201
|
Miller TW, Isenberg JS, Roberts DD. Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem Rev 2009; 109:3099-124. [PMID: 19374334 PMCID: PMC2801866 DOI: 10.1021/cr8005125] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - David D. Roberts
- To whom correspondence should be addressed: NIH, Building 10, Room 2A33, 10 Center Dr, MSC1500, Bethesda, Maryland 20892,
| |
Collapse
|
202
|
Xu Z, Chan HY, Lam WL, Lam KH, Lam LSM, Ng TB, Au SWN. SUMO proteases: redox regulation and biological consequences. Antioxid Redox Signal 2009; 11:1453-84. [PMID: 19186998 DOI: 10.1089/ars.2008.2182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small-ubiquitin modifier (SUMO) has emerged as a novel modification system that governs the activities of a wide spectrum of protein substrates. SUMO-specific proteases (SENP) are of particular interest, as they are responsible for both the maturation of SUMO precursors and for their deconjugation. The interruption of SENPs has been implicated in embryonic defects and carcinoma cells, indicating that a proper balance of SUMO conjugation and deconjugation is crucial. Recent advances in molecular and cellular biology have highlighted the distinct subcellular localization, and endopeptidase and isopeptidase activities of SENPs, suggesting that they are nonredundant. A better understanding of the molecular basis of SUMO recognition and hydrolytic cleavage has been obtained from the crystal structures of SENP-substrate complexes. While a number of proteomic studies have shown an upregulation of sumoylation, attention is now increasingly being directed towards the regulatory mechanism of sumoylation, in particular the oxidative effect. Findings on the oxidation-induced intermolecular disulfide of E1-E2 ligases and SENP1/2 have improved our understanding of the mechanism by which modification is switched up or down. More intriguingly, a growing body of evidence suggests that sumoylation cross-talks with other modifications, and that the upstream and downstream signaling pathway is co-regulated by more than one modifier.
Collapse
Affiliation(s)
- Zheng Xu
- Centre for Protein Science and Crystallography, Department of Biochemistry and Molecular Biotechnology Program, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
203
|
Changes in lipid metabolism associated gene transcripts during porcine adipogenesis. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:8-17. [DOI: 10.1016/j.cbpb.2008.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 12/23/2008] [Accepted: 12/31/2008] [Indexed: 11/20/2022]
|
204
|
Anti-diabetic effects of sodium 4-amino-2,6-dipicolinatodioxovanadium(V) dihydrate in streptozotocin-induced diabetic rats. J Inorg Biochem 2009; 103:585-9. [DOI: 10.1016/j.jinorgbio.2008.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/09/2008] [Accepted: 11/10/2008] [Indexed: 11/22/2022]
|
205
|
Markadieu N, Crutzen R, Boom A, Erneux C, Beauwens R. Inhibition of insulin-stimulated hydrogen peroxide production prevents stimulation of sodium transport in A6 cell monolayers. Am J Physiol Renal Physiol 2009; 296:F1428-38. [PMID: 19297450 DOI: 10.1152/ajprenal.90397.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-stimulated sodium transport across A6 cell (derived from amphibian distal nephron) monolayers involves the activation of a phosphatidylinositol (PI) 3-kinase. We previously demonstrated that exogenous addition of H2O2 to the incubation medium of A6 cell monolayers provokes an increase in PI 3-kinase activity and a subsequent rise in sodium transport (Markadieu N, Crutzen R, Blero D, Erneux C, Beauwens R. Am J Physiol Renal Physiol 288: F1201-F1212, 2005). We therefore questioned whether insulin would produce an intracellular burst of H2O2 leading to PI 3-kinase activation and subsequent increase in sodium transport. An acute production of reactive oxygen species (ROS) in A6 cells incubated with the oxidation-sensitive fluorescent probe 5,6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate was already detected after 2 min of insulin stimulation. This fluorescent signal and the increase in sodium transport were completely inhibited in monolayers incubated with peggylated catalase, indicating that H2O2 is the main intracellular ROS produced upon insulin stimulation. Similarly, preincubation of monolayers with different chelators of either superoxide (O2(*-); nitro blue tetrazolium, 100 microM) or H2O2 (50 microM ebselen), or blockers of NADPH oxidase (Nox) enzymes (diphenyleneiodonium, 5 microM; phenylarsine oxide, 1 microM and plumbagin, 30 microM) prevented both insulin-stimulated H2O2 production and insulin-stimulated sodium transport. Furthermore, diphenyleneiodonium pretreatment inhibited the recruitment of the p85 PI 3-kinase regulatory subunit in an anti-phosphotyrosine immunoprecipitate in insulin-stimulated cells. In contrast, PI-103, an inhibitor of class IA PI 3-kinase, inhibited insulin-stimulated sodium transport but did not significantly reduce insulin-stimulated H2O2 production. Taken together, our data suggest that insulin induces an acute burst of H2O2production which participates in an increase in phosphatidylinositol 3,4,5-trisphosphate production and subsequently stimulation of sodium transport.
Collapse
Affiliation(s)
- Nicolas Markadieu
- Laboratory of Cell and Molecular Physiology, Campus Erasme CP 611, Université Libre de Bruxelles, Bât E1, niv 6, local 214, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
206
|
Agrawal R, Tyagi E, Shukla R, Nath C. A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 2009; 56:779-87. [DOI: 10.1016/j.neuropharm.2009.01.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
207
|
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 2009; 89:27-71. [PMID: 19126754 DOI: 10.1152/physrev.00014.2008] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulated production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) adequately balanced by antioxidant systems is a prerequisite for the participation of these active substances in physiological processes, including insulin action. Yet, increasing evidence implicates ROS and RNS as negative regulators of insulin signaling, rendering them putative mediators in the development of insulin resistance, a common endocrine abnormality that accompanies obesity and is a risk factor of type 2 diabetes. This review deals with this dual, seemingly contradictory, function of ROS and RNS in regulating insulin action: the major processes for ROS and RNS generation and detoxification are presented, and a critical review of the evidence that they participate in the positive and negative regulation of insulin action is provided. The cellular and molecular mechanisms by which ROS and RNS are thought to participate in normal insulin action and in the induction of insulin resistance are then described. Finally, we explore the potential usefulness and the challenges in modulating the oxidant-antioxidant balance as a potentially promising, but currently disappointing, means of improving insulin action in insulin resistance-associated conditions, leading causes of human morbidity and mortality of our era.
Collapse
Affiliation(s)
- Nava Bashan
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
208
|
Kumar A, Wu H, Collier-Hyams LS, Kwon YM, Hanson JM, Neish AS. The bacterial fermentation product butyrate influences epithelial signaling via reactive oxygen species-mediated changes in cullin-1 neddylation. THE JOURNAL OF IMMUNOLOGY 2009; 182:538-46. [PMID: 19109186 DOI: 10.4049/jimmunol.182.1.538] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human enteric flora plays a significant role in intestinal health and disease. Populations of enteric bacteria can inhibit the NF-kappaB pathway by blockade of IkappaB-alpha ubiquitination, a process catalyzed by the E3-SCF(beta-TrCP) ubiquitin ligase. The activity of this ubiquitin ligase is regulated via covalent modification of the Cullin-1 subunit by the ubiquitin-like protein NEDD8. We previously reported that interaction of viable commensal bacteria with mammalian intestinal epithelial cells resulted in a rapid and reversible generation of reactive oxygen species (ROS) that modulated neddylation of Cullin-1 and resulted in suppressive effects on the NF-kappaB pathway. Herein, we demonstrate that butyrate and other short chain fatty acids supplemented to model human intestinal epithelia in vitro and human tissue ex vivo results in loss of neddylated Cul-1 and show that physiological concentrations of butyrate modulate the ubiquitination and degradation of a target of the E3- SCF(beta-TrCP) ubiquitin ligase, the NF-kappaB inhibitor IkappaB-alpha. Mechanistically, we show that physiological concentrations of butyrate induces reactive oxygen species that transiently alters the intracellular redox balance and results in inactivation of the NEDD8-conjugating enzyme Ubc12 in a manner similar to effects mediated by viable bacteria. Because the normal flora produces significant amounts of butyrate and other short chain fatty acids, these data provide a functional link between a natural product of the intestinal normal flora and important epithelial inflammatory and proliferative signaling pathways.
Collapse
Affiliation(s)
- Amrita Kumar
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology Unit, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
209
|
Papaconstantinou J. Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol Cell Endocrinol 2009; 299:89-100. [PMID: 19103250 PMCID: PMC2873688 DOI: 10.1016/j.mce.2008.11.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 01/29/2023]
Abstract
Regulation of hormonal, insulin/IGF-1 (Ins/IGF-1) signaling activities, and pathways of the intrinsic generation of reactive oxygen species (ROS) play a role in aging and longevity determination. In this review we discuss the cross-talk between these pathways as mechanisms of signaling that may be important factors in the regulation of aging and longevity. The balance of physiological processes controlling the rate of aging and longevity in several mouse mutants suggests the involvement of cross-talk mechanisms of regulation of the insulin/IGF1 signaling pathway vs. the ROS signaling pathways. In mice, modulation of the Ins/IGF-1 signaling pathways resulting from the Prop1(df), Pit1(dw) and Igf1 receptor mutations exemplify the hormonal pathways associated with aging and longevity determination. These pathways are also targets of the ROS-mediated redox pathways. Similarly, the Klotho and p66(Shc) mutants link regulation of ROS signaling pathways to aging and longevity determination. Both of these models also display altered insulin signaling activity, a characteristic associated with longevity. The Ins/IGF-1 signaling pathway is of particular interest because of its decreased activity due to genetic manipulation vs. its responsiveness to ROS levels.
Collapse
Affiliation(s)
- John Papaconstantinou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd, Mail Route 0643, Galveston, TX 77555-0643, United States.
| |
Collapse
|
210
|
Methods for preparing crystals of reversibly oxidized proteins: crystallization of protein tyrosine phosphatase 1B as an example. Methods Mol Biol 2009. [PMID: 19157012 DOI: 10.1007/978-1-59745-129-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Regulation of protein activity through the oxidation and reduction of cysteines is emerging as an important mechanism in the control of cell-signaling pathways. Protein tyrosine phosphatase 1B (PTP1B), for example, is reversibly inhibited by oxidation at the catalytic cysteine in response to stimulation of cells by insulin or epidermal growth factor. We have conducted structural studies on the redox regulation of PTP1B and have demonstrated that the oxidation of the catalytic cysteine results in the formation of a bond between the sulfur atom of the catalytic cysteine and the amide nitrogen of the neighboring serine. This bond, referred to here as a sulfenamide bond, is reversible upon the addition of glutathione, indicating that this sulfenamide intermediate could function within signaling pathways to protect the cysteine from overoxidation to less readily reducible states. Formation of the sulfenamide bond is accompanied by changes in the tertiary structure at the catalytic site, and these changes may be important for additional regulation of the enzyme. Here, we present methods for preparing crystals ofPTP1B with a sulfenamide bond at the catalytic cysteine. The methods may be adaptable for other proteins that are subject to redox regulation.
Collapse
|
211
|
Regazzetti C, Peraldi P, Grémeaux T, Najem-Lendom R, Ben-Sahra I, Cormont M, Bost F, Le Marchand-Brustel Y, Tanti JF, Giorgetti-Peraldi S. Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes 2009; 58:95-103. [PMID: 18984735 PMCID: PMC2606898 DOI: 10.2337/db08-0457] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Obesity is characterized by an overgrowth of adipose tissue that leads to the formation of hypoxic areas within this tissue. We investigated whether this phenomenon could be responsible for insulin resistance by studying the effect of hypoxia on the insulin signaling pathway in adipocytes. RESEARCH DESIGN AND METHODS The hypoxic signaling pathway was modulated in adipocytes from human and murine origins through incubation under hypoxic conditions (1% O(2)) or modulation of hypoxia-inducible factor (HIF) expression. Insulin signaling was monitored through the phosphorylation state of several key partners of the pathway and glucose transport. RESULTS In both human and murine adipocytes, hypoxia inhibits insulin signaling as revealed by a decrease in the phosphorylation of insulin receptor. In 3T3-L1 adipocytes, this inhibition of insulin receptor phosphorylation is followed by a decrease in the phosphorylation state of protein kinase B and AS160, as well as an inhibition of glucose transport in response to insulin. These processes were reversible under normoxic conditions. The mechanism of inhibition seems independent of protein tyrosine phosphatase activities. Overexpression of HIF-1alpha or -2alpha or activation of HIF transcription factor with CoCl(2) mimicked the effect of hypoxia on insulin signaling, whereas downregulation of HIF-1alpha and -2alpha by small interfering RNA inhibited it. CONCLUSIONS We have demonstrated that hypoxia creates a state of insulin resistance in adipocytes that is dependent upon HIF transcription factor expression. Hypoxia could be envisioned as a new mechanism that participates in insulin resistance in adipose tissue of obese patients.
Collapse
Affiliation(s)
- Claire Regazzetti
- Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Institut National de la Santé et de la Recherche Médicale U 895, Mediterranean Research Centre for Molecular Medicine, Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Wu H, Ichikawa S, Tani C, Zhu B, Tada M, Shimoishi Y, Murata Y, Nakamura Y. Docosahexaenoic acid induces ERK1/2 activation and neuritogenesis via intracellular reactive oxygen species production in human neuroblastoma SH-SY5Y cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:8-16. [DOI: 10.1016/j.bbalip.2008.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/19/2008] [Accepted: 10/03/2008] [Indexed: 01/21/2023]
|
213
|
Redox regulation of interleukin-4 signaling. Immunity 2008; 29:551-64. [PMID: 18957266 DOI: 10.1016/j.immuni.2008.07.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 05/20/2008] [Accepted: 07/23/2008] [Indexed: 12/14/2022]
Abstract
The physiologic control of cytokine receptor activation is primarily mediated by reciprocal activation of receptor-associated protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Here, we show that immediately after ligand-dependent activation, interleukin (IL)-4 receptor generated reactive oxygen species (ROS) via phosphatidylinositol 3-kinase-dependent activation of NAD(P)H oxidase (NOX)1 and NOX5L. ROS, in turn, promoted IL-4 receptor activation by oxidatively inactivating PTP1B that physically associated with and deactivated IL-4 receptor. However, ROS were not required for the initiation of IL-4 receptor activation. ROS generated by other cytokine receptors, including those for erythropoietin, tumor necrosis factor-alpha, or IL-3, also promoted IL-4 signaling. These data indicate that inactivation of receptor-associated PTP activity by cytokine-generated ROS is a physiologic mechanism for the amplification of cytokine receptor activation in both cis and trans, revealing a role for ROS in cytokine crosstalk.
Collapse
|
214
|
Mueller AS, Klomann SD, Wolf NM, Schneider S, Schmidt R, Spielmann J, Stangl G, Eder K, Pallauf J. Redox regulation of protein tyrosine phosphatase 1B by manipulation of dietary selenium affects the triglyceride concentration in rat liver. J Nutr 2008; 138:2328-36. [PMID: 19022953 DOI: 10.3945/jn.108.089482] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key enzyme in the counter-regulation of insulin signaling and in the stimulation of fatty acid synthesis. Selenium (Se), via the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), is involved in the removal of H(2)O(2) and organic peroxides, which are critical compounds in the modulation of PTP1B activity via glutathionylation. Our study with growing rats investigated how the manipulation of dietary Se concentration influences the regulation of PTP1B and lipogenic effects mediated by PTP1B. Weanling albino rats were divided into 3 groups of 10. The negative control group (NC) was fed a Se-deficient diet for 8 wk. Rats in groups Se75 and Se150 received diets supplemented with 75 or 150 microg Se/kg. Se supplementation of the rats strongly influenced expression and activity of the selenoenzymes cytosolic GPx, plasma GPx, phospholipidhydroperoxide GPx, and cytosolic TrxR, and liver PTP1B. Liver PTP1B activity was significantly higher in groups Se75 and Se150 than in the NC group and this was attributed to a lowered inhibition of the enzyme by glutathionylation. The increased liver PTP1B activity in groups Se75 and Se150 resulted in 1.1- and 1.4-fold higher liver triglyceride concentrations than in the NC rats. The upregulation of the sterol regulatory element binding protein-1c and of fatty acid synthase, 2 PTP1B targets, provided a possible explanation for the lipogenic effect of PTP1B due to the manipulation of dietary Se. We therefore conclude that redox-regulated proteins, such as PTP1B, represent important interfaces between dietary antioxidants such as Se and the regulation of metabolic processes.
Collapse
Affiliation(s)
- Andreas S Mueller
- Institute of Agricultural and Nutritional Sciences, Preventive Nutrition Group, Martin Luther University Halle Wittenberg, Halle, Saale, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Pu Q, Chang Y, Zhang C, Cai Y, Hassid A. Chronic insulin treatment suppresses PTP1B function, induces increased PDGF signaling, and amplifies neointima formation in the balloon-injured rat artery. Am J Physiol Heart Circ Physiol 2008; 296:H132-9. [PMID: 19011046 DOI: 10.1152/ajpheart.00370.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We tested the hypothesis that hyperinsulinemia induces the suppression of protein tyrosine phosphatase 1B (PTP1B) function, leading to enhanced PDGF receptor (PDGFR) signaling and neointimal hyperplasia. Rats were implanted with insulin-releasing pellets or sham pellets. Blood glucose levels, insulin levels, food and water intake, body weights, and blood pressures were measured. Neointimal hyperplasia was assessed by computerized morphometry 14 days after carotid balloon injury. PTP1B protein expression in injured arteries was determined via Western blot analysis, whereas PTP1B activity was determined via an immunophosphatase assay. Serum insulin levels were two- to threefold greater in hyperinsulinemic rats, whereas systolic blood pressures, food and water intake, serum triglyceride levels, plasma cortisol levels, and urinary catecholamine levels were not affected. Fourteen days after injury, neointima-to-media area ratios were 0.89 +/- 0.23 and 1.35 +/- 0.22 in control and hyperinsulinemic rats, respectively (P < 0.01). PTP1B protein levels and total PTP1B activity in injured carotid arteries from the insulin-treated group were significantly decreased 7 or 14 days after injury, whereas PTP1B specific activity was decreased only 14 days after injury. These findings were associated with decreased PTP1B mRNA levels and increased PDGFR tyrosyl phosphorylation in insulin-treated rats. These observations support the hypothesis that hyperinsulinemia induces the suppression of PTP1B function, leading to enhanced PDGFR signaling and neointimal hyperplasia.
Collapse
Affiliation(s)
- Qinghua Pu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | | | | | | | | |
Collapse
|
216
|
LaButti JN, Gates KS. Biologically relevant chemical properties of peroxymonophosphate (=O3POOH). Bioorg Med Chem Lett 2008; 19:218-21. [PMID: 19022671 DOI: 10.1016/j.bmcl.2008.10.133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/22/2008] [Accepted: 10/27/2008] [Indexed: 11/26/2022]
Abstract
It has been suggested that peroxymonophosphate could serve as an endogenous hydrogen peroxide-derived regulator of cellular protein tyrosine phosphatase activity under physiological or pathophysiological conditions. To facilitate further consideration of the potential role of peroxymonophosphate in biological systems we present studies related to the preparation, characterization, stability, and fluorometric detection of this agent.
Collapse
Affiliation(s)
- Jason N LaButti
- Departments of Chemistry and Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| | | |
Collapse
|
217
|
Shibata T, Nakahara H, Kita N, Matsubara Y, Han C, Morimitsu Y, Iwamoto N, Kumagai Y, Nishida M, Kurose H, Aoki N, Ojika M, Uchida K. A food-derived synergist of NGF signaling: identification of protein tyrosine phosphatase 1B as a key regulator of NGF receptor-initiated signal transduction. J Neurochem 2008; 107:1248-60. [PMID: 18796006 DOI: 10.1111/j.1471-4159.2008.05686.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neurotrophins, such as the nerve growth factor (NGF), play an essential role in the growth, development, survival and functional maintenance of neurons in the central and peripheral systems. They also prevent neuronal cell death under various stressful conditions, such as ischemia and neurodegenerative disorders. NGF induces cell differentiation and neurite outgrowth by binding with and activating the NGF receptor tyrosine kinase followed by activation of a variety of signaling cascades. We have investigated the NGF-dependent neuritogenesis enhancer potential of a food-derived small molecule contained in Brassica vegetables and identified the protein tyrosine phosphatase (PTP) 1B as a key regulator of the NGF receptor-initiated signal transduction. Based on an extensive screening of Brassica vegetable extracts for the neuritogenic-promoting activity in the rat pheochromocytoma cell line PC12, we found the Japanese horseradish, wasabi (Wasabia japonica, syn. Eutrema wasabi), as the richest source and identified 6-methylsulfinylhexyl isothiocyanate (6-HITC), an analogue of sulforaphane isolated from broccoli, as one of the major neuritogenic enhancers in the wasabi. 6-HITC strongly enhanced the neurite outgrowth and neurofilament expression elicited by a low-concentration of NGF that alone was insufficient to induce neuronal differentiation. 6-HITC also facilitated the sustained-phosphorylation of the extracellular signal-regulated kinase and the autophosphorylation of the NGF receptor TrkA. It was found that PTP1B act as a phosphatase capable of dephosphorylating Tyr-490 of TrkA and was inactivated by 6-HITC in a redox-dependent manner. The identification of PTP1B as a regulator of NGF signaling may provide new clues about the chemoprotective potential of food components, such as isothiocyanates.
Collapse
Affiliation(s)
- Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Reactive oxygen species facilitate the insulin-dependent inhibition of glucagon-induced glucose production in the isolated perfused rat liver. Wien Med Wochenschr 2008; 158:570-4. [DOI: 10.1007/s10354-008-0598-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 03/10/2008] [Indexed: 10/21/2022]
|
219
|
Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 2008; 45:549-61. [PMID: 18544350 DOI: 10.1016/j.freeradbiomed.2008.05.004] [Citation(s) in RCA: 911] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/02/2008] [Accepted: 05/06/2008] [Indexed: 12/16/2022]
Abstract
Exposure of cells to sublethal oxidative stress results in the modulation of various signaling pathways. Oxidants can activate and inactivate transcription factors, membrane channels, and metabolic enzymes, and regulate calcium-dependent and phosphorylation signaling pathways. Oxidation and reduction of thiol proteins are thought to be the major mechanisms by which reactive oxidants integrate into cellular signal transduction pathways. This review focuses on mechanisms for sensing and transmitting redox signals, from the perspective of their chemical reactivity with specific oxidants. We discuss substrate preferences for different oxidants and how the kinetics of these reactions determines how each oxidant will react in a cell. This kinetic approach helps to identify initial oxidant-sensitive targets and elucidate mechanisms involved in transmission of redox signals. It indicates that only those proteins with very high reactivity, such as peroxiredoxins, are likely to be direct targets for hydrogen peroxide. Other more modestly reactive thiol proteins such as protein tyrosine phosphatases are more likely to become oxidized by an indirect mechanism. The review also examines oxidative changes observed during receptor-mediated signaling, the strengths and limitations of detection methods for reactive oxidant production, and the evidence for hydrogen peroxide acting as the second messenger. We discuss areas where observations in cell systems can be rationalized with the reactivity of specific oxidants and where further work is needed to understand the mechanisms involved.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Free Radical Research Group and the National Research Centre for Growth and Development, Department of Pathology, University of Otago, Christchurch, New Zealand.
| | | |
Collapse
|
220
|
Ge X, Yu Q, Qi W, Shi X, Zhai Q. Chronic insulin treatment causes insulin resistance in 3T3-L1 adipocytes through oxidative stress. Free Radic Res 2008; 42:582-91. [PMID: 18569016 DOI: 10.1080/10715760802158448] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin resistance and hyperinsulinemia are commonly present in obesity and pre-diabetes, and hyperinsulinemia is both a marker and a cause for insulin resistance. However, the molecular link between hyperinsulinemia and insulin resistance remains elusive. The present study examined the effect of chronic insulin treatment on the reactive oxygen species (ROS) production, insulin signalling and insulin-stimulated glucose uptake in 3T3-L1 adipocytes. The results showed that chronic insulin treatment significantly increased the intracellular generation of superoxide anion, hydrogen peroxide and hydroxyl radical. ROS induced by chronic insulin treatment inhibited insulin signalling and glucose uptake, induced endoplasmic reticulum (ER) stress and JNK activation. Furthermore, these effects were reversed by antioxidants N-acetylcysteine, superoxide dismutase or catalase. These results suggested that ROS, ER stress and JNK pathway are involved in insulin resistance induced by chronic insulin treatment. Therefore, oxidative stress could be a potential interventional target for hyperinsulinemia-induced insulin resistance and related diseases.
Collapse
Affiliation(s)
- Xuemei Ge
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | |
Collapse
|
221
|
Long-term effects of corticosterone on behavior, oxidative and energy metabolism of parietotemporal cerebral cortex and hippocampus of rats: comparison to intracerebroventricular streptozotocin. J Neural Transm (Vienna) 2008; 115:1241-9. [PMID: 18679562 DOI: 10.1007/s00702-008-0079-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
Abstract
We studied the effect of long-term application of corticosterone (CORT) s.c. the equivalent of cortisol in rats, on behavior, oxidative and energy metabolism in brain parietotemporal cortex and hippocampus of 1-year-old male Wistar rats. The data were compared with results derived from long-term and low dose intracerebroventricular application of the diabetogenic drug streptozotocin (STZ) known to inhibit the function of the neuronal insulin receptor and generating an insulin resistant brain state. CORT reduced both working and reference memory increasingly with time and running parallel to the STZ-induced deficit. The effect of CORT on the activities of the glycolytic enzymes hexokinase, phosphofructokinase, pyruvate kinase, glyceraldehyde-3-phosphodehydrogenase, lactate dehydrogenase and, in tricarboxylic acid cycle, alpha-ketoglutarate dehydrogenase equaled in both experimental conditions and in both regions studied: significant decreases of all enzyme activities except lactate dehydrogenase which increased between three and fourfold of normal. The CORT- and STZ-induced marked fall in ATP was in the same range in the regions studied. Differences became obvious in the concentration of creatine phosphate in parietotemporal cerebral cortex showing no decrease after CORT obviously due to a different susceptibility of the CORT-receptor. It is discussed that both CORT and STZ may act on the neuronal insulin receptor in a similar way. However, further studies are needed on the gene expression of insulin and the insulin receptor and its protein levels to clarify the exact action of CORT on the neuronal insulin receptor function.
Collapse
|
222
|
A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells. Proc Natl Acad Sci U S A 2008; 105:9959-64. [PMID: 18632564 DOI: 10.1073/pnas.0804336105] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The production of reactive oxygen species (ROS) exerts an additional tier of control over tyrosine phosphorylation-dependent signal transduction by transiently inhibiting the catalytic activity of specific protein tyrosine phosphatases (PTPs). Hence, the ability to detect reversible oxidation of PTPs in vivo is critical to understanding the complex biological role of ROS in the control of cellular signaling. Here, we describe an assay for identifying those PTPs that are reversibly oxidized in vivo, which utilizes the unique chemistry of the invariant catalytic Cys residue in labeling the active site with biotinylated small molecules under mildly acidic conditions. We have applied this cysteinyl-labeling assay to the study of platelet-derived growth factor (PDGF) receptor signaling in an angiomyolipoma cell model. Doing so has allowed us to detect reversible oxidation of several proteins in response to sustained PDGF stimulation. As in other cell systems, we have observed the reversible oxidation of the classical PTP SHP2 and the tumor suppressor phosphatase PTEN in response to PDGF stimulation. Furthermore, we detected reversible oxidation of members of two other subclasses of PTPs, the receptor PTP LAR and the dual-specificity phosphatase MKP1. These data demonstrate the broad selectivity of the assay, allowing us to detect representatives of all of the major subgroups of the PTP superfamily. We anticipate that this cysteinyl-labeling enrichment strategy can be applied broadly to study reversible oxidation as a mechanism of harnessing PTP catalytic activity in a variety of signaling pathways.
Collapse
|
223
|
Mueller AS, Bosse AC, Most E, Klomann SD, Schneider S, Pallauf J. Regulation of the insulin antagonistic protein tyrosine phosphatase 1B by dietary Se studied in growing rats. J Nutr Biochem 2008; 20:235-47. [PMID: 18602818 DOI: 10.1016/j.jnutbio.2008.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 02/11/2008] [Accepted: 02/15/2008] [Indexed: 12/31/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key enzyme in the counterregulation of insulin signaling, and its physiological modulation depends on H2O2 and glutathione (GSH). Se via GSH peroxidases (GPxs) and its specific metabolism is involved in the removal of H2O2 and in the regulation of GSH metabolism. Recent results from animal trials and epidemiological studies with humans have shown that a high GPx1 activity or a permanent surplus of Se may promote the development of obesity and diabetes. Our nutrition physiological study with 7 x 7 growing rats was carried out to examine if PTP1B is modulated by Se supplements and, thus, may represent one trigger mediating these undesirable metabolic effects of Se. One group of rats was fed an Se-deficient diet for 8 weeks. The diets of the other six groups contained Se as selenite or selenate according to the recommendations (0.20 mg/kg diet) and at two supranutritional levels (1.00 and 2.00 mg/kg diet). All Se-supplemented animals featured a significantly higher body weight (6-14%) compared to their Se-deficient companions. Expression and activity of GPx1 in the liver of Se supplemented animals was 10- and 70-fold higher compared to Se deficiency. The detailed study of PTP1B regulation using an enzymatic assay and Western Blot analysis with an antibody against protein glutathionylation revealed that PTP1B was significantly up-regulated by both a maximization of GPx1 activity and by increasing dietary Se supply, reducing its inhibition via glutathionylation. Selenate effected a stronger PTP activation compared to selenite. In conclusion, our results suggest that the modulation of PTP1B activity may represent one plausible mechanism by which a long-term intake of Se supplements exceeding the requirements can promote the development of obesity and diabetes and needs further intensive investigation.
Collapse
Affiliation(s)
- Andreas S Mueller
- Department of Animal Nutrition and Nutritional Physiology, Interdisciplinary Research Centre, Justus Liebig University Giessen, Giessen D-35392, Germany.
| | | | | | | | | | | |
Collapse
|
224
|
Lee YS, Kim AY, Choi JW, Kim M, Yasue S, Son HJ, Masuzaki H, Park KS, Kim JB. Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol Endocrinol 2008; 22:2176-89. [PMID: 18562625 DOI: 10.1210/me.2008-0023] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glutathione peroxidase 3 (GPx3) accounts for the major antioxidant activity in the plasma. Here, we demonstrate that down-regulation of GPx3 in the plasma of obese subjects is associated with adipose GPx3 dysregulation, resulting from the increase of inflammatory signals and oxidative stress. Although GPx3 was abundantly expressed in kidney, lung, and adipose tissue, we observed that GPx3 expression was reduced selectively in the adipose tissue of several obese animal models as decreasing plasma GPx3 level. Adipose GPx3 expression was greatly suppressed by prooxidative conditions such as high levels of TNFalpha and hypoxia. In contrast, the antioxidant N-acetyl cysteine and the antidiabetic drug rosiglitazone increased adipose GPx3 expression in obese and diabetic db/db mice. Moreover, GPx3 overexpression in adipocytes improved high glucose-induced insulin resistance and attenuated inflammatory gene expression whereas GPx3 neutralization in adipocytes promoted expression of proinflammatory genes. Taken together, these data suggest that suppression of GPx3 expression in the adipose tissue of obese subjects might constitute a vicious cycle to expand local reactive oxygen species accumulation in adipose tissue potentially into systemic oxidative stress and obesity-related metabolic complications.
Collapse
Affiliation(s)
- Yun Sok Lee
- Institute of Molecular Biology and Genetics, Seoul National University, San 56-1, Sillim-Dong, Kwanak-Gu, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Kang MA, Mott TM, Tapley EC, Lewis EE, Luckhart S. Insulin regulates aging and oxidative stress in Anopheles stephensi. ACTA ACUST UNITED AC 2008; 211:741-8. [PMID: 18281336 DOI: 10.1242/jeb.012955] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Observations from nematodes to mammals indicate that insulin/insulin-like growth factor signaling (IIS) regulates lifespan. As in other organisms, IIS is conserved in mosquitoes and signaling occurs in multiple tissues. During bloodfeeding, mosquitoes ingest human insulin. This simple observation suggested that exogenous insulin could mimic the endogenous hormonal control of aging in mosquitoes, providing a new model to examine this phenomenon at the organismal and cellular levels. To this end, female Anopheles stephensi mosquitoes were maintained on diets containing human insulin provided daily in sucrose or three times weekly by artificial bloodmeal. Regardless of delivery route, mosquitoes provided with insulin at 1.7 x 10(-4) and 1.7 x 10(-3) micromol l(-1), doses 0.3-fold and 3.0-fold higher than non-fasting blood levels, died at a faster rate than controls. In mammals, IIS induces the synthesis of reactive oxygen species and downregulates antioxidants, events that increase oxidative stress and that have been associated with reduced lifespan. Insulin treatment of mosquito cells in vitro induced hydrogen peroxide synthesis while dietary supplementation reduced total superoxide dismutase (SOD) activity and manganese SOD activity relative to controls. The effects of insulin on mortality were reversed when diets were supplemented with manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), a cell-permeable SOD mimetic agent, suggesting that insulin-induced mortality was due to oxidative stress. In addition, dietary insulin activated Akt/protein kinase B and extracellular signal-regulated kinase (ERK) in the mosquito midgut, suggesting that, as observed in Caenorhabditis elegans, the midgut may act as a 'signaling center' for mosquito aging.
Collapse
Affiliation(s)
- Mi-Ae Kang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
226
|
Bhattacharya S, Labutti JN, Seiner DR, Gates KS. Oxidative inactivation of protein tyrosine phosphatase 1B by organic hydroperoxides. Bioorg Med Chem Lett 2008; 18:5856-9. [PMID: 18595691 DOI: 10.1016/j.bmcl.2008.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 11/20/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are cysteine-dependent enzymes that play a central role in cell signaling. Organic hydroperoxides cause thiol-reversible, oxidative inactivation of PTP1B in a manner that mirrors the endogenous signaling agent hydrogen peroxide.
Collapse
Affiliation(s)
- Sanjib Bhattacharya
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
227
|
Zhuang D, Pu Q, Ceacareanu B, Chang Y, Dixit M, Hassid A. Chronic insulin treatment amplifies PDGF-induced motility in differentiated aortic smooth muscle cells by suppressing the expression and function of PTP1B. Am J Physiol Heart Circ Physiol 2008; 295:H163-73. [PMID: 18456732 DOI: 10.1152/ajpheart.01105.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperinsulinemia plays a major role in the pathogenesis of vascular disease. Restenosis occurs at an accelerated rate in hyperinsulinemia and is dependent on increased vascular smooth muscle cell movement from media to neointima. PDGF plays a critical role in mediating neointima formation in models of vascular injury. We have reported that PDGF increases the levels of protein tyrosine phosphatase PTP1B and that PTP1B suppresses PDGF-induced motility in cultured cells and that it attenuates neointima formation in injured carotid arteries. Others have reported that insulin enhances the mitogenic and motogenic effects of PDGF in cultured smooth muscle cells and that hyperinsulinemia promotes vascular remodeling. In the present study, we tested the hypothesis that insulin amplifies PDGF-induced cell motility by suppressing the expression and function of PTP1B. We found that chronic but not acute treatment of cells with insulin enhances PDGF-induced motility in differentiated cultured primary rat aortic smooth muscle cells and that it suppresses PDGF-induced upregulation of PTP1B protein. Moreover, insulin suppresses PDGF-induced upregulation of PTP1B mRNA levels, PTP1B enzyme activity, and binding of PTP1B to the PDGF receptor-beta, and it enhances PDGF-induced PDGF receptor phosphotyrosylation. Treatment with insulin induces time-dependent upregulation of phosphatidylinositol 3-kinase (PI3-kinase)-delta and activation of Akt, an enzyme downstream of PI3-kinase. Finally, inhibition of PI3-kinase activity, or its function, by pharmacological or genetic means rescues PTP1B activity in insulin-treated cells. These observations uncover novel mechanisms that explain how insulin amplifies the motogenic capacity of the pivotal growth factor PDGF.
Collapse
Affiliation(s)
- Daming Zhuang
- Dept. of Physiology, Univ. of Tennessee, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
228
|
Higaki Y, Mikami T, Fujii N, Hirshman MF, Koyama K, Seino T, Tanaka K, Goodyear LJ. Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway. Am J Physiol Endocrinol Metab 2008; 294:E889-97. [PMID: 18303121 PMCID: PMC2882683 DOI: 10.1152/ajpendo.00150.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We determined the acute effects of oxidative stress on glucose uptake and intracellular signaling in skeletal muscle by incubating muscles with reactive oxygen species (ROS). Xanthine oxidase (XO) is a superoxide-generating enzyme that increases ROS. Exposure of isolated rat extensor digitorum longus (EDL) muscles to Hx/XO (Hx/XO) for 20 min resulted in a dose-dependent increase in glucose uptake. To determine whether the mechanism leading to Hx/XO-stimulated glucose uptake is associated with the production of H2O2, EDL muscles from rats were preincubated with the H2O2 scavenger catalase or the superoxide scavenger superoxide dismutase (SOD) prior to incubation with Hx/XO. Catalase treatment, but not SOD, completely inhibited the increase in Hx/XO-stimulated 2-deoxyglucose (2-DG) uptake, suggesting that H2O2 is an intermediary leading to Hx/XO-stimulated glucose uptake with incubation. Direct H2O2 also resulted in a dose-dependent increase in 2-DG uptake in isolated EDL muscles, and the maximal increase was threefold over basal levels at a concentration of 600 micromol/l H2O2. H2O2-stimulated 2-DG uptake was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin, but not the nitric oxide inhibitor NG-monomethyl-l-arginine. H2O2 stimulated the phosphorylation of Akt Ser473 (7-fold) and Thr308 (2-fold) in isolated EDL muscles. H2O2 at 600 micromol/l had no effect on ATP concentrations and did not increase the activities of either the alpha1 or alpha2 catalytic isoforms of AMP-activated protein kinase. These results demonstrate that acute exposure of muscle to ROS is a potent stimulator of skeletal muscle glucose uptake and that this occurs through a PI3K-dependent mechanism.
Collapse
Affiliation(s)
- Yasuki Higaki
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Monteiro HP, Arai RJ, Travassos LR. Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling. Antioxid Redox Signal 2008; 10:843-89. [PMID: 18220476 DOI: 10.1089/ars.2007.1853] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reversible phosphorylation of protein tyrosine residues by polypeptide growth factor-receptor protein tyrosine kinases is implicated in the control of fundamental cellular processes including the cell cycle, cell adhesion, and cell survival, as well as cell proliferation and differentiation. During the last decade, it has become apparent that receptor protein tyrosine kinases and the signaling pathways they activate belong to a large signaling network. Such a network can be regulated by various extracellular cues, which include cell adhesion, agonists of G protein-coupled receptors, and oxidants. It is well documented that signaling initiated by receptor protein tyrosine kinases is directly dependent on the intracellular production of oxidants, including reactive oxygen and nitrogen species. Accumulated evidence indicates that the intracellular redox environment plays a major role in the mechanisms underlying the actions of growth factors. Oxidation of cysteine thiols and nitration of tyrosine residues on signaling proteins are described as posttranslational modifications that regulate, positively or negatively, protein tyrosine phosphorylation (PTP). Early observations described the inhibition of PTP activities by oxidants, resulting in increased levels of proteins phosphorylated on tyrosine. Therefore, a redox circuitry involving the increasing production of intracellular oxidants associated with growth-factor stimulation/cell adhesion, oxidative reversible inhibition of protein tyrosine phosphatases, and the activation of protein tyrosine kinases can be delineated.
Collapse
Affiliation(s)
- Hugo P Monteiro
- Department of Biochemistry/Molecular Biology and CINTERGEN, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
230
|
Mofarrahi M, Brandes RP, Gorlach A, Hanze J, Terada LS, Quinn MT, Mayaki D, Petrof B, Hussain SNA. Regulation of proliferation of skeletal muscle precursor cells by NADPH oxidase. Antioxid Redox Signal 2008; 10:559-74. [PMID: 18092937 DOI: 10.1089/ars.2007.1792] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Skeletal muscle precursor cells are adult stem cells located among muscle fibers. Proliferation, migration, and subsequent differentiation of these cells are critical steps in the repair of muscle injury. We document in this study the roles and mechanisms through which the NAPDH oxidase complex regulates muscle precursor cell proliferation. The NADPH oxidase subunits Nox2, Nox4, p22(phox), p47(phox), and p67(phox) were detected in primary human and murine skeletal muscle precursor cells. In human muscle precursor cells, NADPH oxidase-fusion proteins were localized in the cytosolic and membrane compartments of the cell, except for p47(phox), which was detected in the nucleus. In proliferating subconfluent precursor cells, both Nox2 and Nox4 contributed to O(2)(-) production. However, Nox4 expression was significantly attenuated in differentiated myotubes. Proliferation of precursor cells was significantly reduced by antioxidants (N-acetylcysteine and apocynin), inhibition of p22(phox) expression by using siRNA oligonucleotides, and reduction of Nox4 and p47(phox) activities with dominant-negative vectors and siRNA oligonucleotides resulted in attenuation of activities of the Erk1/2, PI-3 kinase/AKT and NFkappaB pathways and significant reduction in cyclin D1 levels. We conclude that NADPH oxidase is expressed in skeletal muscle precursor cells and that its activity plays an important role in promoting proliferation of these cells.
Collapse
Affiliation(s)
- Mahroo Mofarrahi
- Critical Care Division, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Dobis DR, Sawyer RT, Gillespie MM, Huang J, Newman LS, Maier LA, Day BJ. Modulation of lymphocyte proliferation by antioxidants in chronic beryllium disease. Am J Respir Crit Care Med 2008; 177:1002-11. [PMID: 18218990 DOI: 10.1164/rccm.200707-1021oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Occupational exposure to beryllium (Be) can result in chronic granulomatous inflammation characterized by the presence of Be-specific CD4+ T cells. Studies show that oxidative stress plays a role in the pathogenesis of chronic inflammatory disorders. OBJECTIVES We hypothesized that Be-induced oxidative stress modulates the proliferation of Be-specific CD4+ T cells. METHODS Thirty-three subjects with chronic beryllium disease (CBD), 15 subjects with beryllium sensitization, and 28 healthy normal control subjects were consecutively enrolled from the Occupational and Environmental Health Clinic of the National Jewish Medical and Research Center. MEASUREMENTS AND MAIN RESULTS All studies were performed with Ficoll-Hypaque-isolated peripheral blood mononuclear cells from subsets of the study subjects. Decreased intracellular levels of the thiol antioxidants, glutathione and cysteine, were observed in peripheral blood mononuclear cells from subjects with beryllium sensitization and CBD, as compared with healthy control subjects. Beryllium stimulation decreased intracellular thiol antioxidants by more than 40%, accompanied by increased reactive oxygen species levels and the proliferation of Be-specific blood CD4+ T cells from subjects with CBD. Be-induced T-cell proliferation was inhibited by treatment with the thiol antioxidant N-acetylcysteine or the catalytic antioxidant manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP). MnTBAP treatment also inhibited T-cell proliferation in response to the unrelated, MHC class II-restricted antigen tetanus toxoid. Treatment of CBD blood lymphocytes, but not antigen-presenting cells, with MnTBAP decreased Be-induced T-cell proliferation by more than 40%. CONCLUSIONS Beryllium can mediate a thiol imbalance leading to oxidative stress that may modulate the proliferation and clonal expansion of Be-specific blood CD4+ T cells. These data suggest that Be-induced oxidative stress plays a role in the pathogenesis of granulomatous inflammation in CBD.
Collapse
Affiliation(s)
- Dave R Dobis
- Department of Medicine, Robert H. Hollis Laboratory of Environmental and Occupational Health Sciences, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | | | | | |
Collapse
|
232
|
Storozheva ZI, Proshin AT, Sherstnev VV, Storozhevykh TP, Senilova YE, Persiyantseva NA, Pinelis VG, Semenova NA, Zakharova EI, Pomytkin IA. Dicholine salt of succinic acid, a neuronal insulin sensitizer, ameliorates cognitive deficits in rodent models of normal aging, chronic cerebral hypoperfusion, and beta-amyloid peptide-(25-35)-induced amnesia. BMC Pharmacol 2008; 8:1. [PMID: 18215309 PMCID: PMC2262060 DOI: 10.1186/1471-2210-8-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 01/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulated evidence suggests that insulin resistance and impairments in cerebral insulin receptor signaling may contribute to age-related cognitive deficits and Alzheimer's disease. The enhancement of insulin receptor signaling is, therefore, a promising strategy for the treatment of age-related cognitive disorders. The mitochondrial respiratory chain, being involved in insulin-stimulated H2O2 production, has been identified recently as a potential target for the enhancement of insulin signaling. The aim of the present study is to examine: (1) whether a specific respiratory substrate, dicholine salt of succinic acid (CS), can enhance insulin-stimulated insulin receptor autophosphorylation in neurons, and (2) whether CS can ameliorate cognitive deficits of various origins in animal models. RESULTS In a primary culture of cerebellar granule neurons, CS significantly enhanced insulin-stimulated insulin receptor autophosphorylation. In animal models, CS significantly ameliorated cognitive deficits, when administered intraperitoneally for 7 days. In 16-month-old middle-aged C57Bl/6 mice (a model of normal aging), CS enhanced spatial learning in the Morris water maze, spontaneous locomotor activity, passive avoidance performance, and increased brain N-acetylaspartate/creatine levels, as compared to the age-matched control (saline). In rats with chronic cerebral hypoperfusion, CS enhanced spatial learning, passive avoidance performance, and increased brain N-acetylaspartate/creatine levels, as compared to control rats (saline). In rats with beta-amyloid peptide-(25-35)-induced amnesia, CS enhanced passive avoidance performance and increased activity of brain choline acetyltransferase, as compared to control rats (saline). In all used models, CS effects lasted beyond the seven-day treatment period and were found to be significant about two weeks following the treatment. CONCLUSION The results of the present study suggest that dicholine salt of succinic acid, a novel neuronal insulin sensitizer, ameliorates cognitive deficits and neuronal dysfunctions in animal models relevant to age-related cognitive impairments, vascular dementia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Zinaida I Storozheva
- P.K. Anokhin Institute of Normal Physiology, RAMS, Mohovaya 11-4, 125009, Moscow, Russia
| | - Andrey T Proshin
- P.K. Anokhin Institute of Normal Physiology, RAMS, Mohovaya 11-4, 125009, Moscow, Russia
| | - Vladimir V Sherstnev
- P.K. Anokhin Institute of Normal Physiology, RAMS, Mohovaya 11-4, 125009, Moscow, Russia
| | - Tatiana P Storozhevykh
- Scientific Centre for Children's Health, RAMS, Lomonosovsky prospect 2/62, 119991, Moscow, Russia
| | - Yana E Senilova
- Scientific Centre for Children's Health, RAMS, Lomonosovsky prospect 2/62, 119991, Moscow, Russia
| | - Nadezhda A Persiyantseva
- Scientific Centre for Children's Health, RAMS, Lomonosovsky prospect 2/62, 119991, Moscow, Russia
| | - Vsevolod G Pinelis
- Scientific Centre for Children's Health, RAMS, Lomonosovsky prospect 2/62, 119991, Moscow, Russia
| | - Natalia A Semenova
- Semenov Institute of Chemical Physics, RAS, Kosygina 4, 119991, Moscow, Russia
| | - Elena I Zakharova
- Institute of General Pathology and Pathophysiology, RAMS, Baltijskaya 8, 125315, Moscow, Russia
| | - Igor A Pomytkin
- Biosignal Ltd., M. Gruzinskaya 29-153, 123557, Moscow, Russia
| |
Collapse
|
233
|
Lou YW, Chen YY, Hsu SF, Chen RK, Lee CL, Khoo KH, Tonks NK, Meng TC. Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. FEBS J 2007; 275:69-88. [PMID: 18067579 DOI: 10.1111/j.1742-4658.2007.06173.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The oxidation and inactivation of protein tyrosine phosphatases is one mechanism by which reactive oxygen species influence tyrosine phosphorylation-dependent signaling events and exert their biological functions. In the present study, we determined the redox status of endogenous protein tyrosine phosphatases in HepG2 and A431 human cancer cells, in which reactive oxygen species are produced constitutively. We used mass spectrometry to assess the state of oxidation of the catalytic cysteine residue of endogenous PTP1B and show that this residue underwent both reversible and irreversible oxidation to high stoichiometry in response to intrinsic reactive oxygen species production. In addition, our data show that the oxidation of PTP1B is specific to the active site Cys, with the other Cys residues in the protein remaining in a reduced state. Treatment of these cells with diphenyleniodonium, an inhibitor of NADPH oxidases, decreased reactive oxygen species levels. This resulted in inhibition of protein tyrosine phosphatase oxidation, concomitant with decreased tyrosine phosphorylation of cellular proteins and inhibition of anchorage-independent cell growth. Therefore, our data also suggest that the high level of intrinsic reactive oxygen species may contribute to the transformed phenotype of HepG2 and A431 cells via constitutive inactivation of cellular protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Yi-Wei Lou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Wu X, Mahadev K, Fuchsel L, Ouedraogo R, Xu SQ, Goldstein BJ. Adiponectin suppresses IkappaB kinase activation induced by tumor necrosis factor-alpha or high glucose in endothelial cells: role of cAMP and AMP kinase signaling. Am J Physiol Endocrinol Metab 2007; 293:E1836-44. [PMID: 17940218 DOI: 10.1152/ajpendo.00115.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adiponectin is a protein secreted from adipocytes that exhibits salutary effects in the vascular endothelium by signaling mechanisms that are not well understood. In obesity-related disease states and type 2 diabetes, circulating substances, including tumor necrosis factor-alpha (TNFalpha) and high glucose, activate IkappaB kinase (IKK)beta and reduce the abundance of its substrate, inhibitor of kappaB (IkappaB)alpha, leading to nuclear translocation of the transcription factor NF-kappaB and stimulation of an inflammatory signaling cascade closely associated with endothelial dysfunction. The present study demonstrates that the globular domain of adiponectin (gAd) potently suppresses the activation of IKKbeta by either TNFalpha or high glucose in human umbilical vein endothelial cells and ameliorates the associated loss of IkappaBalpha protein. Interestingly, activation of AMP kinase was substantially more effective than cAMP signaling in suppressing high glucose-induced IKKbeta activity, whereas both pathways were comparably active in suppressing the TNFalpha-induced increase in IKKbeta. Both cAMP/protein kinase A signaling and activation of the AMP kinase pathway played a role in the suppression by gAd of TNFalpha- and high glucose-mediated IKKbeta activation. These findings support an important role for adiponectin in anti-inflammatory signaling in the endothelium and also imply that multiple pathways are involved in the cellular effects of adiponectin.
Collapse
Affiliation(s)
- Xiangdong Wu
- Dept. of Medicine, Jefferson Medical College, Suite 320 Curtis Bldg., 1015 Walnut St., Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
235
|
Storozhevykh TP, Senilova YE, Persiyantseva NA, Pinelis VG, Pomytkin IA. Mitochondrial respiratory chain is involved in insulin-stimulated hydrogen peroxide production and plays an integral role in insulin receptor autophosphorylation in neurons. BMC Neurosci 2007; 8:84. [PMID: 17919343 PMCID: PMC2089077 DOI: 10.1186/1471-2202-8-84] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 10/08/2007] [Indexed: 12/01/2022] Open
Abstract
Background Accumulated evidence suggests that hydrogen peroxide (H2O2) generated in cells during insulin stimulation plays an integral role in insulin receptor signal transduction. The role of insulin-induced H2O2 in neuronal insulin receptor activation and the origin of insulin-induced H2O2 in neurons remain unclear. The aim of the present study is to test the following hypotheses (1) whether insulin-induced H2O2 is required for insulin receptor autophosphorylation in neurons, and (2) whether mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in insulin receptor autophosphorylation in neurons. Results Insulin stimulation elicited rapid insulin receptor autophosphorylation accompanied by an increase in H2O2 release from cultured cerebellar granule neurons (CGN). N-acetylcysteine (NAC), a H2O2 scavenger, inhibited both insulin-stimulated H2O2 release and insulin-stimulated autophosphorylation of insulin receptor. Inhibitors of respiratory chain-mediated H2O2 production, malonate and carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), inhibited both insulin-stimulated H2O2 release from neurons and insulin-stimulated autophosphorylation of insulin receptor. Dicholine salt of succinic acid, a respiratory substrate, significantly enhanced the effect of suboptimal insulin concentration on the insulin receptor autophosphorylation in CGN. Conclusion Results of the present study suggest that insulin-induced H2O2 is required for the enhancement of insulin receptor autophosphorylation in neurons. The mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in the insulin receptor autophosphorylation in neurons.
Collapse
Affiliation(s)
- Tatiana P Storozhevykh
- Scientific Centre for Children's Health, RAMS, Lomonosovsky prospect 2/62, 119991, Moscow, Russia.
| | | | | | | | | |
Collapse
|
236
|
Abid MR, Spokes KC, Shih SC, Aird WC. NADPH oxidase activity selectively modulates vascular endothelial growth factor signaling pathways. J Biol Chem 2007; 282:35373-85. [PMID: 17908694 DOI: 10.1074/jbc.m702175200] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) play critical roles in vascular physiology and pathophysiology. We have demonstrated previously that NADPH oxidase-derived ROS are required for VEGF-mediated migration and proliferation of endothelial cells. The goal of this study was to determine the extent to which VEGF signaling is coupled to NADPH oxidase activity. Human umbilical vein endothelial cells and/or human coronary artery endothelial cells were transfected with short interfering RNA against the p47(phox) subunit of NADPH oxidase, treated in the absence or presence of VEGF, and assayed for signaling, gene expression, and function. We show that NADPH oxidase activity is required for VEGF activation of phosphoinositide 3-kinase-Akt-forkhead, and p38 MAPK, but not ERK1/2 or JNK. The permissive role of NADPH oxidase on phosphoinositide 3-kinase-Akt-forkhead signaling is mediated at post-VEGF receptor levels and involves the nonreceptor tyrosine kinase Src. DNA microarrays revealed the existence of two distinct classes of VEGF-responsive genes, one that is ROS-dependent and another that is independent of ROS levels. VEGF-induced, thrombomodulin-dependent activation of protein C was dependent on NADPH oxidase activity, whereas VEGF-induced decay-accelerating factor-mediated protection of endothelial cells against complement-mediated lysis was not. Taken together, these findings suggest that NADPH oxidase-derived ROS selectively modulate some but not all the effects of VEGF on endothelial cell phenotypes.
Collapse
Affiliation(s)
- Md Ruhul Abid
- Division of Molecular and Vascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
237
|
Seiner DR, LaButti JN, Gates KS. Kinetics and mechanism of protein tyrosine phosphatase 1B inactivation by acrolein. Chem Res Toxicol 2007; 20:1315-20. [PMID: 17655273 PMCID: PMC2812896 DOI: 10.1021/tx700213s] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cells are exposed to the electrophilic alpha,beta-unsaturated aldehyde acrolein from a variety of sources. The reaction of acrolein with functionally critical protein thiol residues can yield important biological consequences. Protein tyrosine phosphatases (PTPs) are an important class of cysteine-dependent enzymes whose reactivity with acrolein previously has not been well-characterized. These enzymes catalyze the dephosphorylation of phosphotyrosine residues on proteins via a phosphocysteine intermediate. PTPs work in tandem with protein tyrosine kinases to regulate a number of critically important mammalian signal transduction pathways. We find that acrolein is a potent time-dependent inactivator of the enzyme PTP1B ( k inact = 0.02 +/- 0.005 s (-1) and K I = 2.3 +/- 0.6 x 10 (-4) M). The enzyme activity does not return upon gel filtration of the inactivated enzyme, and addition of the competitive phosphatase inhibitor vanadate slows inactivation of PTP1B by acrolein. Together, these observations suggest that acrolein covalently modifies the active site of PTP1B. Mass spectrometric analysis reveals that acrolein modifies the catalytic cysteine residue at the active site of the enzyme. Aliphatic aldehydes such as glyoxal, acetaldehyde, and propanal are relatively weak inactivators of PTP1B under the conditions employed here. Similarly, unsaturated aldehydes such as crotonaldehyde and 3-methyl-2-butenal bearing substitution at the alkene terminus are poor inactivators of the enzyme. Overall, the data suggest that enzyme inactivation occurs via conjugate addition of the catalytic cysteine residue to the carbon-carbon double bond of acrolein. The results indicate that inactivation of PTPs should be considered as a possible contributor to the diverse biological activities of acrolein and structurally related alpha,beta-unsaturated aldehydes.
Collapse
Affiliation(s)
- Derrick R Seiner
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
238
|
Chen YY, Huang YF, Khoo KH, Meng TC. Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases. Methods 2007; 42:243-9. [PMID: 17532511 DOI: 10.1016/j.ymeth.2007.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 11/25/2022] Open
Abstract
All members in the protein tyrosine phosphatase (PTP) family of enzymes contain an invariant Cys residue which is absolutely indispensable for catalysis. Due to the unique microenvironment surrounding the active center of PTPs, this Cys residue exhibits an unusually low pKa characteristic, thus being highly susceptible to oxidation or S-nitrosylation. While oxidation-dependent regulation of PTP activity has been extensively examined, the molecular details and biological consequences of PTP S-nitrosylation remain unexplored. We hypothesized that the catalytic Cys residue is targeted by proximal nitric oxide (NO) and its derivatives collectively termed reactive nitrogen species (RNS), leading to nitrosothiol formation concomitant with reversible inactivation of PTPs. To test this hypothesis, we have developed novel strategies to examine the redox status of Cys residues of purified PTP1B that was exposed to NO donor S-Nitroso-N-penicillamine (SNAP). A gel-based method in conjunction with mass spectrometry (MS) analysis revealed that the catalytic Cys215 of PTP1B was reversibly modified when PTP1B was briefly treated with SNAP. In order to further identify the exact mode of NO-induced modification, we employed an online LC-ESI-MS/MS analysis incorporating a mass difference-based, data-dependent acquisition function that effectively mapped the S-nitrosylated Cys residues. Our results demonstrated that treating PTP1B with SNAP led to S-nitrosothiol formation of the catalytic Cys215. Interestingly, SNAP-induced modifications were strictly reversible as highly oxidized Cys derivatives (Cys-SO(2)H or Cys-SO(3)H) were not identified by MS analyses. Thus, the methods introduced in this study provide direct evidence to prove the direct link between S-nitrosylation of the catalytic Cys residue and reversible inactivation of PTPs.
Collapse
Affiliation(s)
- Yi-Yun Chen
- National Core Facility for Proteomics Research, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
239
|
Babilonia E, Lin D, Zhang Y, Wei Y, Yue P, Wang WH. Role of gp91phox -containing NADPH oxidase in mediating the effect of K restriction on ROMK channels and renal K excretion. J Am Soc Nephrol 2007; 18:2037-45. [PMID: 17538186 PMCID: PMC2702222 DOI: 10.1681/asn.2006121333] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Previous study has demonstrated that superoxide and the related products are involved in mediating the effect of low K intake on renal K secretion and ROMK channel activity in the cortical collecting duct (CCD). This study investigated the role of gp91(phox)-containing NADPH oxidase (NOXII) in mediating the effect of low K intake on renal K excretion and ROMK channel activity in gp91(-/-) mice. K depletion increased superoxide levels, phosphorylation of c-Jun, expression of c-Src, and tyrosine phosphorylation of ROMK in renal cortex and outer medulla in wild-type (WT) mice. In contrast, tempol treatment in WT mice abolished whereas deletion of gp91 significantly attenuated the effect of low K intake on superoxide production, c-Jun phosphorylation, c-Src expression, and tyrosine phosphorylation of ROMK. Patch-clamp experiments demonstrated that low K intake decreased mean product of channel number (N) and open probability (P) (NP(o)) of ROMK channels from 1.1 to 0.4 in the CCD. However, the effect of low K intake on ROMK channel activity was significantly attenuated in the CCD from gp91(-/-) mice and completely abolished by tempol treatment. Immunocytochemical staining also was used to examine the ROMK distribution in WT, gp91(-/-), and WT mice with tempol treatment in response to K restriction. K restriction decreased apical staining of ROMK in WT mice. In contrast, a sharp apical ROMK staining was observed in the tempol-treated WT or gp91(-/-) mice. Metabolic cage study further showed that urinary K loss is significantly higher in gp91(-/-) mice than in WT mice. It is concluded that superoxide anions play a key role in suppressing K secretion during K restriction and that NOXII is involved in mediating the effect of low K intake on renal K secretion and ROMK channel activity.
Collapse
Affiliation(s)
- Elisa Babilonia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
240
|
Fiaschi T, Buricchi F, Cozzi G, Matthias S, Parri M, Raugei G, Ramponi G, Chiarugi P. Redox-dependent and ligand-independent trans-activation of insulin receptor by globular adiponectin. Hepatology 2007; 46:130-9. [PMID: 17526025 DOI: 10.1002/hep.21643] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Adiponectin/ACRP30 is an adipose tissue-derived hormone with antiatherogenic, antidiabetic, and insulin-sensitizing properties. Although the metabolic effects of adiponectin on glucose and lipid metabolism are well known, the signaling pathways triggered by adiponectin receptors remain to be elucidated. We report evidence that in hepatic cells, adiponectin stimulation produces a transient burst of reactive oxygen species (ROS) through activation of the small GTPase Rac1 and 5-lypoxigenase. Furthermore, adiponectin-induced oxidants cause the oxidation/inhibition of protein-tyrosine phosphatase (PTP) 1B, one of the major phosphotyrosine phosphatases involved in the control of insulin receptor phosphorylation. Adiponectin causes increased association of PTP1B to insulin receptor and the oxidation/inhibition of the phosphatase, ultimately provoking the ligand-independent trans-phosphorylation of insulin receptor. We also report evidence that redox signaling plays a key role in both mitogen-activated protein kinase activation and hepatic glucose consumption induced by adiponectin. CONCLUSION These results point to ROS as critical regulators of the cross-talk between adiponectin and insulin pathways and provide a redox-based molecular mechanism for the insulin-sensitizing function of adiponectin.
Collapse
Affiliation(s)
- Tania Fiaschi
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Ross SH, Lindsay Y, Safrany ST, Lorenzo O, Villa F, Toth R, Clague MJ, Downes CP, Leslie NR. Differential redox regulation within the PTP superfamily. Cell Signal 2007; 19:1521-30. [PMID: 17346927 DOI: 10.1016/j.cellsig.2007.01.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 11/18/2022]
Abstract
The Protein Tyrosine Phosphatase (PTP) family comprises a large and diverse group of enzymes, regulating a range of biological processes through de-phosphorylation of many proteins and lipids. These enzymes share a catalytic mechanism that requires a reduced and reactive cysteine nucleophile, making them potentially sensitive to inactivation and regulation by oxidation. Analysis of ten PTPs identified substantial differences in the sensitivity of these enzymes to oxidation in vitro. More detailed experiments confirmed the following rank order of sensitivity: PTEN and Sac1>PTPL1/FAP-1>>myotubularins. When the apparent sensitivity to oxidation of these PTPs in cells treated with hydrogen peroxide was analysed, this correlated well with the observed sensitivities to oxidation in vitro. These data suggested that different PTPs may fall into at least three different classes with respect to mechanisms of cellular redox regulation. 1. PTEN and Sac1 were readily and reversibly oxidised in vitro and in cells treated with hydrogen peroxide 2. PTPL1 appeared to be resistant to oxidation in cells, correlating with its sensitivity to reduction by glutathione in vitro 3. The myotubularin family of lipid phosphatases was almost completely resistant to oxidation in vitro and in cells. Our results show that sensitivity to reversible oxidation is not a necessary characteristic of the PTPs and imply that such sensitivity has evolved as a regulatory mechanism for some of this large family, but not others.
Collapse
Affiliation(s)
- Sarah H Ross
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Humphries KM, Pennypacker JK, Taylor SS. Redox regulation of cAMP-dependent protein kinase signaling: kinase versus phosphatase inactivation. J Biol Chem 2007; 282:22072-9. [PMID: 17548350 DOI: 10.1074/jbc.m702582200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many components of cellular signaling pathways are sensitive to regulation by oxidation and reduction. Previously, we described the inactivation of cAMP-dependent protein kinase (PKA) by direct oxidation of a reactive cysteine in the activation loop of the kinase. In the present study, we demonstrate that in HeLa cells PKA activity follows a biphasic response to thiol oxidation. Under mild oxidizing conditions, or short exposure to oxidants, forskolin-stimulated PKA activity is enhanced. This enhancement was blocked by sulfhydryl reducing agents, demonstrating a reversible mode of activation. In contrast, forskolin-stimulated PKA activity is inhibited by more severe oxidizing conditions. Mild oxidation enhanced PKA activity stimulated by forskolin, isoproterenol, or the cell-permeable analog, 8-bromo-cAMP. When cells were lysed in the presence of serine/threonine phosphatase inhibitor, NaF, the PKA-enhancing effect of oxidation was blunted. These results suggest oxidation of a PKA-counteracting phosphatase may be inhibited, thus enhancing the apparent kinase activity. Using an in vivo PKA activity reporter, we demonstrated that mild oxidation does indeed prolong the PKA signal induced by isoproterenol by inhibiting counteracting phosphatase activity. The results of this study demonstrate in live cells a unique synergistic mechanism whereby the PKA signaling pathway is enhanced in an apparent biphasic manner.
Collapse
Affiliation(s)
- Kenneth M Humphries
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0654, USA
| | | | | |
Collapse
|
243
|
Chávez V, Mohri-Shiomi A, Maadani A, Vega LA, Garsin DA. Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 2007; 176:1567-77. [PMID: 17483415 PMCID: PMC1931534 DOI: 10.1534/genetics.107.072587] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Caenorhabditis elegans has recently been developed as a model for microbial pathogenesis, yet little is known about its immunological defenses. Previous work implicated insulin signaling in mediating pathogen resistance in a manner dependent on the transcriptional regulator DAF-16, but the mechanism has not been elucidated. We present evidence that C. elegans, like mammalian phagocytes, produces reactive oxygen species (ROS) in response to pathogens. Signs of oxidative stress occur in the intestine - the site of the host-pathogen interface - suggesting that ROS release is localized to this tissue. Evidence includes the accumulation of lipofuscin, a pigment resulting from oxidative damage, at this site. In addition, SOD-3, a superoxide dismutase regulated by DAF-16, is induced in intestinal tissue after exposure to pathogenic bacteria. Moreover, we show that the oxidative stress response genes sod-3 and ctl-2 are required for DAF-16-mediated resistance to Enterococcus faecalis using a C. elegans killing assay. We propose a model whereby C. elegans responds to pathogens by producing ROS in the intestine while simultaneously inducing a DAF-16-dependent oxidative stress response to protect adjacent tissues. Because insulin-signaling mutants overproduce oxidative stress response enzymes, the model provides an explanation for their increased resistance to pathogens.
Collapse
Affiliation(s)
- Violeta Chávez
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
244
|
Rajala RVS, Elliott MH, McClellan ME, Anderson RE. Localization of the insulin receptor and phosphoinositide 3-kinase in detergent-resistant membrane rafts of rod photoreceptor outer segments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:491-7. [PMID: 17249614 DOI: 10.1007/0-387-32442-9_68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, USA.
| | | | | | | |
Collapse
|
245
|
LaButti J, Chowdhury G, Reilly TJ, Gates KS. Redox regulation of protein tyrosine phosphatase 1B by peroxymonophosphate (=O3POOH). J Am Chem Soc 2007; 129:5320-1. [PMID: 17411049 PMCID: PMC2812892 DOI: 10.1021/ja070194j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jason LaButti
- Department of Chemistry, University of Missouri, Columbia, MO 65211
| | - Goutam Chowdhury
- Department of Chemistry, University of Missouri, Columbia, MO 65211
| | - Thomas J. Reilly
- Department of Veterinary Pathobiology and Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO 65211
| | - Kent S. Gates
- Department of Chemistry, University of Missouri, Columbia, MO 65211
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
| |
Collapse
|
246
|
Wei Y, Wang Z, Babilonia E, Sterling H, Sun P, Wang W. Effect of hydrogen peroxide on ROMK channels in the cortical collecting duct. Am J Physiol Renal Physiol 2007; 292:F1151-6. [PMID: 17164397 PMCID: PMC2843417 DOI: 10.1152/ajprenal.00389.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used the patch-clamp technique to study the effect of H(2)O(2) on the apical ROMK-like small-conductance K (SK) channel in the cortical collecting duct (CCD). The addition of H(2)O(2) decreased the activity of the SK channels and the inhibitory effect of H(2)O(2) was larger in the CCD from rats on a K-deficient diet than that from rats on a normal-K or a high-K diet. However, application of H(2)O(2) did not inhibit the SK channels in inside-out patches. This suggests that the H(2)O(2)-mediated inhibition of SK channels was not due to direct oxidation of the SK channel protein. Because a previous study showed that H(2)O(2) stimulated the expression of Src family protein tyrosine kinase (PTK) which inhibited SK channels (3), we explored the role of PTK in mediating the effect of H(2)O(2) on SK channels. The application of H(2)O(2) stimulated the activity of endogenous PTK in M-1 cells and increased tyrosine phosphorylation of ROMK in HEK293 cells transfected with GFP-ROMK1 and c-Src. However, blockade of PTK only attenuated but did not completely abolish the inhibitory effect of H(2)O(2) on SK channels. Since H(2)O(2) has also been demonstrated to activate mitogen-activated protein kinase, P38, and ERK (3), we examined the role of P38 and ERK in mediating the effect of H(2)O(2) on SK channels. Similar to blockade of PTK, suppression of P38 and ERK did not completely abolish the H(2)O(2)-induced inhibition of SK channels. However, combined use of ERK, P38, and PTK inhibitors completely abolished the effect of H(2)O(2) on SK channels. Also, treatment of the CCDs with concanavalin A, an agent which has been shown to inhibit endocytosis (19), abolished the inhibitory effect of H(2)O(2). We conclude that addition of H(2)O(2) inhibited SK channels by stimulating PTK activity, P38, and ERK in the CCD and that H(2)O(2) enhances the internalization of the SK channels.
Collapse
Affiliation(s)
- Yuan Wei
- Dept. of Pharmacology, BSB Rm. 537, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
247
|
Chiarugi P, Fiaschi T. Redox signalling in anchorage-dependent cell growth. Cell Signal 2007; 19:672-82. [PMID: 17204396 DOI: 10.1016/j.cellsig.2006.11.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 11/24/2006] [Accepted: 11/24/2006] [Indexed: 12/22/2022]
Abstract
Current data have provided new perspectives concerning the regulation of non-transformed cell proliferation in response to both soluble growth factors and to adhesive cues. Non-transformed cells are anchorage dependent for the execution of the mitotic program and cannot avoid the concomitant signals starting from mitogenic molecules, as growth factors, and adhesive agents belonging to extracellular matrix. Reactive oxygen species play a key role during both growth factor and integrin receptor signalling and these second messengers are recognised to have a synergistic function for anchorage-dependent growth signalling. Redox regulated proteins include protein tyrosine phosphatases and protein tyrosine kinases, although with opposite regulation of their enzymatic activity, and cytoskeletal proteins as beta-actin. In this review we support a role of ROS as key second messengers granting a proper executed mitosis for anchorage-dependent cells, through redox regulation of several downstream targets. Deregulation of these redox pathways may help to guide transformed cells to elude the native apoptotic response to abolishment of signals started by cell/ECM contact, sustaining ectopic anchorage-independent cancer cell growth.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences, University of Florence, Italy.
| | | |
Collapse
|
248
|
Mouche S, Mkaddem SB, Wang W, Katic M, Tseng YH, Carnesecchi S, Steger K, Foti M, Meier CA, Muzzin P, Kahn CR, Ogier-Denis E, Szanto I. Reduced expression of the NADPH oxidase NOX4 is a hallmark of adipocyte differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1015-27. [PMID: 17553579 DOI: 10.1016/j.bbamcr.2007.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 02/26/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Adipocyte differentiation is a complex process regulated among other factors by insulin and the production of reactive oxygen species (ROS). NOX4 is a ROS generating NADPH oxidase enzyme mediating insulin's action in 3T3L1 adipocytes. In the present paper we show that NOX4 is expressed at high levels both in white and brown preadipocytes and that differentiation into adipocytes results in a decrease in their NOX4 mRNA content. These in vitro results were confirmed in vivo by demonstrating that in intact adipose tissue the majority of NOX4 expressing cells are localized within the preadipocyte containing stromal/vascular fraction, rather than in the portion consisting of mature adipocytes. In line with these observations, quantification of NOX4 mRNA in fat derived from different rodent models of insulin resistance indicated that alteration in NOX4 expression reflects changes in the ratio of adipocyte/interstitial fractions. In conclusion, we reveal that decreased NOX4 mRNA content is a hallmark of adipocyte differentiation and that NOX4 expression measured in whole adipose tissue is not an unequivocal indicator of intact or impaired insulin action.
Collapse
Affiliation(s)
- Sarah Mouche
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Abstract
Insulin resistance is a major causative factor for type 2 diabetes and is associated with increased risk of cardiovascular disease. Despite intense investigation for a number of years, molecular mechanisms underlying insulin resistance remain to be determined. Recently, chronic inflammation has been highlighted as a culprit for obesity-induced insulin resistance. Nonetheless, upstream regulators and downstream effectors of chronic inflammation in insulin resistance remain unclarified. Inducible nitric oxide synthase (iNOS), a mediator of inflammation, has emerged as an important player in insulin resistance. Obesity is associated with increased iNOS expression in insulin-sensitive tissues in rodents and humans. Inhibition of iNOS ameliorates obesity-induced insulin resistance. However, molecular mechanisms by which iNOS mediates insulin resistance remain largely unknown. Protein S-nitrosylation, a covalent attachment of NO moiety to thiol sulfhydryls, has emerged as a major mediator of a broad array of NO actions. S-nitrosylation is elevated in patients with type 2 diabetes, and increased S-nitrosylation of insulin signaling molecules, including insulin receptor, insulin receptor substrate-1, and Akt/PKB, has been shown in skeletal muscle of obese, diabetic mice. Akt/PKB is reversibly inactivated by S-nitrosylation. Based on these findings, S-nitrosylation has recently been proposed to play an important role in the pathogenesis of insulin resistance.
Collapse
Affiliation(s)
- Masao Kaneki
- Department of Anesthesia & Critical Care, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
250
|
Nobuhara Y, Kawano S, Kageyama G, Sugiyama D, Saegusa J, Kumagai S. Is SS-A/Ro52 a hydrogen peroxide-sensitive signaling molecule? Antioxid Redox Signal 2007; 9:385-91. [PMID: 17184176 DOI: 10.1089/ars.2006.1480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SS-A/Ro52 (Ro52) protein is one of the targets of autoantibodies in Sjogren's syndrome and systemic lupus erythematosus. Ro52 structurally belongs to the RING-B-box/coiled-coil family, which appears to carry out diverse functions, but the physiological function of Ro52 remains largely unknown. Here, the authors demonstrate that hydrogen peroxide but not other oxidative stressors induced translocation of Ro52 protein from the cytoplasm to the nucleus and this phenomenon was attenuated by inhibition of MAP kinases, ERK in particular. These findings raise the possibility that SS-A/Ro52 may function as a hydrogen peroxide-selective, oxidative stress-sensitive signaling molecule that is activated via the MAP kinase pathway.
Collapse
Affiliation(s)
- Yumiko Nobuhara
- Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|