201
|
Young JL, Sukhova GK, Foster D, Kisiel W, Libby P, Schönbeck U. The serpin proteinase inhibitor 9 is an endogenous inhibitor of interleukin 1beta-converting enzyme (caspase-1) activity in human vascular smooth muscle cells. J Exp Med 2000; 191:1535-44. [PMID: 10790428 PMCID: PMC2213432 DOI: 10.1084/jem.191.9.1535] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2000] [Accepted: 03/02/2000] [Indexed: 12/11/2022] Open
Abstract
Interleukin-1beta-converting enzyme (ICE, caspase-1) regulates key steps in inflammation and immunity, by activating the proinflammatory cytokines interleukin (IL-)1beta and IL-18, or mediating apoptotic processes. We recently provided evidence for the regulation of caspase-1 activity via an endogenous inhibitor expressed by human vascular smooth muscle cells (SMCs) (Schönbeck, U., M. Herzberg, A. Petersen, C. Wohlenberg, J. Gerdes, H.-D. Flad, and H. Loppnow. 1997. J. Exp. Med. 185:1287-1294). However, the molecular identity of this endogenous inhibitor remained undefined. We report here that the serine proteinase inhibitor (serpin) PI-9 accounts for the endogenous caspase-1 inhibitory activity in human SMCs and prevents processing of the enzyme's natural substrates, IL-1beta and IL-18 precursor. Treatment of SMC lysates with anti-PI-9 antibody abrogated the caspase-1 inhibitory activity and coprecipitated the enzyme, demonstrating protein-protein interaction. Furthermore, PI-9 antisense oligonucleotides coordinately reduced PI-9 expression and promoted IL-1beta release. Since SMCs comprise the majority of cells in the vascular wall, and because IL-1 is implicated in atherogenesis, we tested the biological validity of our in vitro findings within human atheroma in situ. The unaffected arterial wall contains abundant and homogeneously distributed PI-9. In human atherosclerotic lesions, however, PI-9 expression correlated inversely with immunoreactive IL-1beta, supporting a potential role of the endogenous caspase-1 inhibitor in this chronic inflammatory disease. Thus, our results provide new insights into the regulation of this enzyme involved in immune and inflammatory processes of chronic inflammatory diseases, and point to an endogenous antiinflammatory action of PI-9, dysregulated in a prevalent human disease.
Collapse
Affiliation(s)
- James L. Young
- From Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Galina K. Sukhova
- From Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Don Foster
- ZymoGenetics, Incorporated, Seattle, Washington 93102
| | - Walter Kisiel
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131-5301
| | - Peter Libby
- From Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Uwe Schönbeck
- From Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
202
|
Zhuang L, Wang B, Sauder DN. Molecular mechanism of ultraviolet-induced keratinocyte apoptosis. J Interferon Cytokine Res 2000; 20:445-54. [PMID: 10841072 DOI: 10.1089/10799900050023852] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This article reviews advances in the study of the molecular mechanisms for ultraviolet (UV)-induced keratinocyte apoptosis, with particular reference to the cytokines tumor necrosis factor-alpha (TNF-alpha) and Fas ligand (FasL). TNF-alpha and FasL induce their respective receptors and then activate caspase enzymes that are critically involved in the apoptotic process. This activation is further amplified by intracellular mitochondria-associated mechanisms. Using gene-targeted knockout mice lacking either the TNF-Rp55 or the TNF-Rp75, we have shown that TNF-alpha plays an important role in UV-induced keratinocyte apoptosis via TNF-Rp55. TNF-Rp55 shares homology with Fas and contains an intracellular death domain. UV seems to directly stimulate cross-linking of Fas, resulting in the engagement of the death machinery. Fas-associated death domain protein (FADD) acts as an adapter protein in both the TNF-Rp55 and Fas death-inducing cascades and is responsible for downstream signal transduction by recruiting caspases. Moreover, signaling of p53 contributes to the induction of apoptosis by regulating Bcl-2 family expression and increasing surface Fas expression. In addition to induction mechanisms of apoptosis, there are numerous inhibitory molecules that play a role in restricting the apoptotic pathway. Thus, the ultimate determination of whether or not a cell undergoes apoptosis after UV radiation is based on the balance between agonist and antagonist pathways.
Collapse
Affiliation(s)
- L Zhuang
- Sunnybrook Health Science Centre, Department of Medical Biophysics and Immunology, University of Toronto, ON, Canada
| | | | | |
Collapse
|
203
|
Eriksson C, Tehranian R, Iverfeldt K, Winblad B, Schultzberg M. Increased expression of mRNA encoding interleukin-1beta and caspase-1, and the secreted isoform of interleukin-1 receptor antagonist in the rat brain following systemic kainic acid administration. J Neurosci Res 2000; 60:266-79. [PMID: 10740232 DOI: 10.1002/(sici)1097-4547(20000415)60:2<266::aid-jnr16>3.0.co;2-p] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Kainic acid, an analogue of glutamate, injected systemically to rats evokes seizures that are accompanied by nerve cell damage primarily in the limbic system. In the present study, we have analyzed the temporal profile of the expression of the cytokines interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1ra), and the related IL-1beta-converting enzyme (ICE/caspase-1), in different regions of the rat brain in response to peripheral kainic acid administration (10 mg/kg, i.p.). In situ hybridization histochemistry experiments revealed that IL-1beta mRNA-expressing cells, morphologically identified as microglial cells, were mainly localized to regions showing pronounced neuronal degeneration; hippocampus, thalamus, amygdala, and certain cortical regions. The strongest expression of IL-1beta mRNA was observed after 12 hr in these regions. A weak induction of the IL-1beta mRNA expression was observed already at 2 hr. Similar results were obtained by RT-PCR analysis, showing a significantly increased expression of IL-1beta mRNA in the hippocampus and amygdala after 12 hr. In addition, RT-PCR analysis revealed that IL-1ra mRNA, and specifically mRNA encoding the secreted isoform of IL-1ra (sIL-1ra), was strongly induced in the hippocampus and amygdala at 12 and 24 hr post-injection. RT-PCR analysis of mRNA encoding caspase-1 showed a significantly increased expression in the amygdala after 12 hr. In conclusion, in response to systemic kainic acid injection IL-1beta mRNA is rapidly induced and followed by induction of IL-1ra mRNA and caspase-1 mRNA, supporting a role of the IL-1 system in the inflammatory response during excitotoxic damage.
Collapse
Affiliation(s)
- C Eriksson
- Division of Geriatric Medicine, NEUROTEC, Karolinska Institute, Huddinge Hospital, Novum, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
204
|
Li M, Ona VO, Guégan C, Chen M, Jackson-Lewis V, Andrews LJ, Olszewski AJ, Stieg PE, Lee JP, Przedborski S, Friedlander RM. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 2000; 288:335-9. [PMID: 10764647 DOI: 10.1126/science.288.5464.335] [Citation(s) in RCA: 523] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations in the copper/zinc superoxide dismutase (SOD1) gene produce an animal model of familial amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. To test a new therapeutic strategy for ALS, we examined the effect of caspase inhibition in transgenic mice expressing mutant human SOD1 with a substitution of glycine to alanine in position 93 (mSOD1(G93A)). Intracerebroventricular administration of zVAD-fmk, a broad caspase inhibitor, delays disease onset and mortality. Moreover, zVAD-fmk inhibits caspase-1 activity as well as caspase-1 and caspase-3 mRNA up-regulation, providing evidence for a non-cell-autonomous pathway regulating caspase expression. Caspases play an instrumental role in neurodegeneration in transgenic mSOD1(G93A) mice, which suggests that caspase inhibition may have a protective role in ALS.
Collapse
Affiliation(s)
- M Li
- Neuroapoptosis Laboratory and Neurosurgical Service, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Tanaka S, Uehara T, Nomura Y. Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J Biol Chem 2000; 275:10388-93. [PMID: 10744727 DOI: 10.1074/jbc.275.14.10388] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We isolated and identified a stress protein that is up-regulated in response to hypoxia in primary-cultured glial cells. Protein-disulfide isomerase (PDI) was up-regulated not only by hypoxia in glia in vitro, but also by transient forebrain ischemia in rats in vivo. To determine whether newly synthesized PDI is involved in tolerance to ischemic stress, we carried out two procedures to induce PDI gene expression in human neuroblastoma SK-N-MC cells, as well as intrahippocampal injection following electroporation of an expression vector capable of overexpressing PDI in rats. Overexpression of this gene resulted in attenuation of the loss of cell viability induced by hypoxia in neuroblastoma SK-N-MC cells and a reduction in the number of DNA-fragmented cells in the CA1 area of the hippocampus in brain ischemic rats, respectively. These findings suggest that up-regulated PDI may play a critical role in resistance to ischemic damage, and that the elevation of levels of this protein in the brain may have beneficial effects against brain stroke.
Collapse
Affiliation(s)
- S Tanaka
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
206
|
Akama KT, Van Eldik LJ. Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. J Biol Chem 2000; 275:7918-24. [PMID: 10713108 DOI: 10.1074/jbc.275.11.7918] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer's disease, beta-amyloid (Abeta) plaques are surrounded by activated astrocytes and microglia. A growing body of evidence suggests that these activated glia contribute to neurotoxicity through the induction of inflammatory cytokines such as interleukin (IL)-1beta and tumor necrosis factor-alpha (TNFalpha) and the production of neurotoxic free radicals, mediated in part by the expression of inducible nitric-oxide synthase (iNOS). Here, we address the possibility that Abeta-stimulated iNOS expression might result from an initial induction of IL-1beta and TNFalpha. We find that in Abeta-stimulated astrocyte cultures, IL-1beta and TNFalpha production occur before iNOS production, new protein synthesis is required for increased iNOS mRNA levels, and the IL-1 receptor antagonist IL-1ra can inhibit nitrite accumulation. Likewise, dominant-negative mutants of tumor necrosis factor-alpha receptor-associated factor (TRAF) 6, TRAF2, and NFkappaB-inducing kinase (NIK), intracellular proteins involved in IL-1 and TNFalpha receptor signaling cascades, inhibit Abeta-stimulated iNOS promoter activity. Our data suggest that Abeta stimulation of astrocyte iNOS is mediated in part by IL-1beta and TNFalpha, and involves a TRAF6-, TRAF2-, and NIK-dependent signaling mechanism.
Collapse
Affiliation(s)
- K T Akama
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
207
|
Abstract
Here we summarize briefly what is known about both the positive and negative impacts of apoptosis during aging in mammalian systems and also update an earlier review. It is important to understand both of these impacts to devise useful interventions. Such interventions include both physiological and molecular approaches, including transgenic interventions. The critical roles of the mitochondria in both generating reactive oxygen species, and in initiating apoptosis are recognized, suggesting that maintaining mitochondrial function could be an important therapeutic goal, especially in post-mitotic tissues. In contrast, the ability to eliminate unwanted, damaged and dysfunctional cells through apoptosis has anti-aging implications in mitotic tissues.
Collapse
Affiliation(s)
- H R Warner
- Biology of Aging Program, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
208
|
Ahmed SH, Shaikh AY, Shaikh Z, Hsu CY. What animal models have taught us about the treatment of acute stroke and brain protection. Curr Atheroscler Rep 2000; 2:167-80. [PMID: 11122741 DOI: 10.1007/s11883-000-0112-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stroke research has progressed in leaps and bounds in the past decades. A driving force is the increasing availability of new research tools in this field (eg, animal stroke models). Animal stroke models have been extensively applied to advance our understanding of the mechanisms of ischemic brain injury and to develop novel therapeutic strategies for reducing brain damage after a stroke. Animal stroke models have been useful in characterizing the molecular cascades of injury processes. These "injury pathways" are also the targets of therapeutic interventions. The major achievements made in the past 2 decades applying animal stroke models include 1) the identification of the mediator role of excitotoxin and oxygen free radicals in ischemic brain injury; 2) the confirmation of apoptosis as a major mechanism of ischemic cell death; 3) the characterization of postischemic gene expression; 4) the delineation of postischemic inflammatory reaction; 5) the application of transgenic mice to confirm the roles of purported mediators in ischemic brain injury; 6) development of novel magnetic resonance imaging sequences for early noninvasive detection of ischemic brain lesions; and, 7) the development of novel therapeutic strategies based on preclinical findings derived from animal stroke models.
Collapse
Affiliation(s)
- S H Ahmed
- Department of Neurology, Box 8111, Washington University School of Medicine, 660 S. Euclid Ave. St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
209
|
Abstract
Many neurological disorders involve cell death. During development of the nervous system, cell death is a normal feature. Elimination of substantial numbers of initially generated cells enables useful pruning of "mismatched" or excessive cells produced by exuberance during the proliferative and migratory phases of development. Such cell death, occurring by "programmed" pathways, is termed apoptosis. In mature organisms, cells die in two major fashions, either by necrosis or apoptosis. In the adult nervous system, because there is little cell production during adulthood, there is little normal cell death. However, neurological disease is often associated with significant neural cell death. Acute disorders, occurring over minutes to hours, such as brain trauma, infarction, hemorrhage, or infection, prominently involve cell death, much of which is by necrosis. Chronic disorders, with relatively slow central nervous system degeneration, may occur over years or decades, but may involve cell losses. Such disorders include motor neuron diseases such as amyotrophic lateral sclerosis (ALS), cerebral dementing disorders such as Alzheimer's disease and frontotemporal dementia, and a variety of degenerative movement disorders including Parkinson's disease, Huntington's disease, and the inherited ataxias. There is evidence that the mechanism of neuronal cell death in these disorders may involve apoptosis. Direct conclusive evidence of apoptosis is scarce in these chronic disorders, because of the swiftness of cell death in relation to the slowness of the disease. Thus, at any particular time point of assessment, very few cells would be expected to be undergoing death. However, it is clearly of importance to define the type of cell death in these disorders. Of significance is that while treating the underlying causes of these conditions is an admirable goal, it may also be possible to develop productive therapies based on alleviating the process of cell death. This is particularly likely if this cell loss is through apoptosis, a programmed process for which the molecular cascade is increasingly understood. This article reviews our understanding of apoptosis in the nervous system, concentrating on its possible roles in chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- L S Honig
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas 75235-9036, USA
| | | |
Collapse
|
210
|
Viswanath V, Wu Z, Fonck C, Wei Q, Boonplueang R, Andersen JK. Transgenic mice neuronally expressing baculoviral p35 are resistant to diverse types of induced apoptosis, including seizure-associated neurodegeneration. Proc Natl Acad Sci U S A 2000; 97:2270-5. [PMID: 10681443 PMCID: PMC15790 DOI: 10.1073/pnas.030365297] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apoptosis is a cell-suicide process that appears to play a central role not only during normal neuronal development but also in several neuropathological disease states. An important component of this process is a proteolytic cascade involving a family of cysteine proteases called caspases. Caspase inhibitors have been demonstrated to be effective in inhibiting neuronal cell death in various apoptotic paradigms. We have created transgenic mice that neuronally express the baculoviral caspase inhibitor p35. Neuronal expression of the p35 protein was found to confer functional caspase inhibitory activity and prevent apoptosis in isolated cerebellar granular cultures induced to undergo apoptosis either via staurosporine treatment or through withdrawal of extracellular potassium. Neuronal expression of p35 was also found to attenuate neurodegeneration associated with the excitotoxic glutamate analogue kainic acid (KA) in vitro and in vivo. Organotypic hippocampal cultures isolated from p35 transgenics demonstrated lowered caspase activity and decreased apoptosis compared with wild type when exposed to KA. In vivo injection of KA also produced decreased caspase activity and cell death in p35 transgenics vs. wild type. These results suggest that the presence of p35 in neurons in vivo is protective against various types of apoptosis, including seizure-related neurodegeneration, and that caspases may be attractive potential targets for preventing neuronal injury associated with diseases such as epilepsy. These mice also provide a valuable tool for exploring the role of caspases in other neuropathological conditions in which apoptosis has been implicated.
Collapse
Affiliation(s)
- V Viswanath
- Program in Molecular Biology, Department of Biological Sciences, Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | | | | | | | |
Collapse
|
211
|
Fink KB, Andrews LJ, Butler WE, Ona VO, Li M, Bogdanov M, Endres M, Khan SQ, Namura S, Stieg PE, Beal MF, Moskowitz MA, Yuan J, Friedlander RM. Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade. Neuroscience 2000; 94:1213-8. [PMID: 10625061 DOI: 10.1016/s0306-4522(99)00345-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Necrotic and apoptotic cell death both play a role mediating tissue injury following brain trauma. Caspase-1 (interleukin-1beta converting enzyme) is activated and oligonucleosomal DNA fragmentation is detected in traumatized brain tissue. Reduction of tissue injury and free radical production following brain trauma was achieved in a transgenic mouse expressing a dominant negative inhibitor of caspase-1 in the brain. Neuroprotection was also conferred by pharmacological inhibition of caspase-1 by intracerebroventricular administration of the selective inhibitor of caspase-1, acetyl-Tyr-Val-Ala-Asp-chloromethyl-ketone or the non-selective caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. These results indicate that inhibition of caspase-1-like caspases reduces trauma-mediated brain tissue injury. In addition, we demonstrate an in vivo functional interaction between interleukin-1beta converting enyzme-like caspases and free radical production pathways, implicating free radical production as a downstream mediator of the caspase cell death cascade.
Collapse
Affiliation(s)
- K B Fink
- Stroke and Neurovascular Regulation, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Clark RS, Kochanek PM, Watkins SC, Chen M, Dixon CE, Seidberg NA, Melick J, Loeffert JE, Nathaniel PD, Jin KL, Graham SH. Caspase-3 mediated neuronal death after traumatic brain injury in rats. J Neurochem 2000; 74:740-53. [PMID: 10646526 DOI: 10.1046/j.1471-4159.2000.740740.x] [Citation(s) in RCA: 309] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During programmed cell death, activation of caspase-3 leads to proteolysis of DNA repair proteins, cytoskeletal proteins, and the inhibitor of caspase-activated deoxyribonuclease, culminating in morphologic changes and DNA damage defining apoptosis. The participation of caspase-3 activation in the evolution of neuronal death after traumatic brain injury in rats was examined. Cleavage of pro-caspase-3 in cytosolic cellular fractions and an increase in caspase-3-like enzyme activity were seen in injured brain versus control. Cleavage of the caspase-3 substrates DNA-dependent protein kinase and inhibitor of caspase-activated deoxyribonuclease and co-localization of cytosolic caspase-3 in neurons with evidence of DNA fragmentation were also identified. Intracerebral administration of the caspase-3 inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (480 ng) after trauma reduced caspase-3-like activity and DNA fragmentation in injured brain versus vehicle at 24 h. Treatment with N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone for 72 h (480 ng/day) reduced contusion size and ipsilateral dorsal hippocampal tissue loss at 3 weeks but had no effect on functional outcome versus vehicle. These data demonstrate that caspase-3 activation contributes to brain tissue loss and downstream biochemical events that execute programmed cell death after traumatic brain injury. Caspase inhibition may prove efficacious in the treatment of certain types of brain injury where programmed cell death occurs.
Collapse
Affiliation(s)
- R S Clark
- Department of Anesthesiology and Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Shinoura N, Satou R, Yoshida Y, Asai A, Kirino T, Hamada H. Adenovirus-mediated transfer of Bcl-X(L) protects neuronal cells from Bax-induced apoptosis. Exp Cell Res 2000; 254:221-31. [PMID: 10640420 DOI: 10.1006/excr.1999.4751] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bax-mediated apoptosis in neurons is involved in many pathologic conditions affecting the central nervous system, including degenerative diseases, stroke, and trauma. Two molecules belonging to the Bcl-2 family, Bcl-2 and Bcl-X(L), protect cells from Bax-induced apoptosis and show distinct expression patterns in adult neurons, with downregulated Bcl-2 and highly upregulated Bcl-X(L) expression. To investigate the biological functions of these two molecules in Bax-mediated apoptosis in neurons, we transduced various levels of Bcl-X(L) or Bcl-2 via adenoviral vectors into nerve growth factor (NGF)-treated PC12 cells. Overexpression of Bax induced drastic apoptosis in NGF-treated PC12 cells. Bcl-X(L) expressed at a wide range of levels conferred a high level of protection against Bax-mediated apoptosis. In contrast, Bcl-2 at various levels conferred far less protection against apoptosis. Moreover, Bcl-X(L) protected PC12 cells from apoptosis induced by NGF withdrawal. These data indicate that Bcl-X(L)-mediated protection is the major pathway that suppresses apoptosis in NGF-treated PC12 cells and that Bcl-X(L) would be a more relevant target of manipulation in future treatment strategies, including gene therapies.
Collapse
Affiliation(s)
- N Shinoura
- Department of Molecular Biotherapy Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 1-37-1 Kami-Ikebukuro, Toshima-ku, Tokyo, 170-8455
| | | | | | | | | | | |
Collapse
|
214
|
Tenneti L, Lipton SA. Involvement of activated caspase-3-like proteases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem 2000; 74:134-42. [PMID: 10617114 DOI: 10.1046/j.1471-4159.2000.0740134.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Excessive activation of glutamate receptors mediates neuronal death in a number of neurodegenerative diseases. The intracellular signaling pathways that mediate this type of neuronal death are only partly understood. Following mild insults via NMDA receptor activation, central neurons undergo apoptosis, but with more fulminant insults, necrosis intervenes. Caspases are important in several forms of apoptosis in vivo and in vitro. Previously, we have demonstrated that caspases are important in excitotoxicity-mediated apoptosis of cerebrocortical neurons. To determine the possible activation of caspase-3 in NMDA-induced neuronal apoptosis, we used an affinity-labeling technique: Biotinylated N-acetyl-Asp-Glu-Val-Asp-aldehyde (DEVD.CHO) preferentially labels conformationally active caspase-3-like proteases, allowing us to visualize affinity-labeled caspases with streptavidin-fluorescein isothiocyanate under confocal microscopy. NMDA-induced apoptosis of cerebrocortical neurons was associated with a time-dependent increase in conformationally active caspase-3-like proteases. The activation of caspases was apparent within 20 min of NMDA stimulation and was localized primarily in the cytosol. However, following incubation of neurons for 18-24 h, conformationally active caspase-3-like proteases were also detectable in nuclei. Double labeling with propidium iodide to detect chromatin condensation indicated that affinity-labeled caspase-3-like proteases were specifically expressed in apoptotic cells. To further confirm this, we used an antibody specific for the conformationally active fragment of caspase-3 and found largely concordant results. Moreover, preincubation with DEVD.CHO prevented NMDA-induced apoptosis. Our results suggest that caspase-3-like proteases play a major role in excitotoxin-induced neuronal apoptosis.
Collapse
Affiliation(s)
- L Tenneti
- Cerebrovascular and NeuroScience Research Institute, Brigham and Women's Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
215
|
Abstract
Mitochondria play a central role in the survival and death of neurons. The detailed bioenergetic mechanisms by which isolated mitochondria generate ATP, sequester Ca(2+), generate reactive oxygen species, and undergo Ca(2+)-dependent permeabilization of their inner membrane are currently being applied to the function of mitochondria in situ within neurons under physiological and pathophysiological conditions. Here we review the functional bioenergetics of isolated mitochondria, with emphasis on the chemiosmotic proton circuit and the application (and occasional misapplication) of these principles to intact neurons. Mitochondria play an integral role in both necrotic and apoptotic neuronal cell death, and the bioenergetic principles underlying current studies are reviewed.
Collapse
Affiliation(s)
- D G Nicholls
- Department of Pharmacology, University of Dundee, Dundee, Scotland.
| | | |
Collapse
|
216
|
Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 1999; 18:7719-30. [PMID: 10618712 DOI: 10.1038/sj.onc.1203249] [Citation(s) in RCA: 637] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell death is an essential phenomenon in normal development and homeostasis, but also plays a crucial role in various pathologies. Our understanding of the molecular mechanisms involved has increased exponentially, although it is still far from complete. The morphological features of a cell dying either by apoptosis or by necrosis are remarkably conserved for quite different cell types derived from lower or higher organisms. At the molecular level, several gene products play a similar, crucial role in a major cell death pathway in a worm and in man. However, one should not oversimplify. It is now evident that there are multiple pathways leading to cell death, and some cells may have the required components for one pathway, but not for another, or contain endogenous inhibitors which preclude a particular pathway. Furthermore, different pathways can co-exist in the same cell and are switched on by specific stimuli. Apoptotic cell death, reported to be non-inflammatory, and necrotic cell death, which may be inflammatory, are two extremes, while the real situation is usually more complex. We here review the distinguishing features of the various cell death pathways: caspases (cysteine proteases cleaving after particular aspartate residues), mitochondria and/or reactive oxygen species are often, but not always, key components. As these various caspase-dependent and caspase-independent cell death pathways are becoming better characterized, we may learn to differentiate them, fill in the many gaps in our understanding, and perhaps exploit the knowledge acquired for clinical benefit.
Collapse
Affiliation(s)
- W Fiers
- Department of Molecular Biology, University of Ghent, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
217
|
Abstract
Caspase activation and dependence on caspases has been observed in different paradigms of apoptotic cell death in vivo and in vitro. The present study examines the role of caspases in ionizing radiation-induced apoptosis in the developing cerebellum of rats subjected to a single dose (2-Gy gamma rays) of whole-body irradiation at postnatal day 3. Radiation-induced apoptosis in the external granule cell layer, as defined by the presence of cells by extremely condensed, often fragmented nucleus, which were stained with the method of in situ end-labeling of nuclear DNA fragmentation, first appeared at 3 h and peaked at 6 h following irradiation. Increased expression of the precursors of caspase 1 (ICE), 2 (Nedd2), 3 (CPP32), 6 (Mch2), and 8 (Mch5 and FLICE), and increased expression of active caspase 3, as revealed by immunohistochemistry, were observed in the external granule cell layer of the cerebellum. Radiation-induced apoptosis was accompanied by an increase in the expression of the poly(ADP-ribose) polymerase (PARP) fragment of about 89 kD, as revealed by Western blots of cerebellar homogenates. This was not associated with modifications of protein kinase Cdelta and Lamin B. Concomitant injection in the culmen of the cerebellum in irradiated rats of high doses of Y-VAD-cmk, DEV-fmk, or IETD-fmk resulted in decreased expression of the PARP fragment in cerebellar homogenates. This was accompanied by a decrease in the expression of active caspase 3, as shown by immunohistochemistry. These observations suggest caspase activation following ionizing radiation. However, no differences in the number and morphological and biochemical characteristics of apoptotic cells, including strong nuclear and cytoplasmic c-Jun/AP-1 (N) expression, were observed between irradiated and both irradiated and caspase inhibitor-treated rats. Taken together, these observations suggest that the caspases examined are not essential for radiation-induced apoptosis in the developing cerebellum.
Collapse
Affiliation(s)
- I Ferrer
- Unitat de Neuropatología, Servei d'Anatomia Patològica, Hospital Princeps d'Espanya, i Departament de Biologia Cel.lular i Anatomia Patològica, Universitat de Barcelona (Campus de Bellvitge), carrer Feixa LLarga sn, 08907 Hospitalet de LLobregat
| |
Collapse
|
218
|
Touzani O, Boutin H, Chuquet J, Rothwell N. Potential mechanisms of interleukin-1 involvement in cerebral ischaemia. J Neuroimmunol 1999; 100:203-15. [PMID: 10695731 DOI: 10.1016/s0165-5728(99)00202-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interleukin-1 (IL-1) has pleiotropic actions in the central nervous system. During the last decade, a growing corpus of evidence has indicated an important role of this cytokine in the development of brain damage following cerebral ischaemia. The expression of IL-1 in the brain is dramatically increased during the early and chronic stage of infarction. The most direct evidence that IL-1 contributes significantly to ischaemic injury is that (1) central administration of IL-1beta exacerbates brain damage, and (2) injection or over-expression of interleukin-1 receptor antagonist, and blockade of interleukin-1beta converting enzyme activity reduce, dramatically, infarction and improve behavioural deficit. The mechanisms underlying IL-1 actions in stroke are not definitively elucidated, and it seems likely that its effects are mediated through stimulation and inhibition of wide range of pathophysiological processes.
Collapse
Affiliation(s)
- O Touzani
- School of Biological Sciences, University of Manchester, UK
| | | | | | | |
Collapse
|
219
|
Abstract
Damage to sensory cells and neurones of the inner ear, induced by ototoxic drugs, physical stimulation, or even normal aging, occurs by mechanisms that are not yet fully elucidated. However, for the individual the consequent loss of hearing can be devastating. This the concept that, in some instances, this brain cell death may be preventable has provided an exciting and novel route to thwart the degenerative process. Signals that trigger cell death can be as diverse as the removal of essential growth factors, damage by exogenous toxins (including ototoxic drugs), free radicals, and excitotoxins. An important facet to the newly discovered death cascade is that it can be halted, and such interventions may rescue the dying cell. The question now remains whether any of the cell death observed on ototoxic or noise-induced hearing loss occurs by an "active" programmed mechanism (apoptosis), as physiological cell death does in the developing ear, and if so, whether it can be prevented.
Collapse
Affiliation(s)
- C Waters
- School of Biological Sciences, University of Manchester, UK.
| |
Collapse
|
220
|
Abstract
In the majority of brain diseases, apoptosis causes or exacerbates neuronal damage. Caspases are the final executioners of the apoptotic cell death programme. This family of proteases is implicated in the pathogenesis of many forms of brain damage, including those induced by ischaemia, inflammation or trauma, as well as those arising in Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis and epilepsy. Collectively, these conditions affect more than 10 million people in the USA alone. Apoptosis can be blocked by agents that inhibit caspase activity; these inhibitors have therapeutic benefit in the treatment of several model systems of brain diseases. In this review we focus on recent advances and summarise current knowledge concerning the use of these cell death inhibitors in neuroprotection.
Collapse
|
221
|
Liu XH, Kwon D, Schielke GP, Yang GY, Silverstein FS, Barks JD. Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage. J Cereb Blood Flow Metab 1999; 19:1099-108. [PMID: 10532634 DOI: 10.1097/00004647-199910000-00006] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Interleukin-1 (IL-1) converting enzyme (ICE) is a cysteine protease that cleaves inactive pro-IL-1beta to active IL-1beta. The pro-inflammatory cytokine IL-1beta is implicated as a mediator of hypoxic-ischemic (HI) brain injury, both in experimental models and in humans. ICE is a member of a family of ICE-like proteases (caspases) that mediate apoptotic cell death in diverse tissues. The authors hypothesized that in neonatal mice with a homozygous deletion of ICE (ICE-KO) the severity of brain injury elicited by a focal cerebral HI insult would be reduced, relative to wild-type mice. Paired litters of 9- to 10-day-old ICE-KO and wild-type mice underwent right carotid ligation, followed by 70 or 120 minutes of exposure to 10% O2. In this neonatal model of transient focal cerebral ischemia followed by reperfusion, the duration of hypoxia exposure determines the duration of cerebral ischemia and the severity of tissue damage. Outcome was evaluated 5 or 21 days after lesioning; severity of injury was quantified by morphometric estimation of bilateral cortical, striatal, and dorsal hippocampal volumes. In animals that underwent the moderate HI insult (70-minute hypoxia), damage was attenuated in ICE-KO mice, when evaluated at 5 or 21 days post-lesioning. In contrast, in mice that underwent the more severe HI insult (120-minute hypoxia), injury severity was the same in both groups. Reductions in intra-HI CBF, measured by laser Doppler flow-metry, and intra- and post-HI temperatures did not differ between groups. These results show that ICE activity contributes to the progression of neonatal HI brain injury in this model. Whether these deleterious effects are mediated by pro-inflammatory actions of IL-1beta and/or by pro-apoptotic mechanisms is an important question for future studies.
Collapse
Affiliation(s)
- X H Liu
- Department of Pediatrics, The University of Michigan, Ann Arbor, USA
| | | | | | | | | | | |
Collapse
|
222
|
Eriksson C, Van Dam AM, Lucassen PJ, Bol JG, Winblad B, Schultzberg M. Immunohistochemical localization of interleukin-1beta, interleukin-1 receptor antagonist and interleukin-1beta converting enzyme/caspase-1 in the rat brain after peripheral administration of kainic acid. Neuroscience 1999; 93:915-30. [PMID: 10473257 DOI: 10.1016/s0306-4522(99)00178-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The temporal and anatomical distribution of members of the interleukin-1 system in the rat brain following intraperitoneal kainic acid administration was studied in relation to neurodegeneration as detected with in situ end labelling. Kainic acid administration (10 mg/kg, i.p.) resulted in the induced expression of interleukin-1beta, interleukin- receptor antagonist and caspase-1p10 immunoreactivity in areas known to display neuronal and tissue damage upon excitotoxic lesions. The induction of these proteins was transient. Interleukin-1 immunoreactivity appeared at 5 h, and the interleukin-1 receptor antagonist-immunoreactive cells were first detected at 12 h, whereas the induction of caspase- 1p10 expression was first detected 24 h after kainic acid injection. Double labelling with the microglial marker Ox42 confirmed that both interleukin-1beta and interleukin-1 receptor antagonist were mainly localized in microglial cells. The regional distribution of in situ end-labelled neurons was similar to the distribution of cells expressing interleukin-1beta and interleukin-1 receptor antagonist, whereas the distribution of caspase-1 was more limited. The in situ end-labelled neurons, were, similarly to the interleukin-1beta-positive cells, first detected at 5 h, which is earlier than the induction of caspase-1. Our results show that the induction of IL-1beta and IL-1 receptor antagonist proteins after kainic acid are closely associated with the temporal as well as the anatomical distribution of in situ end-labelled neurons, whereas the induction of caspase-1 protein exhibited a delayed temporal profile and limited distribution. Since cytokine production occurs in activated microglial cells, the inflammatory component seems to be a strong mediator of this type of excitotoxic damage. The late onset of the caspase-1 expression would seem to indicate that this enzyme has no fundamental role in directly causing neuronal cell death induced by systemic kainic acid.
Collapse
Affiliation(s)
- C Eriksson
- Department of Clinical Neuroscience and Family Medicine, Karolinska Institute, Huddinge Hospital, Novum, Sweden
| | | | | | | | | | | |
Collapse
|
223
|
Abstract
Brain injury following transient or permanent focal cerebral ischaemia (stroke) develops from a complex series of pathophysiological events that evolve in time and space. In this article, the relevance of excitotoxicity, peri-infarct depolarizations, inflammation and apoptosis to delayed mechanisms of damage within the peri-infarct zone or ischaemic penumbra are discussed. While focusing on potentially new avenues of treatment, the issue of why many clinical stroke trials have so far proved disappointing is addressed. This article provides a framework that can be used to generate testable hypotheses and treatment strategies that are linked to the appearance of specific pathophysiological events within the ischaemic brain.
Collapse
Affiliation(s)
- U Dirnagl
- Dept of Neurology, Charité Hospital, 10098 Berlin, Germany
| | | | | |
Collapse
|
224
|
Abstract
In view of a large and growing literature, this overview emphasizes recent advances in neuronal caspases and their role in cell death. To provide historical perspective, morphology and methods are surveyed with emphasis on early studies on interleukin converting enzyme (ICE) as a prototype for identifying zymogen subunits. The unexpected homology of ICE (caspase-1) to Caenorhabditis elegans death gene CED-3 provided early clues linking caspases to programmed cell death, and led later to discovery of bcl-2 proteins (CED-9 homologs) and 'apoptosis associated factors' (Apafs). Availability of substrates, inhibitors, and cDNAs led to identification of up to 16 caspases as a new superfamily of unique cysteine proteinases targeting Asp groups. Those acting as putative death effectors dismantle neurons by catabolism of proteins essential for survival. Caspases degrade amyloid precursor protein (APP), presenilins (PS1, PS2), tau, and huntingtin, raising questions on their role in neurodegeneration. Brain contains 'inhibitors of apoptosis proteins' (IAPs) survivin and NAIP associated also with some neuronal disorders. Apoptotic stress in neurons initiates a chain of events leading to activation of distal caspases by pathways that remain to be fully mapped. Neuronal caspases play multiple roles for initiation and execution of cell death, for morphogenesis, and in non-mitotic neurons for homeostasis. Recent studies focus on cytochrome c as pivotal in mediating conversion of procaspase-9 as a major initiator for apoptosis. Identifying signaling pathways and related events paves the way to design useful therapeutic remedies to prevent neuronal loss in disease or aging.
Collapse
Affiliation(s)
- N Marks
- Nathan S. Kline Institute for Psychiatric Research, and New York University, Division of Neurochemistry, Orangeburg 10962, USA.
| | | |
Collapse
|
225
|
Affiliation(s)
- J C Reed
- Burnham Institute, La Jolla, California 92037, USA
| |
Collapse
|
226
|
Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:77-105. [PMID: 10407127 DOI: 10.1016/s0165-0173(99)00007-7] [Citation(s) in RCA: 623] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Damage to the central nervous system (CNS) leads to cellular changes not only in the affected neurons but also in adjacent glial cells and endothelia, and frequently, to a recruitment of cells of the immune system. These cellular changes form a graded response which is a consistent feature in almost all forms of brain pathology. It appears to reflect an evolutionarily conserved program which plays an important role in the protection against infectious pathogens and the repair of the injured nervous system. Moreover, recent work in mice that are genetically deficient for different cytokines (MCSF, IL1, IL6, TNFalpha, TGFbeta1) has begun to shed light on the molecular signals that regulate this cellular response. Here we will review this work and the insights it provides about the biological function of the neuroglial activation in the injured brain.
Collapse
Affiliation(s)
- G Raivich
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
227
|
Wiessner C, Allegrini PR, Rupalla K, Sauer D, Oltersdorf T, McGregor AL, Bischoff S, Böttiger BW, van der Putten H. Neuron-specific transgene expression of Bcl-XL but not Bcl-2 genes reduced lesion size after permanent middle cerebral artery occlusion in mice. Neurosci Lett 1999; 268:119-22. [PMID: 10406019 DOI: 10.1016/s0304-3940(99)00392-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protective effects after focal cerebral ischemia were assessed in transgenic mice that overexpress in a neuron-specific fashion mouse Bcl-XL or human Bcl-2. Both Bcl genes were under the control of the same mouse Thy-1 regulatory sequences resulting in very similar expression patterns in cortical neurons. Furthermore, these sequences direct lateonset (i.e. around birth) expression in brain, thus minimizing effects of transgene expression during brain development. Effects on infarct volume were measured using MRI after permanent occlusion of the middle cerebral artery (MCA). When compared to their non-transgenic littermates, Thy1mbcl-XL mice showed a significant 21% reduction in infarct size whereas Thy1hbcl-2 mice did not reveal any reduction. These findings suggest a selective protective advantage of Bcl-XL as compared with Bcl-2 in this mouse model for human stroke.
Collapse
|
228
|
Abstract
Since the first transgenic mouse was reported in 1980, genetically engineered mice have become an invaluable biological tool for better understanding of physiological and pathological processes in many fields of biomedical research. The transgenic technology allows researchers to carry out specific genetic manipulation in all cells of a laboratory animal, and makes it possible to dissect gene function in a living organism. In the field of neurosciences these animals have contributed greatly to shed light on basic mechanisms of brain function as well as to generate useful animal models for studying human neurological disorders. In this review, the different techniques available for generating specific mutations in the mouse genome will be described, from pronuclear microinjection to gene targeting in embryonic stem cells, and to the second generation of inducible and conditional knockout mice. Then, the impact of transgenic mouse models as an alternative or additional approach to neuropharmacology will be discussed, not only for the study of molecular mechanisms in the central nervous system but also for the identification of new biological targets for innovative pharmacological therapy.
Collapse
Affiliation(s)
- R Brusa
- Schering-Plough Research Institute, San Raffaele Science Park, Via Olgettina 58, Milan, Italy
| |
Collapse
|
229
|
Los M, Wesselborg S, Schulze-Osthoff K. The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 1999; 10:629-39. [PMID: 10403638 DOI: 10.1016/s1074-7613(00)80062-x] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M Los
- Department of Internal Medicine I, Medical Clinics, University of Tübingen, Germany
| | | | | |
Collapse
|
230
|
Abstract
Viruses have evolved numerous strategies to modulate the host response to infection. Poxviruses cause acute infections and need to replicate quickly to promote efficient transmission. Consequently, it is not surprising to learn that poxviruses encode a large number of proteins designed to target various arms of the host inflammatory response. One of the earliest described and most well-studied viral modulatory proteins is crmA/SPI-2. While the biochemical targets and possible modes of action have been well characterized in vitro, the role that crmA/SPI-2 plays during natural infection is less clear. It may have effects in modulating host responses involving apoptosis and inflammation. It is important to further understand the precise mode of action of viral proteins, such as crmA/SPI-2, because this may lead to better therapeutic strategies to combat a range of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- S Turner
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
231
|
Ona VO, Li M, Vonsattel JP, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li XJ, Stieg PE, Yuan J, Penney JB, Young AB, Cha JH, Friedlander RM. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 1999; 399:263-7. [PMID: 10353249 DOI: 10.1038/20446] [Citation(s) in RCA: 430] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Huntington's disease is an autosomal-dominant progressive neurodegenerative disorder resulting in specific neuronal loss and dysfunction in the striatum and cortex. The disease is universally fatal, with a mean survival following onset of 15-20 years and, at present, there is no effective treatment. The mutation in patients with Huntington's disease is an expanded CAG/polyglutamine repeat in huntingtin, a protein of unknown function with a relative molecular mass of 350,000 (M(r) 350K). The length of the CAG/polyglutamine repeat is inversely correlated with the age of disease onset. The molecular pathways mediating the neuropathology of Huntington's disease are poorly understood. Transgenic mice expressing exon 1 of the human huntingtin gene with an expanded CAG/polyglutamine repeat develop a progressive syndrome with many of the characteristics of human Huntington's disease. Here we demonstrate evidence of caspase-1 activation in the brains of mice and humans with the disease. In this transgenic mouse model of Huntington's disease, expression of a dominant-negative caspase-1 mutant extends survival and delays the appearance of neuronal inclusions, neurotransmitter receptor alterations and onset of symptoms, indicating that caspase-1 is important in the pathogenesis of the disease. In addition, we demonstrate that intracerebroventricular administration of a caspase inhibitor delays disease progression and mortality in the mouse model of Huntington's disease.
Collapse
Affiliation(s)
- V O Ona
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Abstract
The neurotrophins are a diverse family of peptides which activate specific tyrosine kinase-linked receptors. Over the past five decades, since the pioneering work of Levi-Montalcini and colleagues, the critical role that neurotrophins play in shaping the developing nervous system has become increasingly established. These molecules, which include the nerve growth factor (NGF)-related peptides, NGF, brain-derived neurotrophic factor (BDNF), NT-4/5 and NT-3, promote differentiation and survival in the developing nervous system, and to a lesser extent in the adult nervous system. As survival-promoting molecules, neurotrophins have been studied as potential neuroprotective agents, and have shown beneficial effects in many model systems. However, a surprising "dark side" to neurotrophin behavior has emerged from some of these studies implying that, under certain pathological conditions, neurotrophins may exacerbate, rather than alleviate, injury. How neurotrophins cause these deleterious consequences is a question which is only beginning to be answered, but initial work supports altered free radical handling or modification of glutamate receptor expression as possible mechanisms underlying these effects. This review will focus on evidence suggesting that neurotrophins may enhance injury under certain circumstances and on the mechanisms behind these injury-promoting aspects.
Collapse
Affiliation(s)
- M M Behrens
- Center for the Study of the Nervous System Injury and Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
233
|
McAlindon ME, Galvin A, McKaig B, Gray T, Sewell HF, Mahida YR. Investigation of the expression of IL-1beta converting enzyme and apoptosis in normal and inflammatory bowel disease (IBD) mucosal macrophages. Clin Exp Immunol 1999; 116:251-7. [PMID: 10337015 PMCID: PMC1905291 DOI: 10.1046/j.1365-2249.1999.00884.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activated mucosal macrophages are derived from circulating monocytes and appear to play a major role in the pathogenesis of IBD. We have recently shown that IBD, but not normal, mucosal macrophages express the active form of IL-1beta converting enzyme (ICE) and are therefore capable of releasing mature IL-1beta. ICE expression by other mucosal cell types is unknown. Active ICE expression has also been implicated in apoptosis. The aim of this study was to investigate ICE expression (using an antibody that recognizes both active and precursor forms) in normal and IBD mucosa and to determine whether ICE-expressing macrophages are undergoing apoptosis. Normal and active IBD mucosal cells, in tissue sections and after isolation, were studied by immunohistochemistry and flow cytometry. In the mucosa, macrophages were the predominant ICE-expressing cell type. In contrast to normal, most IBD mucosal macrophages expressed ICE. Of IBD colonic macrophages 11.8 +/- 3.2%, and of normal colonic macrophages 6.6 +/- 0.6% expressed Apo2.7, a marker for apoptotic cells. Similar data were obtained when annexin V was used to identify cells undergoing apoptosis. DNA fluorescence flow cytometric analysis of normal and IBD lamina propria cells showed the presence of only small hypodiploid DNA peaks. We conclude that in the human intestinal mucosa, macrophages are the predominant ICE-expressing cell type. Expression of the active form of ICE and macrophage apoptosis are not interdependent. One mechanism of loss of resident macrophages from normal mucosa and of recruited macrophages from IBD mucosa is by apoptosis.
Collapse
Affiliation(s)
- M E McAlindon
- Division of Gastroenterology, University Hospital, Queen's Medical Centre, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
234
|
Clark RS, Kochanek PM, Chen M, Watkins SC, Marion DW, Chen J, Hamilton RL, Loeffert JE, Graham SH. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J 1999; 13:813-21. [PMID: 10224225 DOI: 10.1096/fasebj.13.8.813] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bcl-2 and caspase families are important regulators of programmed cell death in experimental models of ischemic, excitotoxic, and traumatic brain injury. The Bcl-2 family members Bcl-2 and Bcl-xL suppress programmed cell death, whereas Bax promotes programmed cell death. Activated caspase-1 (interleukin-1beta converting enzyme) and caspase-3 (Yama/Apopain/Cpp32) cleave proteins that are important in maintaining cytoskeletal integrity and DNA repair, and activate deoxyribonucleases, producing cell death with morphological features of apoptosis. To address the question of whether these Bcl-2 and caspase family members participate in the process of delayed neuronal death in humans, we examined brain tissue samples removed from adult patients during surgical decompression for intracranial hypertension in the acute phase after traumatic brain injury (n=8) and compared these samples to brain tissue obtained at autopsy from non-trauma patients (n=6). An increase in Bcl-2 but not Bcl-xL or Bax, cleavage of caspase-1, up-regulation and cleavage of caspase-3, and evidence for DNA fragmentation with both apoptotic and necrotic morphologies were found in tissue from traumatic brain injury patients compared with controls. These findings are the first to demonstrate that programmed cell death occurs in human brain after acute injury, and identify potential pharmacological and molecular targets for the treatment of human head injury.
Collapse
Affiliation(s)
- R S Clark
- Departments of Anesthesiology and Critical Care Medicine, Safar Center for Resuscitation Reseach, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Contribution of p53-dependent caspase activation to neuronal cell death declines with neuronal maturation. J Neurosci 1999. [PMID: 10191317 DOI: 10.1523/jneurosci.19-08-02996.1999] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Caspases play a pivotal role in neuronal cell death during development and after trophic factor withdrawal. However, the mechanisms regulating caspase activity and the role played by caspase activation in response to neuronal injury is poorly understood. The tumor suppressor gene p53 has been implicated in the loss of neuronal viability caused by excitotoxic and DNA damaging agents. In the present study we determined if p53-mediated neuronal cell death required caspase activation. DNA damage increased caspase activity in both cultured embryonic telencephalic and postnatal cortical neurons in a p53-dependent manner. Caspase inhibitors protected embryonic telencephalic neurons, but not postnatal cortical neurons, from DNA damage-induced cell death as measured by direct cell counting and annexin V staining. In marked contrast to the caspase inhibitors, an inhibitor of the DNA repair enzyme, poly(ADP-ribose) polymerase, conferred significant protection from genotoxic and excitotoxic cell death on postnatal cortical neurons but had no effect on embryonic neurons. Glutamate-mediated excitotoxicity in postnatal neurons was not associated with measurable changes in caspase activity, consistent with the failure of caspase inhibitors to prevent cell death under these conditions. Moreover, adenovirus-mediated overexpression of p53 killed embryonic and postnatal neurons without activating caspases. Thus, p53-mediated neuronal cell death may occur via both caspase-dependent and caspase-independent pathways. These results demonstrate that p53 is required for caspase activation in response to some forms of neuronal injury. However, the relative importance of caspase activation in neurons depends on the developmental status of the cell and the specific nature of the death stimulus.
Collapse
|
236
|
Johnson MD, Kinoshita Y, Xiang H, Ghatan S, Morrison RS. Contribution of p53-dependent caspase activation to neuronal cell death declines with neuronal maturation. J Neurosci 1999; 19:2996-3006. [PMID: 10191317 PMCID: PMC6782293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Caspases play a pivotal role in neuronal cell death during development and after trophic factor withdrawal. However, the mechanisms regulating caspase activity and the role played by caspase activation in response to neuronal injury is poorly understood. The tumor suppressor gene p53 has been implicated in the loss of neuronal viability caused by excitotoxic and DNA damaging agents. In the present study we determined if p53-mediated neuronal cell death required caspase activation. DNA damage increased caspase activity in both cultured embryonic telencephalic and postnatal cortical neurons in a p53-dependent manner. Caspase inhibitors protected embryonic telencephalic neurons, but not postnatal cortical neurons, from DNA damage-induced cell death as measured by direct cell counting and annexin V staining. In marked contrast to the caspase inhibitors, an inhibitor of the DNA repair enzyme, poly(ADP-ribose) polymerase, conferred significant protection from genotoxic and excitotoxic cell death on postnatal cortical neurons but had no effect on embryonic neurons. Glutamate-mediated excitotoxicity in postnatal neurons was not associated with measurable changes in caspase activity, consistent with the failure of caspase inhibitors to prevent cell death under these conditions. Moreover, adenovirus-mediated overexpression of p53 killed embryonic and postnatal neurons without activating caspases. Thus, p53-mediated neuronal cell death may occur via both caspase-dependent and caspase-independent pathways. These results demonstrate that p53 is required for caspase activation in response to some forms of neuronal injury. However, the relative importance of caspase activation in neurons depends on the developmental status of the cell and the specific nature of the death stimulus.
Collapse
Affiliation(s)
- M D Johnson
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195-6470, USA
| | | | | | | | | |
Collapse
|
237
|
Abstract
Apoptosis is one of the most exciting and intensely investigated areas of biology and medicine today. Cysteine proteases called caspases serve as the executioners of apoptosis, a form of cell suicide. Hypoxic/ischemic cell death proceeds in part, by apoptosis, particularly within the periinfarct zone or ischemic penumbra. During ischemia, activated caspases dismantle the cell by cleaving multiple substrates including cytoskeletal proteins and enzymes essential for cell repair. Strategies that inhibit caspase activity block cell death in experimental models of mild ischemia, and preserve neurological function. The therapeutic window for caspase inhibition is substantially longer than for glutamate receptor antagonists, and treatment combinations with both classes of drugs decrease ischemic injury and expand the treatment window synergistically. Hence, the caspases are now recognized as novel therapeutic targets for central nervous system diseases in which cell death is prominent. This article will review the evidence and the potential importance of caspase inhibition to cerebral ischemia and briefly summarize an emerging body of data implicating caspases in cell death accompanying neurodegenerative disorders.
Collapse
Affiliation(s)
- J B Schulz
- Department of Neurology, Medical School, University of Tübingen, Germany
| | | | | |
Collapse
|
238
|
Kumar S. Regulation of caspase activation in apoptosis: implications in pathogenesis and treatment of disease. Clin Exp Pharmacol Physiol 1999; 26:295-303. [PMID: 10225139 DOI: 10.1046/j.1440-1681.1999.03031.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. Apoptosis is an essential process to remove excess, unwanted and harmful cells and maintain homeostasis. One of the key steps in apoptosis is activation of a group of proteases termed caspases. 2. Caspases are cysteine proteases that cleave their substrates after an aspartate residue. Approximately one dozen such proteases have been cloned during the past few years. While some caspases are largely responsible for the proteolytic processing of proinflammatory cytokines, such as interleukin (IL)-1 beta, others are directly involved in the execution of apoptosis. 3. Once apoptotic upstream caspases are activated in response to specific apoptotic stimuli, they can activate the downstream or effector class of caspases. Most proteins that are cleaved during apoptosis leading to the characteristic apoptotic morphology are targeted by the downstream caspases. The cleavage of these proteins by caspases can be either an activating or inactivating event for the function of a protein; however, in most cases, it contributes to the apoptotic phenotype of the cell. 4. Because caspase cleavage is the initiating event in most forms of apoptosis, it is a tightly controlled process with many checks and balances. An understanding of the regulation of caspases is providing novel ways for therapeutic intervention to modulate apoptotic behaviour of cells in many diseases that arise due to inappropriate apoptosis. 5. The present article will endeavour to discuss recent advances in our understanding of caspase regulation and will elaborate on how this knowledge is being used in the development of new classes of therapeutic molecules that can be used for the treatment of human ailments.
Collapse
Affiliation(s)
- S Kumar
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, Australia.
| |
Collapse
|
239
|
Boonman Z, Isacson O. Apoptosis in neuronal development and transplantation: role of caspases and trophic factors. Exp Neurol 1999; 156:1-15. [PMID: 10192773 DOI: 10.1006/exnr.1999.7056] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fetal ventral mesencephalic (VM) transplants have been studied in the context of dopaminergic (DA) replacement therapy for Parkinson's disease (PD). DA neurons from VM transplants will grow axons and form functional synapses in the adult host central nervous system (CNS). Recently, studies have demonstrated that most of the transplanted DA neurons die in grafts within the first week after implantation. An important feature of neural development, also in transplanted developing fetal neural tissue, is cell death. However, while about 50% of cells born in the CNS will die naturally, up to 99% of fetal cells die after neural transplantation. It has been shown that VM grafts contain many apoptotic cells even at 14 days after transplantation. The interleukin-1beta converting enzyme (ICE) cysteine protease and 11 other ICE-like-related proteases have been identified, now named caspases. Activation of caspases is one of the final steps before a neuron is committed to die by apoptosis. Here we review this cell death process in detail: Since the growth of fetal neural grafts placed in the adult brain in many ways mimics normal development, it is likely that the caspases also play a functional role in transplants. Pharmacological inhibitors of caspases and genetically modified mice are now available for the study of neuronal death in fetal neuronal transplants. Understanding cell death mechanisms involved in acute cellular injury, necrosis, and programmed cell death (PCD) is useful in improving future neuronal transplantation methodology, as well as in neuroprotection, for patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Z Boonman
- Neuroregeneration Laboratories, Harvard Medical School, Program in Neuroscience, McLean Hospital, MRC 119, 115 Mill Street, Belmont, Massachusetts 02478, USA
| | | |
Collapse
|
240
|
Liang XH, Goldman JE, Jiang HH, Levine B. Resistance of interleukin-1beta-deficient mice to fatal Sindbis virus encephalitis. J Virol 1999; 73:2563-7. [PMID: 9971844 PMCID: PMC104506 DOI: 10.1128/jvi.73.3.2563-2567.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-1beta (IL-1beta) concentrations are frequently elevated in central nervous system (CNS) viral infections, but the pathophysiologic significance of such elevations is not known. To examine the role of IL-1beta in CNS viral pathogenesis, we compared the natural histories of IL-1beta-deficient and wild-type 129 SV(ev) mice infected with a neurovirulent viral strain, neuroadapted Sindbis virus (NSV). We found that the incidence of severe paralysis and death was markedly decreased in NSV-infected IL-1beta-/- mice compared to NSV-infected wild-type mice (4 versus 88%, P < 0.001). Despite this marked difference in clinical outcome, no differences in numbers of apoptotic cells or presence of histopathologic lesions in the brains of moribund wild-type mice and those of clinically healthy IL-1beta-/- mice could be detected. These results suggest that IL-1beta deficiency is protective against fatal Sindbis virus infection by a mechanism that does not involve resistance to CNS virus-induced apoptosis or histopathology.
Collapse
Affiliation(s)
- X H Liang
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
241
|
Aizenman E, Brimecombe JC, Potthoff WK, Rosenberg PA. Why is the role of nitric oxide in NMDA receptor function and dysfunction so controversial? PROGRESS IN BRAIN RESEARCH 1999; 118:53-71. [PMID: 9932434 DOI: 10.1016/s0079-6123(08)63200-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- E Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, PA 15261, USA. redox+@pitt.edu
| | | | | | | |
Collapse
|
242
|
Royle SJ, Collins FC, Rupniak HT, Barnes JC, Anderson R. Behavioural analysis and susceptibility to CNS injury of four inbred strains of mice. Brain Res 1999; 816:337-49. [PMID: 9878817 DOI: 10.1016/s0006-8993(98)01122-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interpretation of data from gene targeting studies can be confounded by the inherent traits of the background inbred strains used in the generation of transgenic and null mutant mice. We have therefore compared the behaviour and response to CNS injury of four inbred strains commonly used in molecular genetic studies to produce models of neurological disease. Adult, male 129/Ola, BALB/c, C57BL/6 and FVB/N mice (2-4 months) were initially subjected to behavioural tests that comprised a neurological examination, determination of motor function and cognitive testing in the Morris water maze. Also the response to CNS injury following an acute kainic acid (KA) challenge (30 mg kg-1, i.p.) was determined. The 129/Ola and BALB/c strains showed significant motor deficits when compared with the C57BL/6 and FVB/N strains. In contrast, only the FVB/N strain showed evidence of apparent cognitive impairments in the water maze as evidenced by increased pathlengths to locate the escape platforms and impaired performance in a probe trial. In addition, the FVB/N strain showed the most severe seizure response and mortality rate (62%) following administration of KA (30 mg kg-1, i.p.). These behavioural changes were also associated with a greater degree of cell body and synaptophysin loss in the pyramidal CA3 hippocampal cell layer and astrogliosis 72-h post-dose. These data suggest that the FVB/N strain may not be the most suitable background strain for the development of new transgenic mice for the study of genes implicated in the learning and memory process.
Collapse
Affiliation(s)
- S J Royle
- Neuroscience Unit, Glaxo Wellcome Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | | | | | | | | |
Collapse
|
243
|
Abstract
Given at the Meeting of the Physiological Society held at the University of Southampton on 10 September 1998
Collapse
Affiliation(s)
- N J Rothwell
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
244
|
Abstract
Members of a family of cysteine proteases known as caspases orchestrate the intracellular biochemical events that enable animal cells to kill themselves by apoptosis. To counteract the apoptotic response to infection, some viruses have adapted and evolved proteins that specifically block caspases. More recently, it has been demonstrated that endogenous proteins belonging to the IAP family can regulate apoptosis by directly inactivating some of the caspases involved in initiating and executing programmed cell death.
Collapse
Affiliation(s)
- G S Salvesen
- The Burnham Institute, La Jolla, California 92037, USA
| |
Collapse
|
245
|
Le-Niculescu H, Bonfoco E, Kasuya Y, Claret FX, Green DR, Karin M. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol 1999; 19:751-63. [PMID: 9858598 PMCID: PMC83932 DOI: 10.1128/mcb.19.1.751] [Citation(s) in RCA: 396] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1998] [Accepted: 10/05/1998] [Indexed: 01/19/2023] Open
Abstract
The JNK pathway modulates AP-1 activity. While in some cells it may have proliferative and protective roles, in neuronal cells it is involved in apoptosis in response to stress or withdrawal of survival signals. To understand how JNK activation leads to apoptosis, we used PC12 cells and primary neuronal cultures. In PC12 cells, deliberate JNK activation is followed by induction of Fas ligand (FasL) expression and apoptosis. JNK activation detected by c-Jun phosphorylation and FasL induction are also observed after removal of either nerve growth factor from differentiated PC12 cells or KCl from primary cerebellar granule neurons (CGCs). Sequestation of FasL by incubation with a Fas-Fc decoy inhibits apoptosis in all three cases. CGCs derived from gld mice (defective in FasL) are less sensitive to apoptosis caused by KCl removal than wild-type neurons. In PC12 cells, protection is also conferred by a c-Jun mutant lacking JNK phosphoacceptor sites and a small molecule inhibitor of p38 mitogen-activated protein kinase and JNK, which inhibits FasL induction. Hence, the JNK-to-c-Jun-to-FasL pathway is an important mediator of stress-induced neuronal apoptosis.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
246
|
Joashi UC, Greenwood K, Taylor DL, Kozma M, Mazarakis ND, Edwards AD, Mehmet H. Poly(ADP ribose) polymerase cleavage precedes neuronal death in the hippocampus and cerebellum following injury to the developing rat forebrain. Eur J Neurosci 1999; 11:91-100. [PMID: 9987014 DOI: 10.1046/j.1460-9568.1999.00409.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transient unilateral forebrain hypoxia-ischaemia (HI) in 14-day-old rats produces infarction and delayed neuronal death in the frontal cortex. Cell death can also be observed in regions distant from the primary injury, a phenomenon known as diaschisis. While apoptosis is involved in selective neuronal death, its role in infarction and diaschisis remains poorly understood. Here, we have investigated the proteolytic cleavage of poly(ADP ribose) polymerase (PARP) and the occurrence of apoptosis in the hippocampus and the cerebellum following either HI or traumatic brain injury. We demonstrate that: (i) in vitro, PARP is cleaved during apoptosis but not necrosis in cultured neuronal (N1E) cells and Swiss 3T3 fibroblasts; (ii) following HI, apoptotic cells can be detected by 4 h after injury in the hippocampus; (iii) in the ipsilateral hippocampus the appearance of cells with apoptotic morphology is preceded by a dramatic increase in PARP cleavage in the same region, starting immediately following HI and persisting for 24 h; (iv) HI also induces apoptosis in the cerebellum and, as in the hippocampus, the appearance of cells with apoptotic morphology is preceded by PARP cleavage that is greater on the side ipsilateral to forebrain injury; and (v) similarly, traumatic brain injury to the forebrain leads to PARP cleavage and apoptosis in the cerebellum. We conclude that HI injury or traumatic injury to the developing rat forebrain leads to PARP cleavage in directly affected areas and in sites distant from the primary injury that precedes the appearance of cells with apoptotic morphology. Our results are consistent with a role for apoptotic cell death in infarction and in diaschisis resulting from forebrain injury to the developing brain.
Collapse
Affiliation(s)
- U C Joashi
- Weston Laboratory, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London, U.K
| | | | | | | | | | | | | |
Collapse
|
247
|
|
248
|
Hilbi H, Moss JE, Hersh D, Chen Y, Arondel J, Banerjee S, Flavell RA, Yuan J, Sansonetti PJ, Zychlinsky A. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 1998; 273:32895-900. [PMID: 9830039 DOI: 10.1074/jbc.273.49.32895] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here that the Shigella invasion plasmid antigen (Ipa)B, which is sufficient to induce apoptosis in macrophages, binds to caspase (Casp)-1, but not to Casp-2 or Casp-3. Casp-1 is activated and its specific substrate interleukin-1beta is cleaved shortly after Shigella infection. Macrophages isolated from Casp-1 knock-out mice are not susceptible to Shigella-induced apoptosis, although they respond normally to other apoptotic stimuli. Shigella kills macrophages from casp-3, casp-11, and p53 knock-out mice as well as macrophages overexpressing Bcl-2. We propose that Shigella induces apoptosis by directly activating Casp-1 through IpaB, bypassing signal transduction events and caspases upstream of Casp-1. Taken together these data indicate that Shigella-induced apoptosis is distinct from other forms of apoptosis and seems uniquely dependent on Casp-1.
Collapse
Affiliation(s)
- H Hilbi
- Skirball Institute, Department of Microbiology and Kaplan Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Abstract
Since recent work has identified an apoptotic pathway in sympathetic neurons that is mediated by autocrine interleukin-1 (IL-1), we investigated whether cultured sympathetic neurons possess functional IL-1 receptors. Cultured sympathetic neurons express levels of IL-1RI and IL-1RAcP mRNAs consistent with signal transduction. Neurons stimulated with IL-1 demonstrate enhanced p65 NF-kappaB nuclear translocation and enhanced NF-kappaB DNA binding activity, with at least p65 and p50 subunits participating in the DNA binding activity. RNA differential display identified several neuronal mRNAs regulated by IL-1, including a member of the reticulon family. We conclude that IL-1 stimulates a potential component of a neuronal secretory pathway.
Collapse
Affiliation(s)
- Y Bai
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102-1811, USA
| | | |
Collapse
|
250
|
Johnson AL, Bridgham JT, Munks M, Witty JP. Characterization of the chicken interleukin-1beta converting enzyme (caspase-1) cDNA and expression of caspase-1 mRNA in the hen. Gene X 1998; 219:55-62. [PMID: 9756994 DOI: 10.1016/s0378-1119(98)00373-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have cloned and sequenced a chicken homolog to the mammalian interleukin-1beta (IL-1beta)-converting enzyme (caspase-1) cDNA and have evaluated caspase-1 mRNA expression in various tissues from the domestic hen, including ovarian follicle granulosa and theca layers. The deduced amino acid (aa) sequence of chicken caspase-1 is 44.9% identical to human caspase-1, and contains an active site pentapeptide that is characteristic of the caspase family of cysteine proteases. Of interest, however, is that the putative chicken caspase-1 cDNA is predicted to encode a comparatively short (19aa) N-terminal prodomain, as well as two Cys residues within the active pentapeptide (QC162C163RG) as compared to the QACRG pentapeptide found in the mammalian caspase-1 sequence. While the chicken caspase-1 mRNA transcript is widely expressed among different tissues, levels are particularly high in the bursa of Fabricius and comparatively low in ovarian follicles at all stages of development. Finally, treatment of granulosa cells with IL-1beta, the primary if not sole product of caspase-1 activity, fails to either promote apoptotic cell death or enhance viability in granulosa cells. Considering the relatively low levels of caspase-1 mRNA expression in ovarian follicle tissues plus the inability of IL-1beta to alter granulosa cell viability, in vitro, it is concluded that caspase-1 is not an integral part of the apoptotic pathway in granulosa cells. However, the pattern of mRNA expression is consistent with a requirement for caspase-1 mediated IL-1beta production in chicken immune tissues.
Collapse
Affiliation(s)
- A L Johnson
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | |
Collapse
|