic control in the absence of antiretroviral therapy. Therapeutic vaccines that elicit broad immune responses have recently shown promise in randomized controlled trials and nonhuman primate studies.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
217
|
Huiting ED, Gittens K, Justement JS, Shi V, Blazkova J, Benko E, Kovacs C, Wender PA, Moir S, Sneller MC, Fauci AS, Chun TW. Impact of Treatment Interruption on HIV Reservoirs and Lymphocyte Subsets in Individuals Who Initiated Antiretroviral Therapy During the Early Phase of Infection. J Infect Dis 2019; 220:270-274. [PMID: 30840763 PMCID: PMC6941494 DOI: 10.1093/infdis/jiz100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022] Open
Abstract
Therapeutic strategies for achieving sustained virologic remission are being explored in human immunodeficiency virus (HIV)-infected individuals who began antiretroviral therapy (ART) during the early phase of infection. In the evaluation of such therapies, clinical protocols should include analytical treatment interruption (ATI); however, the immunologic and virologic impact of ATI in individuals who initiated ART early has not been fully delineated. We demonstrate that ATI causes neither expansion of HIV reservoirs nor immunologic abnormalities following reinitiation of ART. Our findings support the use of ATI to determine whether sustained virologic remission has been achieved in clinical trials of individuals who initiated ART early during HIV infection.
Collapse
Affiliation(s)
- Erin D Huiting
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Kathleen Gittens
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - J Shawn Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | | | | | | | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Michael C Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases
| |
Collapse
|
218
|
Del Prete GQ, Alvord WG, Li Y, Deleage C, Nag M, Oswald K, Thomas JA, Pyle C, Bosche WJ, Coalter V, Wiles A, Wiles R, Berkemeier B, Hull M, Chipriano E, Silipino L, Fast R, Kiser J, Kiser R, Malys T, Kramer J, Breed MW, Trubey CM, Estes JD, Barnes TL, Hesselgesser J, Geleziunas R, Lifson JD. TLR7 agonist administration to SIV-infected macaques receiving early initiated cART does not induce plasma viremia. JCI Insight 2019; 4:127717. [PMID: 31167974 PMCID: PMC6629134 DOI: 10.1172/jci.insight.127717] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/19/2019] [Indexed: 12/29/2022] Open
Abstract
Reduction/elimination of HIV-1 reservoirs that persist despite combination antiretroviral therapy (cART) will likely require induction of viral expression by residual infected cells and enhanced clearance of these cells. TLR7 agonists have potential to mediate these activities. We evaluated immunologic and virologic effects of repeated doses of the TLR7 agonist GS-9620 in SIV-infected rhesus macaques receiving cART, which was initiated at 13 days after infection and was continued for 75 weeks prior to GS-9620 administration. During cART, GS-9620 induced transient upregulation of IFN-stimulated genes in blood and tissues, increases in plasma cytokines, and changes in immune cell population activation and phenotypes but did not result in measurable increases in plasma viremia or viral RNA-to-viral DNA ratio in PBMCs or tissues nor decreases in viral DNA in PBMC or tissues. SIV-specific CD8+ T cell responses, negligible prior to GS-9620 treatment, were not measurably boosted by treatment; a second course of GS-9620 administration overlapping with later cART discontinuation was associated with increased CD8+ T cell responses during viral recrudescence. These results confirm and extend evidence for GS-9620-mediated enhancement of antiviral immune responses in SIV-infected macaques but suggest that GS-9620-mediated viral induction may depend critically on the timing of initiation and duration of cART and resulting characteristics of viral reservoirs.
Collapse
Affiliation(s)
| | | | - Yuan Li
- AIDS and Cancer Virus Program
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tyler Malys
- DMS Applied Information & Management Sciences, and
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
219
|
Modeling HIV Dynamics Under Combination Therapy with Inducers and Antibodies. Bull Math Biol 2019; 81:2625-2648. [PMID: 31161559 DOI: 10.1007/s11538-019-00621-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/27/2019] [Indexed: 12/12/2022]
Abstract
A mathematical model is proposed to simulate the "shock-kill" strategy where broadly neutralizing antibodies (bNAbs) are injected with a combination of HIV latency activators to reduce persistent HIV reservoirs. The basic reproductive ratio of virus is computed to extrapolate how the combinational therapy of inducers and antibodies affects the persistence of HIV infection. Numerical simulations demonstrate that a proper combination of inducers and bNAbs can drive the basic reproductive ratio below unity. Interestingly, it is found that a longer dosage interval leads to the higher HIV survival opportunity and a smaller dosage interval is preferred, which is fundamental to design an optimal therapeutic scheme. Further simulations reveal the conditions under which the joint therapy of inducer and antibodies induces a large extension of viral rebound time, which highlights the mechanism of delayed viral rebound from the experiment (Halper-Stromberg et al. in Cell 158:989-999, 2014). Optimal time for cessation of treatment is also analyzed to aid practical applications.
Collapse
|
220
|
Pace M, Frater J. Curing HIV by 'kick and kill': from theory to practice? Expert Rev Anti Infect Ther 2019; 17:383-386. [PMID: 31071275 DOI: 10.1080/14787210.2019.1617697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Matthew Pace
- a Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - John Frater
- a Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine , University of Oxford , Oxford , UK
- b Oxford NIHR Biomedical Research Centre , Oxford , UK
| |
Collapse
|
221
|
Balasubramaniam M, Pandhare J, Dash C. Immune Control of HIV. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:4-37. [PMID: 31468033 PMCID: PMC6714987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human immunodeficiency virus (HIV) infection of the immune cells expressing the cluster of differentiation 4 cell surface glycoprotein (CD4+ cells) causes progressive decline of the immune system and leads to the acquired immunodeficiency syndrome (AIDS). The ongoing global HIV/AIDS pandemic has already claimed over 35 million lives. Even after 37 years into the epidemic, neither a cure is available for the 37 million people living with HIV (PLHIV) nor is a vaccine discovered to avert the millions of new HIV infections that continue to occur each year. If left untreated, HIV infection typically progresses to AIDS and, ultimately, causes death in a majority of PLHIV. The recommended combination antiretroviral therapy (cART) suppresses virus replication and viremia, prevents or delays progression to AIDS, reduces transmission rates, and lowers HIV-associated mortality and morbidity. However, because cART does not eliminate HIV, and an enduring pool of infected resting memory CD4+ T cells (latent HIV reservoir) is established early on, any interruption to cART leads to a relapse of viremia and disease progression. Hence, strict adherence to a life-long cART regimen is mandatory for managing HIV infection in PLHIV. The HIV-1-specific cytotoxic T cells expressing the CD8 glycoprotein (CD8+ CTL) limit the virus replication in vivo by recognizing the viral antigens presented by human leukocyte antigen (HLA) class I molecules on the infected cell surface and killing those cells. Nevertheless, CTLs fail to durably control HIV-1 replication and disease progression in the absence of cART. Intriguingly, <1% of cART-naive HIV-infected individuals called elite controllers/HIV controllers (HCs) exhibit the core features that define a HIV-1 "functional cure" outcome in the absence of cART: durable viral suppression to below the limit of detection, long-term non-progression to AIDS, and absence of viral transmission. Robust HIV-1-specific CTL responses and prevalence of protective HLA alleles associated with enduring HIV-1 control have been linked to the HC phenotype. An understanding of the molecular mechanisms underlying the CTL-mediated suppression of HIV-1 replication and disease progression in HCs carrying specific protective HLA alleles may yield promising insights towards advancing the research on HIV cure and prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| |
Collapse
|
222
|
A novel bromodomain inhibitor, CPI-203, serves as an HIV-1 latency-reversing agent by activating positive transcription elongation factor b. Biochem Pharmacol 2019; 164:237-251. [DOI: 10.1016/j.bcp.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/07/2019] [Indexed: 01/12/2023]
|
223
|
Rodrigues V, Benaroch P. Macrophages hide HIV in the urethra. Nat Microbiol 2019; 4:556-557. [PMID: 30899108 DOI: 10.1038/s41564-019-0418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vasco Rodrigues
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| | - Philippe Benaroch
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
224
|
Cao S, Woodrow KA. Nanotechnology approaches to eradicating HIV reservoirs. Eur J Pharm Biopharm 2019; 138:48-63. [PMID: 29879528 PMCID: PMC6279622 DOI: 10.1016/j.ejpb.2018.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
The advent of combination antiretroviral therapy (cART) has transformed HIV-1 infection into a controllable chronic disease, but these therapies are incapable of eradicating the virus to bring about an HIV cure. Multiple strategies have been proposed and investigated to eradicate latent viral reservoirs from various biological sanctuaries. However, due to the complexity of HIV infection and latency maintenance, a single drug is unlikely to eliminate all HIV reservoirs and novel strategies may be needed to achieve better efficacy while limiting systemic toxicity. In this review, we describe HIV latency in cellular and anatomical reservoirs, and present an overview of current strategies for HIV cure with a focus on their challenges for clinical translation. Then we provide a summary of nanotechnology solutions that have been used to address challenges in HIV cure by delivering physicochemically diverse agents for combination therapy or targeting HIV reservoir sites. We also review nanocarrier-based gene delivery and immunotherapy used in cancer treatment but may have potential applications in HIV cure.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
225
|
Effects on immune system and viral reservoir of a short-cycle antiretroviral therapy in virologically suppressed HIV-positive patients. AIDS 2019; 33:965-972. [PMID: 30946150 DOI: 10.1097/qad.0000000000002169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Atripla dose reduction decreases subclinical toxicity and maintains viral suppression in HIV+ individuals but the virological efficacy and immunological safety of this strategy needs to be further confirmed. METHODS Virologically suppressed HIV-infected adults on Atripla once-daily were randomized 1 : 1 to reduce therapy to 3 days a week (3W, n = 30) or to maintain it unchanged (once-daily, n = 31). HIV-1 reservoir (total and integrated HIV-1 DNA in CD4 cells) and immunological cell activation (CD38 and HLA-DR), senescence (CD57 and CD28), apoptosis (annexinV) as well as T-naive, effector memory (TEM) (CCR7, CD45RA) and stem cell memory (TSCM) (CD954 and CD27) populations were measured at baseline, 24 and 48 weeks. RESULTS No differences on activation, senescence or apoptosis of both CD4 and CD8 T cells were observed on follow-up. Nave CD4 T-cell proportion showed a significant decrease in the 3W group (mean ± SD): 24.6 ± 13.7 vs. 20.5 ± 12.9 (P = 0.002). No differences in both plasma viral load and HIV reservoir were detected on follow-up. CD4 TSCM levels at 48 weeks correlated with basal integrated HIV-1 DNA in the 3W group but not in the once-daily group. A post hoc analysis of data prior to the study entry revealed a higher viral load zenith and a trend to lower CD4 nadir in 3W vs. once-daily group. CONCLUSION No significant immunological or viral changes were induced in the 3W group confirming the virological efficacy and immunogical safety of this strategy. In-depth virological and immunological analyses are useful in providing additional information in antiretroviral switching studies (Clinical Trials.gov: NCT01778413).
Collapse
|
226
|
Vibholm LK, Lorenzi JCC, Pai JA, Cohen YZ, Oliveira TY, Barton JP, Garcia Noceda M, Lu CL, Ablanedo-Terrazas Y, Del Rio Estrada PM, Reyes-Teran G, Tolstrup M, Denton PW, Damsgaard T, Søgaard OS, Nussenzweig MC. Characterization of Intact Proviruses in Blood and Lymph Node from HIV-Infected Individuals Undergoing Analytical Treatment Interruption. J Virol 2019; 93:e01920-18. [PMID: 30700598 PMCID: PMC6450127 DOI: 10.1128/jvi.01920-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/23/2018] [Indexed: 01/08/2023] Open
Abstract
The role of lymphoid tissue as a potential source of HIV-1 rebound following interruption of antiretroviral therapy (ART) is uncertain. To address this issue, we compared the latent viruses obtained from CD4+ T cells in peripheral blood and lymph nodes to viruses emerging during treatment interruption. Latent viruses were characterized by sequencing near-full-length (NFL) proviral DNA and env from viral outgrowth assays (VOAs). Five HIV-1-infected individuals on ART were studied, four of whom participated in a clinical trial of a TLR9 agonist that included an analytical treatment interruption. We found that 98% of intact or replication-competent clonal sequences overlapped between blood and lymph node. In contrast, there was no overlap between 205 latent reservoir and 125 rebound sequences in the four individuals who underwent treatment interruption. However, rebound viruses could be accounted for by recombination. The data suggest that CD4+ T cells carrying latent viruses circulate between blood and lymphoid tissues in individuals on ART and support the idea that recombination may play a role in the emergence of rebound viremia.IMPORTANCE HIV-1 persists as a latent infection in CD4+ T cells that can be found in lymphoid tissues in infected individuals during ART. However, the importance of this tissue reservoir and its contribution to viral rebound upon ART interruption are not clear. In this study, we sought to compare latent HIV-1 from blood and lymph node CD4+ T cells from five HIV-1-infected individuals. Further, we analyzed the contribution of lymph node viruses to viral rebound. We observed that the frequencies of intact proviruses were the same in blood and lymph node. Moreover, expanded clones of T cells bearing identical proviruses were found in blood and lymph node. These latent reservoir sequences did not appear to be the direct origin of rebound virus. Instead, latent proviruses were found to contribute to the rebound compartment by recombination.
Collapse
Affiliation(s)
- Line K Vibholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Joy A Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Yehuda Z Cohen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - John P Barton
- Department of Physics and Astronomy, University of California, Riverside, California, USA
| | - Marco Garcia Noceda
- Department of Physics and Astronomy, University of California, Riverside, California, USA
| | - Ching-Lan Lu
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Yuria Ablanedo-Terrazas
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Perla M Del Rio Estrada
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Paul W Denton
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Tine Damsgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| |
Collapse
|
227
|
Abstract
PURPOSE OF REVIEW Several anti-HIV-1 broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency that target different HIV-1 envelope epitopes have been identified. bNAbs are an attractive new strategy for HIV-1 prevention and therapy, and potentially, for long-term remission or cure. Here, we discuss findings from early clinical studies that have evaluated these novel bNAbs. RECENT FINDINGS Phase 1 studies of bNAbs targeting two distinct HIV-1 envelope epitopes have demonstrated their favorable safety and pharmacokinetic profile. Single bNAb infusions led to significant, but transient, decline in viremia with selection of escape variants. A single bNAb also delayed viral rebound in ART-treated participants who discontinued ART. Importantly, in-vivo efficacy was related to antibody potency and to the level of preexisting resistance. Studies in animal models showed that bNAbs can clear HIV-infected cells and modulate host immune responses. These findings suggest that bNAbs may target the latent HIV reservoir in humans and could contribute to long-term remission of HIV-1 infection. SUMMARY bNAbs may offer advantages over traditional ART for both the prevention and treatment of HIV-1 infection. In addition, bNAbs may target the latent viral reservoir. bNAb combinations and bNAbs engineered for prolonged half-life and increased potency are currently undergoing clinical evaluation.
Collapse
|
228
|
Heffern EF, Ramani R, Marshall G, Kyei GB. Identification of isoform-selective hydroxamic acid derivatives that potently reactivate HIV from latency. J Virus Erad 2019; 5:84-91. [PMID: 31191911 PMCID: PMC6543484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Current antiretroviral therapy can suppress HIV replication, increase CD4 count and result in increased lifespan. However, it cannot eradicate the virus due to the presence of latent provirus in cellular reservoirs, such as resting CD4+ T cells. Using combination latency-reversing agents to shock the virus out of latency for elimination through immune clearance or viral cytopathic effect is one of the most promising strategies for HIV eradication. Specifically, recent evidence shows that isoform-selective histone deacetylase inhibitors may be more effective than their non-selective counterparts. Therefore, identification and characterisation of new isoform-selective compounds are of prime importance. Here, we sought to determine the ability of two new isoform-targeted hydroxamic acid derivatives to reactivate HIV from latency. METHODS We used cell lines and infected primary resting CD4+ T cells. These were treated with these compounds with HIV reactivation measured using fluorescence-activated cell sorting, Western blots and luciferase luminescence. Isoform selectivity and acetylation of the HIV promoter were measured by Western blotting and chromatic immunoprecipitation. RESULTS AND CONCLUSIONS The two new hydroxamic acid derivatives, MC2625 and MC1742, potently reactivate HIV from latency. These compounds are isoform-selective histone deacetylate inhibitors that increase the levels of histone acetylation at the HIV promoter. In addition, they synergise effectively with the protein kinase C modulators bryostatin-1 and INDY, an inhibitor of the dual-specificity tyrosine phosphorylation regulated kinase 1A. We conclude that the combinations of new hydroxamic acid derivatives and bryostatin-1 or INDY could be a new tool for HIV reactivation in the cure efforts.
Collapse
Affiliation(s)
- Elleard Fw Heffern
- Department of Medicine, Washington University School of Medicine in St Louis, MO, USA
| | - Rashmi Ramani
- Department of Medicine, Washington University School of Medicine in St Louis, MO, USA
| | - Garland Marshall
- Department of Biochemistry and Biophysics, Washington University School of Medicine in St Louis, MO, USA
| | - George B Kyei
- Department of Medicine, Washington University School of Medicine in St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, MO, USA
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
229
|
Heffern EF, Ramani R, Marshall G, Kyei GB. Identification of isoform-selective hydroxamic acid derivatives that potently reactivate HIV from latency. J Virus Erad 2019. [DOI: 10.1016/s2055-6640(20)30057-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
230
|
Darcis G, Binda CS, Klaver B, Herrera-Carrillo E, Berkhout B, Das AT. The Impact of HIV-1 Genetic Diversity on CRISPR-Cas9 Antiviral Activity and Viral Escape. Viruses 2019; 11:E255. [PMID: 30871200 PMCID: PMC6466431 DOI: 10.3390/v11030255] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is widely explored for sequence-specific attack on HIV-1 proviral DNA. We recently identified dual-guide RNA (dual-gRNA) combinations that can block HIV-1 replication permanently in infected cell cultures and prevent viral escape. Although the gRNAs were designed to target highly conserved viral sequences, their efficacy may be challenged by high genetic variation in the HIV-1 genome. We therefore evaluated the breadth of these dual-gRNA combinations against distinct HIV-1 isolates, including several subtypes. Replication of nearly all virus isolates could be prevented by at least one gRNA combination, which caused inactivation of the proviral genomes and the gradual loss of replication-competent virus over time. The dual-gRNA efficacy was not affected by most single nucleotide (nt) mismatches between gRNA and the viral target. However, 1-nt mismatches at the Cas9 cleavage site and two mismatches anywhere in the viral target sequence significantly reduced the inhibitory effect. Accordingly, sequence analysis of viruses upon breakthrough replication revealed the acquisition of escape mutations in perfectly matching and most 1-nt mismatching targets, but not in targets with a mismatch at the Cas9 cleavage site or with two mismatches. These results demonstrate that combinatorial CRISPR-Cas9 treatment can cure T cells infected by distinct HIV-1 isolates, but even minor sequence variation in conserved viral target sites can affect the efficacy of this strategy. Successful cure attempts against isolates with divergent target sequences may therefore require adaptation of the gRNAs.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands.
- Infectious Diseases Department, Liège University Hospital, 4000 Liège, Belgium.
| | - Caroline S Binda
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands.
| | - Bep Klaver
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands.
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands.
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
231
|
Establishment of a Novel Humanized Mouse Model To Investigate In Vivo Activation and Depletion of Patient-Derived HIV Latent Reservoirs. J Virol 2019; 93:JVI.02051-18. [PMID: 30626677 DOI: 10.1128/jvi.02051-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Curing HIV infection has been thwarted by the persistent reservoir of latently infected CD4+ T cells, which reinitiate systemic infection after antiretroviral therapy (ART) interruption. To evaluate reservoir depletion strategies, we developed a novel preclinical in vivo model consisting of immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells (PBMC) from long-term ART-suppressed HIV-infected donors. In the absence of ART, these mice developed rebound viremia which, 2 weeks after PBMC injection, was 1,000-fold higher (mean = 9,229,281 HIV copies/ml) in mice injected intrasplenically than in mice injected intraperitoneally (mean = 6,838 HIV copies/ml) or intravenously (mean = 591 HIV copies/ml). One week after intrasplenic PBMC injection, in situ hybridization of the spleen demonstrated extensive disseminated HIV infection, likely initiated from in vivo-reactivated primary latently infected cells. The time to viremia was delayed significantly by treatment with a broadly neutralizing antibody, 10-1074, compared to treatment with 10-1074-FcRnull, suggesting that 10-1074 mobilized Fc-mediated effector mechanisms to deplete the replication-competent reservoir. This was supported by phylogenetic analysis of Env sequences from viral-outgrowth cultures and untreated, 10-1074-treated, or 10-1074-FcRnull-treated mice. The predominant sequence cluster detected in viral-outgrowth cultures and untreated mouse plasma was significantly reduced in the plasma of 10-1074-treated mice, whereas two new clusters emerged that were not detected in viral-outgrowth cultures or plasma from untreated mice. These new clusters lacked mutations associated with 10-1074 resistance. Taken together, these data indicated that 10-1074 treatment depletes the reservoir of latently infected cells harboring replication competent HIV. Furthermore, this mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.IMPORTANCE Sustained remission of HIV infection is prevented by a persistent reservoir of latently infected cells capable of reinitiating systemic infection and viremia. To evaluate strategies to reactivate and deplete this reservoir, we developed and characterized a new humanized mouse model consisting of highly immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells from long-term ART-suppressed HIV-infected donors. Reactivation and dissemination of HIV infection was visualized in the mouse spleens in parallel with the onset of viremia. The applicability of this model for evaluating reservoir depletion treatments was demonstrated by establishing, through delayed time to viremia and phylogenetic analysis of plasma virus, that treatment of these humanized mice with a broadly neutralizing antibody, 10-1074, depleted the patient-derived population of latently infected cells. This mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.
Collapse
|
232
|
CD32 Expression of Different Memory T Cell Subpopulations in the Blood and Lymph Nodal Tissue of HIV Patients and Healthy Controls Correlates With Immune Activation. J Acquir Immune Defic Syndr 2019; 77:345-349. [PMID: 29293157 DOI: 10.1097/qai.0000000000001622] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recently, CD32 has been described to be a specific surface marker of latently HIV-infected CD4 T cells, but little is known about the frequency and distribution of CD32 expression on naive and memory CD8 and CD4 T cell populations in HIV patients and healthy individuals. METHODS We studied peripheral blood samples of 36 HIV-1-infected patients [23 viremic patients / 13 antiretroviral therapy(ART)-treated] and healthy individuals (n = 14) as well as cells from lymph nodes (8 HIV infected, 5 controls) using a multiparametric flow cytometry panel determining surface expression of CD3, CD8, CD4, CD45RA, CCR7, CD27, CD25, CD127, CCR5, CCR6, CXCR4, CD38, HLA-DR, TIGIT, and PD-1. RESULTS Overall, expression of CD32 on total peripheral CD4 T cells between viremic HIV patients, ART-treated and healthy individuals only slightly differed (mean values 1.501%, 0.2785%, and 0.2343%, respectively). However, the level of expression was significantly higher in peripheral and lymph nodal memory CD4 T cell subpopulations of viremic patients compared with ART-treated patients and healthy controls. CD32 CD4 T cells showed higher immune activation and higher expression of CXCR4 than their CD32 counterparts. Furthermore, expression of CD32 on total CD4 T cells and memory T cell populations correlated with general immune activation regardless of the infection status. CONCLUSIONS Follow-up studies will have to further evaluate CD32 as marker of latently HIV-infected CD4 T cells since other host-related variables such as immune activation seem to influence CD32 expression regardless of the infection status.
Collapse
|
233
|
Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, Mallon PWG, Marcello A, Van Lint C, Rohr O, Schwartz C. Microglial Cells: The Main HIV-1 Reservoir in the Brain. Front Cell Infect Microbiol 2019. [PMID: 31709195 DOI: 10.3389/fcimb.2019.00362/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Despite efficient combination of the antiretroviral therapy (cART), which significantly decreased mortality and morbidity of HIV-1 infection, a definitive HIV cure has not been achieved. Hidden HIV-1 in cellular and anatomic reservoirs is the major hurdle toward a functional cure. Microglial cells, the Central Nervous system (CNS) resident macrophages, are one of the major cellular reservoirs of latent HIV-1. These cells are believed to be involved in the emergence of drugs resistance and reseeding peripheral tissues. Moreover, these long-life reservoirs are also involved in the development of HIV-1-associated neurocognitive diseases (HAND). Clearing these infected cells from the brain is therefore crucial to achieve a cure. However, many characteristics of microglial cells and the CNS hinder the eradication of these brain reservoirs. Better understandings of the specific molecular mechanisms of HIV-1 latency in microglial cells should help to design new molecules and new strategies preventing HAND and achieving HIV cure. Moreover, new strategies are needed to circumvent the limitations associated to anatomical sanctuaries with barriers such as the blood brain barrier (BBB) that reduce the access of drugs.
Collapse
Affiliation(s)
- Clementine Wallet
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Marco De Rovere
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Stéphane De Wit
- Division of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
234
|
The BET bromodomain inhibitor apabetalone induces apoptosis of latent HIV-1 reservoir cells following viral reactivation. Acta Pharmacol Sin 2019; 40:98-110. [PMID: 29789664 DOI: 10.1038/s41401-018-0027-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
Abstract
The persistence of latent HIV-1 reservoirs throughout combination antiretroviral therapy (cART) is a major barrier on the path to achieving a cure for AIDS. It has been shown that bromodomain and extra-terminal (BET) inhibitors could reactivate HIV-1 latency, but restrained from clinical application due to their toxicity and side effects. Thus, identifying a new type of BET inhibitor with high degrees of selectivity and safety is urgently needed. Apabetalone is a small-molecule selective BET inhibitor specific for second bromodomains, and has been evaluated in phase III clinical trials that enrolled patients with high-risk cardiovascular disorders, dyslipidemia, and low HDL cholesterol. In the current study, we examined the impact of apabetalone on HIV-1 latency. We showed that apabetalone (10-50 μmol/L) dose-dependently reactivated latent HIV-1 in 4 types of HIV-1 latency cells in vitro and in primary human CD4+ T cells ex vivo. In ACH2 cells, we further demonstrated that apabetalone activated latent HIV-1 through Tat-dependent P-TEFB pathway, i.e., dissociating bromodomain 4 (BDR4) from the HIV-1 promoter and recruiting Tat for stimulating HIV-1 elongation. Furthermore, we showed that apabetalone (10-30 μmol/L) caused dose-dependent cell cycle arrest at the G1/G0 phase in ACH2 cells, and thereby induced the preferential apoptosis of HIV-1 latent cells to promote the death of reactivated reservoir cells. Notably, cardiovascular diseases and low HDL cholesterol are known as the major side effects of cART, which should be prevented by apabetalone. In conclusion, apabetalone should be an ideal bifunctional latency-reversing agent for advancing HIV-1 eradication and reducing the side effects of BET inhibitors.
Collapse
|
235
|
Vanhamel J, Bruggemans A, Debyser Z. Establishment of latent HIV-1 reservoirs: what do we really know? J Virus Erad 2019; 5:3-9. [PMID: 30800420 PMCID: PMC6362902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite our ability to suppress HIV-1 replication indefinitely in people on optimal combined antiretroviral therapy (cART), HIV-1 persists as a stably integrated and replication-competent provirus in a heterogeneous collection of long-lived cells (often referred to as 'latent reservoirs') in all individuals on treatment. Reactivation of these latent proviruses is believed to be responsible for the rebound viraemia that can be seen in nearly all people following treatment cessation. Hence, the persistence of HIV-1 in latent reservoirs remains one of the greatest challenges in current HIV cure research. Latent HIV-1 reservoirs are established early during the acute phase of the infection, possibly before the virus appears in the systemic circulation. As well as the issue of timing, we review the proposed hypotheses on the mechanisms by which this latent state is believed to be established early in the course of the infection and the effect of early initiation of cART on the size and stability of these reservoirs. We conclude that prevention of the establishment of latent HIV-1 reservoirs by even extremely early initiation of cART proves to be practically impossible. However, early treatment initiation remains one of the crucial interventions needed to achieve the ultimate goal of a functional cure for HIV-1 infection because of its ability to reduce the overall size of HIV-1 reservoirs. Together with other interventions, early cART initiation may thus eventually lead to a state of better control over the residual amount of virus in the body, allowing people to stay off treatment for prolonged periods of time.
Collapse
Affiliation(s)
- Jef Vanhamel
- Center for Molecular Medicine,
University of Leuven,
Leuven,
Belgium
| | - Anne Bruggemans
- Center for Molecular Medicine,
University of Leuven,
Leuven,
Belgium
| | - Zeger Debyser
- Center for Molecular Medicine,
University of Leuven,
Leuven,
Belgium
| |
Collapse
|
236
|
|
237
|
Jean MJ, Fiches G, Hayashi T, Zhu J. Current Strategies for Elimination of HIV-1 Latent Reservoirs Using Chemical Compounds Targeting Host and Viral Factors. AIDS Res Hum Retroviruses 2019; 35:1-24. [PMID: 30351168 DOI: 10.1089/aid.2018.0153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since the implementation of combination antiretroviral therapy (cART), rates of HIV type 1 (HIV-1) mortality, morbidity, and newly acquired infections have decreased dramatically. In fact, HIV-1-infected individuals under effective suppressive cART approach normal life span and quality of life. However, long-term therapy is required because the virus establish a reversible state of latency in memory CD4+ T cells. Two principle strategies, namely "shock and kill" approach and "block and lock" approach, are currently being investigated for the eradication of these HIV-1 latent reservoirs. Actually, both of these contrasting approaches are based on the use of small-molecule compounds to achieve the cure for HIV-1. In this review, we discuss the recent progress that has been made in designing and developing small-molecule compounds for both strategies.
Collapse
Affiliation(s)
- Maxime J. Jean
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Guillaume Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tsuyoshi Hayashi
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
238
|
McCauley SM, Kim K, Nowosielska A, Dauphin A, Yurkovetskiy L, Diehl WE, Luban J. Intron-containing RNA from the HIV-1 provirus activates type I interferon and inflammatory cytokines. Nat Commun 2018; 9:5305. [PMID: 30546110 PMCID: PMC6294009 DOI: 10.1038/s41467-018-07753-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
HIV-1-infected people who take drugs that suppress viremia to undetectable levels are protected from developing AIDS. Nonetheless, HIV-1 establishes proviruses in long-lived CD4+ memory T cells, and perhaps other cell types, that preclude elimination of the virus even after years of continuous antiviral therapy. Here we show that the HIV-1 provirus activates innate immune signaling in isolated dendritic cells, macrophages, and CD4+ T cells. Immune activation requires transcription from the HIV-1 provirus and expression of CRM1-dependent, Rev-dependent, RRE-containing, unspliced HIV-1 RNA. If rev is provided in trans, all HIV-1 coding sequences are dispensable for activation except those cis-acting sequences required for replication or splicing. Our results indicate that the complex, post-transcriptional regulation intrinsic to HIV-1 RNA is detected by the innate immune system as a danger signal, and that drugs which disrupt HIV-1 transcription or HIV-1 RNA metabolism would add qualitative benefit to current antiviral drug regimens. During HIV infection, antiviral therapy can suppress viraemia to undetectable levels and hinder the progression towards AIDS; however the HIV-1 provirus can remain in long-lived CD4+ memory T cells. Here the authors show that intronic RNA from the HIV-1 provirus can induce type I interferon and inflammatory cytokine production.
Collapse
Affiliation(s)
- Sean Matthew McCauley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kyusik Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anetta Nowosielska
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - William Edward Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA. .,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
239
|
Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1. Front Immunol 2018; 9:2876. [PMID: 30574147 PMCID: PMC6291751 DOI: 10.3389/fimmu.2018.02876] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Antiviral restriction factors are host cellular proteins that constitute a first line of defense blocking viral replication and propagation. In addition to interfering at critical steps of the viral replication cycle, some restriction factors also act as innate sensors triggering innate responses against infections. Accumulating evidence suggests an additional role for restriction factors in promoting antiviral cellular immunity to combat viruses. Here, we review the recent progress in our understanding on how restriction factors, particularly APOBEC3G, SAMHD1, Tetherin, and TRIM5α have the cell-autonomous potential to induce cellular resistance against HIV-1 while promoting antiviral innate and adaptive immune responses. Also, we provide an overview of how these restriction factors may connect with protein degradation pathways to modulate anti-HIV-1 cellular immune responses, and we summarize the potential of restriction factors-based therapeutics. This review brings a global perspective on the influence of restrictions factors in intrinsic, innate, and also adaptive antiviral immunity opening up novel research avenues for therapeutic strategies in the fields of drug discovery, gene therapy, and vaccines to control viral infections.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Alba Ruiz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Arnaud Moris
- Sorbonne Université, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
240
|
Valadão ALC, Pezzuto P, Silva VAO, Gonçalves BS, Rossi ÁD, da Cunha RD, Siani AC, Tostes JBDF, Trovó M, Damasco P, Gonçalves G, Reis RM, Aguiar RS, Bento CADM, Tanuri A. Reactivation of latent HIV-1 in vitro using an ethanolic extract from Euphorbia umbellata (Euphorbiaceae) latex. PLoS One 2018; 13:e0207664. [PMID: 30481211 PMCID: PMC6258530 DOI: 10.1371/journal.pone.0207664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/05/2018] [Indexed: 01/14/2023] Open
Abstract
Euphorbia umbellata (E. umbellata) belongs to Euphorbiaceae family, popularly known as Janauba, and its latex contains a combination of phorbol esters with biological activities described to different cellular protein kinase C (PKC) isoforms. Here, we identified deoxi-phorbol esters present in E. umbellata latex alcoholic extract that are able to increase HIV transcription and reactivate virus from latency models. This activity is probably mediated by NF-kB activation followed by nuclear translocation and binding to the HIV LTR promoter. In addition, E. umbellata latex extract induced the production of pro inflammatory cytokines in vitro in human PBMC cultures. This latex extract also activates latent virus in human PBMCs isolated from HIV positive patients as well as latent SIV in non-human primate primary CD4+ T lymphocytes. Together, these results indicate that the phorbol esters present in E. umbellata latex are promising candidate compounds for future clinical trials for shock and kill therapies to promote HIV cure and eradication.
Collapse
Affiliation(s)
- Ana Luiza Chaves Valadão
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Pezzuto
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Barbara Simonson Gonçalves
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Átila Duque Rossi
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Delvecchio da Cunha
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Carlos Siani
- Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | | | - Marcelo Trovó
- Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Damasco
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Gonçalves
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Renato Santana Aguiar
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleonice Alves de Melo Bento
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
241
|
Cannon L, Vargas-Garcia CA, Jagarapu A, Piovoso MJ, Zurakowski R. HIV 2-LTR experiment design optimization. PLoS One 2018; 13:e0206700. [PMID: 30408070 PMCID: PMC6224063 DOI: 10.1371/journal.pone.0206700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/17/2018] [Indexed: 01/20/2023] Open
Abstract
Clinical trials are necessary in order to develop treatments for diseases; however, they can often be costly, time consuming, and demanding to the patients. This paper summarizes several common methods used for optimal design that can be used to address these issues. In addition, we introduce a novel method for optimizing experiment designs applied to HIV 2-LTR clinical trials. Our method employs Bayesian techniques to optimize the experiment outcome by maximizing the Expected Kullback-Leibler Divergence (EKLD) between the a priori knowledge of system parameters before the experiment and the a posteriori knowledge of the system parameters after the experiment. We show that our method is robust and performs equally well if not better than traditional optimal experiment design techniques.
Collapse
Affiliation(s)
- LaMont Cannon
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States of America
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar A. Vargas-Garcia
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, United States of America
- Fundación Universitaria Konrad Lorenz, Bogota, Colombia
| | - Aditya Jagarapu
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States of America
| | - Michael J. Piovoso
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, United States of America
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States of America
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, United States of America
- * E-mail:
| |
Collapse
|
242
|
Tomalka AG, Resto-Garay I, Campbell KS, Popkin DL. In vitro Evidence That Combination Therapy With CD16-Bearing NK-92 Cells and FDA-Approved Alefacept Can Selectively Target the Latent HIV Reservoir in CD4+ CD2hi Memory T Cells. Front Immunol 2018; 9:2552. [PMID: 30455699 PMCID: PMC6230627 DOI: 10.3389/fimmu.2018.02552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022] Open
Abstract
Elimination of the latent HIV reservoir remains the biggest hurdle to achieve HIV cure. In order to specifically eliminate HIV infected cells they must be distinguishable from uninfected cells. CD2 was recently identified as a potential marker enriched in the HIV-1 reservoir on CD4+ T cells, the largest, longest-lived and best-characterized constituent of the HIV reservoir. We previously proposed to repurpose FDA-approved alefacept, a humanized α-CD2 fusion protein, to reduce the HIV reservoir in CD2hi CD4+ memory T cells. Here, we show the first evidence that alefacept can specifically target and reduce CD2hi HIV infected cells in vitro. We explore a variety of natural killer (NK) cells as mediators of antibody-dependent cell-mediated cytotoxicity (ADCC) including primary NK cells, expanded NK cells as well as the CD16 transduced NK-92 cell line which is currently under study in clinical trials as a treatment for cancer. We demonstrate that CD16.NK-92 has a natural preference to kill CD2hi CD45RA- memory T cells, specifically CD45RA- CD27+ central memory/transitional memory (TCM/TM) subset in both healthy and HIV+ patient samples as well as to reduce HIV DNA from HIV+ samples from donors well controlled on antiretroviral therapy. Lastly, alefacept can combine with CD16.NK-92 to decrease HIV DNA in some patient samples and thus may yield value as part of a strategy toward sustained HIV remission.
Collapse
Affiliation(s)
- Amanda G. Tomalka
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ivelisse Resto-Garay
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, United States
| | - Daniel L. Popkin
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
243
|
Swanstrom AE, Gorelick RJ, Wu G, Howell B, Vijayagopalan A, Shoemaker R, Oswald K, Datta SA, Keele BF, Del Prete GQ, Chertova E, Bess JW, Lifson JD. Ultrasensitive Immunoassay for Simian Immunodeficiency Virus p27 CA. AIDS Res Hum Retroviruses 2018; 34:993-1001. [PMID: 29869527 DOI: 10.1089/aid.2018.0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although effective for suppressing viral replication, combination antiretroviral treatment (cART) does not represent definitive therapy for HIV infection due to persistence of replication-competent viral reservoirs. The advent of effective cART regimens for simian immunodeficiency virus (SIV)-infected nonhuman primates (NHP) has enabled the development of relevant models for studying viral reservoirs and intervention strategies targeting them. Viral reservoir measurements are crucial for such studies but are problematic. Quantitative polymerase chain reaction (PCR) assays overestimate the size of the replication competent viral reservoir, as not all detected viral genomes are intact. Quantitative viral outgrowth assays measure replication competence, but they suffer from limited precision and dynamic range, and require large numbers of cells. Ex vivo virus induction assays to detect cells harboring inducible virus represent an experimental middle ground, but detection of inducible viral RNA in such assays does not necessarily indicate production of virions, while detection of more immunologically relevant viral proteins, including p27CA, by conventional enzyme-linked immunosorbent assays (ELISA) lacks sensitivity. An ultrasensitive digital SIV Gag p27 assay was developed, which is 100-fold more sensitive than a conventional ELISA. In ex vivo virus induction assays, the quantification of SIV Gag p27 produced by stimulated CD4+ T cells from rhesus macaques receiving cART enabled earlier and more sensitive detection than conventional ELISA-based approaches and was highly correlated with SIV RNA, as measured by quantitative reverse transcription PCR. This ultrasensitive p27 assay provides a new tool to assess ongoing replication and reactivation of infectious virus from reservoirs in SIV-infected NHP.
Collapse
Affiliation(s)
- Adrienne E. Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Guoxin Wu
- Department of Infectious Disease, Merck & Co., Inc., Kenilworth, New Jersey
| | - Bonnie Howell
- Department of Infectious Disease, Merck & Co., Inc., Kenilworth, New Jersey
| | - Anitha Vijayagopalan
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Siddhartha A. Datta
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Elena Chertova
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Julian W. Bess
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, Maryland
| |
Collapse
|
244
|
Antibody-Mediated CD4 Depletion Induces Homeostatic CD4 + T Cell Proliferation without Detectable Virus Reactivation in Antiretroviral Therapy-Treated Simian Immunodeficiency Virus-Infected Macaques. J Virol 2018; 92:JVI.01235-18. [PMID: 30185596 DOI: 10.1128/jvi.01235-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
A major barrier to human immunodeficiency virus (HIV) eradication is the long-term persistence of latently infected CD4+ T cells harboring integrated replication-competent virus. It has been proposed that the homeostatic proliferation of these cells drives long-term reservoir persistence in the absence of virus reactivation, thus avoiding cell death due to either virus-mediated cytopathicity or immune effector mechanisms. Here, we conducted an experimental depletion of CD4+ T cells in eight antiretroviral therapy (ART)-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) to determine whether the homeostatically driven CD4+ T-cell proliferation that follows CD4+ T-cell depletion results in reactivation of latent virus and/or expansion of the virus reservoir. After administration of the CD4R1 antibody, we observed a CD4+ T cell depletion of 65 to 89% in peripheral blood and 20 to 50% in lymph nodes, followed by a significant increase in CD4+ T cell proliferation during CD4+ T cell reconstitution. However, this CD4+ T cell proliferation was not associated with detectable increases in viremia, indicating that the homeostatic activation of CD4+ T cells is not sufficient to induce virus reactivation from latently infected cells. Interestingly, the homeostatic reconstitution of the CD4+ T cell pool was not associated with significant changes in the number of circulating cells harboring SIV DNA compared to results for the first postdepletion time point. This study indicates that, in ART-treated SIV-infected RMs, the homeostasis-driven CD4+ T-cell proliferation that follows experimental CD4+ T-cell depletion occurs in the absence of detectable reactivation of latent virus and does not increase the size of the virus reservoir as measured in circulating cells.IMPORTANCE Despite successful suppression of HIV replication with antiretroviral therapy, current treatments are unable to eradicate the latent virus reservoir, and treatment interruption almost invariably results in the reactivation of HIV even after decades of virus suppression. Homeostatic proliferation of latently infected cells is one mechanism that could maintain the latent reservoir. To understand the impact of homeostatic mechanisms on virus reactivation and reservoir size, we experimentally depleted CD4+ T cells in ART-treated SIV-infected rhesus macaques and monitored their homeostatic rebound. We find that depletion-induced proliferation of CD4+ T cells is insufficient to reactivate the viral reservoir in vivo Furthermore, the proportion of SIV DNA+ CD4+ T cells remains unchanged during reconstitution, suggesting that the reservoir is resistant to this mechanism of expansion at least in this experimental system. Understanding how T cell homeostasis impacts latent reservoir longevity could lead to the development of new treatment paradigms aimed at curing HIV infection.
Collapse
|
245
|
Evidence for persistence of the SHIV reservoir early after MHC haploidentical hematopoietic stem cell transplantation. Nat Commun 2018; 9:4438. [PMID: 30361514 PMCID: PMC6202377 DOI: 10.1038/s41467-018-06736-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023] Open
Abstract
Allogeneic transplantation (allo-HCT) has led to the cure of HIV in one individual, raising the question of whether transplantation can eradicate the HIV reservoir. To test this, we here present a model of allo-HCT in SHIV-infected, cART-suppressed nonhuman primates. We infect rhesus macaques with SHIV-1157ipd3N4, suppress them with cART, then transplant them using MHC-haploidentical allogeneic donors during continuous cART. Transplant results in ~100% myeloid donor chimerism, and up to 100% T-cell chimerism. Between 9 and 47 days post-transplant, terminal analysis shows that while cell-associated SHIV DNA levels are reduced in the blood and in lymphoid organs post-transplant, the SHIV reservoir persists in multiple organs, including the brain. Sorting of donor-vs.-recipient cells reveals that this reservoir resides in recipient cells. Moreover, tetramer analysis indicates a lack of virus-specific donor immunity post-transplant during continuous cART. These results suggest that early post-transplant, allo-HCT is insufficient for recipient reservoir eradication despite high-level donor chimerism and GVHD. Allogeneic hematopoietic cell transplantation (allo-HCT) has led to the cure of HIV in one individual, but the underlying mechanisms are unclear. Here, the authors present a model of allo-HCT in SHIV-infected nonhuman primates and show that the SHIV reservoir persists in multiple tissues early after transplantation.
Collapse
|
246
|
Anderson EM, Maldarelli F. The role of integration and clonal expansion in HIV infection: live long and prosper. Retrovirology 2018; 15:71. [PMID: 30352600 PMCID: PMC6199739 DOI: 10.1186/s12977-018-0448-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023] Open
Abstract
Integration of viral DNA into the host genome is a central event in the replication cycle and the pathogenesis of retroviruses, including HIV. Although most cells infected with HIV are rapidly eliminated in vivo, HIV also infects long-lived cells that persist during combination antiretroviral therapy (cART). Cells with replication competent HIV proviruses form a reservoir that persists despite cART and such reservoirs are at the center of efforts to eradicate or control infection without cART. The mechanisms of persistence of these chronically infected long-lived cells is uncertain, but recent research has demonstrated that the presence of the HIV provirus has enduring effects on infected cells. Cells with integrated proviruses may persist for many years, undergo clonal expansion, and produce replication competent HIV. Even proviruses with defective genomes can produce HIV RNA and may contribute to ongoing HIV pathogenesis. New analyses of HIV infected cells suggest that over time on cART, there is a shift in the composition of the population of HIV infected cells, with the infected cells that persist over prolonged periods having proviruses integrated in genes associated with regulation of cell growth. In several cases, strong evidence indicates the presence of the provirus in specific genes may determine persistence, proliferation, or both. These data have raised the intriguing possibility that after cART is introduced, a selection process enriches for cells with proviruses integrated in genes associated with cell growth regulation. The dynamic nature of populations of cells infected with HIV during cART is not well understood, but is likely to have a profound influence on the composition of the HIV reservoir with critical consequences for HIV eradication and control strategies. As such, integration studies will shed light on understanding viral persistence and inform eradication and control strategies. Here we review the process of HIV integration, the role that integration plays in persistence, clonal expansion of the HIV reservoir, and highlight current challenges and outstanding questions for future research.
Collapse
Affiliation(s)
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, 21702, USA.
| |
Collapse
|
247
|
Salido J, Ruiz MJ, Trifone C, Figueroa MI, Caruso MP, Gherardi MM, Sued O, Salomón H, Laufer N, Ghiglione Y, Turk G. Phenotype, Polyfunctionality, and Antiviral Activity of in vitro Stimulated CD8 + T-Cells From HIV + Subjects Who Initiated cART at Different Time-Points After Acute Infection. Front Immunol 2018; 9:2443. [PMID: 30405632 PMCID: PMC6205955 DOI: 10.3389/fimmu.2018.02443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Since anti-HIV treatment cannot cure the infection, many strategies have been proposed to eradicate the viral reservoir, which still remains as a major challenge. The success of some of these strategies will rely on the ability of HIV-specific CD8+ T-cells (CD8TC) to clear reactivated infected cells. Here, we aimed to investigate the phenotype and function of in vitro expanded CD8TC obtained from HIV+ subjects on combination antiretroviral therapy (cART), either initiated earlier (median = 3 months postinfection, ET: Early treatment) or later (median = 20 months postinfection, DT: Delayed treatment) after infection. Peripheral blood mononuclear cells from 12 DT and 13 ET subjects were obtained and stimulated with Nef and Gag peptide pools plus IL-2 for 14 days. ELISPOT was performed pre- and post-expansion. CD8TC memory/effector phenotype, PD-1 expression, polyfunctionality (CD107a/b, IFN-γ, IL-2, CCL4 (MIP-1β), and/or TNF-α production) and antiviral activity were evaluated post-expansion. Magnitude of ELISPOT responses increased after expansion by 103 times, in both groups. Expanded cells were highly polyfunctional, regardless of time of cART initiation. The memory/effector phenotype distribution was sharply skewed toward an effector phenotype after expansion in both groups although ET subjects showed significantly higher proportions of stem-cell and central memory CD8TCs. PD-1 expression was clustered in HIV-specific effector memory CD8TCs, subset that also showed the highest proportion of cytokine-producing cells. Moreover, PD-1 expression directly correlated with CD8TC functionality. Expanded CD8TCs from DT and ET subjects were highly capable of mediating antiviral activity, measured by two different assays. Antiviral function directly correlated with the proportion of fully differentiated effector cells (viral inhibition assay) as well as with CD8TC polyfunctionality and PD-1 expression (VITAL assay). In sum, we show that, despite being dampened in subjects on cART, the HIV-specific CD8TC response could be selectively stimulated and expanded in vitro, presenting a high proportion of cells able to carry-out multiple effector functions. Timing of cART initiation had an impact on the memory/effector differentiation phenotype, most likely reflecting how different periods of antigen persistence affected immune function. Overall, these results have important implications for the design and evaluation of strategies aimed at modulating CD8TCs to achieve the HIV functional cure.
Collapse
Affiliation(s)
- Jimena Salido
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Julia Ruiz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - César Trifone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - María Paula Caruso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Magdalena Gherardi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
- Hospital General de Agudos “Dr. JA Fernández”, Buenos Aires, Argentina
| | - Yanina Ghiglione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriela Turk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
248
|
Thomas J, Ruggiero A, Procopio FA, Pantaleo G, Paxton WA, Pollakis G. Comparative analysis and generation of a robust HIV-1 DNA quantification assay. J Virol Methods 2018; 263:24-31. [PMID: 30326210 DOI: 10.1016/j.jviromet.2018.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022]
Abstract
HIV-1 infection cannot be cured due to the presence of the latent reservoir (LR). Novel cure or treatment strategies, such as "shock and kill" or therapeutic vaccination, aim to reduce or eradicate the LR. Cure strategies utilise robust DNA quantification assays to measure the change in the LR in low copy scenarios. No standard assay exists, which impedes the reliable comparison of results from different therapy and vaccine trials and HIV-1 total DNA quantification methods have not been previously compared. The HIV-1 long terminal repeat (LTR) has been shown to be the best target for DNA quantification. We have analysed two HIV-1 quantification assays, both able to differentiate between the variant HIV-1 DNA forms via the use of pre-amplification and primers targeting LTR. We identify a strong correlation (r=0.9759, P<0.0001) between assays which is conserved in low copy samples (r=0.8220, P<0.0001) indicating that these assays may be used interchangeably. The RvS assay performed significantly (P=0.0021) better than the CV assay when quantifying HIV-1 total DNA in patient CD4+ T lymphocytes. Sequence analysis demonstrated that viral diversity can limit DNA quantification, however in silico analysis of the primers indicated that within the target region nucleotide miss-matches appear infrequently. Further in silico analysis using up to-date sequence information led to the improvement of primers and enabled us to establish a more broadly specific assay with significantly higher HIV-1 DNA quantification capacity in patient samples (p=0.0057, n=17).
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Francesco A Procopio
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
249
|
Macedo AB, Novis CL, De Assis CM, Sorensen ES, Moszczynski P, Huang SH, Ren Y, Spivak AM, Jones RB, Planelles V, Bosque A. Dual TLR2 and TLR7 agonists as HIV latency-reversing agents. JCI Insight 2018; 3:122673. [PMID: 30282829 PMCID: PMC6237480 DOI: 10.1172/jci.insight.122673] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
The presence of a reservoir of latently infected cells in HIV-infected patients is a major barrier towards finding a cure. One active cure strategy is to find latency-reversing agents that induce viral reactivation, thus leading to immune cell recognition and elimination of latently infected cells, known as the shock-and-kill strategy. Therefore, the identification of molecules that reactivate latent HIV and increase immune activation has the potential to further these strategies into the clinic. Here, we characterized synthetic molecules composed of a TLR2 and a TLR7 agonist (dual TLR2/7 agonists) as latency-reversing agents and compared their activity with that of the TLR2 agonist Pam2CSK4 and the TLR7 agonist GS-9620. We found that these dual TLR2/7 agonists reactivate latency by 2 complementary mechanisms. The TLR2 component reactivates HIV by inducing NF-κB activation in memory CD4+ T cells, while the TLR7 component induces the secretion of TNF-α by monocytes and plasmacytoid dendritic cells, promoting viral reactivation in CD4+ T cells. Furthermore, the TLR2 component induces the secretion of IL-22, which promotes an antiviral state and blocks HIV infection in CD4+ T cells. Our study provides insight into the use of these agonists as a multipronged approach targeting eradication of latent HIV.
Collapse
Affiliation(s)
- Amanda B. Macedo
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Camille L. Novis
- Division of Microbiology and Immunology, and Department of Pathology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Caroline M. De Assis
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Eric S. Sorensen
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Paula Moszczynski
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Szu-han Huang
- Infectious Disease Division, Weill Cornell Medical College, New York, New York, USA
| | - Yanqin Ren
- Infectious Disease Division, Weill Cornell Medical College, New York, New York, USA
| | - Adam M. Spivak
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - R. Brad Jones
- Infectious Disease Division, Weill Cornell Medical College, New York, New York, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, and Department of Pathology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
250
|
Sung JA, Patel S, Clohosey ML, Roesch L, Tripic T, Kuruc JD, Archin N, Hanley PJ, Cruz CR, Goonetilleke N, Eron JJ, Rooney CM, Gay CL, Bollard CM, Margolis DM. HIV-Specific, Ex Vivo Expanded T Cell Therapy: Feasibility, Safety, and Efficacy in ART-Suppressed HIV-Infected Individuals. Mol Ther 2018; 26:2496-2506. [PMID: 30249388 PMCID: PMC6171327 DOI: 10.1016/j.ymthe.2018.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022] Open
Abstract
Adoptive T cell therapy has had dramatic successes in the treatment of virus-related malignancies and infections following hematopoietic stem cell transplantation. We adapted this method to produce ex vivo expanded HIV-specific T cells (HXTCs), with the long-term goal of using HXTCs as part of strategies to clear persistent HIV infection. In this phase 1 proof-of-concept study (NCT02208167), we administered HXTCs to antiretroviral therapy (ART)-suppressed, HIV-infected participants. Participants received two infusions of 2 × 107 cells/m2 HXTCs at a 2-week interval. Leukapheresis was performed at baseline and 12 weeks post-infusion to measure the frequency of resting cell infection by the quantitative viral outgrowth assay (QVOA). Overall, participants tolerated HXTCs, with only grade 1 adverse events (AEs) related to HXTCs. Two of six participants exhibited a detectable increase in CD8 T cell-mediated antiviral activity following the two infusions in some, but not all, assays. As expected, however, in the absence of a latency reversing agent, no meaningful decline in the frequency of resting CD4 T cell infection was detected. HXTC therapy in ART-suppressed, HIV-infected individuals appears safe and well tolerated, without any clinical signs of immune activation, likely due to the low residual HIV antigen burden present during ART.
Collapse
Affiliation(s)
- Julia A Sung
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Matthew L Clohosey
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren Roesch
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Tamara Tripic
- Section of Hematology-Oncology, Department of Pediatrics, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - JoAnn D Kuruc
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nancie Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - C Russell Cruz
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Nilu Goonetilleke
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph J Eron
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clio M Rooney
- Section of Hematology-Oncology, Department of Pediatrics, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.
| | - David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|