201
|
Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nat Cell Biol 2007; 9:1381-91. [PMID: 18026091 DOI: 10.1038/ncb1657] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 10/03/2007] [Indexed: 12/16/2022]
Abstract
Integrin-mediated adhesion regulates membrane binding sites for Rac1 within lipid rafts. Detachment of cells from the substratum triggers the clearance of rafts from the plasma membrane through caveolin-dependent internalization. The small GTPase Arf6 and microtubules also regulate Rac-dependent cell spreading and migration, but the mechanisms are poorly understood. Here we show that endocytosis of rafts after detachment requires F-actin, followed by microtubule-dependent trafficking to recycling endosomes. When cells are replated on fibronectin, rafts exit from recycling endosomes in an Arf6-dependent manner and return to the plasma membrane along microtubules. Both of these steps are required for the plasma membrane targeting of Rac1 and for its activation. These data therefore define a new membrane raft trafficking pathway that is crucial for anchorage-dependent signalling.
Collapse
|
202
|
Norouziyan F, Shen WC, Hamm-Alvarez SF. Tyrphostin A8 stimulates a novel trafficking pathway of apically endocytosed transferrin through Rab11-enriched compartments in Caco-2 cells. Am J Physiol Cell Physiol 2007; 294:C7-21. [PMID: 17959726 DOI: 10.1152/ajpcell.00372.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The potential application of transferrin receptors as delivery vehicles for transport of macromolecular drugs across intestinal epithelial cells is limited by several factors, including the low level of transferrin receptor-mediated transcytosis, particularly in the apical-to-basolateral direction. The GTPase inhibitor, AG10 (tyrphostin A8), has been shown previously to increase the apical-to-basolateral transcytosis of transferrin in Caco-2 cells. However, the mechanism of the increased transcytosis has not been established. In this report, the effect of AG10 on the trafficking of endocytosed transferrin among different endosomal compartments as well as the involvement of Rab11 in the intracellular trafficking of transferrin was investigated. Confocal microscopy studies showed a high level of colocalization of FITC-transferrin with Rab5 and Rab11 in Caco-2 cells pulsed at 16 degrees C and 37 degrees C, which indicated the presence of apically endocytosed FITC-transferrin in early endosomes and apical recycling endosomes at 16 degrees C and 37 degrees C, respectively. The effect of AG10 on the accumulation of transferrin within different endosomal compartment was studied, and an increase in the transcytosis and recycling of internalized (125)I-labeled transferrin, as well as a decrease in cell-associated (125)I-labeled transferrin, was observed in AG10-treated Caco-2 cells pulsed at 37 degrees C for 30 min and chased for 30 min. Moreover, confocal microscopy showed that FITC-transferrin exhibited an increased level of colocalization with Rab11, but not with Rab5, in the presence of AG10. These results suggest an effect of AG10 on the later steps of transferrin receptor trafficking, which are involved in subsequent recycling, and possibly transcytosis, of endocytosed transferrin in Caco-2 cells.
Collapse
Affiliation(s)
- Fariba Norouziyan
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
203
|
Mettlen M, Platek A, Van Der Smissen P, Carpentier S, Amyere M, Lanzetti L, de Diesbach P, Tyteca D, Courtoy PJ. Src triggers circular ruffling and macropinocytosis at the apical surface of polarized MDCK cells. Traffic 2007; 7:589-603. [PMID: 16643281 DOI: 10.1111/j.1600-0854.2006.00412.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We addressed the role of Src on cortical actin dynamics and polarized endocytosis in MDCK cells harboring a thermosensitive v-src mutant. Shifting monolayers established at 40 degrees C (non-permissive temperature) to 34 degrees C (permissive temperature) rapidly reactivated v-Src kinase, but tight junctions and cell polarity resisted for >6 h. At this interval, activated v-src was recruited on apical vesicles, induced cortactin-associated apical circular ruffles productive of macropinosomes, thereby accelerating apical pinocytosis by approximately fivefold. Ruffling and macropinosome formation were selectively abrogated by inhibitors of actin polymerization, phosphoinositide 3-kinase, phospholipase C, and phospholipase D, which all returned apical pinocytosis to the level observed at 40 degrees C, underscoring the distinct control of apical micropinocytosis and macropinocytosis. Src promoted microtubule-dependent fusion of macropinosomes to the apical recycling endosome (ARE), causing its strong vacuolation. However, preservation of tubulation and apical polarity indicated that its function was not affected. The ARE was labeled for v-src, Rab11, and rabankyrin-5 but not early endosome antigen 1, thus distinguishing two separate Rab5-dependent apical pathways. The mechanisms of Src-induced apical ruffling and macropinocytosis could shed light on the triggered apical enteroinvasive pathogens entry and on the apical differentiation of osteoclasts.
Collapse
Affiliation(s)
- Marcel Mettlen
- CELL Unit, Université catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Horgan CP, Oleksy A, Zhdanov AV, Lall PY, White IJ, Khan AR, Futter CE, McCaffrey JG, McCaffrey MW. Rab11-FIP3 is critical for the structural integrity of the endosomal recycling compartment. Traffic 2007; 8:414-30. [PMID: 17394487 DOI: 10.1111/j.1600-0854.2007.00543.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rab11-FIP3 is an endosomal recycling compartment (ERC) protein that is implicated in the process of membrane delivery from the ERC to sites of membrane insertion during cell division. Here we report that Rab11-FIP3 is critical for the structural integrity of the ERC during interphase. We demonstrate that knockdown of Rab11-FIP3 and expression of a mutant of Rab11-FIP3 that is Rab11-binding deficient cause loss of all ERC-marker protein staining from the pericentrosomal region of A431 cells. Furthermore, we find that fluorophore-labelled transferrin cannot access the pericentrosomal region of cells in which Rab11-FIP3 function has been perturbed. We find that this Rab11-FIP3 function appears to be specific because expression of the equivalent Rab11-binding deficient mutant of Rab-coupling protein does not perturb ERC morphology. In addition, we find that other organelles such as sorting and late endosomes are unaffected by loss of Rab11-FIP3 function. Finally, we demonstrate the presence of an extensive coiled-coil region between residues 463 and 692 of Rab11-FIP3, which exists as a dimer in solution and is critical to support its function on the ERC. Together, these data indicate that Rab11-FIP3 is necessary for the structural integrity of the pericentrosomal ERC.
Collapse
Affiliation(s)
- Conor P Horgan
- Molecular Cell Biology Laboratory, Department of Biochemistry, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Oztan A, Silvis M, Weisz OA, Bradbury NA, Hsu SC, Goldenring JR, Yeaman C, Apodaca G. Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Mol Biol Cell 2007; 18:3978-92. [PMID: 17686995 PMCID: PMC1995710 DOI: 10.1091/mbc.e07-02-0097] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 12/24/2022] Open
Abstract
The octameric exocyst complex is associated with the junctional complex and recycling endosomes and is proposed to selectively tether cargo vesicles directed toward the basolateral surface of polarized Madin-Darby canine kidney (MDCK) cells. We observed that the exocyst subunits Sec6, Sec8, and Exo70 were localized to early endosomes, transferrin-positive common recycling endosomes, and Rab11a-positive apical recycling endosomes of polarized MDCK cells. Consistent with its localization to multiple populations of endosomes, addition of function-blocking Sec8 antibodies to streptolysin-O-permeabilized cells revealed exocyst requirements for several endocytic pathways including basolateral recycling, apical recycling, and basolateral-to-apical transcytosis. The latter was selectively dependent on interactions between the small GTPase Rab11a and Sec15A and was inhibited by expression of the C-terminus of Sec15A or down-regulation of Sec15A expression using shRNA. These results indicate that the exocyst complex may be a multipurpose regulator of endocytic traffic directed toward both poles of polarized epithelial cells and that transcytotic traffic is likely to require Rab11a-dependent recruitment and modulation of exocyst function, likely through interactions with Sec15A.
Collapse
Affiliation(s)
- Asli Oztan
- *Laboratory of Epithelial Cell Biology/Renal Electrolyte Division of the Department of Medicine and
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Mark Silvis
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ora A. Weisz
- *Laboratory of Epithelial Cell Biology/Renal Electrolyte Division of the Department of Medicine and
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Neil A. Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, Chicago, IL 60064
| | - Shu-Chan Hsu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - James R. Goldenring
- Department of Surgery and Cell and Developmental Biology, Vanderbilt University and the Nashville Veterans Affairs Medical Center, Nashville, TN 37212; and
| | - Charles Yeaman
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242
| | - Gerard Apodaca
- *Laboratory of Epithelial Cell Biology/Renal Electrolyte Division of the Department of Medicine and
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
206
|
Manderson AP, Kay JG, Hammond LA, Brown DL, Stow JL. Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNFalpha. ACTA ACUST UNITED AC 2007; 178:57-69. [PMID: 17606866 PMCID: PMC2064421 DOI: 10.1083/jcb.200612131] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activated macrophages secrete an array of proinflammatory cytokines, including tumor necrosis factor-alpha (TNFalpha) and interleukin 6 (IL-6), that are temporally secreted for sequential roles in inflammation. We have previously characterized aspects of the intracellular trafficking of membrane-bound TNFalpha and its delivery to the cell surface at the site of phagocytic cups for secretion (Murray, R.Z., J.G. Kay, D.G. Sangermani, and J.L. Stow. 2005. Science. 310:1492-1495). The trafficking pathway and surface delivery of IL-6, a soluble cytokine, were studied here using approaches such as live cell imaging of fluorescently tagged IL-6 and immunoelectron microscopy. Newly synthesized IL-6 accumulates in the Golgi complex and exits in tubulovesicular carriers either as the sole labeled cargo or together with TNFalpha, utilizing specific soluble NSF attachment protein receptor (SNARE) proteins to fuse with the recycling endosome. Within recycling endosomes, we demonstrate the compartmentalization of cargo proteins, wherein IL-6 is dynamically segregated from TNFalpha and from surface recycling transferrin. Thereafter, these cytokines are independently secreted, with TNFalpha delivered to phagocytic cups but not IL-6. Therefore, the recycling endosome has a central role in orchestrating the differential secretion of cytokines during inflammation.
Collapse
Affiliation(s)
- Anthony P Manderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | |
Collapse
|
207
|
Miserey-Lenkei S, Waharte F, Boulet A, Cuif MH, Tenza D, El Marjou A, Raposo G, Salamero J, Héliot L, Goud B, Monier S. Rab6-interacting protein 1 links Rab6 and Rab11 function. Traffic 2007; 8:1385-403. [PMID: 17725553 DOI: 10.1111/j.1600-0854.2007.00612.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rab11 and Rab6 guanosine triphosphatases are associated with membranes of the recycling endosomes (REs) and Golgi complex, respectively. Evidence indicates that they sequentially regulate a retrograde transport pathway between these two compartments, suggesting the existence of proteins that must co-ordinate their functions. Here, we report the characterization of two isoforms of a protein, Rab6-interacting protein 1 (R6IP1), originally identified as a Rab6-binding protein. R6IP1 also binds to Rab11A in its GTP-bound conformation. In interphase cells, R6IP1 is targeted to the Golgi in a Rab6-dependent manner but can associate with Rab11-positive compartments when the level of Rab11A is increased within the cells. Fluorescence resonance energy transfer analysis using fluorescence lifetime imaging shows that the overexpression of R6IP1 promotes an interaction between Rab11A and Rab6 in living cells. Accordingly, the REs marked by Rab11 and transferrin receptor are depleted from the cell periphery and accumulate in the pericentriolar area. However, endosomal and Golgi membranes do not appear to fuse with each other. We also show that R6IP1 function is required during metaphase and cytokinesis, two mitotic steps in which a role of Rab6 and Rab11 has been previously documented. We propose that R6IP1 may couple Rab6 and Rab11 function throughout the cell cycle.
Collapse
|
208
|
Ducharme NA, Williams JA, Oztan A, Apodaca G, Lapierre LA, Goldenring JR. Rab11-FIP2 regulates differentiable steps in transcytosis. Am J Physiol Cell Physiol 2007; 293:C1059-72. [PMID: 17626244 DOI: 10.1152/ajpcell.00078.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transcytosis through the apical recycling system of polarized cells is regulated by Rab11a and a series of Rab11a-interacting proteins. We have identified a point mutant in Rab11 family interacting protein 2 (Rab11-FIP2) that alters the function of Rab11a-containing trafficking systems. Rab11-FIP2(S229A/R413G) or Rab11-FIP2(R413G) cause the formation of a tubular cisternal structure containing Rab11a and decrease the rate of polymeric IgA transcytosis. The R413G mutation does not alter Rab11-FIP interactions with any known binding partners. Overexpression of Rab11-FIP2(S229A/R413G) alters the localization of a subpopulation of the apical membrane protein GP135. In contrast, Rab11-FIP2(129-512) alters the localization of early endosome protein EEA1. The distributions of both Rab11-FIP2(S229A/R413G) and Rab11-FIP2(129-512) were not dependent on the integrity of the microtubule cytoskeleton. The results indicate that Rab11-FIP2 regulates trafficking at multiple points within the apical recycling system of polarized cells.
Collapse
Affiliation(s)
- Nicole A Ducharme
- Vanderbilt Univ. School of Medicine, Dept. of Surgery, Epithelial Biology Program, 4160A MRB III, 465 21st St. S., Nashville, TN 37232-2733, USA.
| | | | | | | | | | | |
Collapse
|
209
|
Vossenkämper A, Nedvetsky PI, Wiesner B, Furkert J, Rosenthal W, Klussmann E. Microtubules are needed for the perinuclear positioning of aquaporin-2 after its endocytic retrieval in renal principal cells. Am J Physiol Cell Physiol 2007; 293:C1129-38. [PMID: 17626240 DOI: 10.1152/ajpcell.00628.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Water reabsorption in the renal collecting duct is regulated by arginine vasopressin (AVP). AVP induces the insertion of the water channel aquaporin-2 (AQP2) into the plasma membrane of principal cells, thereby increasing the osmotic water permeability. The redistribution of AQP2 to the plasma membrane is a cAMP-dependent process and thus a paradigm for cAMP-controlled exocytic processes. Using primary cultured rat inner medullary collecting duct cells, we show that the redistribution of AQP2 to the plasma membrane is accompanied by the reorganization of microtubules and the redistribution of the small GTPase Rab11. In resting cells, AQP2 is colocalized with Rab11 perinuclearly. AVP induced the redistribution of AQP2 to the plasma membrane and of Rab11 to the cell periphery. The redistribution of both proteins was increased when microtubules were depolymerized by nocodazole. In addition, the depolymerization of microtubules prevented the perinuclear positioning of AQP2 and Rab11 in resting cells, which was restored if nocodazole was washed out and microtubules repolymerized. After internalization of AQP2, induced by removal of AVP, forskolin triggered the AQP2 redistribution to the plasma membrane even if microtubules were depolymerized and without the previous positioning of AQP2 in the perinuclear recycling compartment. Collectively, the data indicate that microtubule-dependent transport of AQP2 is predominantly responsible for trafficking and localization of AQP2 inside the cell after its internalization but not for the exocytic transport of the water channel. We also demonstrate that cAMP-signaling regulates the localization of Rab11-positive recycling endosomes in renal principal cells.
Collapse
Affiliation(s)
- Anna Vossenkämper
- Leibniz-Institut für Molekulare Pharmakologie (FMP Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
210
|
Abstract
Neurons are highly polarized cells with axonal and somatodendritic membrane surfaces that spatially separate signal-sending from signal-receiving membrane domains. As found in many other cell types, different populations of endosomes are involved in the sorting of synaptic and other membrane cargo in neurons. The exact source of the membrane for neurite extension and process remodelling during neuronal differentiation has remained uncertain, and we do not know exactly how polarized sorting of neuronal membrane proteins is achieved. In the present article, we will provide a brief overview of endosomes and their putative or proven functions in fibroblasts, epithelial cells and neurons. On the basis of insights from non-neuronal cell types and recent studies on the function of recycling endosomes during synaptic plasticity-induced membrane remodelling, we postulate a speculative model regarding the role of recycling endosomes in neuronal differentiation.
Collapse
Affiliation(s)
- Michael R Schmidt
- Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
211
|
Rondanino C, Rojas R, Ruiz WG, Wang E, Hughey RP, Dunn KW, Apodaca G. RhoB-dependent modulation of postendocytic traffic in polarized Madin-Darby canine kidney cells. Traffic 2007; 8:932-49. [PMID: 17547697 DOI: 10.1111/j.1600-0854.2007.00575.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Rho family of GTPases is implicated in the control of endocytic and biosynthetic traffic of many cell types; however, the cellular distribution of RhoB remains controversial and its function is not well understood. Using confocal microscopy, we found that endogenous RhoB and green fluorescent protein-tagged wild-type RhoB were localized to early endosomes, and to a much lesser extent to recycling endosomes, late endosomes or Golgi complex of fixed or live polarized Madin-Darby canine kidney cells. Consistent with RhoB localization to early endosomes, we observed that expression of dominant-negative RhoBN19 or dominant-active RhoBV14 altered postendocytic traffic of ligand-receptor complexes that undergo recycling, degradation or transcytosis. In vitro assays established that RhoB modulated the basolateral-to-apical transcytotic pathway by regulating cargo exit from basolateral early endosomes. Our results indicate that RhoB is localized, in part, to early endosomes where it regulates receptor egress through the early endocytic system.
Collapse
Affiliation(s)
- Christine Rondanino
- Laboratory of Epithelial Biology, Renal-Electrolyte Division of the Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
212
|
Wojtal KA, Hoekstra D, van IJzendoorn SC. Anchoring of protein kinase A-regulatory subunit IIalpha to subapically positioned centrosomes mediates apical bile canalicular lumen development in response to oncostatin M but not cAMP. Mol Biol Cell 2007; 18:2745-54. [PMID: 17494870 PMCID: PMC1924835 DOI: 10.1091/mbc.e06-08-0732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Oncostatin M and cAMP signaling stimulate apical surface-directed membrane trafficking and apical lumen development in hepatocytes, both in a protein kinase A (PKA)-dependent manner. Here, we show that oncostatin M, but not cAMP, promotes the A-kinase anchoring protein (AKAP)-dependent anchoring of the PKA regulatory subunit (R)IIalpha to subapical centrosomes and that this requires extracellular signal-regulated kinase 2 activation. Stable expression of the RII-displacing peptide AKAP-IS, but not a scrambled peptide, inhibits the association of RIIalpha with centrosomal AKAPs and results in the repositioning of the centrosome from a subapical to a perinuclear location. Concomitantly, common endosomes, but not apical recycling endosomes, are repositioned from a subapical to a perinuclear location, without significant effects on constitutive or oncostatin M-stimulated basolateral-to-apical transcytosis. Importantly, however, the expression of the AKAP-IS peptide completely blocks oncostatin M-, but not cAMP-stimulated apical lumen development. Together, the data suggest that centrosomal anchoring of RIIalpha and the interrelated subapical positioning of these centrosomes is required for oncostatin M-, but not cAMP-mediated, bile canalicular lumen development in a manner that is uncoupled from oncostatin M-stimulated apical lumen-directed membrane trafficking. The results also imply that multiple PKA-mediated signaling pathways control apical lumen development and that subapical centrosome positioning is important in some of these pathways.
Collapse
Affiliation(s)
- Kacper A. Wojtal
- Department of Cell Biology/Membrane Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Dick Hoekstra
- Department of Cell Biology/Membrane Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sven C.D. van IJzendoorn
- Department of Cell Biology/Membrane Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
213
|
Takahashi M, Murate M, Fukuda M, Sato SB, Ohta A, Kobayashi T. Cholesterol controls lipid endocytosis through Rab11. Mol Biol Cell 2007; 18:2667-77. [PMID: 17475773 PMCID: PMC1924824 DOI: 10.1091/mbc.e06-10-0924] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cellular cholesterol increases when cells reach confluency in Chinese hamster ovary (CHO) cells. We examined the endocytosis of several lipid probes in subconfluent and confluent CHO cells. In subconfluent cells, fluorescent lipid probes including poly(ethylene glycol)derivatized cholesterol, 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol, and fluorescent sphingomyelin analogs were internalized to pericentriolar recycling endosomes. This accumulation was not observed in confluent cells. Internalization of fluorescent lactosylceramide was not affected by cell confluency, suggesting that the endocytosis of specific membrane components is affected by cell confluency. The crucial role of cellular cholesterol in cell confluency-dependent endocytosis was suggested by the observation that the fluorescent sphingomyelin was transported to recycling endosomes when cellular cholesterol was depleted in confluent cells. To understand the molecular mechanism(s) of cell confluency- and cholesterol-dependent endocytosis, we examined intracellular distribution of rab small GTPases. Our results indicate that rab11 but not rab4, altered intracellular localization in a cell confluency-associated manner, and this alteration was dependent on cell cholesterol. In addition, the expression of a constitutive active mutant of rab11 changed the endocytic route of lipid probes from early to recycling endosomes. These results thus suggest that cholesterol controls endocytic routes of a subset of membrane lipids through rab11.
Collapse
Affiliation(s)
- Miwa Takahashi
- *Frontier Research System
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Mitsunori Fukuda
- Fukuda Initiative Research Unit, and
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Miyagi 980-8578, Japan
| | - Satoshi B. Sato
- *Frontier Research System
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; and
| | - Akinori Ohta
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshihide Kobayashi
- *Frontier Research System
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- Institut National de la Santé et de la Recherche Médicale U870, Institut National de la Recherche Agronomique U1235, Institut National des Sciences Appliquées de Lyon, University Lyon 1 and Hospices Civils de Lyon, 69621 Villeurbanne, France
| |
Collapse
|
214
|
Lapierre LA, Avant KM, Caldwell CM, Ham AJL, Hill S, Williams JA, Smolka AJ, Goldenring JR. Characterization of immunoisolated human gastric parietal cells tubulovesicles: identification of regulators of apical recycling. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1249-62. [PMID: 17255364 DOI: 10.1152/ajpgi.00505.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric parietal cells possess an amplified apical membrane recycling system dedicated to regulated apical recycling of H-K-ATPase. While amplified in parietal cells, apical recycling is critical to polarized secretory processes in most epithelial cells. To clarify putative regulators of apical recycling, we prepared immunoisolated parietal cell H-K-ATPase-containing recycling membranes from human stomachs and analyzed protein contents by tryptic digestion and mass spectrometry. We identified and validated by Western blots many of the proteins previously identified on immunoisolated rabbit tubulovesicles, including Rab11, Rab25, syntaxin 3, secretory carrier membrane proteins (SCAMPs), and vesicle-associated membrane protein (VAMP)2. In addition, we detected several previously unrecognized proteins, including Rab10, VAMP8, syntaxin 7, and syntaxin 12/13. We also identified the K(+) channel component KCNQ1. Immunostaining of human gastric mucosal sections confirmed the presence of each of these proteins in parietal cells and their colocalization with H-K-ATPase on tubulovesicles. To investigate the role of the identified soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins in apical recycling, we transfected them as DsRed2 fusions into an enhanced green fluorescent protein (EGFP)-Rab11a-expressing Madin-Darby canine kidney (MDCK) cell line. Syntaxin 12/13 and VAMP8 caused a collapse of the EGFP-Rab11a compartment, whereas a less dramatic effect was observed in cells transfected with syntaxin 3, syntaxin 7, or VAMP2. The five DsRed2-SNARE chimeras were also transfected into a MDCK cell line overexpressing Rab11-FIP2(129-512). All five of the chimeras were drawn into the collapsed apical recycling system. This study, which represents the first proteomic analysis of an immunoisolated vesicle population from native human tissue, demonstrates the diversity of putative regulators of the apical recycling system.
Collapse
Affiliation(s)
- Lynne A Lapierre
- Dept. of Surgery, Vanderbilt Univ. School of Medicine, 4160A MRB III, 465 21st St. S., Nashville, TN 37232-2733, USA
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Swiatecka-Urban A, Talebian L, Kanno E, Moreau-Marquis S, Coutermarsh B, Hansen K, Karlson KH, Barnaby R, Cheney RE, Langford GM, Fukuda M, Stanton BA. Myosin Vb is required for trafficking of the cystic fibrosis transmembrane conductance regulator in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells. J Biol Chem 2007; 282:23725-36. [PMID: 17462998 DOI: 10.1074/jbc.m608531200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretion across fluid-transporting epithelia is regulated, in part, by modulating the number of CFTR Cl(-) channels in the plasma membrane by adjusting CFTR endocytosis and recycling. However, the mechanisms that regulate CFTR recycling in airway epithelial cells remain unknown, at least in part, because the recycling itineraries of CFTR in these cells are incompletely understood. In a previous study, we demonstrated that CFTR undergoes trafficking in Rab11a-specific apical recycling endosomes in human airway epithelial cells. Myosin Vb is a plus-end-directed, actin-based mechanoenzyme that facilitates protein trafficking in Rab11a-specific recycling vesicles in several cell model systems. There are no published studies examining the role of myosin Vb in airway epithelial cells. Thus, the goal of this study was to determine whether myosin Vb facilitates CFTR recycling in polarized human airway epithelial cells. Endogenous CFTR formed a complex with endogenous myosin Vb and Rab11a. Silencing myosin Vb by RNA-mediated interference decreased the expression of wild-type CFTR and DeltaF508-CFTR in the apical membrane and decreased CFTR-mediated Cl(-) secretion across polarized human airway epithelial cells. A recombinant tail domain fragment of myosin Vb attenuated the plasma membrane expression of CFTR by arresting CFTR recycling. The dominant-negative effect was dependent on the ability of the myosin Vb tail fragment to interact with Rab11a. Taken together, these data indicate that myosin Vb is required for CFTR recycling in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells.
Collapse
Affiliation(s)
- Agnieszka Swiatecka-Urban
- Department of Physiology, Dartmouth Medical School, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Fan Y, Xin XY, Chen BL, Ma X. Knockdown of RAB25 expression by RNAi inhibits growth of human epithelial ovarian cancer cells in vitro and in vivo. Pathology 2007; 38:561-7. [PMID: 17393986 DOI: 10.1080/00313020601024037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AIMS Ovarian cancer is the leading cause of cancer death among gynaecological malignancies. Elevated expression of Rab25 has been seen in this malignancy. To better understand its role in maintaining the malignant phenotype, we used RNA interference (RNAi) directed against Rab25 in our study. RNAi provides a new, reliable method to investigate gene function and has the potential for gene therapy. The aim of the study was to examine the anti-tumour effects elicited by a decrease in the level of Rab25 by RNAi and its possible mechanism of action. METHODS According to the Rab25 mRNA sequence in Genbank, a pair of 64 nt oligonucleotides were designed and synthesised, each containing the sites of restriction endonuclease at both ends. Oligonucleotides were annealed and ligated with linearised pSUPER by ligase. The recombinants (named pSUPER/Rab25 siRNA) were finally sequenced and identified by enzyme cutting and sequencing. The human ovarian cell line A2780 was grown without transfection, transfection with empty vector and with pSUPER/Rab25 siRNA with electroporation. The inhibitory effect was examined by RT-PCR, MTT, FCM and tumour growth of athymic nude mice. RESULTS Rab25 siRNA expression vector was successfully constructed and identified by double endonuclease digestion. Sequence analysis of inserted fragment revealed the same sequence as synthesised siRNA oligonucleotides. Cells transfected with Rab25 siRNA can specifically knock down the transcription of Rab25, exhibiting cells with slower proliferation, increased apoptosis, and decreased tumour growth. CONCLUSIONS Rab25 siRNA expression vector has been successfully constructed, and it could inhibit the tumour growth both in vitro and in vivo. Our data suggest that the Rab25 signalling pathway plays a role in the regulation of cell proliferation and apoptosis in ovarian cancer cells, which indicates that the Rab25 gene plays a definite role in the development and aggressiveness of human ovarian cancer and should be further elucidated as a possible therapeutic target of ovarian cancer.
Collapse
Affiliation(s)
- Yang Fan
- Department of Obstetrics and Gynecology, Xijing Hospital Fourth Military Medical University, Xi'an, China.
| | | | | | | |
Collapse
|
217
|
Wallrabe H, Bonamy G, Periasamy A, Barroso M. Receptor complexes cotransported via polarized endocytic pathways form clusters with distinct organizations. Mol Biol Cell 2007; 18:2226-43. [PMID: 17409357 PMCID: PMC1877110 DOI: 10.1091/mbc.e06-08-0700] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previously, FRET confocal microscopy has shown that polymeric IgA-receptor (pIgA-R) is distributed in a clustered manner in apical endosomes. To test whether different membrane-bound components form clusters during membrane trafficking, live-cell quantitative FRET was used to characterize the organization of pIgA-R and transferrin receptor (TFR) in endocytic membranes of polarized MDCK cells upon internalization of donor- and acceptor-labeled ligands. We show that pIgA-R and TFR complexes form increasingly organized clusters during cotransport from basolateral to perinuclear endosomes. The organization of these receptor clusters in basolateral versus perinuclear/apical endosomes is significantly different; the former showing a mixed random/clustered distribution while the latter highly organized clusters. Our results indicate that although both perinuclear and apical endosomes comprise pIgA-R and TFR clusters, their E% levels are significantly different suggesting that these receptors are packed into clusters in a distinct manner. The quantitative FRET-based assay presented here suggests that different receptor complexes form clusters, with diverse levels of organization, while being cotransported via the polarized endocytic pathways.
Collapse
Affiliation(s)
- H Wallrabe
- Department of Biology, W. M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | |
Collapse
|
218
|
Leyt J, Melamed-Book N, Vaerman JP, Cohen S, Weiss AM, Aroeti B. Cholesterol-sensitive modulation of transcytosis. Mol Biol Cell 2007; 18:2057-71. [PMID: 17392516 PMCID: PMC1877098 DOI: 10.1091/mbc.e06-08-0735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-beta-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia.
Collapse
Affiliation(s)
| | - Naomi Melamed-Book
- Confocal Unit, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Jean-Pierre Vaerman
- Experimental Medicine, Universite Catholique de Louvain and Christian de Duve Institute of Cell Pathology, B-1200 Brussels, Belgium; and
| | | | - Aryeh M. Weiss
- Confocal Unit, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
- School of Engineering, Bar Ilan University, Ramat Gan 52900, Israel
| | | |
Collapse
|
219
|
Affiliation(s)
- Sven C D van Ijzendoorn
- Department of Cell Biology, section Membrane Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
220
|
de Souza N, Vallier LG, Fares H, Greenwald I. SEL-2, theC. elegansneurobeachin/LRBA homolog, is a negative regulator oflin-12/Notchactivity and affects endosomal traffic in polarized epithelial cells. Development 2007; 134:691-702. [PMID: 17215302 DOI: 10.1242/dev.02767] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vulval precursor cells (VPCs) of Caenorhabditis elegans are polarized epithelial cells that adopt a precise pattern of fates through regulated activity of basolateral LET-23/EGF receptor and apical LIN-12/Notch. During VPC patterning, there is reciprocal modulation of endocytosis and trafficking of both LET-23 and LIN-12. We identified sel-2 as a negative regulator of lin-12/Notch activity in the VPCs, and found that SEL-2 is the homolog of two closely related human proteins, neurobeachin(also known as BCL8B) and LPS-responsive, beige-like anchor protein (LRBA). SEL-2, neurobeachin and LRBA belong to a distinct subfamily of BEACH-WD40 domain-containing proteins. Loss of sel-2 activity leads to basolateral mislocalization and increased accumulation of LIN-12 in VPCs in which LET-23 is not active, and to impaired downregulation of basolateral LET-23 in VPCs in which LIN-12 is active. Downregulation of apical LIN-12 in the VPC in which LET-23 is active is not affected. In addition, in sel-2 mutants, the polarized cells of the intestinal epithelium display an aberrant accumulation of the lipophilic dye FM4-64 when the dye is presented to the basolateral surface. Our observations indicate that SEL-2/neurobeachin/LRBA is involved in endosomal traffic and may be involved in efficient delivery of cell surface proteins to the lysosome. Our results also suggest that sel-2 activity may contribute to the appropriate steady-state level of LIN-12 or to trafficking events that affect receptor activation.
Collapse
Affiliation(s)
- Natalie de Souza
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, 701 W. 168th Street, Hammer Health Sciences, New York, NY 10032, USA
| | | | | | | |
Collapse
|
221
|
Abstract
In higher eukaryotic cells pleiomorphic compartments composed of vacuoles, tubules and vesicles move from the endoplasmic reticulum (ER) and the plasma membrane to the cell center, operating in early biosynthetic trafficking and endocytosis, respectively. Besides transporting cargo to the Golgi apparatus and lysosomes, a major task of these compartments is to promote extensive membrane recycling. The endocytic membrane system is traditionally divided into early (sorting) endosomes, late endosomes and the endocytic recycling compartment (ERC). Recent studies on the intermediate compartment (IC) between the ER and the Golgi apparatus suggest that it also consists of peripheral ("early") and centralized ("late") structures, as well as a third component, designated here as the biosynthetic recycling compartment (BRC). We propose that the ERC and the BRC exist as long-lived "mirror compartments" at the cell center that also share the ability to expand and become mobilized during cell activation. These considerations emphasize the functional symmetry of endomembrane compartments, which provides a basis for the membrane rearrangements taking place during cell division, polarization, and differentiation.
Collapse
Affiliation(s)
- Jaakko Saraste
- *Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; and
| | - Bruno Goud
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 144, Institut Curie, Section de Recherche, 75248 Paris Cedex 05, France
| |
Collapse
|
222
|
Ameen N, Silvis M, Bradbury NA. Endocytic trafficking of CFTR in health and disease. J Cyst Fibros 2007; 6:1-14. [PMID: 17098482 PMCID: PMC1964799 DOI: 10.1016/j.jcf.2006.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 12/25/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl-selective anion channel expressed in epithelial tissues. Mutations in CFTR lead to the genetic disease cystic fibrosis (CF). Within each epithelial cell, CFTR interacts with a large number of transient macromolecular complexes, many of which are involved in the trafficking and targeting of CFTR. Understanding how these complexes regulate the trafficking and fate of CFTR, provides a singular insight not only into the patho-physiology of cystic fibrosis, but also provides potential drug targets to help cure this debilitating disease.
Collapse
Affiliation(s)
- Nadia Ameen
- Department of Paediatrics, University of Pittsburgh School of Medicine
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine
| | - Mark Silvis
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine
| | | |
Collapse
|
223
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
224
|
Alewine C, Olsen O, Wade JB, Welling PA. TIP-1 has PDZ scaffold antagonist activity. Mol Biol Cell 2006; 17:4200-11. [PMID: 16855024 PMCID: PMC1635354 DOI: 10.1091/mbc.e06-02-0129] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 06/20/2006] [Accepted: 07/06/2006] [Indexed: 11/11/2022] Open
Abstract
PDZ proteins usually contain multiple protein-protein interaction domains and act as molecular scaffolds that are important for the generation and maintenance of cell polarity and cell signaling. Here, we identify and characterize TIP-1 as an atypical PDZ protein that is composed almost entirely of a single PDZ domain and functions as a negative regulator of PDZ-based scaffolding. We found that TIP-1 competes with the basolateral membrane mLin-7/CASK complex for interaction with the potassium channel Kir 2.3 in model renal epithelia. Consequently, polarized plasma membrane expression of Kir 2.3 is disrupted resulting in pronounced endosomal targeting of the channel, similar to the phenotype observed for mutant Kir 2.3 channels lacking the PDZ-binding motif. TIP-1 is ubiquitously expressed, raising the possibility that TIP-1 may play a similar role in regulating the expression of other membrane proteins containing a type I PDZ ligand.
Collapse
Affiliation(s)
- Christine Alewine
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Olav Olsen
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - James B. Wade
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201
| | - Paul A. Welling
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201
| |
Collapse
|
225
|
McGurk L, Tzolovsky G, Spears N, Bownes M. The temporal and spatial expression pattern of Myosin Va, Vb and VI in the mouse ovary. Gene Expr Patterns 2006; 6:900-7. [PMID: 16713372 DOI: 10.1016/j.modgep.2006.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/23/2006] [Accepted: 03/02/2006] [Indexed: 11/23/2022]
Abstract
There are 16 classes of unconventional myosins. Class V myosins have been shown to be involved in transporting cargo to and from the cell periphery. Class VI myosins have also been shown to transport cargo from the cell periphery, although it seems that these proteins have many roles which include the mediation of cell migration and stereocillia stabilisation. With the requirement of myosin VI for Drosophila oogenesis, the localised expression of Myosin V in the developing egg chamber and recent mounting evidence which links myosin VI to the migration of human ovarian cancer cell lines, we wanted to investigate the expression pattern of these two myosin classes in the normal mouse ovary. Here we show that these myosins are expressed, localised and regulated within the oocyte and granulosa cells of the developing mouse follicle.
Collapse
Affiliation(s)
- Leeanne McGurk
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom.
| | | | | | | |
Collapse
|
226
|
Pooley RD, Reddy S, Soukoulis V, Roland JT, Goldenring JR, Bader DM. CytLEK1 is a regulator of plasma membrane recycling through its interaction with SNAP-25. Mol Biol Cell 2006; 17:3176-86. [PMID: 16672379 PMCID: PMC1483049 DOI: 10.1091/mbc.e05-12-1127] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/17/2006] [Accepted: 04/25/2006] [Indexed: 12/26/2022] Open
Abstract
SNAP-25 is a component of the SNARE complex that is involved in membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between SNAP-25 and cytoplasmic Lek1 (cytLEK1), a protein previously demonstrated to associate with the microtubule network. The binding domains within each protein were defined by yeast two-hybrid, coimmunoprecipitation, and colocalization studies. Confocal analyses reveal a high degree of colocalization between the proteins. In addition, the endogenous proteins can be isolated as a complex by immunoprecipitation. Further analyses demonstrate that cytLEK1 and SNAP-25 colocalize and coprecipitate with Rab11a, myosin Vb, VAMP2, and syntaxin 4, components of the plasma membrane recycling pathway. Overexpression of the SNAP-25-binding domain of cytLEK1, and depletion of endogenous Lek1 alters transferrin trafficking, consistent with a function in vesicle recycling. Taken together, our studies indicate that cytLEK1 is a link between recycling vesicles and the microtubule network through its association with SNAP-25. This interaction may play a key role in the regulation of the recycling endosome pathway.
Collapse
Affiliation(s)
- Ryan D. Pooley
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Samyukta Reddy
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Victor Soukoulis
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Joseph T. Roland
- Department of Surgery and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, and Nashville VAMC, Nashville, TN 37212-2175
| | - James R. Goldenring
- Department of Surgery and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, and Nashville VAMC, Nashville, TN 37212-2175
| | - David M. Bader
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| |
Collapse
|
227
|
Jin M, Goldenring JR. The Rab11-FIP1/RCP gene codes for multiple protein transcripts related to the plasma membrane recycling system. ACTA ACUST UNITED AC 2006; 1759:281-95. [PMID: 16920206 DOI: 10.1016/j.bbaexp.2006.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 05/16/2006] [Accepted: 06/08/2006] [Indexed: 01/01/2023]
Abstract
Rab11a is a member of the Rab11 small GTPase family, and plays an important role in plasma membrane recycling. Rab11-Family Interacting Protein 1 (Rab11-FIP1) binds to Rab11 through a carboxyl-terminal amphipathic alpha helix. We have identified eight alternatively spliced Rab11-FIP1 gene transcripts from human chromosome 8. Among them, Rab11-FIP1A-D have carboxyl terminal Rab11 binding domains, while Rab11-FIP1E-H do not contain the Rab11 binding domain. While Rab11-FIP1B and F gene transcripts are ubiquitous, other Rab11-FIP1 transcripts demonstrate more limited patterns of expression in human tissue cDNAs. EGFP-Rab11-FIP1A-D proteins over-expressed in HeLa cells targeted to Rab11a-containing membranes, while EGFP-Rab11-FIP1E/F and H proteins did not localize with recycling system membranes. However, transferrin trafficking was not significantly altered in HeLa cells over-expressing expressing any of the EGFP-Rab11-FIP1 proteins. Rabbit polyclonal antibodies specific for Rab11-FIP1B and Rab11-FIP1C/RCP demonstrated that Rab11-FIP1B and Rab11-FIP1C/RCP are expressed endogenously. Strikingly, endogenous staining for Rab11-FIP1C/RCP only partially co-localized with EGFP-Rab11-FIP1A, EGFP-Rab11-FIP1B, and EGFP-Rab11a in the perinuclear region, indicating that Rab11-FIP1C/RCP resides in a differentiable subcellular compartment within the plasma membrane recycling system compared with Rab11-FIP1A and Rab11-FIP1B. These data suggest that Rab11-FIP1 proteins may play coordinated roles in regulating plasma membrane recycling with regional specificity within the Rab11a-containing recycling system.
Collapse
Affiliation(s)
- Min Jin
- Department of Surgery, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
228
|
Hua W, Sheff D, Toomre D, Mellman I. Vectorial insertion of apical and basolateral membrane proteins in polarized epithelial cells revealed by quantitative 3D live cell imaging. ACTA ACUST UNITED AC 2006; 172:1035-44. [PMID: 16567501 PMCID: PMC2063761 DOI: 10.1083/jcb.200512012] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although epithelial cells are known to exhibit a polarized distribution of membrane components, the pathways responsible for delivering membrane proteins to their appropriate domains remain unclear. Using an optimized approach to three-dimensional live cell imaging, we have visualized the transport of newly synthesized apical and basolateral membrane proteins in fully polarized filter-grown Madin–Darby canine kidney cells. We performed a detailed quantitative kinetic analysis of trans-Golgi network (TGN) exit, passage through transport intermediates, and arrival at the plasma membrane using cyan/yellow fluorescent protein–tagged glycosylphosphatidylinositol-anchored protein and vesicular stomatitis virus glycoprotein as apical and basolateral reporters, respectively. For both pathways, exit from the TGN was rate limiting. Furthermore, apical and basolateral proteins were targeted directly to their respective membranes, resolving current confusion as to whether sorting occurs on the secretory pathway or only after endocytosis. However, a transcytotic protein did reach the apical surface after a prior appearance basolaterally. Finally, newly synthesized proteins appeared to be delivered to the entire lateral or apical surface, suggesting—contrary to expectations—that there is not a restricted site for vesicle docking or fusion adjacent to the junctional complex.
Collapse
Affiliation(s)
- Wei Hua
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
229
|
Ducharme NA, Hales CM, Lapierre LA, Ham AJL, Oztan A, Apodaca G, Goldenring JR. MARK2/EMK1/Par-1Balpha phosphorylation of Rab11-family interacting protein 2 is necessary for the timely establishment of polarity in Madin-Darby canine kidney cells. Mol Biol Cell 2006; 17:3625-37. [PMID: 16775013 PMCID: PMC1525241 DOI: 10.1091/mbc.e05-08-0736] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rab11a, myosin Vb, and the Rab11-family interacting protein 2 (FIP2) regulate plasma membrane recycling in epithelial cells. This study sought to characterize more fully Rab11-FIP2 function by identifying kinase activities modifying Rab11-FIP2. We have found that gastric microsomal membrane extracts phosphorylate Rab11-FIP2 on serine 227. We identified the kinase that phosphorylated Rab11-FIP2 as MARK2/EMK1/Par-1Balpha (MARK2), and recombinant MARK2 phosphorylated Rab11-FIP2 only on serine 227. We created stable Madin-Darby canine kidney (MDCK) cell lines expressing enhanced green fluorescent protein-Rab11-FIP2 wild type or a nonphosphorylatable mutant [Rab11-FIP2(S227A)]. Analysis of these cell lines demonstrates a new role for Rab11-FIP2 in addition to that in the plasma membrane recycling system. In calcium switch assays, cells expressing Rab11-FIP2(S227A) showed a defect in the timely reestablishment of p120-containing junctional complexes. However, Rab11-FIP2(S227A) did not affect localization with recycling system components or the normal function of apical recycling and transcytosis pathways. These results indicate that phosphorylation of Rab11-FIP2 on serine 227 by MARK2 regulates an alternative pathway modulating the establishment of epithelial polarity.
Collapse
Affiliation(s)
| | - Chadwick M. Hales
- Institute of Molecular Medicine, Medical College of Georgia, Augusta, GA 30912; and
| | | | - Amy-Joan L. Ham
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, and the Nashville VA Medical Center, Nashville, TN 37232
| | - Asli Oztan
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Gerard Apodaca
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | |
Collapse
|
230
|
van de Graaf SFJ, Hoenderop JGJ, Bindels RJM. Regulation of TRPV5 and TRPV6 by associated proteins. Am J Physiol Renal Physiol 2006; 290:F1295-302. [PMID: 16682485 DOI: 10.1152/ajprenal.00443.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial Ca2+ channels TRPV5 and TRPV6 are the most Ca2+-selective members of the TRP channel superfamily. These channels are the prime target for hormonal control of the active Ca2+ flux from the urine space or intestinal lumen to the blood compartment. Insight into their regulation is, therefore, pivotal in our understanding of the (patho)physiology of Ca2+ homeostasis. The recent elucidation of TRPV5/6-associated proteins has provided new insight into the molecular mechanisms underlying the regulation of these channels. In this review, we describe the various means of TRPV5/6 regulation, the role of channel-associated proteins herein, and the relationship between both processes.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Department of Physiology, Radboud Univ. Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
231
|
Uhlig M, Passlack W, Eckel J. Identification and characterization of a novel variant in the highly conserved catalytic center of Rab11a. Eur J Med Genet 2006; 49:29-36. [PMID: 16473307 DOI: 10.1016/j.ejmg.2005.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Indexed: 11/17/2022]
Abstract
Small GTPases of the Rab family regulate vesicular traffic and distribution of proteins in different cell types. Rab11a is a member of this GTP hydrolyzing protein class and acts as a mediator of insulin stimulated translocation of the glucose transporter GLUT4 in peripheral tissues including heart and skeletal muscle. Here we report on Rab11a Q70R, a mutation in the catalytic center of Rab11a, observed in the cardiomyoblast cell line H9c2. Analysis of GTPase activity showed that Rab11a Q70L acts as a classical constitutive active mutant. Interestingly, the GTPase activity of Rab11a Q70R was not significantly different from the enzymatic activity of the Rab11a Q70 wild type protein. We therefore conclude that the glutamine residue of Rab11a at position 70 is not strictly essential for GTPase activity of this protein in contrast to Ras and other Rab proteins.
Collapse
Affiliation(s)
- M Uhlig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
232
|
Babbey CM, Ahktar N, Wang E, Chen CCH, Grant BD, Dunn KW. Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells. Mol Biol Cell 2006; 17:3156-75. [PMID: 16641372 PMCID: PMC1483048 DOI: 10.1091/mbc.e05-08-0799] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rab10, a protein originally isolated from Madin-Darby Canine Kidney (MDCK) epithelial cells, belongs to a family of Rab proteins that includes Rab8 and Rab13. Although both Rab8 and Rab13 have been found to mediate polarized membrane transport, the function of Rab10 in mammalian cells has not yet been established. We have used quantitative confocal microscopy of polarized MDCK cells expressing GFP chimeras of wild-type and mutant forms of Rab10 to analyze the function of Rab10 in polarized cells. These studies demonstrate that Rab10 is specifically associated with the common endosomes of MDCK cells, accessible to endocytic probes internalized from either the apical or basolateral plasma membrane domains. Expression of mutant Rab10 defective for either GTP hydrolysis or GTP binding increased recycling from early compartments on the basolateral endocytic pathway without affecting recycling from later compartments or the apical recycling pathway. These results suggest that Rab10 mediates transport from basolateral sorting endosomes to common endosomes.
Collapse
Affiliation(s)
- Clifford M. Babbey
- *Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202; and
| | - Nahid Ahktar
- *Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202; and
| | - Exing Wang
- *Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202; and
| | | | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Kenneth W. Dunn
- *Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202; and
| |
Collapse
|
233
|
van de Graaf SFJ, Chang Q, Mensenkamp AR, Hoenderop JGJ, Bindels RJM. Direct interaction with Rab11a targets the epithelial Ca2+ channels TRPV5 and TRPV6 to the plasma membrane. Mol Cell Biol 2006; 26:303-12. [PMID: 16354700 PMCID: PMC1317621 DOI: 10.1128/mcb.26.1.303-312.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TRPV5 and TRPV6 are the most Ca2+-selective members of the transient receptor potential (TRP) family of cation channels and play a pivotal role in the maintenance of Ca2+ balance in the body. However, little is known about the mechanisms controlling the plasma membrane abundance of these channels to regulate epithelial Ca2+ transport. In this study, we demonstrated the direct and specific interaction of GDP-bound Rab11a with TRPV5 and TRPV6. Rab11a colocalized with TRPV5 and TRPV6 in vesicular structures underlying the apical plasma membrane of Ca2+-transporting epithelial cells. This GTPase recognized a conserved stretch in the carboxyl terminus of TRPV5 that is essential for channel trafficking. Furthermore, coexpression of GDP-locked Rab11a with TRPV5 or TRPV6 resulted in significantly decreased Ca2+ uptake, caused by diminished channel cell surface expression. Together, our data demonstrated the important role of Rab11a in the trafficking of TRPV5 and TRPV6. Rab11a exerts this function in a novel fashion, since it operates via direct cargo interaction while in the GDP-bound configuration.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
234
|
Leiva N, Pavarotti M, Colombo MI, Damiani MT. Reconstitution of recycling from the phagosomal compartment in streptolysin O-permeabilized macrophages: role of Rab11. Exp Cell Res 2006; 312:1843-55. [PMID: 16563376 DOI: 10.1016/j.yexcr.2006.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 02/10/2006] [Accepted: 02/15/2006] [Indexed: 12/21/2022]
Abstract
By phagocytosis, macrophages engulf large particles, microorganisms and senescent cells in vesicles called phagosomes. Many internalized proteins rapidly shuttle back to the plasma membrane following phagosome biogenesis. Here, we report a new approach to the study of recycling from the phagosomal compartment: streptolysin O- (SLO) permeabilized macrophages. In this semi-intact cell system, energy and cytosol are required to efficiently reconstitute recycling transport. Addition of GDPbetaS strongly inhibits this transport step, suggesting that a GTP-binding protein modulates the dynamics of cargo exit from the phagosomal compartment. GTPases of the Rab family control vesicular trafficking, and Rab11 is involved in transferrin receptor recycling. To unravel the role of Rab11 in the phagocytic pathway, we added recombinant proteins to SLO-permeabilized macrophages. Rab11:S25N, a negative mutant, strongly diminishes the release of recycled proteins from phagosomes. In contrast, wild type Rab11 and its positive mutant (Rab11:Q70L) favor this vesicular transport event. Using biochemical and morphological assays, we confirm that overexpression of Rab11:S25N substantially decreases recycling from phagosomes in intact cells. These findings show the requirement of a functional Rab11 for the retrieval to the plasma membrane of phagosomal content. SLO-permeabilized macrophages likely constitute a useful tool to identify new molecules involved in regulating transport along the phagocytic pathway.
Collapse
Affiliation(s)
- Natalia Leiva
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina
| | | | | | | |
Collapse
|
235
|
Chen CCH, Schweinsberg PJ, Vashist S, Mareiniss DP, Lambie EJ, Grant BD. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol Biol Cell 2006; 17:1286-97. [PMID: 16394106 PMCID: PMC1382317 DOI: 10.1091/mbc.e05-08-0787] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The endocytic pathway of eukaryotes is essential for the internalization and trafficking of macromolecules, fluid, membranes, and membrane proteins. One of the most enigmatic aspects of this process is endocytic recycling, the return of macromolecules (often receptors) and fluid from endosomes to the plasma membrane. We have previously shown that the EH-domain protein RME-1 is a critical regulator of endocytic recycling in worms and mammals. Here we identify the RAB-10 protein as a key regulator of endocytic recycling upstream of RME-1 in polarized epithelial cells of the Caenorhabditis elegans intestine. rab-10 null mutant intestinal cells accumulate abnormally abundant RAB-5-positive early endosomes, some of which are enlarged by more than 10-fold. Conversely most RME-1-positive recycling endosomes are lost in rab-10 mutants. The abnormal early endosomes in rab-10 mutants accumulate basolaterally recycling transmembrane cargo molecules and basolaterally recycling fluid, consistent with a block in basolateral transport. These results indicate a role for RAB-10 in basolateral recycling upstream of RME-1. We found that a functional GFP-RAB-10 reporter protein is localized to endosomes and Golgi in wild-type intestinal cells consistent with a direct role for RAB-10 in this transport pathway.
Collapse
Affiliation(s)
- Carlos Chih-Hsiung Chen
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
236
|
Marbet P, Rahner C, Stieger B, Landmann L. Quantitative microscopy reveals 3D organization and kinetics of endocytosis in rat hepatocytes. Microsc Res Tech 2006; 69:693-707. [PMID: 16886231 DOI: 10.1002/jemt.20337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to demonstrate the power of quantitative microscopy, the endocytic apparatus of rat hepatocytes was reexamined using in situ liver and short term cultured hepatocyte couplets that were allowed to internalize endocytic markers for various time intervals. Correlative confocal light and electron microscopy demonstrate a tubulovesicular reticulum representing the endocytic apparatus. Volume and membrane area account for 2% of cell volume and 30% plasma membrane surface. Colocalization analysis demonstrated that pathway-specific ligands and fluid-phase markers enter EEA1-positive vesicles, the early endosomal compartment, immediately after internalization. These vesicles are translocated rapidly from basolateral to perinuclear and apical locations. Ligands are sorted within 5 min to their respective pathways. Sequential colocalization of an asialoglycoprotein-pulse with rab7 and lamp3 demonstrates that early endosomes change into or fuse with late endosomes and lysosomes. Alternatively, markers are sequestered into the common endosome consisting of rab11-positive, long tubules that originate from early endosomes and show an affinity for the transcytotic marker pIgA and its receptor. This compartment mediates transcytosis by delivering the receptor-ligand complex to the subapical compartment, a set of apical, rab11-positive vesicles, which are connected to the tubular reticulum. We conclude that vesicular traffic between preexisting compartments, maturation or fusion of endocytic organelles, and transport in tubules act in concert and together mediate transport between compartments of a tubulovesicular endocytic apparatus. In addition, we show that quantitative microscopy using high resolution data sets can detect and characterize kinetics of various parameters thus adding a dynamic component to 3D information.
Collapse
Affiliation(s)
- Permsin Marbet
- Structural Cell Biology, Centre for Biomedical Research, University of Basel, Switzerland
| | | | | | | |
Collapse
|
237
|
Abstract
In the late 1980s and early 1990s, the observation that certain integrin heterodimers are continually internalized from the plasma membrane into endosomal compartments and subsequently recycled back to the cell surface indicated that the endocytic and recycling pathways have the potential to exert minute-to-minute control over integrin function. This insight has prompted others to study the regulation of integrin trafficking in more detail. This review aims to summarize the findings of studies revealing the molecular mechanisms controlling integrin traffic, particularly those providing indications as to how these processes contribute to cell migration and tumour cell invasiveness.
Collapse
Affiliation(s)
- Patrick T Caswell
- Beatson Institute for Cancer Research, Cancer Research UK, Garscube Estate, Glasgow
| | | |
Collapse
|
238
|
de Marco MC, Puertollano R, Martínez-Menárguez JA, Alonso MA. Dynamics of MAL2 During Glycosylphosphatidylinositol-Anchored Protein Transcytotic Transport to the Apical Surface of Hepatoma HepG2 Cells. Traffic 2005; 7:61-73. [PMID: 16445687 DOI: 10.1111/j.1600-0854.2005.00361.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Delivery of glycosylphosphatidylinositol (GPI)-anchored proteins to the apical surface takes place by transcytosis in hepatocytes and also probably in epithelial Madin-Darby canine cells. The integral protein MAL2 was demonstrated to be essential for basolateral-to-apical transcytosis in hepatoma HepG2 cells. Reduction of endogenous MAL2 levels impedes cargo delivery to the apical membrane, but, paradoxically, cargo does not accumulate in the subapical compartment where MAL2 predominantly resides but in distant endosome elements. To understand how transcytosis can be apparently mediated at a distance, we have analyzed the dynamics of machinery and cargo by live-cell imaging of MAL2 and transcytosing CD59, a GPI-anchored protein, in HepG2 cells. MAL2 was revealed as being a highly dynamic protein. Soon after basolateral endocytosis of CD59, a fraction of MAL2 redistributed into peripheral vesicular clusters that concentrated CD59 and that were accessible to transferrin (Tf) receptor, a basolateral recycling protein. Following Tf receptor segregation, the clusters fused in a MAL2(+)globular structure and moved toward the apical surface for CD59 delivery. All these processes were impaired in cells with reduced MAL2 content. Other GPI-anchored proteins examined behave similarly. As MAL2 is expressed by many types of epithelia, the sorting events described herein are probably of quite general utility.
Collapse
Affiliation(s)
- María C de Marco
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
239
|
Swiatecka-Urban A, Brown A, Moreau-Marquis S, Renuka J, Coutermarsh B, Barnaby R, Karlson KH, Flotte TR, Fukuda M, Langford GM, Stanton BA. The Short Apical Membrane Half-life of Rescued ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Results from Accelerated Endocytosis of ΔF508-CFTR in Polarized Human Airway Epithelial Cells. J Biol Chem 2005; 280:36762-72. [PMID: 16131493 DOI: 10.1074/jbc.m508944200] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in individuals with cystic fibrosis, DeltaF508, causes retention of DeltaF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl(-) channels in the apical plasma membrane. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the DeltaF508 mutation reduces the half-life of DeltaF508-CFTR in the apical plasma membrane. Because DeltaF508-CFTR retains some Cl(-) channel activity, increased expression of DeltaF508-CFTR in the apical membrane could serve as a potential therapeutic approach for cystic fibrosis. However, little is known about the mechanisms responsible for the short apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. Accordingly, the goal of this study was to determine the cellular defects in the trafficking of rescued DeltaF508-CFTR that lead to the decreased apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. We report that in polarized human airway epithelial cells (CFBE41o-) the DeltaF508 mutation increased endocytosis of CFTR from the apical membrane without causing a global endocytic defect or affecting the endocytic recycling of CFTR in the Rab11a-specific apical recycling compartment.
Collapse
|
240
|
Wakabayashi Y, Dutt P, Lippincott-Schwartz J, Arias IM. Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells. Proc Natl Acad Sci U S A 2005; 102:15087-92. [PMID: 16214890 PMCID: PMC1257697 DOI: 10.1073/pnas.0503702102] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocytes polarize by forming functionally distinct sinusoidal (basolateral) and canalicular (apical) plasma membrane domains. Two distinct routes are used for delivery of membrane proteins to the canaliculus. Proteins having glycosylphosphatidylinositol anchors or single transmembrane domains are targeted to the sinusoidal plasma membrane from where they transcytose to the canalicular domain. In contrast, apical ATP-binding-cassette (ABC) transporters, which are required for energy-dependent biliary secretion of bile acids (ABCB11), phospholipids (ABCB4), and nonbile acid organic anions (ABCC2), lack initial residence in the basolateral plasma membrane and traffic directly from Golgi membranes to the canalicular membrane. While investigating mechanisms of apical targeting in WIF-B9 cells, a polarized hepatic epithelial cell line, we observed that rab11a is required for canalicular formation. Knockdown of rab11a or overexpression of the rab11a-GDP locked form prevented canalicular formation as did overexpression of the myosin Vb motorless tail domain. In WIF-B9 cells, which lack bile canaliculi, apical ABC transporters colocalized with transcytotic membrane proteins in rab11a-containing endosomes and, unlike the transcytotic markers, did not distribute to the plasma membrane. We propose that polarization of hepatocytes (i.e., canalicular biogenesis) requires recruitment of rab11a and myosin Vb to intracellular membranes that contain apical ABC transporters and transcytotic markers, permitting their targeting to the plasma membrane. In this model, polarization is initiated upon delivery of rab11a-myosin Vb-containing membranes to the surface, which causes plasma membrane at the site of delivery to differentiate into apical domain (bile canaliculus).
Collapse
Affiliation(s)
- Yoshiyuki Wakabayashi
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
241
|
Tajika Y, Matsuzaki T, Suzuki T, Ablimit A, Aoki T, Hagiwara H, Kuwahara M, Sasaki S, Takata K. Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol 2005; 124:1-12. [PMID: 16049696 DOI: 10.1007/s00418-005-0010-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2005] [Indexed: 01/02/2023]
Abstract
Vasopressin-induced trafficking of aquaporin-2 (AQP2) water channels in kidney collecting duct cells is critical to regulate the urine concentration. To better understand the mechanism of subcellular trafficking of AQP2, we examined MDCK cells expressing AQP2 as a model. We first performed double-immunolabeling of AQP2 with endosomal marker proteins, and showed that AQP2 is stored at a Rab11-positive subapical compartment. After the translocation to the plasma membrane, AQP2 was endocytosed to EEA1-positive early endosomes, and then transferred back to the original Rab11-positive compartment. When Rab11 was depleted by RNA interference, retention of AQP2 at the subapical storage compartment was impaired. We next examined the role of cytoskeleton in the AQP2 trafficking and localization. By the treatment with microtubule-disrupting agent such as nocodazole or colcemid, the distribution of AQP2 storage compartment was altered. The disruption of actin filaments with cytochalasin D or latrunculin B induced the accumulation of AQP2 in EEA1-positive early endosomes. Altogether, our data suggest that Rab11 and microtubules maintain the proper distribution of the subapical AQP2 storage compartment, and actin filaments regulate the trafficking of AQP2 from early endosomes to the storage compartment.
Collapse
Affiliation(s)
- Yuki Tajika
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Neel NF, Schutyser E, Sai J, Fan GH, Richmond A. Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev 2005; 16:637-58. [PMID: 15998596 PMCID: PMC2668263 DOI: 10.1016/j.cytogfr.2005.05.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/03/2005] [Indexed: 01/25/2023]
Abstract
The internalization and intracellular trafficking of chemokine receptors have important implications for the cellular responses elicited by chemokine receptors. The major pathway by which chemokine receptors internalize is the clathrin-mediated pathway, but some receptors may utilize lipid rafts/caveolae-dependent internalization routes. This review discusses the current knowledge and controversies regarding these two different routes of endocytosis. The functional consequences of internalization and the regulation of chemokine receptor recycling will also be addressed. Modifications of chemokine receptors, such as palmitoylation, ubiquitination, glycosylation, and sulfation, may also impact trafficking, chemotaxis and signaling. Finally, this review will cover the internalization and trafficking of viral and decoy chemokine receptors.
Collapse
Affiliation(s)
- Nicole F Neel
- Department of Veterans Affairs Medical Center, Vanderbilt University School of Medicine, 432 PRB, 23rd Avenue South at Pierce, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
243
|
Saito-Nakano Y, Loftus BJ, Hall N, Nozaki T. The diversity of Rab GTPases in Entamoeba histolytica. Exp Parasitol 2005; 110:244-52. [PMID: 15955319 DOI: 10.1016/j.exppara.2005.02.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 01/31/2005] [Accepted: 02/16/2005] [Indexed: 11/23/2022]
Abstract
Rab proteins are ubiquitous small GTP-binding proteins that form a highly conserved family and regulate vesicular trafficking. Recent completion of the genome of the enteric protozoan parasite Entamoeba histolytica enabled us to identify an extremely large number (>90) of putative Rab genes. Multiple alignment and phylogenic analysis of amebic, human, and yeast Rab showed that only 22 amebic Rab proteins including EhRab1, EhRab2, EhRab5, EhRab7, EhRab8, EhRab11, and EhRab21 showed significant similarity to Rab from other organisms. The 69 remaining amebic Rab proteins showed only moderate similarity (<40% identity) to Rab proteins from other organisms. Approximately one-third of Rab proteins including Rab7, Rab11, and RabC form 15 subfamilies, which contain up to nine isoforms. Approximately 70% of amebic Rab genes contain single or multiple introns, and this proportion is significantly higher than that of common genes in this organism. Twenty-five Rabs possess an atypical carboxyl terminus such as CXXX, XCXX, XXCX, XXXC, and no cysteine. We propose annotation of amebic Rab genes and discuss biological significance of this extraordinary diversity of EhRab proteins in this organism.
Collapse
Affiliation(s)
- Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | |
Collapse
|
244
|
Decressac S, Franco M, Bendahhou S, Warth R, Knauer S, Barhanin J, Lazdunski M, Lesage F. ARF6-dependent interaction of the TWIK1 K+ channel with EFA6, a GDP/GTP exchange factor for ARF6. EMBO Rep 2005; 5:1171-5. [PMID: 15540117 PMCID: PMC1299187 DOI: 10.1038/sj.embor.7400292] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/17/2004] [Accepted: 10/13/2004] [Indexed: 11/09/2022] Open
Abstract
TWIK1 belongs to a family of K(+) channels involved in neuronal excitability and cell volume regulation. Its tissue distribution suggests a role in epithelial potassium transport. Here we show that TWIK1 is expressed in a subapical compartment in renal proximal tubules and in polarized MDCK cells. In nonpolarized cells, this compartment corresponds to pericentriolar recycling endosomes. We identified EFA6, an exchange factor for the small G protein ADP-ribosylation factor 6 (ARF6), as a protein binding to TWIK1. EFA6 interacts with TWIK1 only when it is bound to ARF6. Because ARF6 modulates endocytosis at the apical surface of epithelial cells, the ARF6/EFA6/TWIK1 association is probably important for channel internalization and recycling.
Collapse
Affiliation(s)
- Sonia Decressac
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
| | - Michel Franco
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
| | - Said Bendahhou
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
| | - Richard Warth
- Institute of Physiology, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Sebastian Knauer
- Institute of Physiology, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jacques Barhanin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
| | - Michel Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
- Tel: +33 4 93 95 77 01; Fax: 33 4 93 95 77 04; E-mail:
| | - Florian Lesage
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097/UNSA, Institut Paul Hamel, 660, route des lucioles, 06560 Valbonne, France
- Service de Neurologie, Hôpital Pasteur, Centre Hospitalo-Universitaire de Nice, 30, avenue de la voie romaine, BP 69, 06002 Nice cedex 01, France
| |
Collapse
|
245
|
Yoon SO, Shin S, Mercurio AM. Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res 2005; 65:2761-9. [PMID: 15805276 DOI: 10.1158/0008-5472.can-04-4122] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypoxia plays a key role in tumor cell survival, invasion, and metastasis. Here we show that hypoxia increases tumor cell invasion by the modulation of Rab11, an important molecule for vesicular trafficking, especially membrane protein recycling and translocation of proteins from trans-Golgi network to plasma membrane. Dominant-negative Rab11 dramatically decreased hypoxia-induced invasion of MDA-MB-231 breast carcinoma cells without affecting cell apoptosis. Hypoxia-induced Rab11 trafficking is regulated by microtubule stability, as evidenced by the findings that hypoxia increases Glu tubulin and that colchicine blocks Rab11 trafficking and invasion. Inhibition of GSK-3beta activity by hypoxia seems to be central to microtubule stabilization and invasion. In fact, expression of a dominant-negative GSK-3beta was sufficient to stimulate invasion in normoxia. One target of Rab11-mediated trafficking that contributes to invasion is the integrin alpha6beta4. Hypoxia induced a significant increase in alpha6beta4 surface expression but it had no effect on the surface expression of alpha3beta1. This increase is dependent on Rab11 and stable microtubules. In summary, we identify vesicle trafficking as a novel target of hypoxic stimulation that is important for tumor invasion.
Collapse
Affiliation(s)
- Sang-Oh Yoon
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
246
|
Rodriguez-Boulan E, Kreitzer G, Müsch A. Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 2005; 6:233-47. [PMID: 15738988 DOI: 10.1038/nrm1593] [Citation(s) in RCA: 495] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experiments using mammalian epithelial cell lines have elucidated biosynthetic and recycling pathways for apical and basolateral plasma-membrane proteins, and have identified components that guide apical and basolateral proteins along these pathways. These components include apical and basolateral sorting signals, adaptors for basolateral signals, and docking and fusion proteins for vesicular trafficking. Recent live-cell-imaging studies provide a real-time view of sorting processes in epithelial cells, including key roles for actin, microtubules and motors in the organization of post-Golgi trafficking.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | | | |
Collapse
|
247
|
Ward ES, Martinez C, Vaccaro C, Zhou J, Tang Q, Ober RJ. From sorting endosomes to exocytosis: association of Rab4 and Rab11 GTPases with the Fc receptor, FcRn, during recycling. Mol Biol Cell 2005; 16:2028-38. [PMID: 15689494 PMCID: PMC1073680 DOI: 10.1091/mbc.e04-08-0735] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A longstanding question in cell biology is how is the routing of intracellular organelles within cells regulated? Although data support the involvement of Rab4 and Rab11 GTPases in the recycling pathway, the function of Rab11 in particular is uncertain. Here we have analyzed the association of these two Rab GTPases with the Fc receptor, FcRn, during intracellular trafficking. This Fc receptor is both functionally and structurally distinct from the classical Fcgamma receptors and transports immunoglobulin G (IgG) within cells. FcRn is therefore a recycling receptor that sorts bound IgG from unbound IgG in sorting endosomes. In the current study we have used dual color total internal reflection fluorescence microscopy (TIRFM) and wide-field imaging of live cells to analyze the events in human endothelial cells that are involved in the trafficking of FcRn positive (FcRn(+)) recycling compartments from sorting endosomes to exocytic sites at the plasma membrane. Our data are consistent with the following model for this pathway: FcRn leaves sorting endosomes in Rab4(+)Rab11(+) or Rab11(+) compartments. For Rab4(+)Rab11(+) compartments, Rab4 depletion occurs by segregation of the two Rab proteins into discrete domains that can separate. The Rab11(+)FcRn(+) vesicle or tubule subsequently fuses with the plasma membrane in an exocytic event. In contrast to Rab11, Rab4 is not involved in exocytosis.
Collapse
Affiliation(s)
- E Sally Ward
- Center for Immunology, University of Texas Southwestern Medical Center, Dallas, 75390-8576, USA.
| | | | | | | | | | | |
Collapse
|
248
|
Lock JG, Stow JL. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol Biol Cell 2005; 16:1744-55. [PMID: 15689490 PMCID: PMC1073657 DOI: 10.1091/mbc.e04-10-0867] [Citation(s) in RCA: 292] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
E-cadherin plays an essential role in cell polarity and cell-cell adhesion; however, the pathway for delivery of E-cadherin to the basolateral membrane of epithelial cells has not been fully characterized. We first traced the post-Golgi, exocytic transport of GFP-tagged E-cadherin (Ecad-GFP) in unpolarized cells. In live cells, Ecad-GFP was found to exit the Golgi complex in pleiomorphic tubulovesicular carriers, which, instead of moving directly to the cell surface, most frequently fused with an intermediate compartment, subsequently identified as a Rab11-positive recycling endosome. In MDCK cells, basolateral targeting of E-cadherin relies on a dileucine motif. Both E-cadherin and a targeting mutant, DeltaS1-E-cadherin, colocalized with Rab11 and fused with the recycling endosome before diverging to basolateral or apical membranes, respectively. In polarized and unpolarized cells, coexpression of Rab11 mutants disrupted the cell surface delivery of E-cadherin and caused its mistargeting to the apical membrane, whereas apical DeltaS1-E-cadherin was unaffected. We thus demonstrate a novel pathway for Rab11 dependent, dileucine-mediated, mu1B-independent sorting and basolateral trafficking, exemplified by E-cadherin. The recycling endosome is identified as an intermediate compartment for the post-Golgi trafficking and exocytosis of E-cadherin, with a potentially important role in establishing and maintaining cadherin-based adhesion.
Collapse
Affiliation(s)
- John G Lock
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
249
|
Hoekstra D, Tyteca D, van IJzendoorn SCD. The subapical compartment: a traffic center in membrane polarity development. J Cell Sci 2005; 117:2183-92. [PMID: 15126620 DOI: 10.1242/jcs.01217] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spatially separated apical and basolateral plasma membrane domains that have distinct functions and molecular compositions are a characteristic feature of epithelial cell polarity. The subapical compartment (SAC), also known as the common endosome (CE), where endocytic pathways from both surfaces merge, plays a crucial role in the maintenance and probably the biogenesis of these distinct membrane domains. Although differences in morphology are apparent, the same principal features of a SAC can be distinguished in different types of epithelial cells. As polarity develops, the compartment acquires several distinct machineries that, in conjunction with the cytoskeleton, are necessary for polarized trafficking. Disrupting trafficking via the SAC and hence bypassing its sorting machinery, as occurs upon actin depolymerization, leads to mis-sorting of apical and basolateral molecules, thereby compromising the development of polarity. The structural and functional integrity of the compartment in part depends on microtubules. Moreover, the acquisition of a particular set of Rab proteins, including Rab11 and Rab3, appears to be crucial in regulating molecular sorting and vesicular transport relevant both to recycling to either plasma membrane domain and to de novo assembly of the apical domain. Furthermore, subcompartmentalization of the SAC appears to be key to its various functions.
Collapse
Affiliation(s)
- Dick Hoekstra
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
250
|
Ducharme NA, Jin M, Lapierre LA, Goldenring JR. Assessment of Rab11‐FIP2 Interacting Proteins In Vitro. Methods Enzymol 2005; 403:706-15. [PMID: 16473632 DOI: 10.1016/s0076-6879(05)03061-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Members of the Rab family of small GTPases are involved in multiple trafficking events in both endocytotic and biosynthetic pathways. To understand more fully the regulation of these events, a concerted effort is underway to ascertain the binding partners and regulators of Rabs. Here, we describe methods to assess binding of Rab11a with Rab11-FIP2 and other Rab11-FIPs utilizing a modified far-Western approach. We then broaden this application to assess binding of Rab11-FIP2 with myosin Vb and homodimerization of Rab11-FIP2.
Collapse
|