201
|
Kassel KM, Schulte NA, Parker SM, Lanik AD, Toews ML. Lysophosphatidic acid decreases epidermal growth factor receptor binding in airway epithelial cells. J Pharmacol Exp Ther 2007; 323:109-18. [PMID: 17640953 DOI: 10.1124/jpet.107.120584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We showed previously that treatment of human airway smooth muscle cells and lung fibroblasts with lysophosphatidic acid (LPA) increases the binding of epidermal growth factor (EGF) to EGF receptors (EGFRs). The purpose of this study was to determine whether LPA also regulates EGFR binding in airway epithelial cells. Airway epithelial cells were incubated in the absence or presence of 10 microM LPA for increasing times, and binding of 125I-EGF to intact cells on ice was measured. Exposure to LPA for only 15 min caused a 30 to 70% decrease in EGFR binding in a dose-dependent manner, depending on the cell line. This decrease in binding was sustained to at least 18 h in BEAS-2B and primary human bronchial epithelial cells. In contrast, the LPA-induced decrease in binding reversed rapidly in two lung cancer epithelial cell lines, H292 and A549, returning to control levels within 3 h. LPA increased phosphorylation of the EGFR in BEAS-2B cells, and this phosphorylation was inhibited by both 4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478; EGFR tyrosine kinase inhibitor) and N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide (GM6001; matrix metalloproteinase inhibitor) but not by CRM197 (heparin-binding EGF inhibitor). AG-1478 and GM6001 also inhibited the LPA-induced decrease in EGFR binding but only by 50%, suggesting only partial involvement of EGFR transactivation in the decrease in EGFR binding. In summary, LPA stimulates a decrease in EGFR binding in airway epithelial cells that is sustained in normal cells but that rapidly reverses in cancer cells. LPA-induced transactivation of EGFRs occurs and contributes to the decrease in EGFR binding, but additional pathway(s) may also be involved.
Collapse
Affiliation(s)
- Karen M Kassel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | |
Collapse
|
202
|
Horak CE, Lee JH, Elkahloun AG, Boissan M, Dumont S, Maga TK, Arnaud-Dabernat S, Palmieri D, Stetler-Stevenson WG, Lacombe ML, Meltzer PS, Steeg PS. Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res 2007; 67:7238-46. [PMID: 17671192 DOI: 10.1158/0008-5472.can-07-0962] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exogenous overexpression of the metastasis suppressor gene Nm23-H1 reduces the metastatic potential of multiple types of cancer cells and suppresses in vitro tumor cell motility and invasion. Mutational analysis of Nm23-H1 revealed that substitution mutants P96S and S120G did not inhibit motility and invasion. To elucidate the molecular mechanism of Nm23-H1 motility suppression, expression microarray analysis of an MDA-MB-435 cancer cell line overexpressing wild-type Nm23-H1 was done and cross-compared with expression profiles from lines expressing the P96S and S120G mutants. Nine genes, MET, PTN, SMO, FZD1, L1CAM, MMP2, NETO2, CTGF, and EDG2, were down-regulated by wild-type but not by mutant Nm23-H1 expression. Reduced expression of these genes coincident with elevated Nm23-H1 expression was observed in human breast tumor cohorts, a panel of breast carcinoma cell lines, and hepatocellular carcinomas from control versus Nm23-M1 knockout mice. The functional significance of the down-regulated genes was assessed by transfection and in vitro motility assays. Only EDG2 overexpression significantly restored motility to Nm23-H1-suppressed cancer cells, enhancing motility by 60-fold in these cells. In addition, silencing EDG2 expression with small interfering RNA reduced the motile phenotype of metastatic breast cancer cells. These data suggest that Nm23-H1 suppresses metastasis, at least in part, through down-regulation of EDG2 expression.
Collapse
Affiliation(s)
- Christine E Horak
- Women's Cancer Section, Laboratory of Molecular Pharmacology, National Cancer Institute/NIH, 37 Convent Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Hama K, Aoki J, Inoue A, Endo T, Amano T, Motoki R, Kanai M, Ye X, Chun J, Matsuki N, Suzuki H, Shibasaki M, Arai H. Embryo spacing and implantation timing are differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biol Reprod 2007; 77:954-9. [PMID: 17823089 DOI: 10.1095/biolreprod.107.060293] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In polytocous animals, blastocysts are evenly distributed along each uterine horn and implant. The molecular mechanisms underlying these precise events remain elusive. We recently showed that lysophosphatidic acid (LPA) has critical roles in the establishment of early pregnancy by affecting embryo spacing and subsequent implantation through its receptor, LPA3. Targeted deletion of Lpa3 in mice resulted in delayed implantation and embryo crowding, which is associated with a dramatic decrease in the prostaglandins and prostaglandin-endoperoxide synthase 2 expression levels. Exogenous administration of prostaglandins rescued the delayed implantation but did not rescue the defects in embryo spacing, suggesting the role of prostaglandins in implantation downstream of LPA3 signaling. In the present study, to know how LPA3 signaling regulates the embryo spacing, we determined the time course distribution of blastocysts during the preimplantation period. In wild-type (WT) uteri, blastocysts were distributed evenly along the uterine horns at Embryonic Day 3.8 (E3.8), whereas in the Lpa3-deficient uteri, they were clustered in the vicinity of the cervix, suggesting that the mislocalization and resulting crowding of the embryos are the cause of the delayed implantation. However, embryos transferred singly into E2.5 pseudopregnant Lpa3-deficient uterine horns still showed delayed implantation but on-time implantation in WT uteri, indicating that embryo spacing and implantation timing are two segregated events. We also found that an LPA3-specific agonist induced rapid uterine contraction in WT mice but not in Lpa3-deficient mice. Because the uterine contraction is critical for embryo spacing, our results suggest that LPA3 signaling controls embryo spacing via uterine contraction around E3.5.
Collapse
Affiliation(s)
- Kotaro Hama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Lysophosphatidylserine increases membrane potentials in rat C6 glioma cells. Arch Pharm Res 2007; 30:1096-101. [DOI: 10.1007/bf02980243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
205
|
Watanabe N, Ikeda H, Nakamura K, Ohkawa R, Kume Y, Tomiya T, Tejima K, Nishikawa T, Arai M, Yanase M, Aoki J, Arai H, Omata M, Fujiwara K, Yatomi Y. Plasma lysophosphatidic acid level and serum autotaxin activity are increased in liver injury in rats in relation to its severity. Life Sci 2007; 81:1009-1015. [PMID: 17850827 DOI: 10.1016/j.lfs.2007.08.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/10/2007] [Accepted: 08/03/2007] [Indexed: 12/14/2022]
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological actions. We have reported that LPA stimulates hepatic stellate cell proliferation and inhibits DNA synthesis in hepatocytes, suggesting that LPA might play some role in the liver. We have found that plasma LPA level and serum autotaxin (ATX) activity were increased in patients with chronic hepatitis C. However, the clinical significance of LPA and its synthetic enzyme, autotaxin (ATX), is still unclear. To determine whether the increase of plasma LPA level and serum ATX activity might be found generally in liver injury, we examined the possible modulation of them in the blood in rats with various liver injuries. Plasma LPA level and serum ATX activity were increased in carbon tetrachloride-induced liver fibrosis correlatively with fibrosis grade, in dimethylnitrosamine-induced acute liver injury correlatively with serum alanine aminotransferase level or in 70% hepatectomy as early as 3 h after the operation. Plasma LPA level was correlated with serum ATX activity in rats with chronic and acute liver injury. ATX mRNA in the liver was not altered in carbon tetrachloride-induced liver fibrosis. Plasma LPA level and serum ATX activity are increased in various liver injuries in relation to their severity. Whether increased ATX and LPA in the blood in liver injury is simply a result or also a cause of the injury should be further clarified.
Collapse
Affiliation(s)
- Naoko Watanabe
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Han L, Li ZM, Gao JR. New 3-O-Lauroyl-2-O-Benzyl-Glycerol Sulfonate. JOURNAL OF CHEMICAL RESEARCH 2007. [DOI: 10.3184/030823407x240917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hydroxy groups of D-mannitol were protected by the formation of acetals and benzylethers and then 2-O-benzyl-D-glyceraldehyde dimethylacetal was prepared after the deprotection and oxygenolysis of the protected D-mannitol. In the presence of DCC and DMAP, the lauroyl group was introduced at the primary hydroxyl group of the dimethylacetal and 3-O-lauroyl-2-O-benzyl-glycerol was obtained after the deprotection of the dimethylacetal with FeCl3·6H2O and then reduction with NaBH4. A series of new 3-O-lauroyl-2-O-benzyl-glycerol sulfonates was synthesised by the coupling of different sulfonyl groups with the 3-O-lauroyl-2-O-benzyl- glycerol. The bioactivities of the title compounds were tested and some compounds exhibited fungicidal activity against the tested fungi.
Collapse
Affiliation(s)
- Liang Han
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zheng-Ming Li
- National Key Laboratory of Elemento-Organic Chemistry, Naikai University, Tianjin 300071, China
| | - Jian-Rong Gao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
207
|
Lai YJ, Lin WC, Lin FT. PTPL1/FAP-1 negatively regulates TRIP6 function in lysophosphatidic acid-induced cell migration. J Biol Chem 2007; 282:24381-7. [PMID: 17591779 PMCID: PMC3923842 DOI: 10.1074/jbc.m701499200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The LIM domain-containing TRIP6 (Thyroid Hormone Receptor-interacting Protein 6) is a focal adhesion molecule known to regulate lysophosphatidic acid (LPA)-induced cell migration through interaction with the LPA2 receptor. LPA stimulation targets TRIP6 to the focal adhesion complexes and promotes c-Src-dependent phosphorylation of TRIP6 at Tyr-55, which creates a docking site for the Crk Src homology 2 domain, thereby promoting LPA-induced morphological changes and cell migration. Here we further demonstrate that a switch from c-Src-mediated phosphorylation to PTPL1/Fas-associated phosphatase-1-dependent dephosphorylation serves as an inhibitory feedback control mechanism of TRIP6 function in LPA-induced cell migration. PTPL1 dephosphorylates phosphotyrosine 55 of TRIP6 in vitro and inhibits LPA-induced tyrosine phosphorylation of TRIP6 in cells. This negative regulation requires a direct protein-protein interaction between these two molecules and the phosphatase activity of PTPL1. In contrast to c-Src, PTPL1 prevents TRIP6 turnover at the sites of adhesions. As a result, LPA-induced association of TRIP6 with Crk and the function of TRIP6 to promote LPA-induced morphological changes and cell migration are inhibited by PTPL1. Together, these results reveal a novel mechanism by which PTPL1 phosphatase plays a counteracting role in regulating TRIP6 function in LPA-induced cell migration.
Collapse
Affiliation(s)
- Yun-Ju Lai
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005
| | - Weei-Chin Lin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005
| | - Fang-Tsyr Lin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005
- To whom correspondence should be addressed: Dept. of Cell Biology, The University of Alabama at Birmingham, MCLM 360A, 1918 University Blvd., Birmingham, AL 35294-0005. Tel.: 205-975-5060; Fax: 205-975-5648;
| |
Collapse
|
208
|
Mori K, Kitayama J, Aoki J, Kishi Y, Shida D, Yamashita H, Arai H, Nagawa H. Submucosal connective tissue-type mast cells contribute to the production of lysophosphatidic acid (LPA) in the gastrointestinal tract through the secretion of autotaxin (ATX)/lysophospholipase D (lysoPLD). Virchows Arch 2007; 451:47-56. [PMID: 17554559 DOI: 10.1007/s00428-007-0425-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 04/11/2007] [Accepted: 04/25/2007] [Indexed: 01/21/2023]
Abstract
Lysophosphatidic acid (LPA) is involved in a broad spectrum of biological activities, including wound healing and cancer metastasis. Autotaxin (ATX), originally isolated from a melanoma supernatant as a tumor cell motility-stimulating factor, has been shown to be molecularly identical to lysophospholipase D (lysoPLD), which is the main enzyme in the production of LPA. Although ATX/lysoPLD is known to be widely expressed in normal human tissues, the exact distribution of ATX-producing cells has not been fully investigated. In this study, we evaluated ATX/lysoPLD expression by immunohistochemical staining using a rat anti-ATX mAb in the human gastrointestinal tract and found that submucosal mast cells (MC) highly expressed this enzyme. This was confirmed by immunofluorescent double staining using mAbs to tryptase and chymase. Then, we isolated MC from human gastric tissue by an immunomagnetic method using CD117-microbeads and showed that a subpopulation of CD203c-positive MC showed positive staining for intracellular ATX/lysoPLD on flowcytometry. This was confirmed by Western blotting of the isolated cells. Moreover, a significant level of ATX/lysoPLD release could be detected in the culture supernatants of human MC by Western blot analysis. Our data suggest that submucosal MC play significant roles in various aspects of pathophysiology in the gastrointestinal tract by locally providing bioactive LPA through the production of ATX/lysoPLD.
Collapse
Affiliation(s)
- Ken Mori
- Department of Surgical Oncology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Kothapalli KS, Anthony JC, Pan BS, Hsieh AT, Nathanielsz PW, Brenna JT. Differential cerebral cortex transcriptomes of baboon neonates consuming moderate and high docosahexaenoic acid formulas. PLoS One 2007; 2:e370. [PMID: 17426818 PMCID: PMC1847718 DOI: 10.1371/journal.pone.0000370] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 03/20/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are the major long chain polyunsaturated fatty acids (LCPUFA) of the central nervous system (CNS). These nutrients are present in most infant formulas at modest levels, intended to support visual and neural development. There are no investigations in primates of the biological consequences of dietary DHA at levels above those present in formulas but within normal breastmilk levels. METHODS AND FINDINGS Twelve baboons were divided into three formula groups: Control, with no DHA-ARA; "L", LCPUFA, with 0.33%DHA-0.67%ARA; "L3", LCPUFA, with 1.00%DHA-0.67%ARA. All the samples are from the precentral gyrus of cerebral cortex brain regions. At 12 weeks of age, changes in gene expression were detected in 1,108 of 54,000 probe sets (2.05%), with most showing <2-fold change. Gene ontology analysis assigns them to diverse biological functions, notably lipid metabolism and transport, G-protein and signal transduction, development, visual perception, cytoskeleton, peptidases, stress response, transcription regulation, and 400 transcripts having no defined function. PLA2G6, a phospholipase recently associated with infantile neuroaxonal dystrophy, was downregulated in both LCPUFA groups. ELOVL5, a PUFA elongase, was the only LCPUFA biosynthetic enzyme that was differentially expressed. Mitochondrial fatty acid carrier, CPT2, was among several genes associated with mitochondrial fatty acid oxidation to be downregulated by high DHA, while the mitochondrial proton carrier, UCP2, was upregulated. TIMM8A, also known as deafness/dystonia peptide 1, was among several differentially expressed neural development genes. LUM and TIMP3, associated with corneal structure and age-related macular degeneration, respectively, were among visual perception genes influenced by LCPUFA. TIA1, a silencer of COX2 gene translation, is upregulated by high DHA. Ingenuity pathway analysis identified a highly significant nervous system network, with epidermal growth factor receptor (EGFR) as the outstanding interaction partner. CONCLUSIONS These data indicate that LCPUFA concentrations within the normal range of human breastmilk induce global changes in gene expression across a wide array of processes, in addition to changes in visual and neural function normally associated with formula LCPUFA.
Collapse
Affiliation(s)
- Kumar S.D. Kothapalli
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| | - Joshua C. Anthony
- Mead Johnson and Company, Evansville, Indiana, United States of America
| | - Bruce S. Pan
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| | - Andrea T. Hsieh
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| | - Peter W. Nathanielsz
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - J. Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, New York, United States of America
| |
Collapse
|
210
|
Satoh Y, Ohkawa R, Nakamura K, Higashi K, Kaneko M, Yokota H, Aoki J, Arai H, Yuasa Y, Yatomi Y. Lysophosphatidic acid protection against apoptosis in the human pre-B-cell line Nalm-6. Eur J Haematol 2007; 78:510-7. [PMID: 17419739 DOI: 10.1111/j.1600-0609.2007.00849.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lysophosphatidic acid (LPA) promotes survival, growth, differentiation, and motility in a variety of cell types, and has been reported to act as a cell survival and growth factor in B lymphocytes. Autotaxin (ATX), through its lysophospholipase D activity, generates LPA from lysophosphatidylcholine (LPC). In this study, we investigated the effects of LPA and also the expression of ATX and LPA receptor, in the human pre-B-cell line Nalm-6. It was found that LPA protects Nalm-6 cells against both spontaneous and staurosporine-induced apoptosis. Furthermore, ATX expression on the cell surface and ATX activity in the cell lysate were detected. No accumulation of LPA in the culture medium was, however, detected when the Nalm-6 cells were cultured with LPC. The pre-B cells were found to express the mRNA transcript for lipid phosphate phosphatase-1 and LPA degradation was inhibited in the presence of the phosphatase inhibitor vanadate, it was surmised that LPA production in the culture medium may have been masked by LPA degradation by this ecto-phosphatase. Abundant expression of LPA receptors, especially, LPA(4), was detected by a real-time polymerase chain reaction technique. Our results suggest an important and autocrine role of LPA in the survival of this well-established model cell line, although the direct involvement of ATX in the production of LPA in these cells was not confirmed.
Collapse
Affiliation(s)
- Yumiko Satoh
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Morishige J, Touchika K, Tanaka T, Satouchi K, Fukuzawa K, Tokumura A. Production of bioactive lysophosphatidic acid by lysophospholipase D in hen egg white. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:491-9. [PMID: 17321793 DOI: 10.1016/j.bbalip.2007.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/27/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
Lysophosphatidic acid (LPA), a lysophospholipid mediator, is produced extracellularly by lysophospholipase D (lysoPLD) secreted in several animal body fluids including blood plasma. Previously, we reported that hen egg white contains polyunsaturated fatty acid-rich LPA. In this study, we examined whether lysoPLD is involved in the production of LPA in hen egg white. LysoPLD activity was measured by determining LPA and choline by mass spectrometric and enzyme-linked fluorometric analyses, respectively. LysoPLD increased with increased dilution of egg white, indicating that one or more components of egg white strongly inhibit its lysoPLD activity. This dilution-dependent increase in the lysoPLD activity was masked by co-incubation of the egg white with lysozyme, a major protein in hen egg white. Furthermore, addition of Zn(2+), Mn(2+), Ni(2+), or Co(2+) to diluted egg white altered preference patterns of lysoPLD toward choline-containing substrates. In particular, the egg white lysoPLD activity was greatly increased when Co(2+) was added. The cation-requirement of lysoPLD activity in hen egg white resembled that of plasma autotaxin (ATX)/lysoPLD. Western blot analysis revealed that egg white contained a protein that was immunostained with anti-ATX antibody. These results suggested that LPA in hen egg white is produced from lysophospholipids, especially LPC, by the action of ATX/lysoPLD, possibly originating from hen oviduct fluid.
Collapse
Affiliation(s)
- Junichi Morishige
- Laboratory of Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
212
|
Wang P, Wu X, Chen W, Liu J, Wang X. The lysophosphatidic acid (LPA) receptors their expression and significance in epithelial ovarian neoplasms. Gynecol Oncol 2007; 104:714-20. [PMID: 17204312 DOI: 10.1016/j.ygyno.2006.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 09/08/2006] [Accepted: 10/02/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the lysophosphatidic acid (LPA) receptors expression situation and their biological significance in human ovarian cancer cell lines and in human epithelial ovarian neoplasms. METHODS The reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were employed to measure the expression levels of LPA(1), LPA(2) and LPA(3) mRNA, LPA(2) and LPA(3) protein expression in cultured human ovarian cancer cell lines (3AO, SKOV3 and OVCAR3) and in human epithelial ovarian neoplasms. The immunocytochemical method was used to detect LPA(2) and LPA(3) protein expression in cultured human ovarian cancer cell lines. RESULTS RT-PCR revealed that all ovarian cancer cell lines expressed LPA(1), LPA(2) and LPA(3) mRNA. The positive rates (100%; 86.4%; 88.2%) of LPA(1) mRNA in normal ovarian tissue, benign tumor and ovarian cancer were no significant difference (p>0.05). The expression level of LPA(1) mRNA was significantly higher in normal ovarian tissue compared with that in benign tumor and in ovarian cancer tissue (p<0.01). LPA(1) expression level was no significant difference in both benign tumor and ovarian cancer tissue (p>0.05). LPA(2) mRNA-positive rates (92.6%) and expression level were significantly higher in ovarian cancer compared with that in benign tumor (31.8%) and in normal ovarian tissue (31.3%) (p<0.01); LPA(2) mRNA-positive rates and expression level were no significant difference in both benign tumor and normal ovarian tissue (p>0.05). LPA(3) mRNA-positive rates (92.6%) and expression level were significantly higher in ovarian cancer compared with that in benign tumor (31.8%) and in normal ovarian tissue (31.3%) (p<0.01), LPA(3) mRNA-positive rates and expression level were no significant difference in both benign tumor and normal ovarian tissue (p>0.05). LPA(1) mRNA expression level was significantly decreased compared with that of LPA(2) and LPA(3) in ovarian cancer (p<0.01); Western blotting clearly revealed that all ovarian cancer cell lines showed LPA(2) and LPA(3) protein. The positive rates and expression level of LPA(2) and LPA(3) protein were significantly increased in ovarian cancer (92.6%; 92.6%) compared with that in benign tumor (45.5%; 45.5%) and that in normal ovarian tissue (43.8%; 43.8%) (p<0.01); LPA(2) and LPA(3) protein-positive rates and expression level were no significant difference in both benign tumor and normal ovarian tissue (p>0.05). Correlation of clinicopathological parameters showed that LPA receptors mRNA and protein expression were associated with FIGO stage and histological grade, except pathologic types and age. The mRNA and protein expression of LPA(2) and LPA(3) in stages III and IV was significantly higher than that in stages I and II epithelial ovarian cancer (p<0.05). The mRNA and protein expression of pathologic grade G(3) was significantly higher compared with grade G(1) (p<0.05). CONCLUSION LPA(1), LPA(2) and LPA(3) mRNA and protein expressed widely in human epithelial ovarian neoplasms. LPA(2) and LPA(3) may be involved in the development and progression of human ovarian cancer. There was a significant correlation between LPA(2), LPA(3) and invasion and metastasis of epithelial ovarian cancer. LPA(2) and LPA(3) may be a prognostic indicator in patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Ping Wang
- Department of Obstetrics and Gynecology, Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, 050011, China
| | | | | | | | | |
Collapse
|
213
|
Xu KP, Yin J, Yu FSX. Lysophosphatidic acid promoting corneal epithelial wound healing by transactivation of epidermal growth factor receptor. Invest Ophthalmol Vis Sci 2007; 48:636-43. [PMID: 17251460 PMCID: PMC2665794 DOI: 10.1167/iovs.06-0203] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To identify the underlying mechanisms by which lipid mediator lysophosphatidic acid (LPA) acts as a growth factor in stimulating extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3'-kinase (PI3K) during corneal epithelial wound healing. METHODS Epithelial debridement wounds in cultured porcine corneas and scratch wounds in an epithelial monolayer of SV40-immortalized human corneal epithelial (THCE) cells were allowed to heal in the presence or absence of an epidermal growth factor receptor (EGFR) inhibitor (tyrphostin AG1478), a matrix metalloproteinase inhibitor (GM6001), or a heparin-binding EGF-like growth factor (HB-EGF) antagonist (CRM197) with or without LPA. EGFR activation was analyzed by immunoprecipitation using EGFR antibodies and Western blotting with phosphotyrosine antibodies. Phosphorylation of ERK and AKT (a major substrate of PI3K) was analyzed by Western blotting with antibodies specific to the phosphorylated proteins. Wound- and LPA-induced shedding of HB-EGF was assessed by measuring the release of alkaline phosphatase (AP) in a stable THCE cell line that expressed HB-EGF with AP inserted in the heparin-binding site. RESULTS In organ and cell culture models, LPA enhanced corneal epithelial wound healing. LPA-stimulated and spontaneous wound closure was attenuated by AG1478, GM6001, or CRM197. Consistent with the effects on epithelial migration, these inhibitors, as well as the Src kinase inhibitor (PP2), retarded LPA-induced activation of EGFR and its downstream effectors ERK and AKT in THCE cells. Unlike exogenously added HB-EGF, LPA stimulated moderate EGFR phosphorylation; the level of phosphorylated EGFR was similar to that induced by wounding. However, LPA appeared to prolong wound-induced EGFR signaling. The release of HB-EGF assessed by AP activity increased significantly in response to wounding, LPA, or both, and the release of HB-EGF-AP induced by LPA was inhibited by PP2 and GM6001. CONCLUSIONS LPA accelerates corneal epithelial wound healing through its ability to induce autocrine HB-EGF signaling. Transactivation of EGFR by LPA represents a convergent signaling pathway accessible to stimuli such as growth factors and ligands of G-protein-coupled receptors in response to pathophysiological challenge in human corneal epithelial cells.
Collapse
Affiliation(s)
- Ke-Ping Xu
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
214
|
Yanagida K, Ishii S, Hamano F, Noguchi K, Shimizu T. LPA4/p2y9/GPR23 mediates rho-dependent morphological changes in a rat neuronal cell line. J Biol Chem 2006; 282:5814-24. [PMID: 17172642 DOI: 10.1074/jbc.m610767200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potent lipid mediator that evokes a variety of biological responses in many cell types via its specific G protein-coupled receptors. In particular, LPA affects cell morphology, cell survival, and cell cycle progression in neuronal cells. Recently, we identified p2y(9)/GPR23 as a novel fourth LPA receptor, LPA(4) (Noguchi, K., Ishii, S., and Shimizu, T. (2003) J. Biol. Chem. 278, 25600-25606). To assess the functions of LPA(4) in neuronal cells, we used rat neuroblastoma B103 cells that lack endogenous responses to LPA. In B103 cells stably expressing LPA(4), we observed G(q/11)-dependent calcium mobilization, but LPA did not affect adenylyl cyclase activity. In LPA(4) transfectants, LPA induced dramatic morphological changes, i.e. neurite retraction, cell aggregation, and cadherin-dependent cell adhesion, which involved Rho-mediated signaling pathways. Thus, our results demonstrated that LPA(4) as well as LPA(1) couple to G(q/11) and G(12/13), whereas LPA(4) differs from LPA(1) in that it does not couple to G(i/o). Through neurite retraction and cell aggregation, LPA(4) may play a role in neuronal development such as neurogenesis and neuronal migration.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
215
|
Lee CW, Rivera R, Dubin AE, Chun J. LPA(4)/GPR23 is a lysophosphatidic acid (LPA) receptor utilizing G(s)-, G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated Rho activation. J Biol Chem 2006; 282:4310-4317. [PMID: 17166850 DOI: 10.1074/jbc.m610826200] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that signals through G protein-coupled receptors (GPCRs) to produce a range of biological responses. A recently reported fourth receptor, LPA(4)/GPR23, was notable for its low homology to the previously identified receptors LPA(1-3) and for its ability to increase intracellular concentrations of cAMP and calcium. However, the signaling pathways leading to LPA(4)-mediated induction of cAMP and calcium levels have not been reported. Using epitope-tagged LPA(4), pharmacological intervention, and G protein mini-genes, we provide independent confirmatory evidence that supports LPA(4) as a fourth LPA receptor, including LPA concentration-dependent responses and specific membrane binding. Importantly, we further demonstrate new LPA-dependent activities of LPA(4) that include the following: receptor internalization; G(12/13)- and Rho-mediated neurite retraction and stress fiber formation; G(q) protein and pertussis toxin-sensitive calcium mobilization and activation of a nonselective cation conductance; and cAMP increases mediated by G(s). The receptor is broadly expressed in embryonic tissues, including brain, as determined by Northern blot and reverse transcription-PCR analysis. Adult tissues have increased expression in skin, heart, and to a lesser extent, thymus. These data confirm the identification and extend the functionality of LPA(4) as an LPA receptor, bringing the number of independently verified LPA receptors to five, with both overlapping and distinct signaling properties and tissue expression.
Collapse
MESH Headings
- Adult
- Animals
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Line, Tumor
- Cyclic AMP/genetics
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Embryo, Mammalian/metabolism
- Enzyme Activation
- GTP-Binding Protein alpha Subunits, G12-G13/genetics
- GTP-Binding Protein alpha Subunits, G12-G13/metabolism
- GTP-Binding Protein alpha Subunits, G12-G13/physiology
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Gene Expression Regulation/physiology
- Humans
- Lysophospholipids/metabolism
- Lysophospholipids/pharmacology
- Mice
- Neurites/metabolism
- Organ Specificity/physiology
- Receptors, Lysophosphatidic Acid/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Stress Fibers/genetics
- Stress Fibers/metabolism
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Chang-Wook Lee
- Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Richard Rivera
- Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Adrienne E Dubin
- Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, California 92037
| | - Jerold Chun
- Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
216
|
|
217
|
Murph M, Tanaka T, Liu S, Mills GB. Of Spiders and Crabs: The Emergence of Lysophospholipids and Their Metabolic Pathways as Targets for Therapy in Cancer: Fig. 1. Clin Cancer Res 2006; 12:6598-602. [PMID: 17121877 DOI: 10.1158/1078-0432.ccr-06-1721] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), two small lysophospholipids, are potent inducers of many of the hallmarks of cancer including cell proliferation, survival, migration, invasion, and neovascularization in in vitro and in vivo tumor models. Furthermore, the enzymes metabolizing LPA and S1P and their receptors are aberrant in multiple cancer lineages and exhibit transforming activity altering patterns and targets for metastasis. Several recent studies show the remarkable activity of new chemical genomics and/or potential novel drugs in preclinical models. Combined with the physiologic and pathophysiologic activities of LPA and S1P, these studies suggest the implementation of preclinical and clinical evaluation of LPA and S1P as therapeutic targets.
Collapse
Affiliation(s)
- Mandi Murph
- Department of Molecular Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
218
|
Kazantseva A, Goltsov A, Zinchenko R, Grigorenko AP, Abrukova AV, Moliaka YK, Kirillov AG, Guo Z, Lyle S, Ginter EK, Rogaev EI. Human Hair Growth Deficiency Is Linked to a Genetic Defect in the Phospholipase Gene LIPH. Science 2006; 314:982-5. [PMID: 17095700 DOI: 10.1126/science.1133276] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The molecular mechanisms controlling human hair growth and scalp hair loss are poorly understood. By screening about 350,000 individuals in two populations from the Volga-Ural region of Russia, we identified a gene mutation in families who show an inherited form of hair loss and a hair growth defect. Affected individuals were homozygous for a deletion in the LIPH gene on chromosome 3q27, caused by short interspersed nuclear element-retrotransposon-mediated recombination. The LIPH gene is expressed in hair follicles and encodes a phospholipase called lipase H (alternatively known as membrane-associated phosphatidic acid-selective phospholipase A1alpha), an enzyme that regulates the production of bioactive lipids. These results suggest that lipase H participates in hair growth and development.
Collapse
Affiliation(s)
- Anastasiya Kazantseva
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Lee J, Park SY, Lee EK, Park CG, Chung HC, Rha SY, Kim YK, Bae GU, Kim BK, Han JW, Lee HY. Activation of Hypoxia-Inducible Factor-1α Is Necessary for Lysophosphatidic Acid–Induced Vascular Endothelial Growth Factor Expression. Clin Cancer Res 2006; 12:6351-8. [PMID: 17085645 DOI: 10.1158/1078-0432.ccr-06-1252] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Lysophosphatidic acid (LPA) plays an important role in mediating cell proliferation, survival, and tumor invasion and angiogenesis. This bioactive phospholipid at the concentration in ascitic fluid stimulates the growth of malignant ovarian tumors by increasing the expression of vascular endothelial growth factor (VEGF). In the present study, we investigated whether LPA activates hypoxia inducible factor-1 (HIF-1), a key transcriptional complex in tumor progression and metastasis, thereby increasing the expression of VEGF. EXPERIMENTAL DESIGN Immunoblotting, reverse transcription-PCR, ELISA, immunofluorescence, and chromatin immunoprecipitation assay were used to examine the expression of VEGF and HIF-1alpha in various cancer cells. Specific HIF-1alpha small interfering RNA was transfected to various cancer cells to determine the role of HIF-1alpha in LPA-induced VEGF expression. RESULTS LPA induced expressions of VEGF and HIF-1alpha in OVCAR-3, CAOV-3, PC-3, and SK-Hep1 cells but not in SKOV-3 and Hep-3B cells. In OVCAR-3 and PC-3 cells, the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin/p70S6K and p42/p44 mitogen-activated protein kinase pathways were required for LPA-induced HIF-1alpha and VEGF expressions, whereas only the phosphoinositide 3-kinase/mammalian target of rapamycin/p70S6K pathway was important in SK-Hep1 cells. Immunofluorescence microscopy assay showed translocation of HIF-1alpha to nucleus by LPA, and chromatin immunoprecipitation assay revealed the binding of HIF-1alpha to the promoter of VEGF by LPA. Importantly, we found that small interfering RNA-induced reduction of HIF-1alpha expression significantly attenuated VEGF expression by LPA. CONCLUSIONS Our results show for the first time that LPA induces VEGF via HIF-1alpha activation and reveal a critical role of HIF-1alpha in LPA-induced cancer cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Jangsoon Lee
- College of Medicine, Konyang University, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Tsujiuchi T, Shimizu K, Onishi M, Sugata E, Fujii H, Mori T, Honoki K, Fukushima N. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines. Biochem Biophys Res Commun 2006; 349:1151-5. [DOI: 10.1016/j.bbrc.2006.08.159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 08/24/2006] [Indexed: 12/31/2022]
|
221
|
Hama K, Aoki J, Bandoh K, Inoue A, Endo T, Amano T, Suzuki H, Arai H. Lysophosphatidic receptor, LPA3, is positively and negatively regulated by progesterone and estrogen in the mouse uterus. Life Sci 2006; 79:1736-40. [PMID: 16815476 DOI: 10.1016/j.lfs.2006.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/18/2006] [Accepted: 06/05/2006] [Indexed: 11/21/2022]
Abstract
Reciprocal interactions between blastocysts and receptive uteri are essential for successful implantation. This process is regulated by the timely interplay of two ovarian hormones, progesterone and estrogen. However, the molecular targets of these hormones are largely unknown. We showed recently that a small bioactive lysophospholipid, lysophosphatidic acid, plays a pivotal role in the establishment of implantation via its cellular receptor, LPA(3). Here we demonstrate that LPA(3) expression is positively and negatively regulated by steroid hormones in mouse uteri. The LPA(3) mRNA level in the uteri increased during early pseudopregnancy, peaking around 3.5 days post coitus (3.5 d.p.c.), then, decreased to the basal level on 4.5 d.p.c. LPA(3) expression remained at a low level in ovariectomized mice, and administration of progesterone to ovariectomized mice up-regulated LPA(3) mRNA expression. In addition, simultaneous administration of estrogen counteracted the effect of progesterone. These results show that progesterone and estrogen cooperatively regulate LPA(3) expression, thereby contributing to the receptivity of uteri during early pregnancy.
Collapse
Affiliation(s)
- Kotaro Hama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Tsuda S, Okudaira S, Moriya-Ito K, Shimamoto C, Tanaka M, Aoki J, Arai H, Murakami-Murofushi K, Kobayashi T. Cyclic phosphatidic acid is produced by autotaxin in blood. J Biol Chem 2006; 281:26081-8. [PMID: 16837466 DOI: 10.1074/jbc.m602925200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic phosphatidic acid (cPA), an analog of lysophosphatidic acid (LPA), was previously identified in human serum. Although cPA possesses distinct physiological activities not elicited by LPA, its biochemical origins have scarcely been studied. In the present study, we assayed cPA formation from lysophosphatidylcholine in fetal bovine serum and found significant activity of transphosphatidylation that generated cPA. The cPA-producing enzyme was purified from fetal bovine serum using five chromatographic steps yielding a 100-kDa protein with cPA biosynthetic activity. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of its tryptic peptides revealed that the enzyme shared identical fragments with human autotaxin, a serum lysophospholipase D that produces LPA. Western blot analysis demonstrated that the 100-kDa protein was specifically recognized by an anti-human autotaxin antibody. Moreover, recombinant rat autotaxin was found to generate cPA in addition to LPA. No significant cPA- or LPA-producing activity was detected in autotaxin-depleted serum from bovine or human prepared by immunoprecipitation with an anti-autotaxin monoclonal antibody. These results indicate that the generation of cPA and LPA in serum is mainly attributed to autotaxin.
Collapse
Affiliation(s)
- Satomi Tsuda
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Park SY, Schinkmann KA, Avraham S. RAFTK/Pyk2 mediates LPA-induced PC12 cell migration. Cell Signal 2006; 18:1063-71. [PMID: 16199135 DOI: 10.1016/j.cellsig.2005.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 08/26/2005] [Accepted: 08/31/2005] [Indexed: 11/25/2022]
Abstract
The phospholipid lysophosphatidic acid (LPA) is a normal constituent of serum that functions as a lipid growth factor and intracellular signaling molecule. In this report, we have investigated the signaling mechanism and function of the tyrosine kinase RAFTK/Pyk2 in LPA-induced cell migration. Analysis of tyrosine phosphorylation upon LPA stimulation in neuroendocrine PC12 cells revealed 6 major tyrosine-phosphorylated proteins with estimated sizes of 180, 120, 115, 68, 44, and 42 kDa. These proteins were identified as epidermal growth factor receptor (EGFR), focal adhesion kinase, RAFTK/Pyk2, paxillin, Erk 1, and Erk 2, respectively. Using specific pharmacological inhibitors, we found that the tyrosine phosphorylation of RAFTK/Pyk2 was intracellular Ca2+-dependent, but not EGFR-dependent, during LPA stimulation of these cells. Moreover, the cytoskeletal and signal scaffolding protein, paxillin, associated with and was regulated by RAFTK/Pyk2 in a Ca2+-dependent manner. Characterization of LPA receptors showed that LPA1 (Edg2) and LPA2 (Edg4) are major receptors for LPA, while LPA3 receptor (Edg7) expression was limited. Upon using the LPA1/LPA3 receptor-specific antagonist VPC 32179, we observed that inhibition of the LPA1/LPA3 receptors had no effect on the LPA-induced phosphorylation of RAFTK, strongly suggesting that the LPA2 receptor is a key mediator of RAFTK phosphorylation. Furthermore, LPA induced PC12 cell migration, which was subsequently blocked by the dominant-negative form of FAK, FRNK. Expression of a dominant-negative form of the small GTPase Ras also blocked LPA-induced cell migration and RAFTK phosphorylation. Taken together, these results indicate that RAFTK is a key signaling molecule that mediates LPA-induced PC12 cell migration in a Ras-dependent manner.
Collapse
Affiliation(s)
- Shin-Young Park
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, United States
| | | | | |
Collapse
|
224
|
Lee CW, Rivera R, Gardell S, Dubin AE, Chun J. GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 2006; 281:23589-97. [PMID: 16774927 DOI: 10.1074/jbc.m603670200] [Citation(s) in RCA: 365] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The signaling effects of lysophospholipids such as lysophosphatidic acid (LPA) are mediated by G protein-coupled receptors (GPCRs). There are currently four LPA receptors known as LPA(1-4). Genetic deletion studies have identified essential biological functions for LPA receptors in mice. However, these studies have also revealed phenotypes consistent with the existence of as yet unidentified receptors. Toward identifying new LPA receptors, we have screened collections of GPCR cDNAs using reverse transfection and cell-based assays. Here we report an interim result of one screen to identify receptors that produced LPA-dependent changes in cell shape: the orphan receptor GPR92 has properties of a new LPA receptor. Sequence analyses of human GPR92 and its mouse homolog have approximately 35% amino acid identity with LPA4/GPR23. The same cell-based approaches that were used to identify and/or characterize LPA(1-4), particularly heterologous expression in B103 cells or RH7777 cells, were utilized and compared with known LPA receptors. Retroviral-mediated expression of epitope-tagged receptors was further combined with G protein minigenes and pharmacological intervention, along with calcium imaging and whole-cell patch clamp electrophysiology. LPA-dependent receptor internalization following exposure to LPA but not related lysophospholipids was observed. Furthermore, LPA induced concentration-dependent activation of G(12/13) and G(q) and increased cAMP levels. Specific [3H]LPA binding was detected in cell membranes heterologously expressing GPR92 but not control membranes. Northern blot and reverse transcriptase-PCR studies indicated a broad low level of expression in many tissues including embryonic brain and enrichment in small intestine and sensory dorsal root ganglia, as well as embryonic stem cells. These results support GPR92 as a fifth LPA receptor, LPA5, which likely has distinct physiological functions in view of its expression pattern.
Collapse
Affiliation(s)
- Chang-Wook Lee
- Department of Molecular Biology, Helen L. Dorris Institute for Neurological and Psychiatric Disorders, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
225
|
Boucharaba A, Serre CM, Guglielmi J, Bordet JC, Clézardin P, Peyruchaud O. The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci U S A 2006; 103:9643-8. [PMID: 16769891 PMCID: PMC1480460 DOI: 10.1073/pnas.0600979103] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platelet-derived lysophosphatidic acid (LPA) supports the progression of breast and ovarian cancer metastasis to bone. The mechanisms through which LPA promotes bone metastasis formation are, however, unknown. Here we report that silencing of the type 1 LPA receptor (LPA(1)) in cancer cells blocks the production of tumor-derived cytokines that are potent activators of osteoclast-mediated bone destruction and significantly reduces the progression of osteolytic bone metastases. Moreover, functional blockade of LPA action on its cognate receptor LPA(1) using a pharmacological antagonist mimics the effects of silencing LPA(1) in tumor cells in vitro and substantially reduces bone metastasis progression in animals. Overall, these results suggest that inhibition of platelet-derived LPA action on LPA(1) expressed by tumor cells may be a promising therapeutic target for patients with bone metastases.
Collapse
Affiliation(s)
- Ahmed Boucharaba
- *Institut National de la Santé et de la Recherche Médicale (INSERM), U664, 69372 Lyon, France
- Université Claude Bernard Lyon 1, 69008 Lyon, France; and
| | - Claire-Marie Serre
- *Institut National de la Santé et de la Recherche Médicale (INSERM), U664, 69372 Lyon, France
- Université Claude Bernard Lyon 1, 69008 Lyon, France; and
| | - Julien Guglielmi
- *Institut National de la Santé et de la Recherche Médicale (INSERM), U664, 69372 Lyon, France
- Université Claude Bernard Lyon 1, 69008 Lyon, France; and
| | - Jean-Claude Bordet
- Université Claude Bernard Lyon 1, 69008 Lyon, France; and
- Faculté de Médecine Laënnec, EA3735, Laboratoire d’Hémobiologie, 69008 Lyon, France
| | - Philippe Clézardin
- *Institut National de la Santé et de la Recherche Médicale (INSERM), U664, 69372 Lyon, France
- Université Claude Bernard Lyon 1, 69008 Lyon, France; and
| | - Olivier Peyruchaud
- *Institut National de la Santé et de la Recherche Médicale (INSERM), U664, 69372 Lyon, France
- Université Claude Bernard Lyon 1, 69008 Lyon, France; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
226
|
Rhee HJ, Nam JS, Sun Y, Kim MJ, Choi HK, Han DH, Kim NH, Huh SO. Lysophosphatidic acid stimulates cAMP accumulation and cAMP response element-binding protein phosphorylation in immortalized hippocampal progenitor cells. Neuroreport 2006; 17:523-6. [PMID: 16543818 DOI: 10.1097/01.wnr.0000209011.16718.68] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
cAMP response element-binding protein (CREB) has been known to play a pivotal role in neuronal differentiation and neuronal plasticity. Lysophosphatidic acid (LPA) was reported to activate CREB in Rat2 fibroblast cells. To study the roles of LPA in neuronal differentiation, we determined whether LPA activates CREB in H19-7, hippocampal progenitor cells. LPA induced three-fold increase in cAMP level in a pertussis toxin-independent manner. Moreover, LPA stimulated CREB phosphorylation, which was inhibited by not only H89 but also Rp-cAMP. In H19-7 cells, high-level expression of lpa1 and moderate-level expression of lpa4 were detected, whereas any detectible expression of lpa2 or lpa3 was not detected by reverse transcription polymerase chain reaction. Together, these data suggested that LPA potentiates cAMP accumulation through activating Gs, and thereby, LPA can stimulate cAMP-CREB signaling cascade.
Collapse
Affiliation(s)
- Hae Jin Rhee
- Hub University for National Industrial Collaboration Program, Kangwon National University, Chunchon, Kangwon-do, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Kishi Y, Okudaira S, Tanaka M, Hama K, Shida D, Kitayama J, Yamori T, Aoki J, Fujimaki T, Arai H. Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J Biol Chem 2006; 281:17492-17500. [PMID: 16627485 DOI: 10.1074/jbc.m601803200] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autotaxin (ATX) is a multifunctional phosphodiesterase originally isolated from melanoma cells as a potent cell motility-stimulating factor. ATX is identical to lysophospholipase D, which produces a bioactive phospholipid, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC). Although enhanced expression of ATX in various tumor tissues has been repeatedly demonstrated, and thus, ATX is implicated in progression of tumor, the precise role of ATX expressed by tumor cells was unclear. In this study, we found that ATX is highly expressed in glioblastoma multiforme (GBM), the most malignant glioma due to its high infiltration into the normal brain parenchyma, but not in tissues from other brain tumors. In addition, LPA1, an LPA receptor responsible for LPA-driven cell motility, is predominantly expressed in GBM. One of the glioblastomas that showed the highest ATX expression (SNB-78), as well as ATX-stable transfectants, showed LPA1-dependent cell migration in response to LPA in both Boyden chamber and wound healing assays. Interestingly these ATX-expressing cells also showed chemotactic response to LPC. In addition, knockdown of the ATX level using small interfering RNA technique in SNB-78 cells suppressed their migratory response to LPC. These results suggest that the autocrine production of LPA by cancer cell-derived ATX and exogenously supplied LPC contribute to the invasiveness of cancer cells and that LPA1, ATX, and LPC-producing enzymes are potential targets for cancer therapy, including GBM.
Collapse
Affiliation(s)
- Yasuhiro Kishi
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Shinichi Okudaira
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Masayuki Tanaka
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Kotaro Hama
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Dai Shida
- Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Joji Kitayama
- Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Takao Yamori
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Toshima-ku, Tokyo 170-8455
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033.
| | - Takamitsu Fujimaki
- Department of Neurosurgery, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| |
Collapse
|
228
|
Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. Biochem J 2006. [PMID: 16197369 DOI: 10.1042/bj20050891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HBEpCs (human bronchial epithelial cells) contribute to airway inflammation by secreting a variety of cytokines and chemokines in response to allergens, pathogens, viruses and environmental toxins and pollutants. The potent neutrophil chemoattractant, IL-8 (interleukin-8), is a major cytokine secreted by HBEpCs. We have recently demonstrated that LPA (lysophosphatidic acid) stimulated IL-8 production in HBEpCs via protein kinase C delta dependent signal transduction. However, mechanisms of IL-8 expression and secretion are complex and involve multiple protein kinases and transcriptional factors. The present study was undertaken to investigate MAPK (mitogen-activated protein kinase) signalling in the transcriptional regulation of IL-8 expression and secretion in HBEpCs. Exposure of HBEpCs to LPA (1 microM) enhanced expression and secretion of IL-8 by 5-8-fold and stimulated threonine/tyrosine phosphorylation of ERK (extracellular-signal-regulated kinase), p38 MAPK and JNK (c-Jun N-terminal kinase). The LPA-induced secretion of IL-8 was blocked by the p38 MAPK inhibitor SB203580, by p38 MAPK siRNA (small interfering RNA), and by the JNK inhibitor JNK(i) II, but not by the MEK (MAPK/ERK kinase) inhibitor, PD98059. LPA enhanced the transcriptional activity of the IL-8 gene; that effect relied on activation of the transcriptional factors NF-kappaB (nuclear factor kappaB) and AP-1 (activator protein-1). Furthermore, SB203580 attenuated LPA-dependent phosphorylation of IkappaB (inhibitory kappaB), NF-kappaB and phospho-p38 translocation to the nucleus, NF-kappaB transcription and IL-8 promoter-mediated luciferase reporter activity, without affecting the JNK pathway and AP-1 transcription. Similarly, JNK(i) II only blocked LPA-mediated phosphorylation of JNK and c-Jun, AP-1 transcription and IL-8 promoter-mediated luciferase reporter activity, without blocking p38 MAPK-dependent NF-kappaB transcription. Additionally, siRNA for LPA(1-3) receptors partially blocked LPA-induced IL-8 production and activation of MAPKs. The LPA1 and LPA3 receptors, as compared with LPA2, were most efficient in transducing LPA-mediated IL-8 production. These results show an independent role for p38 MAPK and JNK in LPA-induced IL-8 expression and secretion via NF-kappaB and AP-1 transcription respectively in HBEpCs.
Collapse
|
229
|
Saatian B, Zhao Y, He D, Georas S, Watkins T, Spannhake E, Natarajan V. Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. Biochem J 2006; 393:657-68. [PMID: 16197369 PMCID: PMC1360718 DOI: 10.1042/bj20050791] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HBEpCs (human bronchial epithelial cells) contribute to airway inflammation by secreting a variety of cytokines and chemokines in response to allergens, pathogens, viruses and environmental toxins and pollutants. The potent neutrophil chemoattractant, IL-8 (interleukin-8), is a major cytokine secreted by HBEpCs. We have recently demonstrated that LPA (lysophosphatidic acid) stimulated IL-8 production in HBEpCs via protein kinase C delta dependent signal transduction. However, mechanisms of IL-8 expression and secretion are complex and involve multiple protein kinases and transcriptional factors. The present study was undertaken to investigate MAPK (mitogen-activated protein kinase) signalling in the transcriptional regulation of IL-8 expression and secretion in HBEpCs. Exposure of HBEpCs to LPA (1 microM) enhanced expression and secretion of IL-8 by 5-8-fold and stimulated threonine/tyrosine phosphorylation of ERK (extracellular-signal-regulated kinase), p38 MAPK and JNK (c-Jun N-terminal kinase). The LPA-induced secretion of IL-8 was blocked by the p38 MAPK inhibitor SB203580, by p38 MAPK siRNA (small interfering RNA), and by the JNK inhibitor JNK(i) II, but not by the MEK (MAPK/ERK kinase) inhibitor, PD98059. LPA enhanced the transcriptional activity of the IL-8 gene; that effect relied on activation of the transcriptional factors NF-kappaB (nuclear factor kappaB) and AP-1 (activator protein-1). Furthermore, SB203580 attenuated LPA-dependent phosphorylation of IkappaB (inhibitory kappaB), NF-kappaB and phospho-p38 translocation to the nucleus, NF-kappaB transcription and IL-8 promoter-mediated luciferase reporter activity, without affecting the JNK pathway and AP-1 transcription. Similarly, JNK(i) II only blocked LPA-mediated phosphorylation of JNK and c-Jun, AP-1 transcription and IL-8 promoter-mediated luciferase reporter activity, without blocking p38 MAPK-dependent NF-kappaB transcription. Additionally, siRNA for LPA(1-3) receptors partially blocked LPA-induced IL-8 production and activation of MAPKs. The LPA1 and LPA3 receptors, as compared with LPA2, were most efficient in transducing LPA-mediated IL-8 production. These results show an independent role for p38 MAPK and JNK in LPA-induced IL-8 expression and secretion via NF-kappaB and AP-1 transcription respectively in HBEpCs.
Collapse
Affiliation(s)
- Bahman Saatian
- *Division of Pulmonary and Critical Care Medicine and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Yutong Zhao
- *Division of Pulmonary and Critical Care Medicine and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Donghong He
- *Division of Pulmonary and Critical Care Medicine and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Steve N. Georas
- *Division of Pulmonary and Critical Care Medicine and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Tonya Watkins
- *Division of Pulmonary and Critical Care Medicine and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Ernst Wm Spannhake
- †Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, U.S.A
| | - Viswanathan Natarajan
- *Division of Pulmonary and Critical Care Medicine and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
230
|
Jang IS, Rhim JH, Kim KT, Cho KA, Yeo EJ, Park SC. Lysophosphatidic acid-induced changes in cAMP profiles in young and senescent human fibroblasts as a clue to the ageing process. Mech Ageing Dev 2006; 127:481-9. [PMID: 16516270 DOI: 10.1016/j.mad.2006.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2006] [Indexed: 11/19/2022]
Abstract
This study attempts to elucidate the molecular mechanisms underlying the ageing-dependent cAMP profiles in human diploid fibroblasts stimulated by lysophosphatidic acid (LPA). In senescent cells, LPA-dependent Gialpha activation was reduced, with a consequent reduction in Gi-suppressed cAMP levels, without alterations in the levels of Gialpha proteins. In young cells, when Gialpha activity was inhibited by pertussis toxin pretreatment, or when its expression was blocked by siRNA, the pattern of changes in cAMP levels in response to LPA was similar to that seen in senescent cells. An increase in protein kinase C (PKC)-dependent isoforms of adenylyl cyclase (AC) types II, IV, and VI was also observed in these senescent fibroblasts. In senescent cells treated with PKC-specific inhibitors, bis-indolylmaleimide, Gö6976, rottlerin, and PKCvarepsilonV1, LPA-induced cAMP accumulation was inhibited, indicating that increased ACs in response to LPA occur via the activation of protein kinase Cs. When the expression of AC II, IV, and VI was blocked by siRNA in senescent fibroblasts, LPA-induced cAMP accumulation was also blocked. These results suggest that the senescence-associated increase of cAMP levels after LPA treatment is associated with reduced Gialpha, increased AC II, IV, and VI proteins, and PKC-dependent stimulation of their activities and provide an explanation for the age-dependent differences in cAMP-related physiological responses.
Collapse
Affiliation(s)
- Ik-Soon Jang
- Department of Biochemistry and Molecular Biology, Ageing and Apoptosis Research Center, Seoul National University College of Medicine, Chongno-gu, South Korea
| | | | | | | | | | | |
Collapse
|
231
|
Park KS, Lee HY, Kim MK, Shin EH, Jo SH, Kim SD, Im DS, Bae YS. Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic migration via a process involving pertussis toxin-sensitive trimeric G-proteins. Mol Pharmacol 2006; 69:1066-73. [PMID: 16368894 DOI: 10.1124/mol.105.018960] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysophosphatidylserine (LPS) may be generated after phosphatidylserine-specific phospholipase A2 activation. However, the effects of LPS on cellular activities and the identities of its target molecules have not been fully elucidated. In this study, we observed that LPS stimulates an intracellular calcium increase in L2071 mouse fibroblast cells, and that this increase was inhibited by 1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione (U-73122) but not by pertussis toxin, suggesting that LPS stimulates calcium signaling via G-protein coupled receptor-mediated phospholipase C activation. Moreover, LPS-induced calcium mobilization was not inhibited by the lysophosphatidic acid receptor antagonist, (S)-phosphoric acid mono-{2-octadec-9-enoylamino-3-[4-(pyridine-2-ylmethoxy)-phenyl]-propyl} ester (VPC 32183), thus indicating that LPS binds to a receptor other than lysophosphatidic acid receptors. It was also found that LPS stimulates two types of mitogen-activated protein kinase [i.e., extracellular signal-regulated protein kinase (ERK) and p38 kinase] in L2071 cells. Furthermore, these LPS-induced ERK and p38 kinase activations were inhibited by pertussis toxin, which suggests the role of pertussis toxin-sensitive G-proteins in the process. In terms of functional issues, LPS stimulated L2071 cell chemotactic migration, which was completely inhibited by pertussis toxin, indicating the involvement of pertussis toxin-sensitive G(i) protein(s). This chemotaxis of L2071 cells induced by LPS was also dramatically inhibited by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) and by 2'-amino-3'-methoxyflavone (PD98059). This study demonstrates that LPS stimulates at least two different signaling cascades, one of which involves a pertussis toxin-insensitive but phospholipase C-dependent intracellular calcium increase, and the other involves a pertussis toxin-sensitive chemotactic migration mediated by phosphoinositide 3-kinase and ERK.
Collapse
Affiliation(s)
- Kyoung Sun Park
- Medical Research Center for Cancer Molecular Therapy and Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714, Korea
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Srivastava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, Hamon M, Smith T, Evans PD. Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. J Neurosci 2006; 25:6145-55. [PMID: 15987944 PMCID: PMC6725065 DOI: 10.1523/jneurosci.1005-05.2005] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nongenomic response pathways mediate many of the rapid actions of steroid hormones, but the mechanisms underlying such responses remain controversial. In some cases, cell-surface expression of classical nuclear steroid receptors has been suggested to mediate these effects, but, in a few instances, specific G-protein-coupled receptors (GPCRs) have been reported to be responsible. Here, we describe the activation of a novel, neuronally expressed Drosophila GPCR by the insect ecdysteroids ecdysone (E) and 20-hydroxyecdysone (20E). This is the first report of an identified insect GPCR interacting with steroids. The Drosophila melanogaster dopamine/ecdysteroid receptor (DmDopEcR) shows sequence homology with vertebrate beta-adrenergic receptors and is activated by dopamine (DA) to increase cAMP levels and to activate the phosphoinositide 3-kinase pathway. Conversely, E and 20E show high affinity for the receptor in binding studies and can inhibit the effects of DA, as well as coupling the receptor to a rapid activation of the mitogen-activated protein kinase pathway. The receptor may thus represent the Drosophila homolog of the vertebrate "gamma-adrenergic receptors," which are responsible for the modulation of various activities in brain, blood vessels, and pancreas. Thus, DmDopEcR can function as a cell-surface GPCR that may be responsible for some of the rapid, nongenomic actions of ecdysteroids, during both development and signaling in the mature adult nervous system.
Collapse
Affiliation(s)
- Deepak P Srivastava
- The Inositide Laboratory, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Yamashita H, Kitayama J, Shida D, Ishikawa M, Hama K, Aoki J, Arai H, Nagawa H. Differential expression of lysophosphatidic acid receptor-2 in intestinal and diffuse type gastric cancer. J Surg Oncol 2006; 93:30-5. [PMID: 16353194 DOI: 10.1002/jso.20397] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Lysophosphatidic acid (LPA), a natural phospholipid, can modulate diverse cellular responses through LPA receptor, LPA1-4. Although LPA1 is known to be widely expressed in human tissues, the distribution of other LPA receptors is not characterized in malignant tissues. Recently, it was reported that malignant transformation resulted in aberrant expression of LPA2 in a various type of cancer, suggesting the positive role of LPA2 in tumor development. METHODS We investigated the expression of the LPA2 receptor immunohistochemically in 204 gastric cancers and analyzed the relationship between the expression of LPA2 and clinicopathological features. RESULTS LPA2 was preferentially expressed (67%) in intestinal-type cancer that was significantly higher than that in diffuse-type cancer (32%, P < 0.0001). The expression of LPA2 showed correlation with a higher rate of lymphatic and venous invasion, lymphatic metastasis, and resultingly tumor stage in diffuse-type cancer, but not in intestinal-type cancer. CONCLUSIONS Our results highlight the possibility that LPA2 expression is an important process in the carcinogenesis of gastric cancer, especially in intestinal-type cancer. Since LPA can transactivate HGF receptor (c-Met) as well as EGF-receptor, LPA may promote the progression of gastric cancer in diffuse-type with high expression of c-Met. The development of LPA2-specific antagonists might have future therapeutic relevance in the treatment as well as prevention of gastric cancer.
Collapse
Affiliation(s)
- Hiroharu Yamashita
- Department of Surgical Oncology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Gardell SE, Dubin AE, Chun J. Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 2006; 12:65-75. [PMID: 16406843 DOI: 10.1016/j.molmed.2005.12.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 11/21/2005] [Accepted: 12/09/2005] [Indexed: 02/06/2023]
Abstract
The two lysophospholipids (LPs) lysophosphatidic acid and sphingosine 1-phosphate (S1P) regulate diverse biological processes. Over the past decade, it has become clear that medically relevant LP activities are mediated by specific G protein-coupled receptors, implicating them in the etiology of a growing number of disorders. A new class of LP agonists shows promise for drug therapy: the experimental drug FTY720 is phosphorylated in vivo to produce a potent S1P receptor agonist (FTY720-P) and is currently in Phase III clinical trials for kidney transplantation and Phase II for multiple sclerosis. Recent genetic and pharmacological studies on LP signaling in animal disease models have identified new areas in which interventions in LP signaling might provide novel therapeutic approaches for the treatment of human diseases.
Collapse
Affiliation(s)
- Shannon E Gardell
- Department of Molecular Biology, Helen L. Dorris Child and Adolescent Neuropsychiatric Disorder Institute, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
235
|
Tsujiuchi T, Shimizu K, Onishi M, Shigemura M, Shano S, Honoki K, Fukushima N. Aberrant Expressions of Lysophosphatidic Acid Receptor Genes in Lung and Liver Tumors of Rats. J Toxicol Pathol 2006. [DOI: 10.1293/tox.19.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Toshifumi Tsujiuchi
- Laboratory of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University
| | - Kyoko Shimizu
- Laboratory of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University
| | - Mariko Onishi
- Laboratory of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University
| | - Mayumi Shigemura
- Laboratory of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University
| | - Shinya Shano
- Laboratory of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University
| | - Nobuyuki Fukushima
- Laboratory of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University
| |
Collapse
|
236
|
Abstract
Lysophospholipids (LPLs) are lipid-derived signaling molecules exemplified by lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). Originally identified as serum-associated growth factors, these mediators now are known to signal through a family of diverse G protein-coupled receptors (GPCRs). Virtually all cells that participate in the immune response express multiple receptors for LPLs. The development of antibody reagents that recognize the receptors for each LPL and the derivation of receptor-selective agonists and receptor-null mouse strains have provided insights into the widely diverse functions of LPLs in immune responses, particularly the role of S1P in lymphocyte trafficking. This review focuses on the biology of the LPLs as these molecules relate to functional regulation of immune cells in vitro and to the regulation of integrated immune responses in vivo.
Collapse
Affiliation(s)
- Debby A Lin
- Department of Medicine, Harvard Medical School, and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
237
|
Abstract
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are potent biologically active lipid mediators that exert a wide range of cellular effects through specific G protein-coupled receptors. To date, four LPA receptors and five S1P receptors have been identified. These receptors are expressed in a large number of tissues and cell types, allowing for a wide variety of cellular responses to lysophospholipid signaling, including cell adhesion, cell motility, cytoskeletal changes, proliferation, angiogenesis, process retraction, and cell survival. In addition, recent studies in mice show that specific lysophospholipid receptors are required for proper cardiovascular, immune, respiratory, and reproductive system development and function. Lysophospholipid receptors may also have specific roles in cancer and other diseases. This review will cover identification and expression of the lysophospholipid receptors, as well as receptor signaling properties and function. Additionally, phenotypes of mice deficient for specific lysophospholipid receptors will be discussed to demonstrate how these animals have furthered our understanding of the role lysophospholipids play in normal biology and disease.
Collapse
Affiliation(s)
- R Rivera
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, ICND-118, CA 92037, USA
| | | |
Collapse
|
238
|
Oh DY, Kim K, Kwon HB, Seong JY. Cellular and molecular biology of orphan G protein-coupled receptors. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 252:163-218. [PMID: 16984818 DOI: 10.1016/s0074-7696(06)52003-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The superfamily of G protein-coupled receptors (GPCRs) is the largest and most diverse group of membrane-spanning proteins. It plays a variety of roles in pathophysiological processes by transmitting extracellular signals to cells via heterotrimeric G proteins. Completion of the human genome project revealed the presence of approximately 168 genes encoding established nonsensory GPCRs, as well as 207 genes predicted to encode novel GPCRs for which the natural ligands remained to be identified, the so-called orphan GPCRs. Eighty-six of these orphans have now been paired to novel or previously known molecules, and 121 remain to be deorphaned. A better understanding of the GPCR structures and classification; knowledge of the receptor activation mechanism, either dependent on or independent of an agonist; increased understanding of the control of GPCR-mediated signal transduction; and development of appropriate ligand screening systems may improve the probability of discovering novel ligands for the remaining orphan GPCRs.
Collapse
Affiliation(s)
- Da Young Oh
- Laboratory of G Protein-Coupled Receptors, Korea University College of Medicine, Seoul 136-707, Korea
| | | | | | | |
Collapse
|
239
|
Sako A, Kitayama J, Shida D, Suzuki R, Sakai T, Ohta H, Nagawa H. Lysophosphatidic Acid (LPA)-Induced Vascular Endothelial Growth Factor (VEGF) by Mesothelial Cells and Quantification of Host-Derived VEGF in Malignant Ascites. J Surg Res 2006; 130:94-101. [PMID: 16171822 DOI: 10.1016/j.jss.2005.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 07/31/2005] [Accepted: 08/09/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological activities that may affect the progression of various cancers. Malignant ascites contains high levels of LPA as well as vascular endothelial growth factor (VEGF). Although LPA receptors are widely expressed in normal as well as cancer cells, little is known about the effect of LPA on host cells. Therefore, we evaluated the effect of LPA specifically on peritoneal mesothelial cells (PMC), and assessed another aspect of LPA in tumor biology mediated through the host cells. MATERIALS AND METHODS The effect of LPA on the production of VEGF was evaluated by ELISA and northern blotting. Next, we quantified human- and mouse-VEGF separately in ascitic fluid of nude mice inoculated intraperitoneally with a human gastric cancer, MKN45, and thus evaluated the ratio of host-derived VEGF in malignant ascites. RESULTS Addition of 10 to 80 mum LPA enhanced VEGF production by PMC through gene activation. The effect was strongly inhibited by pre-treatment with PTX or Ki16425, indicating that the effect was mainly dependent on the LPA1 signal. Of the VEGF in ascitic fluid at 3 weeks after tumor inoculation, 12.8% was derived from mouse cells. At 6 weeks, however, the ratio of host-derived VEGF was reduced to 5.0%, suggesting that the ratio of host-derived VEGF may be higher in the earlier phase. CONCLUSION Because tumor growth is often associated with an increase of LPA concentration in ascites, stimulation of VEGF production in PMC might have an important role in the growth of cancer cells disseminated in the peritoneal cavity.
Collapse
Affiliation(s)
- Akihiro Sako
- Department of Surgical Oncology, University of Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
240
|
Fasoli E, Arnone A, Caligiuri A, D'Arrigo P, de Ferra L, Servi S. Tin-mediated synthesis of lyso-phospholipids. Org Biomol Chem 2006; 4:2974-8. [PMID: 16855747 DOI: 10.1039/b604636c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1-O-Acyl-sn-glycero-3-phosphocholine and 1-O-acyl-sn-glycero-3-phosphoric acid have been prepared selectively and with high yields from the corresponding diols, glycerophosphoryl choline and glycerol-3-phosphate. Starting from the diols, the activated tin ketals were prepared in 2-propanol by reaction with dialkyltin oxide. The intermediates were acylated in the same solvent with long-chain fatty acid chlorides, giving the corresponding 1-acyl-lyso-phospholipids in high yield and with complete regioselectivity. The catalytic nature of the tin-mediated acylation and the relevance of the solvent are discussed.
Collapse
Affiliation(s)
- Ezio Fasoli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, G. Natta Politecnico di Milano, Italy
| | | | | | | | | | | |
Collapse
|
241
|
Lin DA, Boyce JA. IL-4 regulates MEK expression required for lysophosphatidic acid-mediated chemokine generation by human mast cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:5430-8. [PMID: 16210650 DOI: 10.4049/jimmunol.175.8.5430] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
IL-4 and mast cells (MCs) mediate mucosal defense against helminths and are central to allergic inflammation. Lysophosphatidic acid (LPA), an abundant, potent lipid growth factor, stimulates the growth of cultured human MCs (hMCs) in vitro through a pathway involving LPA receptors 1 and 3 (termed the LPA(1) and LPA(3) receptors, respectively) and peroxisome proliferator-activated receptor-gamma. We now report that LPA potently induces the generation of proinflammatory chemokines (MIP-1beta, IL-8, and MCP-1) by hMCs by a mechanism that absolutely requires IL-4. The de novo expression of chemokine mRNA and protein generation involves synergistic actions of calcium flux-dependent NFAT transcription factors and ERK. ERK phosphorylation and chemokine production in response to LPA require IL-4-dependent up-regulation of MEK-1 expression by a pathway involving PI3K. Although receptor-selective agonists for both the LPA(2) and LPA(3) receptors induce calcium fluxes by hMCs, only the LPA(2) receptor-selective agonist fatty alcohol phosphate-12 mimics the IL-4-dependent effect of LPA on chemokine generation. The fact that LPA, an endogenous lipid mediator, activates hMCs by an LPA(2) receptor-dependent pathway indicates functional distinctions between different LPA receptor family members that are expressed constitutively by cells of a single hemopoietic lineage. Moreover, the regulation of MEK-dependent signaling is a mechanism by which IL-4 could amplify inflammation in mucosal immune responses through receptor systems for endogenous ligands such as LPA.
Collapse
Affiliation(s)
- Debby A Lin
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
242
|
Abstract
Lysophosphatidic acid (LPA; 1-acyl-3-phosphoglycerol) exerts its biological activity through both extracellular and intracellular targets. Receptor targets include the cell-surface G-protein-coupled receptors LPA(1-4) and the nuclear PPAR-gamma (peroxisome-proliferator-activated receptor gamma). Enzyme targets include the secreted cancer cell motility factor, autotaxin, and the transmembrane phosphatases, LPP1-3 (where LPP stands for lipid phosphate phosphatase). Ion channel targets include the two pore domain ion channels in the TREK family, TREK-1, TREK-2 and TRAAK. Structural features of these targets and their interactions with LPA are reviewed.
Collapse
|
243
|
Fujiwara Y, Sardar V, Tokumura A, Baker D, Murakami-Murofushi K, Parrill A, Tigyi G. Identification of Residues Responsible for Ligand Recognition and Regioisomeric Selectivity of Lysophosphatidic Acid Receptors Expressed in Mammalian Cells. J Biol Chem 2005; 280:35038-50. [PMID: 16115890 DOI: 10.1074/jbc.m504351200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endothelial differentiation gene family encodes three highly homologous G protein-coupled receptors for lysophosphatidic acid (LPA). Based on baculoviral overexpression studies, differences have been proposed in the structure-activity relationship (SAR) of these receptors. We have compared the SAR of the individual receptors either overexpressed transiently at high or at lower levels following stable transfection in LPA-nonresponsive RH7777 cells. The SAR in transfected RH7777 cells was markedly different from that described in insect cells. The LPA(3) receptor has been proposed to be selectively activated by unsaturated LPA species and shows a strong preference for sn-2 versus the sn-1 acyl-LPA regioisomer. Because of the short half-life of sn-2 LPA due to acyl migration under some conditions, we have synthesized acyl migration-resistant analogs using an acetyl group in place of the free hydroxyl group in order to evaluate LPA receptor SAR. Only LPA(1) and LPA(2) showed regioisomeric preference and only for the 18:2 fatty acyl-stabilized LPA sn-1 regioisomer. To identify residues involved in ligand recognition of LPA(3), we developed and validated computational models of LPA(3) complexes with the analogs studied. The models revealed that Arg-3.28 and Gln-3.29 conserved within the LPA-selective endothelial differentiation gene receptors and the more variable Lys-7.35 and Arg-5.38 of LPA(3) form critical interactions with the polar headgroup of LPA. The models identified Leu-2.60 and Val-7.39 of LPA(3) underlying the regioisomer-selective interaction with the acetyl group of the stabilized regioisomers. Mutation of Leu-2.60 to alanine selectively increased the EC(50) of the sn-2 acetyl-LPA regioisomers, whereas alanine replacement of Val-7.39 profoundly affected both regioisomers.
Collapse
Affiliation(s)
- Yuko Fujiwara
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38152, USA
| | | | | | | | | | | | | |
Collapse
|
244
|
Shida D, Kitayama J, Yamaguchi H, Yamashita H, Mori K, Watanabe T, Nagawa H. Lysophosphatidic acid transactivates both c-Met and epidermal growth factor receptor, and induces cyclooxygenase-2 expression in human colon cancer LoVo cells. World J Gastroenterol 2005; 11:5638-43. [PMID: 16237757 PMCID: PMC4481480 DOI: 10.3748/wjg.v11.i36.5638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine whether lysophosphatidic acid (LPA) induces phosphorylation of c-Met and epidermal growth factor receptor (EGFR), both of which have been proposed as prognostic markers of colorectal cancer, and whether LPA induces cyclooxygenase-2 (COX-2) expression in human colon cancer cells.
METHODS: Using a human colon cancer cell line, LoVo cells, we performed immunoprecipitation analysis, followed by Western blot analysis. We also examined whether LPA induced COX-2 expression, by Western blot analysis.
RESULTS: Immunoprecipitation analysis revealed that 10 µmol/L LPA induced tyrosine phosphorylation of c-Met and EGFR in LoVo cells within a few minutes. We found that c-Met tyrosine phosphorylation induced by LPA was not attenuated by pertussis toxin or a matrix metalloproteinase inhibitor, in marked contrast to the results for EGFR. In addition, 0.2-40 µmol/L LPA induced COX-2 expression in a dose-dependent manner.
CONCLUSION: Our results suggest that LPA acts upstream of various receptor tyrosine kinases (RTKs) and COX-2, and thus may act as a potent stimulator of colorectal cancer.
Collapse
Affiliation(s)
- Dai Shida
- Department of Surgical Oncology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Japan.
| | | | | | | | | | | | | |
Collapse
|
245
|
Lee J, Jung ID, Chang WK, Park CG, Cho DY, Shin EY, Seo DW, Kim YK, Lee HW, Han JW, Lee HY. p85 beta-PIX is required for cell motility through phosphorylations of focal adhesion kinase and p38 MAP kinase. Exp Cell Res 2005; 307:315-28. [PMID: 15893751 DOI: 10.1016/j.yexcr.2005.03.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 02/22/2005] [Accepted: 03/01/2005] [Indexed: 11/25/2022]
Abstract
Lysophosphatidic acid (LPA) mediates diverse biological responses, including cell migration, through the activation of G-protein-coupled receptors. Recently, we have shown that LPA stimulates p21-activated kinase (PAK) that is critical for focal adhesion kinase (FAK) phosphorylation and cell motility. Here, we provide the direct evidence that p85 beta-PIX is required for cell motility of NIH-3T3 cells by LPA through FAK and p38 MAP kinase phosphorylations. LPA induced p85 beta-PIX binding to FAK in NIH-3T3 cells that was inhibited by pretreatment of the cells with phosphoinositide 3-kinase inhibitor, LY294002. Furthermore, the similar inhibition of the complex formation was also observed, when the cells were transfected with either p85 beta-PIX mutant that cannot bind GIT or dominant negative mutants of Rac1 (N17Rac1) and PAK (PAK-PID). Transfection of the cells with specific p85 beta-PIX siRNA led to drastic inhibition of LPA-induced FAK phosphorylation, peripheral redistribution of p85 beta-PIX with FAK and GIT1, and cell motility. p85 beta-PIX was also required for p38 MAP kinase phosphorylation induced by LPA. Finally, dominant negative mutant of Rho (N19Rho)-transfected cells did not affect PAK activation, while the cells stably transfected with p85 beta-PIX siRNA or N17Rac1 showed the reduction of LPA-induced PAK activation. Taken together, the present data suggest that p85 beta-PIX, located downstream of Rac1, is a key regulator for the activations of FAK or p38 MAP kinase and plays a pivotal role in focal complex formation and cell motility induced by LPA.
Collapse
Affiliation(s)
- Jangsoon Lee
- Department of Pharmacology, College of Medicine, Konyang University, Nonsan, 320-711, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Maghazachi AA. Insights into seven and single transmembrane-spanning domain receptors and their signaling pathways in human natural killer cells. Pharmacol Rev 2005; 57:339-57. [PMID: 16109839 DOI: 10.1124/pr.57.3.5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human natural killer (NK) cells are important cells of the innate immune system. These cells perform two prominent functions: the first is recognizing and destroying virally infected cells and transformed cells; the second is secreting various cytokines that shape up the innate and adaptive immune re-sponses. For these cells to perform these activities, they express different sets of receptors. The receptors used by NK cells to extravasate into sites of injury belong to the seven transmembrane (7TM) family of receptors, which characteristically bind heterotrimeric G proteins. These receptors allow NK cells to sense the chemotactic gradients and activate second messengers, which aid NK cells in polarizing and migrating toward the sites of injured tissues. In addition, these receptors determine how and why human resting NK cells are mainly found in the bloodstream, whereas activated NK cells extravasate into inflammatory sites. Receptors for chemokines and lysophospholipids belong to the 7TM family. On the other hand, NK cells recognize invading or transformed cells through another set of receptors that belong to the single transmembrane-spanning domain family. These receptors are either inhibitory or activating. Inhibitory receptors contain the immune receptor tyrosine-based inhibitory motif, and activating receptors belong to either those that associate with adaptor molecules containing the immune receptor tyrosine-based activating motif (ITAM) or those that associate with adaptor molecules containing motifs other than ITAM. This article will describe the nature of these receptors and examine the intracellular signaling pathways induced in NK cells after ligating both types of receptors. These pathways are crucial for NK cell biology, development, and functions.
Collapse
|
247
|
Nakamoto T, Yasuda K, Yasuhara M, Yoshimura T, Kinoshita T, Nakajima T, Okada H, Ikuta A, Kanzaki H. Expression of the endothelial cell differentiation gene 7 (EDG-7), a lysophosphatidic acid receptor, in ovarian tumor. J Obstet Gynaecol Res 2005; 31:344-51. [PMID: 16018784 DOI: 10.1111/j.1447-0756.2005.00299.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Lysophosphatidic acid (LPA) has received attention as a mitogen because the physiologically active lipid stimulates ovarian cancer cell growth by interacting with specific receptors, the endothelial cell differentiation gene (EDG) family. In the present study, we have investigated the expression of EDG-7 mRNA, part of the EDG family, in both human ovarian cancers and established human ovarian cancer cell lines. METHODS RNA was extracted from six ovarian cancer cell lines and multiple cancerous and normal ovarian tissues. The expression of EDG-7 mRNA was measured using reverse transcription-polymerase chain reaction and northern blotting, using reduced glyceraldehyde-phosphate dehydrogenase and S26 as internal controls. RESULTS Of the cell lines tested, EDG-7 mRNA was expressed most intensely in CRL-11731 and CRL-1572 and at a lesser but still substantial level in CRL-11732. The expression of EDG-7 mRNA was limited in MCAS, CRL-11730 and TYKnu. In the ovarian cancer tissues, EDG-7 mRNA was expressed most highly in endometrioid adenocarcinoma and serous cystadenocarcinoma. The expression of EDG-7 mRNA was limited in clear cell adenocarcinoma and undetectable in mucinous cystadenocarcinoma. CONCLUSIONS The intense EDG-7 expression in ovarian cancers suggests that the relation between LPA and EDG-7 (an LPA receptor) is involved in cancer cell growth and proliferation in some histologic subtypes of ovarian cancer.
Collapse
Affiliation(s)
- Tsuyoshi Nakamoto
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Avendaño-Vázquez S, García-Caballero A, García-Sáinz J. Phosphorylation and desensitization of the lysophosphatidic acid receptor LPA1. Biochem J 2005; 385:677-84. [PMID: 15369458 PMCID: PMC1134742 DOI: 10.1042/bj20040891] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In C9 cells, LPA (lysophosphatidic acid) induced inositol phosphate production, increased intracellular calcium concentration and inhibited adenylate cyclase activity. These responses were abolished in cells challenged with active phorbol esters. Action of phorbol esters was blocked by inhibitors of PKC (protein kinase C) and by its down-regulation. LPA1 receptor phosphorylation was observed in response to phorbol esters. The effect was rapid (t1/2 approximately 1 min), intense (2-fold) and sustained (at least 60 min). PKC inhibitors markedly decreased the LPA1 receptor phosphorylation induced by phorbol esters. LPA1 receptor tagged with the green fluorescent protein internalized in response to PKC activation. In addition, LPA and angiotensin II were also capable of inducing LPA1 receptor phosphorylation, showing that LPA1 receptor can be subjected to homologous and heterologous desensitization.
Collapse
Affiliation(s)
- S. Eréndira Avendaño-Vázquez
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México, DF 04510, México
| | - Agustín García-Caballero
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México, DF 04510, México
| | - J. Adolfo García-Sáinz
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México, DF 04510, México
- To whom correspondence should be addressed (email )
| |
Collapse
|
249
|
Park KS, Lee HY, Kim MK, Shin EH, Bae YS. Lysophosphatidylserine stimulates leukemic cells but not normal leukocytes. Biochem Biophys Res Commun 2005; 333:353-8. [PMID: 15946646 DOI: 10.1016/j.bbrc.2005.05.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/23/2005] [Indexed: 11/28/2022]
Abstract
In this study, we observed that lysophosphatidylserine (LPS) stimulated intracellular calcium ([Ca(2+)](i)) increase in leukemic cells but not in normal human peripheral blood mononuclear cells. LPS also stimulated [Ca(2+)](i) increase in human leukemic THP-1 cells. LPS-stimulated [Ca(2+)](i) increase was inhibited by U-73122 but not by U-73343. LPS also stimulated inositol phosphates formation in THP-1 cells, suggesting that LPS stimulates calcium signaling via phospholipase C activation. Moreover, pertussis toxin (PTX) completely inhibited [Ca(2+)](i) increase by LPS, indicating the activation of PTX-sensitive G-proteins. We also found that LPS-induced [Ca(2+)](i) increase was completely inhibited by suramin, suggesting G-protein coupled receptor activation. Since LPS specifically stimulates PTX-sensitive G-proteins, phospholipase C-dependent [Ca(2+)](i) increase in leukemic cells but not normal peripheral blood leukocytes, LPS receptor may be associated with leukemia.
Collapse
Affiliation(s)
- Kyoung Sun Park
- Medical Research Center for Cancer Molecular Therapy, College of Medicine, Dong-A University, Busan 602-714, Republic of Korea
| | | | | | | | | |
Collapse
|
250
|
Durgam GG, Virag T, Walker MD, Tsukahara R, Yasuda S, Liliom K, van Meeteren LA, Moolenaar WH, Wilke N, Siess W, Tigyi G, Miller DD. Synthesis, Structure−Activity Relationships, and Biological Evaluation of Fatty Alcohol Phosphates as Lysophosphatidic Acid Receptor Ligands, Activators of PPARγ, and Inhibitors of Autotaxin†. J Med Chem 2005; 48:4919-30. [PMID: 16033271 DOI: 10.1021/jm049609r] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that fatty alcohol phosphates (FAP) represent a minimal pharmacophore required to interact with lysophosphatidic acid (LPA) receptors. To improve the activity of the first-generation saturated FAP series, a structure-activity relationship (SAR) study was carried out that includes modifications to the headgroup and alkyl side chain of the FAP pharmacophore. A series of unsaturated (C(10)-C(18)) FAP, headgroup-modified hydrolytically stable saturated (C(10)-C(18)) alkyl phosphonates, and saturated and unsaturated (C(10)-C(18)) thiophosphate analogues were synthesized and evaluated for activity in RH7777 cells transfected with individual LPA(1)(-3) receptors, in PC-3 cells and in human platelets that endogenously express all three isoforms. In this series we identified several LPA(1)- and LPA(3)-selective antagonists with IC(50) values in the nanomolar range. Oleoyl-thiophosphate (15g) was shown to be a pan-agonist, whereas tetradecyl-phosphonate (16c) was identified as a pan-antagonist. These compounds were also tested for the ability to activate the transcription factor PPARgamma, an intracellular receptor for LPA, in CV1 cells transfected with the PPRE-Acox-Rluc reporter gene. All the FAP tested, along with the previously reported LPA GPCR antagonists dioctanoyl glycerol pyrophosphate (2), Ki16425 (6), and the agonist OMPT (3), were activators of PPARgamma. The pan-agonist oleoyl-thiophosphate (15g) and pan-antagonist tetradecyl-phosphonate (16c) mimicked LPA in inhibiting autotaxin, a secreted lysophospholipase D that produces LPA in biological fluids.
Collapse
Affiliation(s)
- Gangadhar G Durgam
- Department of Pharmaceutical Sciences, College of Pharmacy and Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 847 Monroe Avenue, Room 227C, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|