201
|
de Miguel-Gómez L, Sebastián-León P, Romeu M, Pellicer N, Faus A, Pellicer A, Díaz-Gimeno P, Cervelló I. Endometrial gene expression differences in women with coronavirus disease 2019. Fertil Steril 2022; 118:1159-1169. [PMID: 36333264 PMCID: PMC9624514 DOI: 10.1016/j.fertnstert.2022.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To study the potential effect of coronavirus disease (COVID-19) on the endometrial transcriptome of affected, symptomatic women for the detection of altered gene expression. DESIGN Pilot study of the endometrial transcriptomes of women manifesting COVID-19 compared with those of women without COVID-19 undergoing hysteroscopic procedures for benign gynecologic disorders using RNA sequencing. SETTING Hospital and university laboratories. PATIENT(S) Women with (n = 14) and without a COVID-19 (n = 10) diagnosis based on a nasopharyngeal swab analysis using quantitative reverse-transcription polymerase chain reaction. The endometrium of the patients with COVID-19 had previously been tested for severe acute respiratory syndrome coronavirus 2 infection, revealing the absence of the virus in this tissue. INTERVENTION(S) Endometrial biopsy sample collection. MAIN OUTCOMES MEASURE(S) Endometrial gene expression and functional analysis of symptomatic patients with COVID-19 vs. individuals without the infection. RESULT(S) The systemic disease COVID-19 altered endometrial gene expression in 75% of the women, with the patients exhibiting a preponderance of 163 up-regulated (e.g., UTS2, IFI6, IFIH1, and BNIP3) and 72 down-regulated genes (e.g., CPZ, CDH3, and IRF4) (false discovery rate<0.05). A total of 161 dysregulated functions (36 up-regulated and 125 down-regulated) were typically enriched in the endometria of the patients with COVID-19, including up-regulation in pathways involved in the development of immune responses to viruses and cytokine inflammation, reflecting elicitation of a COVID-19 response pathway. CONCLUSION(S) Coronavirus disease 2019 affects endometrial gene expression despite the absence of severe acute respiratory syndrome coronavirus 2 RNA in endometrial tissues.
Collapse
Affiliation(s)
- Lucía de Miguel-Gómez
- IVI Foundation, La Fe Health Research Institute, Valencia, Spain, (b)Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain
| | - Patricia Sebastián-León
- IVI Foundation, La Fe Health Research Institute, Valencia, Spain, (b)Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain
| | - Mónica Romeu
- La Fe University Hospital, Valencia, Spain; Women's Health Area, Human Reproduction Unit, La Fe University Hospital, Valencia, Spain
| | - Nuria Pellicer
- La Fe University Hospital, Valencia, Spain; Women's Health Area, Human Reproduction Unit, La Fe University Hospital, Valencia, Spain
| | - Amparo Faus
- IVI Foundation, La Fe Health Research Institute, Valencia, Spain, (b)Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain
| | - Antonio Pellicer
- Women's Health Area, Human Reproduction Unit, La Fe University Hospital, Valencia, Spain; Pediatrics, Obstetrics, and Gynecology Department, University of Valencia, Spain
| | - Patricia Díaz-Gimeno
- IVI Foundation, La Fe Health Research Institute, Valencia, Spain, (b)Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain
| | - Irene Cervelló
- IVI Foundation, La Fe Health Research Institute, Valencia, Spain, (b)Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain.
| |
Collapse
|
202
|
Sugimoto MA, Perucci LO, Tavares LP, Teixeira MM, Sousa LP. Fibrinolysis in COVID-19: Impact on Clot Lysis and Modulation of Inflammation. Curr Drug Targets 2022; 23:1578-1592. [PMID: 36221881 DOI: 10.2174/1389450123666221011102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
COVID-19 is a multisystem disease caused by SARS-CoV-2 and is associated with an imbalance between the coagulation and fibrinolytic systems. Overall, hypercoagulation, hypofibrinolysis and fibrin-clot resistance to fibrinolysis predispose patients to thrombotic and thromboembolic events. In the lungs, the virus triggers alveolar and interstitial fibrin deposition, endothelial dysfunction, and pulmonary intravascular coagulation, all events intrinsically associated with the activation of inflammation and organ injury. Adding to the pathogenesis of COVID-19, there is a positive feedback loop by which local fibrin deposition in the lungs can fuel inflammation and consequently dysregulates coagulation, a process known as immunothrombosis. Therefore, fibrinolysis plays a central role in maintaining hemostasis and tissue homeostasis during COVID-19 by cleaning fibrin clots and controlling feed-forward products of coagulation. In addition, components of the fibrinolytic system have important immunomodulatory roles, as evidenced by studies showing the contribution of Plasminogen/Plasmin (Plg/Pla) to the resolution of inflammation. Herein, we review clinical evidence for the dysregulation of the fibrinolytic system and discuss its contribution to thrombosis risk and exacerbated inflammation in severe COVID-19. We also discuss the current concept of an interplay between fibrinolysis and inflammation resolution, mirroring the well-known crosstalk between inflammation and coagulation. Finally, we consider the central role of the Plg/Pla system in resolving thromboinflammation, drawing attention to the overlooked consequences of COVID-19-associated fibrinolytic abnormalities to local and systemic inflammation.
Collapse
Affiliation(s)
- Michelle A Sugimoto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Medicine, University College London, London, UK.,Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiza O Perucci
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Nucleus of Research on Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luciana P Tavares
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
203
|
Silva CMS, Wanderley CWS, Veras FP, Gonçalves AV, Lima MHF, Toller-Kawahisa JE, Gomes GF, Nascimento DC, Monteiro VVS, Paiva IM, Almeida CJLR, Caetité DB, Silva JC, Lopes MIF, Bonjorno LP, Giannini MC, Amaral NB, Benatti MN, Santana RC, Damasceno LEA, Silva BMS, Schneider AH, Castro IMS, Silva JCS, Vasconcelos AP, Gonçalves TT, Batah SS, Rodrigues TS, Costa VF, Pontelli MC, Martins RB, Martins TV, Espósito DLA, Cebinelli GCM, da Fonseca BAL, Leiria LOS, Cunha LD, Arruda E, Nakaia HI, Fabro AT, Oliveira RDR, Zamboni DS, Louzada-Junior P, Cunha TM, Alves-Filho JCF, Cunha FQ. Gasdermin-D activation by SARS-CoV-2 triggers NET and mediate COVID-19 immunopathology. Crit Care 2022; 26:206. [PMID: 35799268 PMCID: PMC9261892 DOI: 10.1186/s13054-022-04062-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear.
Objectives
We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19.
Methods
We performed a single-cell transcriptome analysis in public data of bronchoalveolar lavage. Then, we enrolled 63 hospitalized patients with moderate and severe COVID-19. We analyze in blood and lung tissue samples the expression of GSDMD, presence of NETs, and signaling pathways upstreaming. Furthermore, we analyzed the treatment with disulfiram in a mouse model of SARS-CoV-2 infection.
Results
We found that the SARS-CoV-2 virus directly activates the pore-forming protein GSDMD that triggers NET production and organ damage in COVID-19. Single-cell transcriptome analysis revealed that the expression of GSDMD and inflammasome-related genes were increased in COVID-19 patients. High expression of active GSDMD associated with NETs structures was found in the lung tissue of COVID-19 patients. Furthermore, we showed that activation of GSDMD in neutrophils requires active caspase1/4 and live SARS-CoV-2, which infects neutrophils. In a mouse model of SARS-CoV-2 infection, the treatment with disulfiram inhibited NETs release and reduced organ damage.
Conclusion
These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology and suggests GSDMD as a novel potential target for improving the COVID-19 therapeutic strategy.
Collapse
|
204
|
Rendeiro AF, Ravichandran H, Kim J, Borczuk AC, Elemento O, Schwartz RE. Persistent alveolar type 2 dysfunction and lung structural derangement in post-acute COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.28.22282811. [PMID: 36482970 PMCID: PMC9727772 DOI: 10.1101/2022.11.28.22282811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
SARS-CoV-2 infection can manifest as a wide range of respiratory and systemic symptoms well after the acute phase of infection in over 50% of patients. Key questions remain on the long-term effects of infection on tissue pathology in recovered COVID-19 patients. To address these questions we performed multiplexed imaging of post-mortem lung tissue from 12 individuals who died post-acute COVID-19 (PC) and compare them to lung tissue from patients who died during the acute phase of COVID-19, or patients who died with idiopathic pulmonary fibrosis (IPF), and otherwise healthy lung tissue. We find evidence of viral presence in the lung up to 359 days after the acute phase of disease, including in patients with negative nasopharyngeal swab tests. The lung of PC patients are characterized by the accumulation of senescent alveolar type 2 cells, fibrosis with hypervascularization of peribronchial areas and alveolar septa, as the most pronounced pathophysiological features. At the cellular level, lung disease of PC patients, while distinct, shares pathological features with the chronic pulmonary disease of IPF. which may help rationalize interventions for PC patients. Altogether, this study provides an important foundation for the understanding of the long-term effects of SARS-CoV-2 pulmonary infection at the microanatomical, cellular, and molecular level.
Collapse
Affiliation(s)
- André F Rendeiro
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Current address: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, 1090, Vienna, Austria
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Junbum Kim
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alain C Borczuk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Current address: Northwell Health, Department of Pathology and Laboratory Medicine, Greenvale, NY
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
205
|
Nakazawa D, Takeda Y, Kanda M, Tomaru U, Ogawa H, Kudo T, Shiratori‐Aso S, Watanabe‐Kusunoki K, Ueda Y, Miyoshi A, Hattanda F, Nishio S, Uozumi R, Ishizu A, Atsumi T. Transcriptional dynamics of granulocytes in direct response to incubation with SARS-CoV-2. FEBS Open Bio 2022; 13:60-71. [PMID: 36271697 PMCID: PMC9808587 DOI: 10.1002/2211-5463.13500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) is characterized by acute respiratory distress syndrome and multiple organ dysfunction, in which the host immune response plays a pivotal role. Excessive neutrophil activation and subsequent superfluity of neutrophil extracellular traps (NETs) can lead to tissue damage, and several studies have shown the involvement of neutrophils in severe COVID-19. However, the detailed responses of each neutrophil subset to SARS-CoV-2 infection has not been fully described. To explore this issue, we incubated normal-density granulocytes (NDGs) and low-density granulocytes (LDGs) with different viral titers of SARS-CoV-2. NDGs form NETs with chromatin fibers in response to SARS-CoV-2, whereas LDGs incubated with SARS-CoV-2 display a distinct morphology with condensed nuclei and moderate transcriptional changes. Based on these transcriptional changes, we suggest that AGO2 possibly plays a role in LDG regulation in response to SARS-CoV-2.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Yohei Takeda
- Research Center for Global AgromedicineObihiro University of Agriculture and Veterinary MedicineJapan,Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineJapan
| | - Masatoshi Kanda
- Department of Rheumatology and Clinical ImmunologySapporo Medical UniversityJapan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Haruko Ogawa
- Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineJapan
| | - Takashi Kudo
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Satoka Shiratori‐Aso
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Kanako Watanabe‐Kusunoki
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Yusho Ueda
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Atsuko Miyoshi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Fumihiko Hattanda
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Ryo Uozumi
- Division of Laboratory and Transfusion MedicineHokkaido University HospitalSapporoJapan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health SciencesHokkaido UniversitySapporoJapan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
206
|
Gardiman E, Bianchetto-Aguilera F, Gasperini S, Tiberio L, Scandola M, Lotti V, Gibellini D, Salvi V, Bosisio D, Cassatella MA, Tamassia N. SARS-CoV-2-Associated ssRNAs Activate Human Neutrophils in a TLR8-Dependent Fashion. Cells 2022; 11:3785. [PMID: 36497044 PMCID: PMC9738506 DOI: 10.3390/cells11233785] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease.
Collapse
Affiliation(s)
- Elisa Gardiman
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Sara Gasperini
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Matteo Scandola
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marco A. Cassatella
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Nicola Tamassia
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
207
|
Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol 2022; 13:992384. [PMID: 36466841 PMCID: PMC9709252 DOI: 10.3389/fimmu.2022.992384] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 08/02/2023] Open
Abstract
COVID-19 patients have a high incidence of thrombosis, and thromboembolic complications are associated with severe COVID-19 and high mortality. COVID-19 disease is associated with a hyper-inflammatory response (cytokine storm) mediated by the immune system. However, the role of the inflammatory response in thrombosis remains incompletely understood. In this review, we investigate the crosstalk between inflammation and thrombosis in the context of COVID-19, focusing on the contributions of inflammation to the pathogenesis of thrombosis, and propose combined use of anti-inflammatory and anticoagulant therapeutics. Under inflammatory conditions, the interactions between neutrophils and platelets, platelet activation, monocyte tissue factor expression, microparticle release, and phosphatidylserine (PS) externalization as well as complement activation are collectively involved in immune-thrombosis. Inflammation results in the activation and apoptosis of blood cells, leading to microparticle release and PS externalization on blood cells and microparticles, which significantly enhances the catalytic efficiency of the tenase and prothrombinase complexes, and promotes thrombin-mediated fibrin generation and local blood clot formation. Given the risk of thrombosis in the COVID-19, the importance of antithrombotic therapies has been generally recognized, but certain deficiencies and treatment gaps in remain. Antiplatelet drugs are not in combination with anticoagulant treatments, thus fail to dampen platelet procoagulant activity. Current treatments also do not propose an optimal time for anticoagulation. The efficacy of anticoagulant treatments depends on the time of therapy initiation. The best time for antithrombotic therapy is as early as possible after diagnosis, ideally in the early stage of the disease. We also elaborate on the possible mechanisms of long COVID thromboembolic complications, including persistent inflammation, endothelial injury and dysfunction, and coagulation abnormalities. The above-mentioned contents provide therapeutic strategies for COVID-19 patients and further improve patient outcomes.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Langjiao Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
208
|
George PM, Reed A, Desai SR, Devaraj A, Faiez TS, Laverty S, Kanwal A, Esneau C, Liu MKC, Kamal F, Man WDC, Kaul S, Singh S, Lamb G, Faizi FK, Schuliga M, Read J, Burgoyne T, Pinto AL, Micallef J, Bauwens E, Candiracci J, Bougoussa M, Herzog M, Raman L, Ahmetaj-Shala B, Turville S, Aggarwal A, Farne HA, Dalla Pria A, Aswani AD, Patella F, Borek WE, Mitchell JA, Bartlett NW, Dokal A, Xu XN, Kelleher P, Shah A, Singanayagam A. A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae. Sci Transl Med 2022; 14:eabo5795. [PMID: 36383686 DOI: 10.1126/scitranslmed.abo5795] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications.
Collapse
Affiliation(s)
- Peter M George
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Anna Reed
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Sujal R Desai
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Anand Devaraj
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Tasnim Shahridan Faiez
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Sarah Laverty
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Amama Kanwal
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Camille Esneau
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michael K C Liu
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - William D-C Man
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, UK
| | - Sundeep Kaul
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Suveer Singh
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Georgia Lamb
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Fatima K Faizi
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Michael Schuliga
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jane Read
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Thomas Burgoyne
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Andreia L Pinto
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Jake Micallef
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Emilie Bauwens
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Julie Candiracci
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Mhammed Bougoussa
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Marielle Herzog
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Lavanya Raman
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | - Stuart Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hugo A Farne
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
- Chest and Allergy Department, St Mary's Hospital, Imperial College NHS Trust, London W2 1NY, UK
| | - Alessia Dalla Pria
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
- Department of HIV and Genitourinary Medicine, Chelsea and Westminster NHS Foundation Trust, London SW10 9NH, UK
| | - Andrew D Aswani
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Santersus AG, Buckhauserstrasse 34, Zurich 8048, Switzerland
| | - Francesca Patella
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Weronika E Borek
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Jane A Mitchell
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Nathan W Bartlett
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arran Dokal
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Xiao-Ning Xu
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Peter Kelleher
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- Department of HIV and Genitourinary Medicine, Chelsea and Westminster NHS Foundation Trust, London SW10 9NH, UK
- Immunology of Infection Section, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
- Department of Infection and Immunity Sciences, North West London Pathology NHS Trust, London W2 1NY, UK
| | - Anand Shah
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Aran Singanayagam
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
209
|
Kim SH, Kim J, Jang JY, Noh H, Park J, Jeong H, Jeon D, Uhm C, Oh H, Cho K, Jeon Y, On D, Yoon S, Lim SY, Kim SP, Lee YW, Jang HJ, Park IH, Oh J, Seo JS, Kim JJ, Seok SH, Lee YJ, Hong SM, An SH, Kim SY, Kim YB, Hwang JY, Lee HJ, Kim HB, Choi KS, Park JW, Seo JY, Yun JW, Shin JS, Lee HY, Kim K, Lee D, Lee H, Nam KT, Seong JK. Mouse models of lung-specific SARS-CoV-2 infection with moderate pathological traits. Front Immunol 2022; 13:1055811. [PMID: 36457995 PMCID: PMC9706212 DOI: 10.3389/fimmu.2022.1055811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 02/18/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has been a global health concern since 2019. The viral spike protein infects the host by binding to angiotensin-converting enzyme 2 (ACE2) expressed on the cell surface, which is then processed by type II transmembrane serine protease. However, ACE2 does not react to SARS-CoV-2 in inbred wild-type mice, which poses a challenge for preclinical research with animal models, necessitating a human ACE2 (hACE2)-expressing transgenic mouse model. Cytokeratin 18 (K18) promoter-derived hACE2 transgenic mice [B6.Cg-Tg(K18-ACE2)2Prlmn/J] are widely used for research on SARS-CoV-1, MERS-CoV, and SARS-CoV-2. However, SARS-CoV-2 infection is lethal at ≥105 PFU and SARS-CoV-2 target cells are limited to type-1 alveolar pneumocytes in K18-hACE2 mice, making this model incompatible with infections in the human lung. Hence, we developed lung-specific SARS-CoV-2 infection mouse models with surfactant protein B (SFTPB) and secretoglobin family 1a member 1 (Scgb1a1) promoters. After inoculation of 105 PFU of SARS-CoV-2 to the K18-hACE2, SFTPB-hACE2, and SCGB1A1-hACE2 models, the peak viral titer was detected at 2 days post-infection and then gradually decreased. In K18-hACE2 mice, the body temperature decreased by approximately 10°C, body weight decreased by over 20%, and the survival rate was reduced. However, SFTPB-hACE2 and SCGB1A1-hACE2 mice showed minimal clinical signs after infection. The virus targeted type I pneumocytes in K18-hACE2 mice; type II pneumocytes in SFTPB-hACE2 mice; and club, goblet, and ciliated cells in SCGB1A1-hACE2 mice. A time-dependent increase in severe lung lesions was detected in K18-hACE2 mice, whereas mild lesions developed in SFTPB-hACE2 and SCGB1A1-hACE2 mice. Spleen, small intestine, and brain lesions developed in K18-hACE2 mice but not in SFTPB-hACE2 and SCGB1A1-hACE2 mice. These newly developed SFTPB-hACE2 and SCGB1A1-hACE2 mice should prove useful to expand research on hACE2-mediated respiratory viruses.
Collapse
Affiliation(s)
- Sung-Hee Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiseon Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Yun Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, South Korea
- College of Pharmacy, Dongguk University, Seoul, South Korea
| | - Hyuna Noh
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Jisun Park
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Donghun Jeon
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Chanyang Uhm
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Heeju Oh
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungrae Cho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Jeon
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, South Korea
| | - Dain On
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Suhyeon Yoon
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Soo-Yeon Lim
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Sol Pin Kim
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Youn Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - In Ho Park
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jooyeon Oh
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Seon Seo
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Jin Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Hyuk Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Yu Jin Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Seung-Min Hong
- Laboratory of Avian Diseases, BK21 plus Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Se-Hee An
- Laboratory of Avian Diseases, BK21 plus Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seo Yeon Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Young Been Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, BK21 plus Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jeon-Soo Shin
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| | - Kyoungmi Kim
- Department of Physiology and Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Ho Lee
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, South Korea
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, South Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- BIO-MAX Institute, Seoul National University, Seoul, South Korea
- Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul, South Korea
| |
Collapse
|
210
|
Ondracek AS, Aszlan A, Schmid M, Lenz M, Mangold A, Artner T, Emich M, Fritzer-Szekeres M, Strametz-Juranek J, Lang IM, Sponder M. Physical Exercise Promotes DNase Activity Enhancing the Capacity to Degrade Neutrophil Extracellular Traps. Biomedicines 2022; 10:2849. [PMID: 36359376 PMCID: PMC9717727 DOI: 10.3390/biomedicines10112849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 10/17/2023] Open
Abstract
(1) Background: An unhealthy lifestyle is a significant contributor to the development of chronic diseases. Physical activity can benefit primary and secondary prevention. Higher DNase activity is associated with favourable outcomes after cardiovascular (CV) events. In this study, we aimed to investigate the influence of consequent endurance exercise on DNase activity. (2) Methods: 98 subjects with at least one CV risk factor but the physical ability to perform endurance training were included. Individuals performed a bicycle stress test at the beginning and after 8 months to assess physical performance. In between, all participants were instructed to engage in guideline-directed physical activity. Blood samples were drawn in two-month intervals to assess routine laboratory parameters, cell-free DNA (cfDNA), and DNase activity. (3) Results: Prevailing CV risk factors were overweight (65.9%), a positive family history (44.9%), hypertension (32.7%) and smoking (20.4%). Performance changed by 7.8 ± 9.1% after 8 months. Comparison of baseline to 8 months revealed a decrease in cfDNA and an increase in DNase activity. This effect was driven by participants who achieved a performance gain. (4) Conclusions: Regular physical activity might improve CV health by increasing DNase activity and thereby, the capacity to lower pro-inflammatory signalling, complementing measures of primary and secondary prevention.
Collapse
Affiliation(s)
- Anna S. Ondracek
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (A.S.O.); (A.A.); (M.S.); (M.L.); (A.M.); (T.A.); (I.M.L.)
| | - Adrienne Aszlan
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (A.S.O.); (A.A.); (M.S.); (M.L.); (A.M.); (T.A.); (I.M.L.)
| | - Martin Schmid
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (A.S.O.); (A.A.); (M.S.); (M.L.); (A.M.); (T.A.); (I.M.L.)
| | - Max Lenz
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (A.S.O.); (A.A.); (M.S.); (M.L.); (A.M.); (T.A.); (I.M.L.)
| | - Andreas Mangold
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (A.S.O.); (A.A.); (M.S.); (M.L.); (A.M.); (T.A.); (I.M.L.)
| | - Tyler Artner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (A.S.O.); (A.A.); (M.S.); (M.L.); (A.M.); (T.A.); (I.M.L.)
| | - Michael Emich
- Austrian Federal Ministry of Defence, Austrian Armed Forces, 1090 Vienna, Austria;
| | | | | | - Irene M. Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (A.S.O.); (A.A.); (M.S.); (M.L.); (A.M.); (T.A.); (I.M.L.)
| | - Michael Sponder
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (A.S.O.); (A.A.); (M.S.); (M.L.); (A.M.); (T.A.); (I.M.L.)
| |
Collapse
|
211
|
Zhu D, Lu Y, Wang Y, Wang Y. PAD4 and Its Inhibitors in Cancer Progression and Prognosis. Pharmaceutics 2022; 14:2414. [PMID: 36365233 PMCID: PMC9699117 DOI: 10.3390/pharmaceutics14112414] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 07/24/2023] Open
Abstract
The systemic spread of malignancies and the risk of cancer-associated thrombosis are major clinical challenges in cancer therapy worldwide. As an important post-translational modification enzyme, peptidyl arginine deiminase 4 (PAD4) could mediate the citrullination of protein in different components (including nucleus and cytoplasm, etc.) of a variety of cells (tumor cells, neutrophils, macrophages, etc.), thus participating in gene regulation, neutrophil extracellular trap (NET) and macrophage extracellular trap (MET). Thereby, PAD4 plays an important role in enhancing the growth of primary tumors and facilitating the distant metastasis of cancer cells. In addition, it is related to the formation of cancer-associated thrombosis. Therefore, the development of PAD4-specific inhibitors may be a promising strategy for treating cancer, and it may improve patient prognosis. In this review, we describe PAD4 involvement in gene regulation, protein citrullination, and NET formation. We also discuss its potential role in cancer and cancer-associated thrombosis, and we summarize the development and application of PAD4 inhibitors.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| |
Collapse
|
212
|
Ciccosanti F, Antonioli M, Sacchi A, Notari S, Farina A, Beccacece A, Fusto M, Vergori A, D'Offizi G, Taglietti F, Antinori A, Nicastri E, Marchioni L, Palmieri F, Ippolito G, Piacentini M, Agrati C, Fimia GM. Proteomic analysis identifies a signature of disease severity in the plasma of COVID-19 pneumonia patients associated to neutrophil, platelet and complement activation. Clin Proteomics 2022; 19:38. [PMID: 36348270 PMCID: PMC9641302 DOI: 10.1186/s12014-022-09377-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Most patients infected with SARS-CoV-2 display mild symptoms with good prognosis, while 20% of patients suffer from severe viral pneumonia and up to 5% may require intensive care unit (ICU) admission due to severe acute respiratory syndrome, which could be accompanied by multiorgan failure.Plasma proteomics provide valuable and unbiased information about disease progression and therapeutic candidates. Recent proteomic studies have identified molecular changes in plasma of COVID-19 patients that implied significant dysregulation of several aspects of the inflammatory response accompanied by a general metabolic suppression. However, which of these plasma alterations are associated with disease severity remains only partly characterized.A known limitation of proteomic studies of plasma samples is the large difference in the macromolecule abundance, with concentration spanning at least 10 orders of magnitude. To improve the coverage of plasma contents, we performed a deep proteomic analysis of plasma from 10 COVID-19 patients with severe/fatal pneumonia compared to 10 COVID-19 patients with pneumonia who did not require ICU admission (non-ICU). To this aim, plasma samples were first depleted of the most abundant proteins, trypsin digested and peptides subjected to a high pH reversed-phase peptide fractionation before LC-MS analysis.These results highlighted an increase of proteins involved in neutrophil and platelet activity and acute phase response, which is significantly higher in severe/fatal COVID-19 patients when compared to non-ICU ones. Importantly, these changes are associated with a selective induction of complement cascade factors in severe/fatal COVID-19 patients. Data are available via ProteomeXchange with identifier PXD036491. Among these alterations, we confirmed by ELISA that higher levels of the neutrophil granule proteins DEFA3 and LCN2 are present in COVID-19 patients requiring ICU admission when compared to non-ICU and healthy donors.Altogether, our study provided an in-depth view of plasma proteome changes that occur in COVID-19 patients in relation to disease severity, which can be helpful to identify therapeutic strategies to improve the disease outcome.
Collapse
Affiliation(s)
- Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessandra Sacchi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Stefania Notari
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Anna Farina
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessia Beccacece
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Marisa Fusto
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Alessandra Vergori
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Gianpiero D'Offizi
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Fabrizio Taglietti
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Andrea Antinori
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Emanuele Nicastri
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Luisa Marchioni
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Fabrizio Palmieri
- Infectious Disease-Clinical Department, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Giuseppe Ippolito
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
- General Directorate for Research and Health Innovation, Italian Ministry of Health, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Agrati
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy.
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy.
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy.
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy.
| |
Collapse
|
213
|
Lobato TB, Gennari-Felipe M, Pauferro JRB, Correa IS, Santos BF, Dias BB, de Oliveira Borges JC, dos Santos CS, de Sousa Santos ES, de Araújo MJL, Ferreira LA, Pereira SA, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges L, Cury-Boaventura MF, Vinolo MAR, Pithon-Curi TC, Masi LN, Curi R, Hirabara SM, Gorjão R. Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Front Microbiol 2022; 13:1037469. [PMID: 36406408 PMCID: PMC9670542 DOI: 10.3389/fmicb.2022.1037469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 03/27/2024] Open
Abstract
Recent studies show that the metabolic characteristics of different leukocytes, such as, lymphocytes, neutrophils, and macrophages, undergo changes both in the face of infection with SARS-CoV-2 and in obesity and type 2 diabetes mellitus (DM2) condition. Thus, the objective of this review is to establish a correlation between the metabolic changes caused in leukocytes in DM2 and obesity that may favor a worse prognosis during SARS-Cov-2 infection. Chronic inflammation and hyperglycemia, specific and usual characteristics of obesity and DM2, contributes for the SARS-CoV-2 replication and metabolic disturbances in different leukocytes, favoring the proinflammatory response of these cells. Thus, obesity and DM2 are important risk factors for pro-inflammatory response and metabolic dysregulation that can favor the occurrence of the cytokine storm, implicated in the severity and high mortality risk of the COVID-19 in these patients.
Collapse
Affiliation(s)
- Tiago Bertola Lobato
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Matheus Gennari-Felipe
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Ilana Souza Correa
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Ferreira Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Belmiro Dias
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - João Carlos de Oliveira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Camila Soares dos Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Maria Janaína Leite de Araújo
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Liliane Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Sara Araujo Pereira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Leandro Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Renata Gorjão
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| |
Collapse
|
214
|
Melero I, Villalba-Esparza M, Recalde-Zamacona B, Jiménez-Sánchez D, Teijeira Á, Argueta A, García-Tobar L, Álvarez-Gigli L, Sainz C, Garcia-Ros D, Toledo E, Abengozar-Muela M, Fernández-Alonso M, Rodríguez-Mateos M, Reina G, Carmona-Torre F, Quiroga JA, Del Pozo JL, Cross A, López-Janeiro Á, Hardisson D, Echeveste JI, Lozano MD, Ho LP, Klenerman P, Issa F, Landecho MF, de Andrea CE. Neutrophil Extracellular Traps, Local IL-8 Expression, and Cytotoxic T-Lymphocyte Response in the Lungs of Patients With Fatal COVID-19. Chest 2022; 162:1006-1016. [PMID: 35714708 PMCID: PMC9197577 DOI: 10.1016/j.chest.2022.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Excessive inflammation is pathogenic in the pneumonitis associated with severe COVID-19. Neutrophils are among the most abundantly present leukocytes in the inflammatory infiltrates and may form neutrophil extracellular traps (NETs) under the local influence of cytokines. NETs constitute a defense mechanism against bacteria, but have also been shown to mediate tissue damage in a number of diseases. RESEARCH QUESTION Could NETs and their tissue-damaging properties inherent to neutrophil-associated functions play a role in the respiratory failure seen in patients with severe COVID-19, and how does this relate to the SARS-CoV-2 viral loads, IL-8 (CXCL8) chemokine expression, and cytotoxic T-lymphocyte infiltrates? STUDY DESIGN AND METHODS Sixteen lung biopsy samples obtained immediately after death were analyzed methodically as exploratory and validation cohorts. NETs were analyzed quantitatively by multiplexed immunofluorescence and were correlated with local levels of IL-8 messenger RNA (mRNA) and the density of CD8+ T-cell infiltration. SARS-CoV-2 presence in tissue was quantified by reverse-transcriptase polymerase chain reaction and immunohistochemistry analysis. RESULTS NETs were found in the lung interstitium and surrounding the bronchiolar epithelium with interindividual and spatial heterogeneity. NET density did not correlate with SARS-CoV-2 tissue viral load. NETs were associated with local IL-8 mRNA levels. NETs were also detected in pulmonary thrombi and in only one of eight liver tissues. NET focal presence correlated negatively with CD8+ T-cell infiltration in the lungs. INTERPRETATION Abundant neutrophils undergoing NETosis are found in the lungs of patients with fatal COVID-19, but no correlation was found with viral loads. The strong association between NETs and IL-8 points to this chemokine as a potentially causative factor. The function of cytotoxic T-lymphocytes in the immune responses against SARS-CoV-2 may be interfered with by the presence of NETs.
Collapse
Affiliation(s)
- Ignacio Melero
- Division of Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - María Villalba-Esparza
- Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Álvaro Teijeira
- Division of Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Alan Argueta
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Laura García-Tobar
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Cristina Sainz
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - David Garcia-Ros
- Department of Anatomy, Physiology and Pathology, University of Navarra, Pamplona, Spain
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, IdiSNA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Institute of Health Carlos III, Madrid, Spain
| | | | - Mirian Fernández-Alonso
- Navarra Institute for Health Research, Pamplona, Spain; Department of Microbiology and Infectious Diseases, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mariano Rodríguez-Mateos
- Department of Microbiology and Infectious Diseases, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gabriel Reina
- Navarra Institute for Health Research, Pamplona, Spain; Department of Microbiology and Infectious Diseases, Clínica Universidad de Navarra, Pamplona, Spain
| | - Francisco Carmona-Torre
- Navarra Institute for Health Research, Pamplona, Spain; Department of Microbiology and Infectious Diseases, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Jose L Del Pozo
- Navarra Institute for Health Research, Pamplona, Spain; Department of Microbiology and Infectious Diseases, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amy Cross
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, England
| | | | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - José I Echeveste
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain; Department of Anatomy, Physiology and Pathology, University of Navarra, Pamplona, Spain
| | - Maria D Lozano
- Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain; Department of Anatomy, Physiology and Pathology, University of Navarra, Pamplona, Spain
| | - Ling-Pei Ho
- MRC Human Immunology Unit, University of Oxford, Oxford, England
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, Oxford, England
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, England
| | - Manuel F Landecho
- Department of Internal Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Carlos E de Andrea
- Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain; Department of Anatomy, Physiology and Pathology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
215
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation,Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
216
|
Thompson-Souza GA, Vasconcelos CRI, Neves JS. Eosinophils: Focus on DNA extracellular traps. Life Sci 2022; 311:121191. [DOI: 10.1016/j.lfs.2022.121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
217
|
Appelgren D, O’Sullivan KM. Editorial: The role of leukocyte extracellular traps in Inflammation and autoimmunity. Front Immunol 2022; 13:1075026. [PMID: 36389784 PMCID: PMC9664385 DOI: 10.3389/fimmu.2022.1075026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Daniel Appelgren
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Kim Maree O’Sullivan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, VIC, Australia,*Correspondence: Kim Maree O’Sullivan,
| |
Collapse
|
218
|
Dupuy A, Ju LA, Chiu J, Passam FH. Mechano-Redox Control of Integrins in Thromboinflammation. Antioxid Redox Signal 2022; 37:1072-1093. [PMID: 35044225 DOI: 10.1089/ars.2021.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: How mechanical forces and biochemical cues are coupled remains a miracle for many biological processes. Integrins, well-known adhesion receptors, sense changes in mechanical forces and reduction-oxidation reactions (redox) in their environment to mediate their adhesive function. The coupling of mechanical and redox function is a new area of investigation. Disturbance of normal mechanical forces and the redox balance occurs in thromboinflammatory conditions; atherosclerotic plaques create changes to the mechanical forces in the circulation. Diabetes induces redox changes in the circulation by the production of reactive oxygen species and vascular inflammation. Recent Advances: Integrins sense changes in the blood flow shear stress at the level of focal adhesions and respond to flow and traction forces by increased signaling. Talin, the integrin-actin linker, is a traction force sensor and adaptor. Oxidation and reduction of integrin disulfide bonds regulate their adhesion. A conserved disulfide bond in integrin αlpha IIb beta 3 (αIIbβ3) is directly reduced by the thiol oxidoreductase endoplasmic reticulum protein 5 (ERp5) under shear stress. Critical Issues: The coordination of mechano-redox events between the extracellular and intracellular compartments is an active area of investigation. Another fundamental issue is to determine the spatiotemporal arrangement of key regulators of integrins' mechanical and redox interactions. How thromboinflammatory conditions lead to mechanoredox uncoupling is relatively unexplored. Future Directions: Integrated approaches, involving disulfide bond biochemistry, microfluidic assays, and dynamic force spectroscopy, will aid in showing that cell adhesion constitutes a crossroad of mechano- and redox biology, within the same molecule, the integrin. Antioxid. Redox Signal. 37, 1072-1093.
Collapse
Affiliation(s)
- Alexander Dupuy
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| | - Lining Arnold Ju
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia.,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Australia
| | - Joyce Chiu
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,ACRF Centenary Cancer Research Centre, The Centenary Institute, Camperdown, Australia
| | - Freda H Passam
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| |
Collapse
|
219
|
Rossi E, Mutti L, Morrione A, Giordano A. Neuro-Immune Interactions in Severe COVID-19 Infection. Pathogens 2022; 11:1256. [PMID: 36365007 PMCID: PMC9699641 DOI: 10.3390/pathogens11111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a new coronavirus that has affected the world since 2019. Interstitial pneumonia is the most common clinical presentation, but additional symptoms have been reported, including neurological manifestations. Severe forms of infection, especially in elderly patients, present as an excessive inflammatory response called "cytokine storm", which can lead to acute respiratory distress syndrome (ARDS), multiorgan failure and death. Little is known about the relationship between symptoms and clinical outcomes or the characteristics of virus-host interactions. The aim of this narrative review is to highlight possible links between neurological involvement and respiratory damage mediated by pathological inflammatory pathways in SARS-CoV-2 infection. We will focus on neuro-immune interactions and age-related immunity decline and discuss some pathological mechanisms that contribute to negative outcomes in COVID-19 patients. Furthermore, we will describe available therapeutic strategies and their effects on COVID-19 neurological symptoms.
Collapse
Affiliation(s)
- Elena Rossi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Italian Group for Research and Therapy for Mesothelioma (GIMe), 27058 Voghera, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
220
|
Lebourgeois S, David A, Chenane HR, Granger V, Menidjel R, Fidouh N, Noël B, Delelis O, Richetta C, Charpentier C, Chollet-Martin S, Descamps D, Visseaux B, de Chaisemartin L. Differential activation of human neutrophils by SARS-CoV-2 variants of concern. Front Immunol 2022; 13:1010140. [PMID: 36389717 PMCID: PMC9646985 DOI: 10.3389/fimmu.2022.1010140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 07/22/2023] Open
Abstract
The emerging SARS-CoV-2 virus has affected the entire world with over 600 million confirmed cases and 6.5 million deaths as of September 2022. Since the beginning of the pandemic, several variants of SARS-CoV-2 have emerged, with different infectivity and virulence. Several studies suggest an important role of neutrophils in SARS-Cov-2 infection severity, but data about direct activation of neutrophils by the virus is scarce. Here, we studied the in vitro activation of human neutrophils by SARS-CoV-2 variants of concern (VOCs). In our work, we show that upon stimulation with SARS-Cov-2 infectious particles, human healthy resting neutrophils upregulate activation markers, degranulate IL-8, produce Reactive Oxygen Species and release Neutrophil Extracellular Traps. Neutrophil activation was dependent on TLR7/8 and IRF3/STING. We then compared the activation potential of neutrophils by SARS-CoV-2 variants and showed a significantly increased activation by the Delta variant and a decreased activation by the Omicron variant as compared to the initial strain. In this study, we demonstrate that the SARS-Cov-2 virus can directly activate neutrophils in COVID-19 and that the different VOCs had differences in neutrophil activation intensity that mirror the differences of clinical severity. These data highlight the need to address neutrophil-virus interactions as a potential target for therapeutic intervention in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Samuel Lebourgeois
- Université Paris Cité, Infection Antimicrobials Modelling Evolution (IAME), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Ambroise David
- Assistance Publique - Hôpitaux de Paris (AP-HP), University Hospital Bichat-Claude Bernard, Laboratoire d’Immunologie, Paris, France
| | - Houssem Redha Chenane
- Université Paris Cité, Infection Antimicrobials Modelling Evolution (IAME), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Vanessa Granger
- Assistance Publique - Hôpitaux de Paris (AP-HP), University Hospital Bichat-Claude Bernard, Laboratoire d’Immunologie, Paris, France
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale (INSERM), Châtenay-Malabry, France
| | - Reyene Menidjel
- Université Paris Cité, Infection Antimicrobials Modelling Evolution (IAME), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Nadhira Fidouh
- Assistance Publique - Hôpitaux de Paris (AP-HP), University Hospital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France
| | - Benoît Noël
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale (INSERM), Châtenay-Malabry, France
| | - Olivier Delelis
- LBPA-Laboratoire Biologie Pharmacologie Appliquée, Ecole Normal Supérieur (ENS) Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) Unité Mix de Recherche (UMR), Université Paris-Saclay, Gif-sur-yvette, France
| | - Clémence Richetta
- LBPA-Laboratoire Biologie Pharmacologie Appliquée, Ecole Normal Supérieur (ENS) Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) Unité Mix de Recherche (UMR), Université Paris-Saclay, Gif-sur-yvette, France
| | - Charlotte Charpentier
- Université Paris Cité, Infection Antimicrobials Modelling Evolution (IAME), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), University Hospital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France
| | - Sylvie Chollet-Martin
- Assistance Publique - Hôpitaux de Paris (AP-HP), University Hospital Bichat-Claude Bernard, Laboratoire d’Immunologie, Paris, France
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale (INSERM), Châtenay-Malabry, France
| | - Diane Descamps
- Université Paris Cité, Infection Antimicrobials Modelling Evolution (IAME), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), University Hospital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France
| | - Benoit Visseaux
- Université Paris Cité, Infection Antimicrobials Modelling Evolution (IAME), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), University Hospital Bichat-Claude Bernard, Laboratoire de Virologie, Paris, France
| | - Luc de Chaisemartin
- Assistance Publique - Hôpitaux de Paris (AP-HP), University Hospital Bichat-Claude Bernard, Laboratoire d’Immunologie, Paris, France
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale (INSERM), Châtenay-Malabry, France
| |
Collapse
|
221
|
Borczuk AC, Yantiss RK. The pathogenesis of coronavirus-19 disease. J Biomed Sci 2022; 29:87. [PMID: 36289507 PMCID: PMC9597981 DOI: 10.1186/s12929-022-00872-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/20/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) is the causal agent of coronavirus disease-2019 (COVID-19), a systemic illness characterized by variably severe pulmonary symptoms, cardiac conduction abnormalities, diarrhea, and gastrointestinal bleeding, as well as neurologic deficits, renal insufficiency, myalgias, endocrine abnormalities, and other perturbations that reflect widespread microvascular injury and a pro-inflammatory state. The mechanisms underlying the various manifestations of viral infection are incompletely understood but most data suggest that severe COVID-19 results from virus-driven perturbations in the immune system and resultant tissue injury. Aberrant interferon-related responses lead to alterations in cytokine elaboration that deplete resident immune cells while simultaneously recruiting hyperactive macrophages and functionally altered neutrophils, thereby tipping the balance from adaptive immunity to innate immunity. Disproportionate activation of these macrophages and neutrophils further depletes normal activity of B-cells, T-cells, and natural killer (NK) cells. In addition, this pro-inflammatory state stimulates uncontrolled complement activation and development of neutrophil extracellular traps (NETS), both of which promote the coagulation cascade and induce a state of “thrombo-inflammation”. These perturbations have similar manifestations in multiple organ systems, which frequently show pathologic findings related to microvascular injury and thrombosis of large and small vessels. However, the pulmonary findings in patients with severe COVID-19 are generally more pronounced than those of other organs. Not only do they feature inflammatory thromboses and endothelial injury, but much of the parenchymal damage stems from failed maturation of alveolar pneumocytes, interactions between type 2 pneumocytes and non-resident macrophages, and a greater degree of NET formation. The purpose of this review is to discuss the pathogenesis underlying organ damage that can occur in patients with SARS-CoV-2 infection. Understanding these mechanisms of injury is important to development of future therapies for patients with COVID-19, many of which will likely target specific components of the immune system, particularly NET induction, pro-inflammatory cytokines, and subpopulations of immune cells.
Collapse
Affiliation(s)
- Alain C. Borczuk
- grid.512756.20000 0004 0370 4759Department of Pathology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Greenvale, NY USA
| | - Rhonda K. Yantiss
- grid.5386.8000000041936877XDepartment of Pathology and Laboratory Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, NY 10065 USA
| |
Collapse
|
222
|
Sun Y, Zou Y, Wang H, Cui G, Yu Z, Ren Z. Immune response induced by novel coronavirus infection. Front Cell Infect Microbiol 2022; 12:988604. [PMID: 36389144 PMCID: PMC9641212 DOI: 10.3389/fcimb.2022.988604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has been prominent around the world since it was first discovered, affecting more than 100 million people. Although the symptoms of most infected patients are not serious, there is still a considerable proportion of patients who need hospitalization and even develop fatal symptoms such as cytokine storms, acute respiratory distress syndrome and so on. Cytokine storm is usually described as a collection of clinical manifestations caused by overactivation of the immune system, which plays an important role in tissue injury and multiorgan failure. The immune system of healthy individuals is composed of two interrelated parts, the innate immune system and the adaptive immune system. Innate immunity is the body's first line of defense against viruses; it can quickly perceive viruses through pattern recognition receptors and activate related inflammatory pathways to clear pathogens. The adaptive immune system is activated by specific antigens and is mainly composed of CD4+ T cells, CD8+ T cells and B cells, which play different roles in viral infection. Here, we discuss the immune response after SARS-CoV-2 infection. In-depth study of the recognition of and response of innate immunity and adaptive immunity to SARS-CoV-2 will help to prevent the development of critical cases and aid the exploration of more targeted treatments.
Collapse
Affiliation(s)
- Ying Sun
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Zou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
223
|
Wan Y, Shen J, Ouyang J, Dong P, Hong Y, Liang L, Liu J. Bibliometric and visual analysis of neutrophil extracellular traps from 2004 to 2022. Front Immunol 2022; 13:1025861. [PMID: 36341351 PMCID: PMC9634160 DOI: 10.3389/fimmu.2022.1025861] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/27/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs) are specialized structures formed by neutrophils that were initially found to be important in killing pathogenic bacteria during infection. With the development of related research, the relationship between NETs and diseases such as sepsis, cancer, and systemic lupus erythematosus has received close attention. However, there is a lack of reports that comprehensively and objectively present the current status of NETs-related studies. Therefore, this study aims to visually analyze the current status and trends of NETs-related research by means of bibliometrics and knowledge mapping. Methods NETs-related articles and reviews were retrieved using the Web of Science core collection subject search, and bibliometric analysis was performed in Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 4866 publications from 2004 to 2022 were included in the bibliometric analysis. The number of publications shows an increasing trend from year to year. Collaborative network analysis shows that the United States and Germany are the most influential countries in this field, with the highest number of publications and citations. The journal with the most publications is Frontiers in Immunology. Brinkmann Volker is an authoritative author in this field, and his publication "Neutrophil extracellular traps kill bacteria" is the most frequently cited. The literature and keyword analysis shows that the relationship between NETs and diseases (hematological diseases, sepsis, cancer, etc.) and cell death (apoptosis, necroptosis, pyroptosis, etc.) is a popular research topic. Currently, NETs and SARS-CoV-2-related studies are at the forefront of the field. Conclusion This study is the first to visualize the research in NETs-related fields using bibliometric methods, revealing the trends and frontiers of NETs research. This study will provide valuable references for scholars to find research focus questions and partners.
Collapse
Affiliation(s)
- Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jiafu Ouyang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lixin Liang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Jinghua Liu,
| |
Collapse
|
224
|
Gutiérrez-Pérez IA, Buendía-Roldán I, Pérez-Rubio G, Chávez-Galán L, Hernández-Zenteno RDJ, Aguilar-Duran H, Fricke-Galindo I, Zaragoza-García O, Falfán-Valencia R, Guzmán-Guzmán IP. Outcome predictors in COVID-19: An analysis of emergent systemic inflammation indices in Mexican population. Front Med (Lausanne) 2022; 9:1000147. [PMID: 36341268 PMCID: PMC9633849 DOI: 10.3389/fmed.2022.1000147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/30/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction The systemic viral disease caused by the SARS-CoV-2 called coronavirus disease 2019 (COVID-19) continues to be a public health problem worldwide. Objective This study is aimed to evaluate the association and predictive value of indices of systemic inflammation with severity and non-survival of COVID-19 in Mexican patients. Materials and Methods A retrospective study was carried out on 807 subjects with a confirmed diagnosis of COVID-19. Clinical characteristics, acute respiratory distress syndrome (ARDS), severity according to PaO2/FiO2 ratio, invasive mechanical ventilation (IMV), and non-survival outcome were considered to assess the predictive value and the association of 11 systemic inflammatory indices derived from hematological parameters analyzed at the hospital admission of patients. The receiver operating characteristics curve was applied to determine the thresholds for 11 biomarkers, and their prognostic values were assessed via the Kaplan-Meier method. Results 26% of the studied subjects showed COVID-19 severe (PaO2/FiO2 ratio ≤ 100), 82.4% required IMV, and 39.2% were non-survival. The indices NHL, NLR, RDW, dNLR, and SIRI displayed predictive values for severe COVID-19 and non-survival. NHL, SIRI, and NLR showed predictive value for IMV. The cut-off values for RDW (OR = 1.85, p < 0.001), NHL (OR = 1.67, p = 0.004) and NLR (OR = 1.56, p = 0.012) were mainly associated with severe COVID-19. NHL (OR = 3.07, p < 0.001), AISI (OR = 2.64, p < 0.001) and SIRI (OR = 2.51, p < 0.001) were associated with IMV support, while for non-survival the main indices associated were NHL (OR = 2.65, p < 0.001), NLR (OR = 2.26, p < 0.001), dNLR (OR = 1.92, p < 0.001), SIRI (OR = 1.67, p = 0.002) and SII (OR = 1.50, p = 0.010). The patients with an RDW, PLR, NLR, dNLR, MLR, SII, and NHL above the cut-off had a survival probability of COVID-19 50% lower, with an estimated mean survival time of 40 days. Conclusion The emergent systemic inflammation indices NHL, NLR, RDW, SII, and SIRI have a predictive power of severe COVID-19, IMV support, and low survival probability during hospitalization by COVID-19 in Mexican patients.
Collapse
Affiliation(s)
- Ilse Adriana Gutiérrez-Pérez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | | | - Hiram Aguilar-Duran
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Oscar Zaragoza-García
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | |
Collapse
|
225
|
Corrêa RO, Castro PR, Moser R, Ferreira CM, Quesniaux VFJ, Vinolo MAR, Ryffel B. Butyrate: Connecting the gut-lung axis to the management of pulmonary disorders. Front Nutr 2022; 9:1011732. [PMID: 36337621 PMCID: PMC9631819 DOI: 10.3389/fnut.2022.1011732] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites released by bacterial components of the microbiota. These molecules have a wide range of effects in the microbiota itself, but also in host cells in which they are known for contributing to the regulation of cell metabolism, barrier function, and immunological responses. Recent studies indicate that these molecules are important players in the gut-lung axis and highlight the possibility of using strategies that alter their intestinal production to prevent or treat distinct lung inflammatory diseases. Here, we review the effects of the SCFA butyrate and its derivatives in vitro and in vivo on murine models of respiratory disorders, besides discussing the potential therapeutic use of butyrate and the other SCFAs in lung diseases.
Collapse
Affiliation(s)
- Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Laboratory of Intestinal Immunology, Institut Imagine, INSERM U1163, Paris, France
| | - Pollyana Ribeiro Castro
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Caroline Marcantonio Ferreira
- Department of Pharmaceutics Science, Institute of Environmental, Chemistry, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | | | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, Institute of Biology, University of Campinas, Campinas, Brazil
- Center for Research on Obesity and Comorbidities, University of Campinas, Campinas, Brazil
- *Correspondence: Marco Aurélio Ramirez Vinolo,
| | - Bernhard Ryffel
- CNRS, INEM, UMR 7355, University of Orléans, Orléans, France
- Bernhard Ryffel,
| |
Collapse
|
226
|
Huang P, Zhang J, Duan W, Jiao J, Leng A, Qu J. Plant polysaccharides with anti-lung injury effects as a potential therapeutic strategy for COVID-19. Front Pharmacol 2022; 13:982893. [DOI: 10.3389/fphar.2022.982893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
When coronavirus disease 2019 (COVID-19) develops into the severe phase, lung injury, acute respiratory distress syndrome, and/or respiratory failure could develop within a few days. As a result of pulmonary tissue injury, pathomorphological changes usually present endothelial dysfunction, inflammatory cell infiltration of the lung interstitium, defective gas exchange, and wall leakage. Consequently, COVID-19 may progress to tremendous lung injury, ongoing lung failure, and death. Exploring the treatment drugs has important implications. Recently, the application of traditional Chinese medicine had better performance in reducing fatalities, relieving symptoms, and curtailing hospitalization. Through constant research and study, plant polysaccharides may emerge as a crucial resource against lung injury with high potency and low side effects. However, the absence of a comprehensive understanding of lung-protective mechanisms impedes further investigation of polysaccharides. In the present article, a comprehensive review of research into plant polysaccharides in the past 5 years was performed. In total, 30 types of polysaccharides from 19 kinds of plants have shown lung-protective effects through the pathological processes of inflammation, oxidative stress, apoptosis, autophagy, epithelial–mesenchymal transition, and immunomodulation by mediating mucin and aquaporins, macrophage, endoplasmic reticulum stress, neutrophil, TGF-β1 pathways, Nrf2 pathway, and other mechanisms. Moreover, the deficiencies of the current studies and the future research direction are also tentatively discussed. This research provides a comprehensive perspective for better understanding the mechanism and development of polysaccharides against lung injury for the treatment of COVID-19.
Collapse
|
227
|
Pérez-Guerrero P, Illanes-Álvarez F, Márquez-Ruiz D, Campaña-Gómez I, Cuesta-Sancho S, Márquez-Coello M, Girón-González JA. Implication of Neutrophils Extracellular Traps in the Pathogenesis of SARS-CoV-2 pneumonia. Biomedicines 2022; 10:biomedicines10102638. [PMID: 36289900 PMCID: PMC9599188 DOI: 10.3390/biomedicines10102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral blood polymorphonuclear neutrophils (PMNs) forming extracellular traps (NETs), as well as endothelial- and platelet-derived parameters, have been analyzed in patients with SARS-CoV-2 pneumonia, and their prognostic role has been evaluated. Eighty-seven consecutive patients hospitalized with SARS-CoV-2 pneumonia were prospectively selected. A sample of 30 healthy individuals served as the control group. Clinical and oxygenation (oxygen saturation to fraction of inspired oxygen ratio—SpO2/FiO2) characteristics and PMNs forming NETs, serum levels of myeloperoxidase, E-selectin, vascular cell adhesion molecule 1—VCAM1—vascular endothelial growth factor, P-selectin, platelet factor 4 and plasma concentrations of D-dimer were evaluated at hospital admission, at discharge and 14 days after discharge. Intensive care unit admission or death was the primary composite endpoint. Patients showed a higher number of PMNs forming NETs than healthy controls. The absolute number of PMNs forming NETs was inversely correlated with oxygen status (SpO2/FiO2) and positively with inflammatory (C-reactive protein, ferritin) markers and VCAM1. A decrease in, but not a normalization of NETs and endothelial-derived parameters was observed in patients who survived. In conclusion, the formation of NETs runs parallel to that of other inflammatory and endothelial activation markers, and is inverse to the oxygenation parameters, supporting a pathogenic role for PMNs in this entity.
Collapse
Affiliation(s)
- Patricia Pérez-Guerrero
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Francisco Illanes-Álvarez
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Denisse Márquez-Ruiz
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Irene Campaña-Gómez
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Sara Cuesta-Sancho
- Departamento de Inmunología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Mercedes Márquez-Coello
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - José-Antonio Girón-González
- Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Instituto para la Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Correspondence:
| |
Collapse
|
228
|
Musiał K. Update on Innate Immunity in Acute Kidney Injury—Lessons Taken from COVID-19. Int J Mol Sci 2022; 23:ijms232012514. [PMID: 36293370 PMCID: PMC9604105 DOI: 10.3390/ijms232012514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
The serious clinical course of SARS-CoV-2 infection is usually accompanied by acute kidney injury (AKI), worsening prognosis and increasing mortality. AKI in COVID-19 is above all a consequence of systemic dysregulations leading to inflammation, thrombosis, vascular endothelial damage and necrosis. All these processes rely on the interactions between innate immunity elements, including circulating blood cells, resident renal cells, their cytokine products, complement systems, coagulation cascades and contact systems. Numerous simultaneous pathways of innate immunity should secure an effective host defense. Since they all form a network of cross-linked auto-amplification loops, uncontrolled activation is possible. When the actions of selected pathways amplify, cascade activation evades control and the propagation of inflammation and necrosis worsens, accompanied by complement overactivity and immunothrombosis. The systemic activation of innate immunity reaches the kidney, where the damage affecting single tubular cells spreads through tissue collateral damage and triggers AKI. This review is an attempt to synthetize the connections between innate immunity components engaged in COVID-19-related AKI and to summarize the knowledge on the pathophysiological background of processes responsible for renal damage.
Collapse
Affiliation(s)
- Kinga Musiał
- Department of Pediatric Nephrology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| |
Collapse
|
229
|
LaSalle TJ, Gonye ALK, Freeman SS, Kaplonek P, Gushterova I, Kays KR, Manakongtreecheep K, Tantivit J, Rojas-Lopez M, Russo BC, Sharma N, Thomas MF, Lavin-Parsons KM, Lilly BM, Mckaig BN, Charland NC, Khanna HK, Lodenstein CL, Margolin JD, Blaum EM, Lirofonis PB, Revach OY, Mehta A, Sonny A, Bhattacharyya RP, Parry BA, Goldberg MB, Alter G, Filbin MR, Villani AC, Hacohen N, Sade-Feldman M. Longitudinal characterization of circulating neutrophils uncovers phenotypes associated with severity in hospitalized COVID-19 patients. Cell Rep Med 2022; 3:100779. [PMID: 36208629 PMCID: PMC9510054 DOI: 10.1016/j.xcrm.2022.100779] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/02/2022] [Accepted: 09/21/2022] [Indexed: 01/21/2023]
Abstract
Mechanisms of neutrophil involvement in severe coronavirus disease 2019 (COVID-19) remain incompletely understood. Here, we collect longitudinal blood samples from 306 hospitalized COVID-19+ patients and 86 controls and perform bulk RNA sequencing of enriched neutrophils, plasma proteomics, and high-throughput antibody profiling to investigate relationships between neutrophil states and disease severity. We identify dynamic switches between six distinct neutrophil subtypes. At days 3 and 7 post-hospitalization, patients with severe disease display a granulocytic myeloid-derived suppressor cell-like gene expression signature, while patients with resolving disease show a neutrophil progenitor-like signature. Humoral responses are identified as potential drivers of neutrophil effector functions, with elevated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G1 (IgG1)-to-IgA1 ratios in plasma of severe patients who survived. In vitro experiments confirm that while patient-derived IgG antibodies induce phagocytosis in healthy donor neutrophils, IgA antibodies predominantly induce neutrophil cell death. Overall, our study demonstrates a dysregulated myelopoietic response in severe COVID-19 and a potential role for IgA-dominant responses contributing to mortality.
Collapse
Affiliation(s)
- Thomas J LaSalle
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA.
| | - Anna L K Gonye
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel S Freeman
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Irena Gushterova
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyle R Kays
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kasidet Manakongtreecheep
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica Tantivit
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Brian C Russo
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Nihaarika Sharma
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Molly F Thomas
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Brendan M Lilly
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brenna N Mckaig
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole C Charland
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hargun K Khanna
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Carl L Lodenstein
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Justin D Margolin
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Blaum
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paola B Lirofonis
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Or-Yam Revach
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Arnav Mehta
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abraham Sonny
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roby P Bhattacharyya
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Blair Alden Parry
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marcia B Goldberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Michael R Filbin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Moshe Sade-Feldman
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
230
|
de Oliveira Formiga R, Amaral FC, Souza CF, Mendes DAGB, Wanderley CWS, Lorenzini CB, Santos AA, Antônia J, Faria LF, Natale CC, Paula NM, Silva PCS, Fonseca FR, Aires L, Heck N, Starick MR, Queiroz-Junior CM, Santos FRS, de Souza FRO, Costa VV, Barroso SPC, Morrot A, Van Weyenbergh J, Sordi R, Alisson-Silva F, Cunha FQ, Rocha EL, Chollet-Martin S, Hurtado-Nedelec MM, Martin C, Burgel PR, Mansur DS, Maurici R, Macauley MS, Báfica A, Witko-Sarsat V, Spiller F. Neuraminidase inhibitors rewire neutrophil function in vivo in murine sepsis and ex vivo in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2020.11.12.379115. [PMID: 33200130 PMCID: PMC7668734 DOI: 10.1101/2020.11.12.379115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Neuraminidase (NEU)-mediated cleavage of surface sialic acid has been demonstrated to regulate leukocyte responses. Here, we report that antiviral NEU inhibitors constrain host NEU activity, surface sialic acid release, ROS production, and NETs released by microbial-activated human neutrophils. In vivo, treatment with Oseltamivir results in infection control and host survival in peritonitis and pneumonia models of sepsis. Single-cell RNA sequencing re-analysis of publicly data sets of respiratory tract samples from critical COVID-19 patients revealed an overexpression of NEU1 in infiltrated neutrophils. Moreover, Oseltamivir or Zanamivir treatment of whole blood cells from severe COVID-19 patients reduces host NEU-mediated shedding of cell surface sialic acid and neutrophil overactivation. These findings suggest that neuraminidase inhibitors can serve as host-directed interventions to dampen neutrophil dysfunction in severe infections.
Collapse
Affiliation(s)
- Rodrigo de Oliveira Formiga
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Université de Paris, Institut Cochin, INSERM U1016, CNRS, Paris, France
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Flávia C. Amaral
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Camila F. Souza
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Daniel A. G. B. Mendes
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Carlos W. S. Wanderley
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Cristina B. Lorenzini
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Adara A. Santos
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Juliana Antônia
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Lucas F. Faria
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Caio C. Natale
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Nicholas M. Paula
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Priscila C. S. Silva
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Fernanda R. Fonseca
- Department of Clinical Medicine, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Luan Aires
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Nicoli Heck
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Márick R. Starick
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Celso M. Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe R. S. Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Filipe R. O. de Souza
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian V. Costa
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Shana P. C. Barroso
- Molecular Biology Laboratory, Institute of Biomedical Research, Marcilio Dias Naval Hospital, Navy of Brazil, RJ, Brazil
| | - Alexandre Morrot
- Tuberculosis Research Laboratory, Faculty of Medicine, Federal University of Rio de Janeiro
- Immunoparasitology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Regina Sordi
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Frederico Alisson-Silva
- Department of Immunology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Edroaldo L. Rocha
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Sylvie Chollet-Martin
- INSERM UMR 996, “Infammation, Microbiome and Immunosurveillance”, Faculty of Pharmacy, Université Paris-Saclay, Châtenay-Malabry, France
| | | | - Clémence Martin
- Université de Paris, Institut Cochin, INSERM U1016, CNRS, Paris, France
- Department of Pneumology, AP-HP, Hôpital Cochin, Paris, France
| | - Pierre-Régis Burgel
- Université de Paris, Institut Cochin, INSERM U1016, CNRS, Paris, France
- Department of Pneumology, AP-HP, Hôpital Cochin, Paris, France
| | - Daniel S. Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Rosemeri Maurici
- Department of Clinical Medicine, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Matthew S. Macauley
- Department of Chemistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
231
|
Zhang Q, Zhang H, Yan X, Ma S, Yao X, Shi Y, Ping Y, Cao M, Peng C, Wang S, Luo M, Yan C, Zhang S, Han Y, Bian X. Neutrophil infiltration and myocarditis in patients with severe COVID-19: A post-mortem study. Front Cardiovasc Med 2022; 9:1026866. [PMID: 36312241 PMCID: PMC9614157 DOI: 10.3389/fcvm.2022.1026866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
Aims To investigate cardiac pathology in critically ill patients with coronavirus disease 2019 (COVID-19) and identify associations between pathological changes and clinical characteristics. Methods The present autopsy cohort study included hearts from 26 deceased patients hospitalized in intensive care units due to COVID-19, and was conducted at four sites in Wuhan, China. Cases were divided into a neutrophil infiltration group and a no-neutrophil group based on the presence or absence of histopathologically identified neutrophilic infiltrates. Results Among the 26 patients, histopathological examination identified active myocarditis in four patients. All patients with myocarditis exhibited extensive accompanying neutrophil infiltration, and all patients without myocarditis did not. The neutrophil infiltration group exhibited significantly higher rates of detection of interleukin-6 (100 vs. 4.6%) and tumor necrosis factor-alpha (100 vs. 31.8%) than the no-neutrophil group (both p < 0.05). On admission, four patients with neutrophil infiltration in myocardium had significantly higher baseline levels of aspartate aminotransferase, D dimer, and high-sensitivity C reactive protein than the other 22 patients (all p < 0.05). During hospitalization, patients with neutrophil infiltration had significantly higher maximum creatine kinase-MB (median 280.0 IU/L vs. 38.7 IU/L, p = 0.04) and higher troponin I (median 1.112 ng/ml vs. 0.220 ng/ml, p = 0.56) than patients without neutrophil infiltration. Conclusion Active myocarditis was frequently associated with neutrophil infiltration in the hearts of deceased patients with severe COVID-19. Patients with neutrophil-infiltrated myocarditis had a series of severely abnormal laboratory test results on admission, and high maximum creatine kinase-MB during hospitalization. The role of neutrophils in severe heart injury and systemic conditions in patients with COVID-19 should be emphasized.
Collapse
Affiliation(s)
- Quanyu Zhang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Huarong Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Beijing, China
| | - Xiaowei Yan
- Division of Cardiology, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Sicong Ma
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Beijing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Beijing, China
| | - Yifang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Beijing, China
| | - Mianfu Cao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Beijing, China
| | - Chengfei Peng
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Beijing, China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Beijing, China
| | - Min Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Beijing, China
| | - Chenghui Yan
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuyang Zhang
- Division of Cardiology, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Yaling Han
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Beijing, China
| |
Collapse
|
232
|
Foolchand A, Mazaleni S, Ghazi T, Chuturgoon AA. A Review: Highlighting the Links between Epigenetics, COVID-19 Infection, and Vitamin D. Int J Mol Sci 2022; 23:12292. [PMID: 36293144 PMCID: PMC9603374 DOI: 10.3390/ijms232012292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The highly transmittable and infectious COVID-19 remains a major threat worldwide, with the elderly and comorbid individuals being the most vulnerable. While vaccines are currently available, therapeutic drugs will help ease the viral outbreak and prevent serious health outcomes. Epigenetic modifications regulate gene expression through changes in chromatin structure and have been linked to viral pathophysiology. Since epigenetic modifications contribute to the life cycle of the virus and host immune responses to infection, epigenetic drugs are promising treatment targets to ameliorate COVID-19. Deficiency of the multifunctional secosteroid hormone vitamin D is a global health threat. Vitamin D and its receptor function to regulate genes involved in immunity, apoptosis, proliferation, differentiation, and inflammation. Amassed evidence also indicates the biological relations of vitamin D with reduced disease risk, while its receptor can be modulated by epigenetic mechanisms. The immunomodulatory effects of vitamin D suggest a role for vitamin D as a COVID-19 therapeutic agent. Therefore, this review highlights the epigenetic effects on COVID-19 and vitamin D while also proposing a role for vitamin D in COVID-19 infections.
Collapse
Affiliation(s)
| | | | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4041, South Africa
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard College Campus, Durban 4041, South Africa
| |
Collapse
|
233
|
Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol 2022; 13:979719. [PMID: 36274722 PMCID: PMC9582773 DOI: 10.3389/fmicb.2022.979719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 19 (COVID-19) has numerous risk factors leading to severe disease with high mortality rate. Oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels seems to be a common pathway associated with the high COVID-19 mortality. GSH is a unique small but powerful molecule paramount for life. It sustains adequate redox cell signaling since a physiologic level of oxidative stress is fundamental for controlling life processes via redox signaling, but excessive oxidation causes cell and tissue damage. The water-soluble GSH tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) is present in the cytoplasm of all cells. GSH is at 1-10 mM concentrations in all mammalian tissues (highest concentration in liver) as the most abundant non-protein thiol that protects against excessive oxidative stress. Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 to regulate the expression of genes that control antioxidant, inflammatory and immune system responses, facilitating GSH activity. GSH exists in the thiol-reduced and disulfide-oxidized (GSSG) forms. Reduced GSH is the prevailing form accounting for >98% of total GSH. The concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell and its alteration is related to various human pathological processes including COVID-19. Oxidative stress plays a prominent role in SARS-CoV-2 infection following recognition of the viral S-protein by angiotensin converting enzyme-2 receptor and pattern recognition receptors like toll-like receptors 2 and 4, and activation of transcription factors like nuclear factor kappa B, that subsequently activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) expression succeeded by ROS production. GSH depletion may have a fundamental role in COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of COVID-19 disease and increasing GSH levels may prevent and subdue the disease. The life value of GSH makes for a paramount research field in biology and medicine and may be key against SARS-CoV-2 infection and COVID-19 disease.
Collapse
|
234
|
Tan Y, Lu S, Wang B, Duan X, Zhang Y, Peng X, Li H, Lin A, Zhan Z, Liu X. Single-cell transcriptome atlas reveals protective characteristics of COVID-19 mRNA vaccine. J Med Virol 2022; 95:e28161. [PMID: 36124363 PMCID: PMC9538852 DOI: 10.1002/jmv.28161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 01/11/2023]
Abstract
Messenger RNA (mRNA) vaccines are promising alternatives to conventional vaccines in many aspects. We previously developed a lipopolyplex (LPP)-based mRNA vaccine (SW0123) that demonstrated robust immunogenicity and strong protective capacity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in mice and rhesus macaques. However, the immune profiles and mechanisms of pulmonary protection induced by SW0123 remain unclear. Through high-resolution single-cell analysis, we found that SW0123 vaccination effectively suppressed SARS-CoV-2-induced inflammatory responses by inhibiting the recruitment of proinflammatory macrophages and increasing the frequency of polymorphonuclear myeloid-derived suppressor cells. In addition, the apoptotic process in both lung epithelial and endothelial cells was significantly inhibited, which was proposed to be one major mechanism contributing to vaccine-induced lung protection. Cell-cell interaction in the lung compartment was also altered by vaccination. These data collectively unravel the mechanisms by which the SW0123 protects against lung damage caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yong Tan
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina,Department of Liver Surgery, Shanghai Institute of TransplantationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuaiyao Lu
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | - Bo Wang
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xuewen Duan
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yunkai Zhang
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina,National Key Laboratory of Medical ImmunologyNaval Medical UniversityShanghaiChina
| | - Xiaozhong Peng
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | | | - Ang Lin
- Vaccine Center, School of Basic Medicine and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Zhenzhen Zhan
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina,Department of Liver Surgery, Shanghai Institute of TransplantationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xingguang Liu
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina,National Key Laboratory of Medical ImmunologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
235
|
Apetrei C, Marx PA, Mellors JW, Pandrea I. The COVID misinfodemic: not new, never more lethal. Trends Microbiol 2022; 30:948-958. [PMID: 35945120 PMCID: PMC9356696 DOI: 10.1016/j.tim.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/26/2022]
Abstract
'Infodemia' is a portmanteau between 'information' and 'epidemics', referring to wide and rapid accumulation and dissemination of information, misinformation, and disinformation about a given subject, such as a disease. As facts, rumors and fears mix and disperse, the misinfodemic creates loud background noise, preventing the general public from discerning between accurate and false information. We compared and contrasted key elements of the AIDS and COVID-19 misinfodemics, to identify common features, and, based on experience with the AIDS pandemic, recommend actions to control and reverse the SARS-CoV-2 misinfodemic that contributed to erode the trust between the public and scientists and governments and has created barriers to control of COVID-19. As pandemics emerge and evolve, providing robust responses to future misinfodemics must be a priority for society and public health.
Collapse
Affiliation(s)
- Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Preston A Marx
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA; Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
236
|
Conway EM, Mackman N, Warren RQ, Wolberg AS, Mosnier LO, Campbell RA, Gralinski LE, Rondina MT, van de Veerdonk FL, Hoffmeister KM, Griffin JH, Nugent D, Moon K, Morrissey JH. Understanding COVID-19-associated coagulopathy. Nat Rev Immunol 2022; 22:639-649. [PMID: 35931818 PMCID: PMC9362465 DOI: 10.1038/s41577-022-00762-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 02/06/2023]
Abstract
COVID-19-associated coagulopathy (CAC) is a life-threatening complication of SARS-CoV-2 infection. However, the underlying cellular and molecular mechanisms driving this condition are unclear. Evidence supports the concept that CAC involves complex interactions between the innate immune response, the coagulation and fibrinolytic pathways, and the vascular endothelium, resulting in a procoagulant condition. Understanding of the pathogenesis of this condition at the genomic, molecular and cellular levels is needed in order to mitigate thrombosis formation in at-risk patients. In this Perspective, we categorize our current understanding of CAC into three main pathological mechanisms: first, vascular endothelial cell dysfunction; second, a hyper-inflammatory immune response; and last, hypercoagulability. Furthermore, we pose key questions and identify research gaps that need to be addressed to better understand CAC, facilitate improved diagnostics and aid in therapeutic development. Finally, we consider the suitability of different animal models to study CAC.
Collapse
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Q Warren
- Molecular Cellular and Systems Blood Science Branch, Division of Blood Diseases and Resources, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laurent O Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert A Campbell
- Department of Internal Medicine, Division of General Medicine, University of Utah, Salt Lake City, UT, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew T Rondina
- Department of Internal Medicine, Division of General Medicine, University of Utah, Salt Lake City, UT, USA
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Karin M Hoffmeister
- Versiti Translational Glycomics Center, Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Diane Nugent
- Department of Paediatrics, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Kyung Moon
- Molecular Cellular and Systems Blood Science Branch, Division of Blood Diseases and Resources, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
- Bacteriology and Mycology Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
237
|
Agarwal S. Neutrophil-Lymphocyte Ratio Predicting Case Severity in SARS-CoV-2 Infection: A Review. Cureus 2022; 14:e29760. [PMID: 36187170 PMCID: PMC9521818 DOI: 10.7759/cureus.29760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
|
238
|
Ligi D, Giglio RV, Henry BM, Lippi G, Ciaccio M, Plebani M, Mannello F. What is the impact of circulating histones in COVID-19: a systematic review. Clin Chem Lab Med 2022; 60:1506-1517. [PMID: 35852070 DOI: 10.1515/cclm-2022-0574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 08/16/2024]
Abstract
The infectious respiratory condition COVID-19 manifests a clinical course ranging from mild/moderate up-to critical systemic dysfunction and death linked to thromboinflammation. During COVID-19 infection, neutrophil extracellular traps participating in cytokine storm and coagulation dysfunction have emerged as diagnostic/prognostic markers. The characterization of NET identified that mainly histones, have the potential to initiate and propagate inflammatory storm and thrombosis, leading to increased disease severity and decreased patient survival. Baseline assessment and serial monitoring of blood histone concentration may be conceivably useful in COVID-19. We performed a literature review to explore the association among increased circulating levels of histones, disease severity/mortality in COVID-19 patients, and comparison of histone values between COVID-19 and non-COVID-19 patients. We carried out an electronic search in Medline and Scopus, using the keywords "COVID-19" OR "SARS-CoV-2" AND "histone" OR "citrullinated histones" OR "hyperhistonemia", between 2019 and present time (i.e., June 07th, 2022), which allowed to select 17 studies, totaling 1,846 subjects. We found that substantially elevated histone values were consistently present in all COVID-19 patients who developed unfavorable clinical outcomes. These findings suggest that blood histone monitoring upon admission and throughout hospitalization may be useful for early identification of higher risk of unfavorable COVID-19 progression. Therapeutic decisions in patients with SARS-CoV-2 based on the use of histone cut-off values may be driven by drugs engaging histones, finally leading to the limitation of cytotoxic, inflammatory, and thrombotic effects of circulating histones in viral sepsis.
Collapse
Affiliation(s)
- Daniela Ligi
- Department of Biomolecular Sciences-DISB, Section of Biochemistry and Biotechnology, University of Urbino Carlo Bo, Urbino, Italy
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BiND, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Brandon M Henry
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Ohio, OH, USA
- IFCC Working Group on SARS-CoV-2 Variants, Milan, Italy
| | - Giuseppe Lippi
- Department of Neuroscience, Biomedicine and Movement, Section of Clinical Biochemistry, University Hospital of Verona, Verona, Italy
- IFCC Task Force on COVID-19, Verona, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics - BiND, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Mario Plebani
- IFCC Working Group on SARS-CoV-2 Variants, Milan, Italy
- Department of Laboratory Medicine, University Hospital of Padova, Padova, Italy
| | - Ferdinando Mannello
- Department of Biomolecular Sciences-DISB, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
239
|
Cavalcante JS, Borges da Silva WRG, de Oliveira LA, Brito IMC, Muller KS, J Vidal IS, Dos Santos LD, Jorge RJB, Almeida C, de Lima Bicho C. Blood plasma proteome alteration after local tissue damage induced by Bothrops erythromelas snake venom in mice. J Proteomics 2022; 269:104742. [PMID: 36174952 DOI: 10.1016/j.jprot.2022.104742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/03/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Snakes of the genus Bothrops are responsible the most snakebites in the Brazil, causing a diverse and complex pathophysiological condition. Bothrops erythromelas is the main specie of medical relevance found in the Caatinga from the Brazilian Northeast region. The pathophysiological effects involving B. erythromelas snakebite as well as the organism reaction in response to this envenomation are not so explored. Thus, edema was induced in mice paws using 2.5 μg or 5.0 μg of B. erythromelas venom, and the percentage of edema was measured. Plasma was collected 30 minutes after the envenomation-induced in mice and analyzed by mass spectrometry. It was identified a total of 112 common plasma proteins differentially abundant among experimental groups, which are involved with the complement system and coagulation cascades, oxidative stress, neutrophil degranulation, platelets degranulation and inflammatory response. Apolipoprotein A1 (Apoa), serum amyloid protein A-4 (Saa4), adiponectin (Adipoq) showed up-regulated in mice plasma after injection of venom, while fibulin (Fbln1), factor XII (F12) and vitamin K-dependent protein Z (Proz) showed down-regulated. The results indicate a protein pattern of thrombo-inflammation to the B. erythromelas snakebite, evidencing potential biomarkers for monitoring this snakebite, new therapeutic targets and its correlations with the degree of envenomation once showed modulations in the abundance among the different groups according to the amount of venom injected into the mice.
Collapse
Affiliation(s)
- Joeliton S Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil.
| | - Weslley Ruan G Borges da Silva
- Department of Biology, Center of Biological and Health Sciences, Paraíba State University (UEPB), Campina Grande, Paraíba, Brazil
| | - Laudicéia Alves de Oliveira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Ingrid Mayara C Brito
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Kevin S Muller
- Institute of Biosciences, São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Ivynna Suellen J Vidal
- Graduate Program in Translational Medicine, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil; Biotechnology Institute (IBTEC), São Paulo University (UNESP - Univ Estadual Paulista), Botucatu, São Paulo, Brazil
| | - Roberta Jeane Bezerra Jorge
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, São Paulo, SP, Brazil
| | - Carla de Lima Bicho
- Department of Biology, Center of Biological and Health Sciences, Paraíba State University (UEPB), Campina Grande, Paraíba, Brazil
| |
Collapse
|
240
|
Rizvi ZA, Babele P, Sadhu S, Madan U, Tripathy MR, Goswami S, Mani S, Kumar S, Awasthi A, Dikshit M. Prophylactic treatment of Glycyrrhiza glabra mitigates COVID-19 pathology through inhibition of pro-inflammatory cytokines in the hamster model and NETosis. Front Immunol 2022; 13:945583. [PMID: 36238303 PMCID: PMC9550929 DOI: 10.3389/fimmu.2022.945583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Severe coronavirus disease (COVID-19) is accompanied by acute respiratory distress syndrome and pulmonary pathology, and is presented mostly with an inflammatory cytokine release, a dysregulated immune response, a skewed neutrophil/lymphocyte ratio, and a hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19-related mortality, the limitation of the use of vaccine against immunocompromised individuals, those with comorbidity, and emerging variants remains a concern. In the current study, we investigate for the first time the efficacy of the Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and a 35%–40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1). In vitro, GG acted as a potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS, and NET generation in a concentration-dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow-derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight through its immunomodulatory properties. Our study provides the proof of concept for GG efficacy against SARS-CoV-2 using a hamster model and opens the path for further studies aimed at identifying the active ingredients of GG and its efficacy in COVID-19 clinical cases.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Prabhakar Babele
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Srikanth Sadhu
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Upasna Madan
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manas Ranjan Tripathy
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Sandeep Goswami
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shailendra Mani
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amit Awasthi
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Madhu Dikshit, ; ; Amit Awasthi,
| | - Madhu Dikshit
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- *Correspondence: Madhu Dikshit, ; ; Amit Awasthi,
| |
Collapse
|
241
|
Burgos RA, Werling D, Hermosilla CR. Editorial: The emerging role of metabolism and metabolic-related receptors on neutrophil extracellular traps (NET) formation. Front Immunol 2022; 13:1028228. [PMID: 36238307 PMCID: PMC9552222 DOI: 10.3389/fimmu.2022.1028228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology and Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Rafael Agustín Burgos,
| | - Dirk Werling
- Centre for Vaccinology and Regenerative Medicine, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Carlos Rodrigo Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
242
|
Ankerhold J, Giese S, Kolb P, Maul-Pavicic A, Voll RE, Göppert N, Ciminski K, Kreutz C, Lother A, Salzer U, Bildl W, Welsink T, Morgenthaler NG, Grawitz AB, Emmerich F, Steinmann D, Huzly D, Schwemmle M, Hengel H, Falcone V. Circulating multimeric immune complexes contribute to immunopathology in COVID-19. Nat Commun 2022; 13:5654. [PMID: 36163132 PMCID: PMC9513013 DOI: 10.1038/s41467-022-32867-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
A dysregulated immune response with high levels of SARS-CoV-2 specific IgG antibodies characterizes patients with severe or critical COVID-19. Although a robust IgG response is considered to be protective, excessive triggering of activating Fc-gamma-receptors (FcγRs) could be detrimental and cause immunopathology. Here, we document excessive FcγRIIIA/CD16A activation in patients developing severe or critical COVID-19 but not in those with mild disease. We identify two independent ligands mediating extreme FcγRIIIA/CD16A activation. Soluble circulating IgG immune complexes (sICs) are detected in about 80% of patients with severe and critical COVID-19 at levels comparable to active systemic lupus erythematosus (SLE) disease. FcγRIIIA/CD16A activation is further enhanced by afucosylation of SARS-CoV-2 specific IgG. Utilizing cell-based reporter systems we provide evidence that sICs can be formed prior to a specific humoral response against SARS-CoV-2. Our data suggest a cycle of immunopathology driven by an early formation of sICs in predisposed patients. These findings suggest a reason for the seemingly paradoxical findings of high antiviral IgG responses and systemic immune dysregulation in severe COVID-19. The involvement of circulating sICs in the promotion of immunopathology in predisposed patients opens new possibilities for intervention strategies to mitigate critical COVID-19 progression. During viral infections high levels of antibodies can form soluble immune complexes (sICs) with antigen and trigger Fcγ receptors (FcγR) leading to increased immunopathology. Here the authors measure FcγRs activation by sICs and consider how these may lead to excessive immunopathology during severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jakob Ankerhold
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Sebastian Giese
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Philipp Kolb
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Andrea Maul-Pavicic
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Nathalie Göppert
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Achim Lother
- Department of Cardiology and Angiology I, University Heart Center, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Interdisciplinary Medical Intensive Care, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Tim Welsink
- InVivo BioTech Services GmbH, Hennigsdorf, Germany
| | | | - Andrea Busse Grawitz
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Steinmann
- Occupational Medical Service, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Valeria Falcone
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
243
|
Exploration of the Potential Link, Hub Genes, and Potential Drugs for Coronavirus Disease 2019 and Lung Cancer Based on Bioinformatics Analysis. JOURNAL OF ONCOLOGY 2022; 2022:8124673. [PMID: 36199786 PMCID: PMC9529395 DOI: 10.1155/2022/8124673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has a huge influence on global public health and the economy. Lung cancer is one of the high-risk factors of COVID-19, but the molecular mechanism of lung cancer and COVID-19 is still unclear, and further research is needed. Therefore, we used the transcriptome information of the public database and adopted bioinformatics methods to identify the common pathways and molecular biomarkers of lung cancer and COVID-19 to further understand the connection between them. The two RNA-seq data sets in this study—GSE147507 (COVID-19) and GSE33532 (lung cancer)—were both derived from the Gene Expression Omnibus (GEO) database and identified differentially expressed genes (DEGs) for lung cancer and COVID-19 patients. We conducted Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis and found some common features between lung cancer and COVID-19. We also performed TFs-gene, miRNAs-gene, and gene-drug analyses. In total, 32 DEGs were found. A protein-protein interaction (PPI) network was constructed by DEGs, and 10 hub genes were screened. Finally, the identified drugs may be helpful for COVID-19 treatment.
Collapse
|
244
|
Del Vecchio S, Terlizzi C, Pellegrino S, Altobelli GG, Fonti R. What molecular imaging of cancer patients can teach us about COVID-19. EUROPEAN PHYSICAL JOURNAL PLUS 2022; 137:1069. [PMID: 36158866 PMCID: PMC9484336 DOI: 10.1140/epjp/s13360-022-03262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 pandemic had a great impact on health systems and cancer care worldwide. Patients with cancer who develop COVID-19 are at high risk of severe outcomes and clarifying the determinants of such vulnerability of cancer patients would be of great clinical benefit. While the mechanisms of SARS-CoV-2 infection have been elucidated, the pathogenetic pathways leading to severe manifestations of the disease are largely unknown. Critical manifestations of COVID-19 mainly occur in elderly patients and in patients with serious comorbidities including cancer. Efforts to understand the intersection of pathways between severe manifestations of COVID-19 and cancer may shed light on the pathogenesis of critical illness in COVID-19 patients. Here, we will focus our attention on two major fields of potential intersection between COVID-19 and cancer, namely the dysfunction of immune system and the prothrombotic state that can occur in both COVID-19 and cancer patients, testing whether cancer imaging can provide clues to better understand such interactions.
Collapse
Affiliation(s)
- Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Cristina Terlizzi
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Sara Pellegrino
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Giovanna G. Altobelli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rosa Fonti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
245
|
Damascena HL, Silveira WAA, Castro MS, Fontes W. Neutrophil Activated by the Famous and Potent PMA (Phorbol Myristate Acetate). Cells 2022; 11:2889. [PMID: 36139464 PMCID: PMC9496763 DOI: 10.3390/cells11182889] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
This review will briefly outline the major signaling pathways in PMA-activated neutrophils. PMA is widely used to understand neutrophil pathways and formation of NETs. PMA activates PKC; however, we highlight some isoforms that contribute to specific functions. PKC α, β and δ contribute to ROS production while PKC βII and PKC ζ are involved in cytoskeleton remodeling. Actin polymerization is important for the chemotaxis of neutrophils and its remodeling is connected to ROS balance. We suggest that, although ROS and production of NETs are usually observed together in PMA-activated neutrophils, there might be a regulatory mechanism balancing both. Interestingly, we suggest that serine proteases might determine the PAD4 action. PAD4 could be responsible for the activation of the NF-κB pathway that leads to IL-1β release, triggering the cleavage of gasdermin D by serine proteases such as elastase, leading to pore formation contributing to release of NETs. On the other hand, when serine proteases are inhibited, NETs are formed by citrullination through the PAD4 pathway. This review puts together results from the last 31 years of research on the effects of PMA on the neutrophil and proposes new insights on their interpretation.
Collapse
Affiliation(s)
| | | | | | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Federal District, Brasilia 70910-900, Brazil
| |
Collapse
|
246
|
Belchamber KBR, Thein OS, Hazeldine J, Grudzinska FS, Faniyi AA, Hughes MJ, Jasper AE, Yip KP, Crowley LE, Lugg ST, Sapey E, Parekh D, Thickett DR, Scott A. Dysregulated Neutrophil Phenotype and Function in Hospitalised Non-ICU COVID-19 Pneumonia. Cells 2022; 11:2901. [PMID: 36139476 PMCID: PMC9496854 DOI: 10.3390/cells11182901] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may identify therapeutic targets. Objectives: Examine neutrophil phenotype and function in 41 hospitalised, non-ICU COVID-19 patients versus 23 age-matched controls (AMC) and 26 community acquired pneumonia patients (CAP). Methods: Isolated neutrophils underwent ex vivo analyses for migration, bacterial phagocytosis, ROS generation, NETosis and receptor expression. Circulating DNAse 1 activity, levels of cfDNA, MPO, VEGF, IL-6 and sTNFRI were measured and correlated to clinical outcome. Serial sampling on day three to five post hospitalization were also measured. The effect of ex vivo PI3K inhibition was measured in a further cohort of 18 COVID-19 patients. Results: Compared to AMC and CAP, COVID-19 neutrophils demonstrated elevated transmigration (p = 0.0397) and NETosis (p = 0.0332), and impaired phagocytosis (p = 0.0036) associated with impaired ROS generation (p < 0.0001). The percentage of CD54+ neutrophils (p < 0.001) was significantly increased, while surface expression of CD11b (p = 0.0014) and PD-L1 (p = 0.006) were significantly decreased in COVID-19. COVID-19 and CAP patients showed increased systemic markers of NETosis including increased cfDNA (p = 0.0396) and impaired DNAse activity (p < 0.0001). The ex vivo inhibition of PI3K γ and δ reduced NET release by COVID-19 neutrophils (p = 0.0129). Conclusions: COVID-19 is associated with neutrophil dysfunction across all main effector functions, with altered phenotype, elevated migration and NETosis, and impaired antimicrobial responses. These changes highlight that targeting neutrophil function may help modulate COVID-19 severity.
Collapse
Affiliation(s)
- Kylie B. R. Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Onn S. Thein
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Jon Hazeldine
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
| | - Frances S. Grudzinska
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Aduragbemi A. Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael J. Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Alice E. Jasper
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Kay Por Yip
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Louise E. Crowley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Sebastian T. Lugg
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- PIONEER HDR-UK Hub in Acute Care, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B12 2GW, UK
| | - David R. Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
247
|
Loh JT, Teo JKH, Lam KP. Dok3 restrains neutrophil production of calprotectin during TLR4 sensing of SARS-CoV-2 spike protein. Front Immunol 2022; 13:996637. [PMID: 36172386 PMCID: PMC9510782 DOI: 10.3389/fimmu.2022.996637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
Increased neutrophils and elevated level of circulating calprotectin are hallmarks of severe COVID-19 and they contribute to the dysregulated immune responses and cytokine storm in susceptible patients. However, the precise mechanism controlling calprotectin production during SARS-CoV-2 infection remains elusive. In this study, we showed that Dok3 adaptor restrains calprotectin production by neutrophils in response to SARS-CoV-2 spike (S) protein engagement of TLR4. Dok3 recruits SHP-2 to mediate the de-phosphorylation of MyD88 at Y257, thereby attenuating downstream JAK2-STAT3 signaling and calprotectin production. Blocking of TLR4, JAK2 and STAT3 signaling could prevent excessive production of calprotectin by Dok3-/- neutrophils, revealing new targets for potential COVID-19 therapy. As S protein from SARS-CoV-2 Delta and Omicron variants can activate TLR4-driven calprotectin production in Dok3-/- neutrophils, our study suggests that targeting calprotectin production may be an effective strategy to combat severe COVID-19 manifestations associated with these emerging variants.
Collapse
Affiliation(s)
- Jia Tong Loh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- *Correspondence: Jia Tong Loh, ; Kong-Peng Lam,
| | - Joey Kay Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Jia Tong Loh, ; Kong-Peng Lam,
| |
Collapse
|
248
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
249
|
Yao Y, Subedi K, Liu T, Khalasawi N, Pretto-Kernahan CD, Wotring JW, Wang J, Yin C, Jiang A, Fu C, Dimitrion P, Li J, Veenstra J, Yi Q, McKinnon K, McKinnon JE, Sexton JZ, Zhou L, Mi QS. Surface translocation of ACE2 and TMPRSS2 upon TLR4/7/8 activation is required for SARS-CoV-2 infection in circulating monocytes. Cell Discov 2022; 8:89. [PMID: 36085197 PMCID: PMC9462622 DOI: 10.1038/s41421-022-00453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/30/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractInfection of human peripheral blood cells by SARS-CoV-2 has been debated because immune cells lack mRNA expression of both angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease type 2 (TMPRSS2). Herein we demonstrate that resting primary monocytes harbor abundant cytoplasmic ACE2 and TMPRSS2 protein and that circulating exosomes contain significant ACE2 protein. Upon ex vivo TLR4/7/8 stimulation, cytoplasmic ACE2 was quickly translocated to the monocyte cell surface independently of ACE2 transcription, while TMPRSS2 surface translocation occurred in conjunction with elevated mRNA expression. The rapid translocation of ACE2 to the monocyte cell surface was blocked by the endosomal trafficking inhibitor endosidin 2, suggesting that endosomal ACE2 could be derived from circulating ACE2-containing exosomes. TLR-stimulated monocytes concurrently expressing ACE2 and TMPRSS2 on the cell surface were efficiently infected by SARS-CoV-2, which was significantly mitigated by remdesivir, TMPRSS2 inhibitor camostat, and anti-ACE2 antibody. Mass cytometry showed that ACE2 surface translocation in peripheral myeloid cells from patients with severe COVID-19 correlated with its hyperactivation and PD-L1 expression. Collectively, TLR4/7/8-induced ACE2 translocation with TMPRSS2 expression makes circulating monocytes permissive to SARS-CoV-2 infection.
Collapse
|
250
|
Wang J, Li Q, Qiu Y, Lu H. COVID-19: imbalanced cell-mediated immune response drives to immunopathology. Emerg Microbes Infect 2022; 11:2393-2404. [PMID: 36069182 PMCID: PMC9553190 DOI: 10.1080/22221751.2022.2122579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an imminent threat to humanity. SARS-CoV-2 invades host cells, causing a failure of host immune recognition. Instead of an effective antiviral immunological response after SARS-CoV-2 invasion, the cascading pathological syndrome of COVID-19, especially in severe disease, is exacerbated by an overt inflammatory response and the suppression of SARS-CoV-2–specific immune responses. As is known, excessive inflammation leads to pathophysiological changes in virus-infected tissues or organs, manifested by imbalanced immune responses, cytokine storm, and aggressive neutrophil activation, ultimately leading to lung damage, such as alveolar damage, endotheliitis, and fluid overload. However, the triggers and consequences of a disruption to immune system homeostasis and the underlying mechanisms of uncontrolled immunopathology following viral infection remain unclear. Here, we review the dynamic and systemic immune progression from an imbalance in cell-mediated immune responses to COVID-19 lung injury. Our understanding of key mechanisms involved in pathogenesis is critical for the development of therapeutic agents and to optimize therapeutic strategies.
Collapse
Affiliation(s)
- Jun Wang
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China.,Clinical Laboratory, The Fifth People's Hospital of Wuxi, Jiangnan University, Wuxi, China
| | - Qian Li
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China
| | - YuanWang Qiu
- Department of hepatology, The Fifth People's Hospital of Wuxi, Jiangnan University, No. 1314 Guangrui Road, Wuxi 215006, Jiangsu, China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China
| |
Collapse
|