201
|
Li Q, Sarna SK. Nitric oxide modifies chromatin to suppress ICAM-1 expression during colonic inflammation. Am J Physiol Gastrointest Liver Physiol 2012; 303:G103-10. [PMID: 22517771 PMCID: PMC3404578 DOI: 10.1152/ajpgi.00381.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide (NO) is an established inflammatory mediator. However, it remains controversial whether NO enhances the inflammatory response in the colon or suppresses it. We investigated the epigenetic regulation of Icam-1 expression by NO following induction of colonic inflammation in rats by 2,4,6-trinitrobenzene sulfonic (TNBS) acid and obtaining colonic muscularis externae tissues 24 h later. TNBS inflammation induced intercellular adhesion molecule-1 (ICAM-1) expression by translocating NF-κB to the nucleus. The incubation of inflamed tissues with S-nitrosoglutathione (GSNO) did not affect the nuclear translocation of NF-κB; however, it suppressed the NF-κB binding to DNA. Chromatin immunoprecipitation analysis (ChIP)-qPCR assays showed that the increase in NF-κB/DNA interaction following inflammation is due to the transcriptional downregulation of global HDAC3 and a decrease in its interaction with the DNA on the Icam-1 promoter containing the binding motifs of NF-κB. The decrease in the association of histone deacetylase (HDAC) 3 with the Icam-1 promoter increased the acetylation of histone 4 lysine residue 12 (H4K12), which would favor chromatin relaxation and greater access of NF-κB to its DNA binding sites. HDAC3 dissociation from the DNA did not affect the acetylation levels of H4K8 and H4K16. The NO release by GSNO countered the upregulation of Icam-1 by increasing the transcription of global HDAC3 and its association with the Icam-1 promoter, and by suppressing H4K12 acetylation. We conclude that chromatin modification by transcriptional downregulation of HDAC3 plays a critical role in the induction of the inflammatory response. NO may serve as an anti-inflammatory mediator during the acute stage of inflammation by blunting the downregulation of global HDAC3, increasing HDAC3 interaction with the nucleosomes containing the binding moieties of NF-κB, reducing H4K12Ac to restrict the access of NF-κB to DNA, and suppressing ICAM-1 expression.
Collapse
Affiliation(s)
- Qingjie Li
- 1Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas; and
| | - Sushil K. Sarna
- 1Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas; and ,2Department of Neuroscience and Cell Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
202
|
Yoo JY, Choi HK, Choi KC, Park SY, Ota I, Yook JI, Lee YH, Kim K, Yoon HG. Nuclear hormone receptor corepressor promotes esophageal cancer cell invasion by transcriptional repression of interferon-γ-inducible protein 10 in a casein kinase 2-dependent manner. Mol Biol Cell 2012; 23:2943-54. [PMID: 22675025 PMCID: PMC3408420 DOI: 10.1091/mbc.e11-11-0947] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Casein kinase 2 (CK2) phosphorylates the nuclear hormone receptor corepressor (NCoR) to stabilize NCoR against the ubiquitin-dependent proteasomal degradation pathway. The CK2-NCoR signaling network suppresses the transcription of IP-10 to promote invasive growth of human esophageal cancer cells. Aberrant expression of casein kinase 2 (CK2) is associated with tumor progression; however, the molecular mechanism by which CK2 modulates tumorigenesis is incompletely understood. In this paper, we show that CK2α phosphorylates the C-terminal domain of the nuclear receptor corepressor (NCoR) at Ser-2436 to stabilize the NCoR against the ubiquitin-dependent proteasomal degradation pathway. Importantly, NCoR promoted the invasion of esophageal cancer cells in a CK2-dependent manner. By using cyclic DNA microarray analysis, we identified CXCL10/IP-10 as a novel CK2α-NCoR cascade–regulated gene. The depletion of both NCoR and HDAC3 commonly derepressed IP-10 transcription, demonstrating the functional engagement of the NCoR-HDAC3 axis in IP-10 transcriptional repression. Furthermore, chromatin immunoprecipitation assays showed that c-Jun recruits NCoR-HDAC3 corepressor complexes to the (AP1 site of IP-10, leading to histone hypoacetylation and IP-10 down-regulation. Collectively these data suggest that the CK2α-NCoR cascade selectively represses the transcription of IP-10 and promotes oncogenic signaling in human esophageal cancer cells.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Tsukahara T. The Role of PPARγ in the Transcriptional Control by Agonists and Antagonists. PPAR Res 2012; 2012:362361. [PMID: 22693486 PMCID: PMC3368591 DOI: 10.1155/2012/362361] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/02/2012] [Indexed: 01/04/2023] Open
Abstract
In recent years, peroxisome proliferator-activated receptor gamma (PPARγ) has been reported to be a target for the treatment of type II diabetes. Furthermore, it has received attention for its therapeutic potential in many other human diseases, including atherosclerosis, obesity, and cancers. Recent studies have provided evidence that the endogenously produced PPARγ antagonist, 2,3-cyclic phosphatidic acid (cPA), which is similar in structure to lysophosphatidic acid (LPA), inhibits cancer cell invasion and metastasis in vitro and in vivo. We recently observed that cPA negatively regulates PPARγ function by stabilizing the binding of the corepressor protein, silencing mediator of retinoic acid and thyroid hormone receptor. We also showed that cPA prevents neointima formation, adipocyte differentiation, lipid accumulation, and upregulation of PPARγ target gene transcription. We then analyzed the molecular mechanism of cPA's action on PPARγ. In this paper, we summarize the current knowledge on the mechanism of PPARγ-mediated transcriptional activity and transcriptional repression in response to novel lipid-derived ligands, such as cPA.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
204
|
Srinivasan M, Dunker AK. Proline rich motifs as drug targets in immune mediated disorders. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:634769. [PMID: 22666276 PMCID: PMC3362030 DOI: 10.1155/2012/634769] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/15/2012] [Indexed: 12/26/2022]
Abstract
The current version of the human immunome network consists of nearly 1400 interactions involving approximately 600 proteins. Intermolecular interactions mediated by proline-rich motifs (PRMs) are observed in many facets of the immune response. The proline-rich regions are known to preferentially adopt a polyproline type II helical conformation, an extended structure that facilitates transient intermolecular interactions such as signal transduction, antigen recognition, cell-cell communication and cytoskeletal organization. The propensity of both the side chain and the backbone carbonyls of the polyproline type II helix to participate in the interface interaction makes it an excellent recognition motif. An advantage of such distinct chemical features is that the interactions can be discriminatory even in the absence of high affinities. Indeed, the immune response is mediated by well-orchestrated low-affinity short-duration intermolecular interactions. The proline-rich regions are predominantly localized in the solvent-exposed regions such as the loops, intrinsically disordered regions, or between domains that constitute the intermolecular interface. Peptide mimics of the PRM have been suggested as potential antagonists of intermolecular interactions. In this paper, we discuss novel PRM-mediated interactions in the human immunome that potentially serve as attractive targets for immunomodulation and drug development for inflammatory and autoimmune pathologies.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indiana University Purdue University at Indianapolis 1121 West Michigan Street, DS290, Indianapolis, IN 46268, USA
| | - A. Keith Dunker
- Department of Biochemistry and Molecular Biology and School of Informatics, Indiana University School of Medicine, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
205
|
Grimaldi A, Buisine N, Miller T, Shi YB, Sachs LM. Mechanisms of thyroid hormone receptor action during development: lessons from amphibian studies. Biochim Biophys Acta Gen Subj 2012; 1830:3882-92. [PMID: 22565053 DOI: 10.1016/j.bbagen.2012.04.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/28/2012] [Accepted: 04/21/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Thyroid hormone (TH) receptor (TR) plays critical roles in vertebrate development. However, the in vivo mechanism of TR action remains poorly explored. SCOPE OF REVIEW Frog metamorphosis is controlled by TH and mimics the postembryonic period in mammals when high levels of TH are also required. We review here some of the findings on the developmental functions of TH and TR and the associated mechanisms obtained from this model system. MAJOR CONCLUSION A dual function model for TR in Anuran development was proposed over a decade ago. That is, unliganded TR recruits corepressors to TH response genes in premetamorphic tadpoles to repress these genes and prevent premature metamorphic changes. Subsequently, when TH becomes available, liganded TR recruits coactivators to activate these same genes, leading to metamorphic changes. Over the years, molecular and genetic approaches have provided strong support for this model. Specifically, it has been shown that unliganded TR recruits histone deacetylase containing corepressor complexes during larval stages to control metamorphic timing, while liganded TR recruits multiple histone modifying and chromatin remodeling coactivator complexes during metamorphosis. These complexes can alter chromatin structure via nucleosome position alterations or eviction and histone modifications to contribute to the recruitment of transcriptional machinery and gene activation. GENERAL SIGNIFICANCE The molecular mechanisms of TR action in vivo as revealed from studies on amphibian metamorphosis are very likely applicable to mammalian development as well. These findings provide a new perspective for understanding the diverse effects of TH in normal physiology and diseases caused by TH dysfunction. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Alexis Grimaldi
- Muséum National d'Histoire Naturelle, Dépt. Régulation Développement et Diversité Moléculaire, UMR7221 CNRS, Evolution des Régulations Endocriniennes, Section on thyroid hormone receptor function and mechanism of action, 57 rue Cuvier, 75231 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
206
|
Mengeling BJ, Goodson ML, Bourguet W, Privalsky ML. SMRTε, a corepressor variant, interacts with a restricted subset of nuclear receptors, including the retinoic acid receptors α and β. Mol Cell Endocrinol 2012; 351:306-16. [PMID: 22266197 PMCID: PMC3288673 DOI: 10.1016/j.mce.2012.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/19/2011] [Accepted: 01/04/2012] [Indexed: 11/30/2022]
Abstract
The SMRT and NCoR corepressors bind to, and mediate transcriptional repression by, many nuclear receptors. Both SMRT and NCoR are expressed by alternative mRNA splicing, generating a series of structurally and functionally distinct corepressor "variants". We report that a splice variant of SMRT, SMRTε, recognizes a restricted subset of nuclear receptors. Unlike the other corepressor variants characterized, SMRTε possesses only a single receptor interaction domain (RID) and exhibits an unusual specificity for a subset of nuclear receptors that includes the retinoic acid receptors (RARs). The ability of the single RID in SMRTε to efficiently interact with RARs appears to be enhanced by a recently recognized β-strand/β-strand interaction between corepressor and receptor. We suggest that alternative mRNA splicing of corepressors can restrict their function to specific nuclear receptor partnerships, and we propose that this may serve to customize the transcriptional repression properties of different cell types for different biological purposes.
Collapse
Affiliation(s)
- Brenda J. Mengeling
- Department of Microbiology, One Shields Avenues, University of California at Davis, Davis, California USA 95616
| | - Michael L. Goodson
- Department of Microbiology, One Shields Avenues, University of California at Davis, Davis, California USA 95616
| | - William Bourguet
- Centre de Biochimie Structurale, INSERM, 29 rue de Navacelles, F-34090 Montpellier Cedex, France
| | - Martin L. Privalsky
- Department of Microbiology, One Shields Avenues, University of California at Davis, Davis, California USA 95616
| |
Collapse
|
207
|
Guo C, Gow CH, Li Y, Gardner A, Khan S, Zhang J. Regulated clearance of histone deacetylase 3 protects independent formation of nuclear receptor corepressor complexes. J Biol Chem 2012; 287:12111-20. [PMID: 22337871 DOI: 10.1074/jbc.m111.327023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important step in transcriptional regulation by corepressors N-CoR and SMRT is the formation of a stable and active histone deacetylase 3 (HDAC3)-containing complex. Although N-CoR and SMRT are thought to bind HDAC3 competitively, multiple studies have shown that they do not interfere with the function of each other. How this functional independence is sustained under the competitive interaction is unclear. Here, we show that the coupling of corepressor expression with HDAC3 degradation allows cells to maintain a stable level of uncomplexed HDAC3, thereby preventing mutual interference in the assembly of N-CoR and SMRT complexes. The free uncomplexed HDAC3 is highly unstable. Unexpectedly, the rate of HDAC3 degradation is inversely correlated with the expression level of corepressors. Our results indicate that reducing one corepressor accelerates HDAC3 clearance, thus preventing an increase in complex formation between HDAC3 and the other corepressor. In addition, this study also indicates that the formation of a stable and active HDAC3-corepressor complex is a stepwise process in which the C terminus of HDAC3 plays a critical role at late steps of the assembly process.
Collapse
Affiliation(s)
- Chun Guo
- Department of Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
208
|
Li J, Chu M, Wang S, Chan D, Qi S, Wu M, Zhou Z, Li J, Nishi E, Qin J, Wong J. Identification and characterization of nardilysin as a novel dimethyl H3K4-binding protein involved in transcriptional regulation. J Biol Chem 2012; 287:10089-10098. [PMID: 22294699 DOI: 10.1074/jbc.m111.313965] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone methylation on lysine residues is believed to function primarily as docking sites to recruit specific proteins termed as histone code "readers" or "effectors." Each lysine residue can be mono-, di, and tri-methylated and different methylation states can have different effect on chromatin function. While an increasing number of proteins have been identified and characterized as specific effectors for methylated histones, very few of the proteins are known to recognize a particular state of methylation. In this study, we identified nardilysin (NRDc), a member of M16 family metalloendopeptidases, as a novel dimethyl-H3K4 (H3K4me2)-binding protein. Among three methylated states, NRDc binds preferentially H3K4me2 both in vitro and in vivo. Biochemical purification demonstrated that NRDc interacts with the NCoR/SMRT corepressor complex. We identified target genes repressed by NRDc through microarray. We showed that NRDc is physically associated with and recruits the NCoR complex to some of the repressed genes and this association correlates with binding of H3K4me2. Thus, our study has identified a novel H3K4me2-binding protein and revealed a role of NRDc in transcriptional regulation.
Collapse
Affiliation(s)
- Jing Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyue Chu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shanshan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Doug Chan
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Shankang Qi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meng Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhongliang Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Jun Qin
- Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China,.
| |
Collapse
|
209
|
Watson PJ, Fairall L, Schwabe JW. Nuclear hormone receptor co-repressors: structure and function. Mol Cell Endocrinol 2012; 348:440-9. [PMID: 21925568 PMCID: PMC3315023 DOI: 10.1016/j.mce.2011.08.033] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/17/2011] [Accepted: 08/25/2011] [Indexed: 01/22/2023]
Abstract
Co-repressor proteins, such as SMRT and NCoR, mediate the repressive activity of unliganded nuclear receptors and other transcription factors. They appear to act as intrinsically disordered "hub proteins" that integrate the activities of a range of transcription factors with a number of histone modifying enzymes. Although these co-repressor proteins are challenging targets for structural studies due to their largely unstructured character, a number of structures have recently been determined of co-repressor interaction regions in complex with their interacting partners. These have yielded considerable insight into the mechanism of assembly of these complexes, the structural basis for the specificity of the interactions and also open opportunities for targeting these interactions therapeutically.
Collapse
|
210
|
Abstract
Histone deacetylase enzymes (HDACs) are emerging cancer drug targets. They regulate gene expression by removing acetyl groups from lysine residues in histone tails, resulting in chromatin condensation. The enzymatic activity of most class I HDACs requires recruitment into multi-subunit co-repressor complexes, which are in turn recruited to chromatin by repressive transcription factors. Here we report the structure of a complex between an HDAC and a co-repressor, namely, human HDAC3 with the deacetylase activation domain (DAD) from the human SMRT co-repressor (also known as NCOR2). The structure reveals two remarkable features. First, the SMRT-DAD undergoes a large structural rearrangement on forming the complex. Second, there is an essential inositol tetraphosphate molecule--D-myo-inositol-(1,4,5,6)-tetrakisphosphate (Ins(1,4,5,6)P(4))--acting as an 'intermolecular glue' between the two proteins. Assembly of the complex is clearly dependent on the Ins(1,4,5,6)P(4), which may act as a regulator--potentially explaining why inositol phosphates and their kinases have been found to act as transcriptional regulators. This mechanism for the activation of HDAC3 appears to be conserved in class I HDACs from yeast to humans, and opens the way to novel therapeutic opportunities.
Collapse
|
211
|
Watson PJ, Fairall L, Santos GM, Schwabe JW. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 2012; 481:335-40. [PMID: 22230954 PMCID: PMC3272448 DOI: 10.1038/nature10728] [Citation(s) in RCA: 378] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/23/2011] [Indexed: 01/08/2023]
Abstract
Histone deacetylase enzymes (HDACs) are emerging cancer drug targets. They regulate gene expression by removing acetyl groups from lysine residues in histone tails, resulting in chromatin condensation. The enzymatic activity of most class I HDACs requires recruitment into multi-subunit co-repressor complexes, which are in turn recruited to chromatin by repressive transcription factors. Here we report the structure of a complex between an HDAC and a co-repressor, namely, human HDAC3 with the deacetylase activation domain (DAD) from the human SMRT co-repressor (also known as NCOR2). The structure reveals two remarkable features. First, the SMRT-DAD undergoes a large structural rearrangement on forming the complex. Second, there is an essential inositol tetraphosphate molecule--D-myo-inositol-(1,4,5,6)-tetrakisphosphate (Ins(1,4,5,6)P(4))--acting as an 'intermolecular glue' between the two proteins. Assembly of the complex is clearly dependent on the Ins(1,4,5,6)P(4), which may act as a regulator--potentially explaining why inositol phosphates and their kinases have been found to act as transcriptional regulators. This mechanism for the activation of HDAC3 appears to be conserved in class I HDACs from yeast to humans, and opens the way to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| | - Guilherme M. Santos
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| |
Collapse
|
212
|
Lv WW, Wei HM, Wang DL, Ni JQ, Sun FL. Depletion of histone deacetylase 3 antagonizes PI3K-mediated overgrowth through the acetylation of histone H4 at lysine 16. J Cell Sci 2012; 125:5369-78. [DOI: 10.1242/jcs.106336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Histone acetylation is one of the best-studied gene modifications and has been shown to be involved in numerous important biological processes. Herein, we demonstrated that the depletion of histone deacetylase 3 (Hdac3) in Drosophila melanogaster resulted in a reduction in body size. Further genetic studies showed that Hdac3 counteracted the overgrowth induced by InR, PI3K or S6K over-expression, and the growth regulation by Hdac3 was mediated through the deacetylation of histone H4 at lysine 16 (H4K16). Consistently, the alterations of H4K16 acetylation (H4K16ac) induced by the over-expression or depletion of males-absent-on-the-first (MOF), a histone acetyltransferase that specifically targets H4K16, resulted in changes in body size. Furthermore, we found that H4K16ac was modulated by PI3K signaling cascades. The activation of the PI3K pathway caused a reduction in H4K16ac, whereas the inactivation of the PI3K pathway resulted in an increase in H4K16ac. The Increase in H4K16ac by the depletion of Hdac3 counteracted the PI3K-induced tissue overgrowth and PI3K-mediated alterations in the transcription profile. Overall, our studies indicated that Hdac3 served as an important regulator of the PI3K pathway and revealed a novel link between histone acetylation and growth control.
Collapse
|
213
|
McMillan A, Hicks J, Isabella C, Higa GM. A critical analysis of the (near) legendary status of vitamin D. Expert Rev Endocrinol Metab 2012; 7:103-119. [PMID: 30736115 DOI: 10.1586/eem.11.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Labels such as food constituent, nutrient and supplement do not convey a sense of being essential. Yet these rather mundane descriptors, even if correct, belie the true significance of vitamin D. Long believed to be merely a functioning cofactor akin to vitamin C, deficiency of this secosteroid hormone is clearly associated with morbid complications of calcium and bone mineral metabolism, and because the hormonal effects are mediated by nuclear receptors that regulate the expression of many subordinate genes, the vitamin's pleiotropic mode of action can influence numerous metabolic pathways and, possibly, a number of different diseases. Although the vitamin is under intensive investigation, much still remains unknown, even in bone health, as the identity of osteoporosis susceptibility genes remains uncertain. This article focuses on various aspects of the basic science and molecular biology of the vitamin D endocrine system. The primary goal is to critically examine the evidence supporting its role in bone metabolism, diabetes and cancer.
Collapse
Affiliation(s)
- Ashlee McMillan
- a School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Jason Hicks
- a School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | | | - Gerald M Higa
- b Schools of Pharmacy and Medicine and the Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
214
|
Abstract
Histone deacetylases (HDACs) catalyze the deacetylation of lysine residues on histones and non-histone proteins. HDACs have been shown to control the functions of key cell cycle proteins. Consistent with this, the overexpression of HDACs has been observed in multiple cancers, resulting in deregulation of the cell cycle and uncontrolled proliferation. This review focuses on the impact that HDACs have on cell cycle control through the deacetylation of proteins.
Collapse
Affiliation(s)
- Elphine Telles
- Department of Molecular Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | |
Collapse
|
215
|
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12:486-504. [PMID: 22242852 PMCID: PMC3637177 DOI: 10.2174/156802612799436641] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) regulate and coordinate multiple processes by integrating internal and external signals, thereby maintaining homeostasis in front of nutritional, behavioral and environmental challenges. NRs exhibit strong similarities in their structure and mode of action: by selective transcriptional activation or repression of cognate target genes, which can either be controlled through a direct, DNA binding-dependent mechanism or through crosstalk with other transcriptional regulators, NRs modulate the expression of gene clusters thus achieving coordinated tissue responses. Additionally, non genomic effects of NR ligands appear mediated by ill-defined mechanisms at the plasma membrane. These effects mediate potential therapeutic effects as small lipophilic molecule targets, and many efforts have been put in elucidating their precise mechanism of action and pathophysiological roles. Currently, numerous nuclear receptor ligand analogs are used in therapy or are tested in clinical trials against various diseases such as hypertriglyceridemia, atherosclerosis, diabetes, allergies and cancer and others.
Collapse
Affiliation(s)
- Michal Pawlak
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Philippe Lefebvre
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Bart Staels
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| |
Collapse
|
216
|
Bush KA, Krukowski K, Eddy JL, Janusek LW, Mathews HL. Glucocorticoid receptor mediated suppression of natural killer cell activity: identification of associated deacetylase and corepressor molecules. Cell Immunol 2012; 275:80-9. [PMID: 22483981 PMCID: PMC3348463 DOI: 10.1016/j.cellimm.2012.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 11/15/2022]
Abstract
Physical and psychological stressors reduce natural killer cell function. This reduction in cellular function results from stress-induced release of glucocorticoids. Glucocorticoids act upon natural killer cells to deacetylate and transrepress immune response genes through epigenetic processes. However, other than the glucocorticoid receptor, the proteins that participate in this process are not well described in natural killer cells. The purpose of this study was to identify the proteins associated with the glucocorticoid receptor that are likely epigenetic participants in this process. Treatment of natural killer cells with the synthetic glucocorticoid, dexamethasone, produced a significant time dependent reduction in natural killer cell activity as early as 8h post treatment. This reduction in natural killer cell activity was preceded by nuclear localization of the glucocorticoid receptor with histone deacetylase 1 and the corepressor, SMRT. Other class I histone deacetylases were not associated with the glucocorticoid receptor nor was the corepressor NCoR. These results demonstrate histone deacetylase 1 and SMRT to associate with the ligand activated glucocorticoid receptor within the nuclei of natural killer cells and to be the likely participants in the histone deacetylation and transrepression that accompanies glucocorticoid mediated reductions in natural killer cell function.
Collapse
Affiliation(s)
- Kristin A Bush
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
217
|
Vogel-Ciernia A, Wood MA. Molecular brake pad hypothesis: pulling off the brakes for emotional memory. Rev Neurosci 2012; 23:607-26. [PMID: 23096102 PMCID: PMC4605538 DOI: 10.1515/revneuro-2012-0050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/05/2012] [Indexed: 12/31/2022]
Abstract
Under basal conditions histone deacetylases(HDACs) and their associated co-repressor complexes serve as molecular 'brake pads' to prevent the gene expression required for long-term memory formation. Following a learning event, HDACs and their co-repressor complexes are removed from a subset of specific gene promoters, allowing the histone acetylation and active gene expression required for long-term memory formation.Inhibition of HDACs increases histone acetylation,extends gene expression profiles, and allows for the formation of persistent long-term memories for training events that are otherwise forgotten. We propose that emotionally salient experiences have utilized this system to form strong and persistent memories for behaviorally significant events. Consequently, the presence or absence of HDACs at a selection of specific gene promoters could serve as a critical barrier for permitting the formation of long-term memories.
Collapse
Affiliation(s)
- Annie Vogel-Ciernia
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine Irvine, CA 92697–3800, USA
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California Irvine Irvine, CA 92697–3800, USA
| |
Collapse
|
218
|
Heck BW, Zhang B, Tong X, Pan Z, Deng WM, Tsai CC. The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development. Biol Open 2011; 1:182-96. [PMID: 23213409 PMCID: PMC3507286 DOI: 10.1242/bio.2012047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SMRTER (SMRT-related and ecdysone receptor interacting factor) is the Drosophila homologue of the vertebrate proteins SMRT and N-CoR, and forms with them a well-conserved family of transcriptional corepressors. Molecular characterization of SMRT-family proteins in cultured cells has implicated them in a wide range of transcriptional regulatory pathways. However, little is currently known about how this conserved class of transcriptional corepressors regulates the development of particular tissues via specific pathways. In this study, through our characterization of multiple Smrter (Smr) mutant lines, mosaic analysis of a loss-of-function Smr allele, and studies of two independent Smr RNAi fly lines, we report that SMRTER is required for the development of both ovarian follicle cells and the wing. In these two tissues, SMRTER inhibits not only the ecdysone pathway, but also the Notch pathway. We differentiate SMRTER's influence on these two signaling pathways by showing that SMRTER inhibits the Notch pathway, but not the ecdysone pathway, in a spatiotemporally restricted manner. We further confirm the likely involvement of SMRTER in the Notch pathway by demonstrating a direct interaction between SMRTER and Suppressor of Hairless [Su(H)], a DNA-binding transcription factor pivotal in the Notch pathway, and the colocalization of both proteins at many chromosomal regions in salivary glands. Based on our results, we propose that SMRTER regulates the Notch pathway through its association with Su(H), and that overcoming a SMRTER-mediated transcriptional repression barrier may represent a key mechanism used by the Notch pathway to control the precise timing of events and the formation of sharp boundaries between cells in multiple tissues during development.
Collapse
Affiliation(s)
- Bryan W Heck
- UMDNJ-Robert Wood Johnson Medical School, Department of Physiology and Biophysics , 683 Hoes Lane, Piscataway, NJ 08854 , USA
| | | | | | | | | | | |
Collapse
|
219
|
Mullican SE, Gaddis CA, Alenghat T, Nair MG, Giacomin PR, Everett LJ, Feng D, Steger DJ, Schug J, Artis D, Lazar MA. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev 2011; 25:2480-8. [PMID: 22156208 PMCID: PMC3243058 DOI: 10.1101/gad.175950.111] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/24/2011] [Indexed: 01/08/2023]
Abstract
Macrophages, a key cellular component of inflammation, become functionally polarized in a signal- and context-specific manner. Th2 cytokines such as interleukin 4 (IL-4) polarize macrophages to a state of alternative activation that limits inflammation and promotes wound healing. Alternative activation is mediated by a transcriptional program that is influenced by epigenomic modifications, including histone acetylation. Here we report that macrophages lacking histone deacetylase 3 (HDAC3) display a polarization phenotype similar to IL-4-induced alternative activation and, furthermore, are hyperresponsive to IL-4 stimulation. Throughout the macrophage genome, HDAC3 deacetylates histone tails at regulatory regions, leading to repression of many IL-4-regulated genes characteristic of alternative activation. Following exposure to Schistosoma mansoni eggs, a model of Th2 cytokine-mediated disease that is limited by alternative activation, pulmonary inflammation was ameliorated in mice lacking HDAC3 in macrophages. Thus, HDAC3 functions in alternative activation as a brake whose release could be of benefit in the treatment of multiple inflammatory diseases.
Collapse
Affiliation(s)
- Shannon E. Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christine A. Gaddis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Theresa Alenghat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Meera G. Nair
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Microbiology
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul R. Giacomin
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Microbiology
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Logan J. Everett
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dan Feng
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David J. Steger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan Schug
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David Artis
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Microbiology
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine
- Department of Genetics
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
220
|
Gupta M, Han JJ, Stenson M, Wellik L, Witzig TE. Regulation of STAT3 by histone deacetylase-3 in diffuse large B-cell lymphoma: implications for therapy. Leukemia 2011; 26:1356-64. [PMID: 22116549 DOI: 10.1038/leu.2011.340] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) with an activated B-cell (ABC) gene-expression profile has been shown to have a poorer prognosis compared with tumors with a germinal center B-cell type. ABC cell lines have constitutive activation of STAT3; however, the mechanisms regulating STAT3 signaling in lymphoma are unknown. In studies of class-I histone deacetylase (HDAC) expression, we found overexpression of HDAC3 in phospho STAT3-positive DLBCL and the HDAC3 was found to be complexed with STAT3. Inhibition of HDAC activity by panobinostat (LBH589) increased p300-mediated STAT3(Lys685) acetylation with increased nuclear export of STAT3 to the cytoplasm. HDAC inhibition abolished STAT3(Tyr705) phosphorylation with minimal effect on STAT3(Ser727) and JAK2 tyrosine activity. pSTAT3(Tyr705)-positive DLBCLs were more sensitive to HDAC inhibition with LBH589 compared with pSTAT3(Tyr705)-negative DLBCLs. This cytotoxicity was associated with downregulation of the direct STAT3 target Mcl-1. HDAC3 knockdown upregulated STAT3(Lys685) acetylation but prevented STAT3(Tyr705) phosphorylation and inhibited survival of pSTAT3-positive DLBCL cells. These studies provide the rationale for targeting STAT3-positive DLBCL tumors with HDAC inhibitors.
Collapse
Affiliation(s)
- M Gupta
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
221
|
Abstract
The methyl-CpG binding proteins (MBPs) interpret the methylation of DNA and its components. The number of MBPs in the human body currently stands at 15, which are split into 3 branches, a reflection of the intricate mechanisms of gene regulation. Each branch utilizes a different mechanism for interacting with methylated DNA or its components. These interactions function to direct gene expression and maintain or alter DNA architecture. It is these functions that are commonly exploited in human disease. For this review, we will focus on each protein and any roles it may have in initiating, promoting, progressing, or inhibiting cancer. This will highlight common threads in the roles of these proteins, which will allow us to speculate on potentially productive directions for future research.
Collapse
Affiliation(s)
- Lee Parry
- School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
222
|
Goodson ML, Mengeling BJ, Jonas BA, Privalsky ML. Alternative mRNA splicing of corepressors generates variants that play opposing roles in adipocyte differentiation. J Biol Chem 2011; 286:44988-99. [PMID: 22065574 DOI: 10.1074/jbc.m111.291625] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SMRT and NCoR corepressors partner with, and help mediate repression by, a wide variety of nuclear receptors and non-receptor transcription factors. Both SMRT and NCoR are expressed by alternative mRNA splicing, resulting in the production of a series of interrelated corepressor variants that differ in their tissue distribution and in their biochemical properties. We report here that different corepressor splice variants can exert opposing transcriptional and biological effects during adipocyte differentiation. Most notably, the NCoRω splice variant inhibits, whereas the NCoRδ splice variant promotes, adipogenesis. Furthermore, the ratio of NCoRω to NCoRδ decreases during adipogenic differentiation. We propose that this alteration in corepressor splicing helps convert the cellular transcriptional program from one that maintains the pre-adipocyte in an undifferentiated state to a new transcriptional context that promotes differentiation and helps establish the proper physiology of the mature adipocyte.
Collapse
Affiliation(s)
- Michael L Goodson
- Department of Microbiology, College of Biological Sciences, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
223
|
Li P, Zhao Y, Wu X, Xia M, Fang M, Iwasaki Y, Sha J, Chen Q, Xu Y, Shen A. Interferon gamma (IFN-γ) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription. Nucleic Acids Res 2011; 40:1609-20. [PMID: 22064865 PMCID: PMC3287208 DOI: 10.1093/nar/gkr984] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic inflammation impairs metabolic homeostasis and is intimately correlated with the pathogenesis of type 2 diabetes. The pro-inflammatory cytokine IFN-γ is an integral part of the metabolic inflammation circuit and contributes significantly to metabolic dysfunction. The underlying mechanism, however, remains largely unknown. In the present study, we report that IFN-γ disrupts the expression of genes key to cellular metabolism and energy expenditure by repressing the expression and activity of SIRT1 at the transcription level. Further analysis reveals that IFN-γ requires class II transactivator (CIITA) to repress SIRT1 transcription. CIITA, once induced by IFN-γ, is recruited to the SIRT1 promoter by hypermethylated in cancer 1 (HIC1) and promotes down-regulation of SIRT1 transcription via active deacetylation of core histones surrounding the SIRT1 proximal promoter. Silencing CIITA or HIC1 restores SIRT1 activity and expression of metabolic genes in skeletal muscle cells challenged with IFN-γ. Therefore, our data delineate an IFN-γ/HIC1/CIITA axis that contributes to metabolic dysfunction by suppressing SIRT1 transcription in skeletal muscle cells and as such shed new light on the development of novel therapeutic strategies against type 2 diabetes.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Reproductive Medicine and Department of Pathophysiology, Key Laboratory of Cardiovascular Disease,The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Naruhn S, Toth PM, Adhikary T, Kaddatz K, Pape V, Dörr S, Klebe G, Müller-Brüsselbach S, Diederich WE, Müller R. High-affinity peroxisome proliferator-activated receptor β/δ-specific ligands with pure antagonistic or inverse agonistic properties. Mol Pharmacol 2011; 80:828-38. [PMID: 21862691 DOI: 10.1124/mol.111.074039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a ligand-regulated nuclear receptor with essential functions in metabolism and inflammation. We have synthesized a new derivative [methyl 3-(N-(4-(hexylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (ST247) structurally related to the published PPARβ/δ inhibitory ligand methyl 3-(N-(2-methoxy-4-(phenylamino)phenyl)sulfamoyl)thiophene-2-carboxylate (GSK0660). ST247 has a higher affinity to PPARβ/δ than GSK0660, and at equimolar concentrations, it more efficiently 1) induces the interaction with corepressors both in vitro and in vivo, 2) inhibits the agonist-induced transcriptional activity of PPARβ/δ, and 3) down-regulates basal level expression of the peroxisome proliferator responsive element-driven PPARβ/δ target gene ANGPTL4. Methyl 3-(N-(4-(tert-butylamino)-2-methoxyphenyl)sulfamoyl)thiophene-2-carboxylate (PT-S58), another high-affinity derivative from our series, also efficiently inhibits agonist-induced transcriptional activation, but in contrast to ST247, it does not enhance the interaction of PPARβ/δ with corepressors. PT-S58 rather prevents corepressor recruitment triggered by the inverse agonist ST247. These findings classify ST247 as an inverse agonist, whereas PT-S58 is the first pure PPARβ/δ antagonist described to date. It is noteworthy that ST247 and PT-S58 are also effective on PPRE-independent functions of PPARβ/δ: in monocytic cells, both ligands modulate expression of the activation marker CCL2 in the opposite direction as an established PPARβ/δ agonist. The possibility to differentially modulate specific functions of PPARβ/δ makes these novel compounds invaluable tools to advance our understanding of PPARβ/δ biology.
Collapse
Affiliation(s)
- Simone Naruhn
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
New insights into the androgen-targeted therapies and epigenetic therapies in prostate cancer. Prostate Cancer 2011; 2011:918707. [PMID: 22111003 PMCID: PMC3196248 DOI: 10.1155/2011/918707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/27/2011] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is the most common cancer in men in the United States, and it is the second leading cause of cancer-related death in American men. The androgen receptor (AR), a receptor of nuclear family and a transcription factor, is the most important target in this disease. While most efforts in the clinic are currently directed at lowering levels of androgens that activate AR, resistance to androgen deprivation eventually develops. Most prostate cancer deaths are attributable to this castration-resistant form of prostate cancer (CRPC). Recent work has shed light on the importance of epigenetic events including facilitation of AR signaling by histone-modifying enzymes, posttranslational modifications of AR such as sumoylation. Herein, we provide an overview of the structure of human AR and its key structural domains that can be used as targets to develop novel antiandrogens. We also summarize recent findings about the antiandrogens and the epigenetic factors that modulate the action of AR.
Collapse
|
226
|
Zheng B, Han M, Shu YN, Li YJ, Miao SB, Zhang XH, Shi HJ, Zhang T, Wen JK. HDAC2 phosphorylation-dependent Klf5 deacetylation and RARα acetylation induced by RAR agonist switch the transcription regulatory programs of p21 in VSMCs. Cell Res 2011; 21:1487-508. [PMID: 21383775 PMCID: PMC3193446 DOI: 10.1038/cr.2011.34] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/19/2010] [Accepted: 01/10/2011] [Indexed: 02/03/2023] Open
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) occurs in hypertension, atherosclerosis and restenosis after angioplasty, leading to pathophysiological vascular remodeling. As an important growth arrest gene, p21 plays critical roles in vascular remodeling. Regulation of p21 expression by retinoic acid receptor (RAR) and its ligand has important implications for control of pathological vascular remodeling. Nevertheless, the mechanism of RAR-mediated p21 expression in VSMCs remains poorly understood. Here, we show that, under basal conditions, RARα forms a complex with histone deacetylase 2 (HDAC2) and Krüppel-like factor 5 (Klf5) at the p21 promoter to inhibit its expression. Upon RARα agonist stimulation, HDAC2 is phosphorylated by CK2α. Phosphorylation of HDAC2, on the one hand, promotes its dissociation from RARα, thus allowing the liganded-RARα to interact with co-activators; on the other hand, it increases its interaction with Klf5, thus leading to deacetylation of Klf5. Deacetylation of Klf5 facilitates its dissociation from the p21 promoter, relieving its repressive effect on the p21 promoter. Interference with HDAC2 phosphorylation by either CK2α knockdown or the use of phosphorylation-deficient mutant of HDAC2 prevents the dissociation of Klf5 from the p21 promoter and impairs RAR agonist-induced p21 activation. Our results reveal a novel mechanism involving a phosphorylation-deacetylation cascade that functions to remove the basal repression complex from the p21 promoter upon RAR agonist treatment, allowing for optimum agonist-induced p21 expression.
Collapse
MESH Headings
- Acetylation
- Animals
- Casein Kinase II/genetics
- Casein Kinase II/metabolism
- Cell Line
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Gene Expression Regulation/physiology
- Histone Deacetylase 2/genetics
- Histone Deacetylase 2/metabolism
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Male
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation/physiology
- Promoter Regions, Genetic/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retinoic Acid Receptor alpha
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Bin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Ya-nan Shu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Ying-jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Sui-bing Miao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Xin-hua Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Hui-jing Shi
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Tian Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Jin-kun Wen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang 050017, China
| |
Collapse
|
227
|
Mi Y, Zhang Y, Shen YF. Mechanism of JmjC-containing protein Hairless in the regulation of vitamin D receptor function. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1675-80. [PMID: 21982945 DOI: 10.1016/j.bbadis.2011.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/22/2011] [Accepted: 09/23/2011] [Indexed: 11/28/2022]
Abstract
The JmjC-domain-containing protein Hairless (HR) and the vitamin D receptor (VDR) play a critical role in the maintenance of hair growth. Mutations in HR or VDR cause alopecia in humans and mice. Here we show that HR interacts with VDR and induces VDR relocalization in the nuclei. HR associates and colocalizes with nuclear receptor co-repressor (N-CoR) which is localized to subnuclear structures termed matrix-associated deacetylase (MAD) bodies. It is found that the HR mutants (C622G, N970S, D1012N, V1136D), associated with alopecia universalis congenita (AUC) or atrichia with papular lesions (APL), exhibit an abnormal subcellular distribution in addition to the impaired co-repressor activity with VDR. Studies on deletion mutants of HR indicate that the JmjC domain contributes to the co-repressor activity of HR. Our work provides new clues and evidence for the understanding on the role of HR in hair growth.
Collapse
Affiliation(s)
- Yang Mi
- Department of Biochemistry and Molecular Biology, Chinese Academy of Medical Sciences, China
| | | | | |
Collapse
|
228
|
Li D, Wang X, Ren W, Ren J, Lan X, Wang F, Li H, Zhang F, Han Y, Song T, Holmdahl R, Lu S. High expression of liver histone deacetylase 3 contributes to high-fat-diet-induced metabolic syndrome by suppressing the PPAR-γ and LXR-α-pathways in E3 rats. Mol Cell Endocrinol 2011; 344:69-80. [PMID: 21763752 DOI: 10.1016/j.mce.2011.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 06/12/2011] [Accepted: 06/24/2011] [Indexed: 12/12/2022]
Abstract
In the previous experiment, we found that there was a different response between E3 rats and DA.1U rats to high-fat-diet-induced metabolic syndrome (HFD-MetS). The aim of this study was to explore the cause and molecular mechanism of the genetic difference in susceptibility to metabolic syndrome in E3 rats as compared with DA.1U rats. Firstly, a 12-week HFD-MetS model in E3 and DA.1U rats was carried out and assessed. Then, the expression of key insulin signaling molecules, metabolic nuclear receptors, metabolic key enzymes and histone deacetylases (Hdacs) was determined by different methods. Finally, the effects of overexpression and disruption of Hdac3 on metabolic nuclear receptors were analyzed in CBRH-7919 cells and primarily-hepatic cells from DA.1U and E3 rats. We found that E3 rats were susceptible, while DA.1U rats were resisted to HFD-MetS. The expression of liver X receptor α,β (LXR-α,β), farnesoid X receptor (FXR), peroxisome proliferator activated receptor γ (PPAR-γ) and cholesterol 7α-hydroxylase (CYP7A1) increased markedly in DA.1U rat liver, whereas they decreased significantly in E3 rats. The expression of Hdac3 increased by HFD treatment in both E3 and DA.1U rat livers, but the constitutive Hdac3 expression was lower in DA.IU rat liver than in E3 rat liver. Importantly, overexpression of Hdac3 could downregulate the expression of LXR-α, PPAR-γ and CYP7A1 in both CBRH-7919 cells and primarily cultured hepatic cells from DA.IU rats. On the contrary, disruption of Hdac3 by shRNA upregulated the expression of LXR-α, PPAR-γ and CYP7A1 in both CBRH-7919 cells and primarily cultured hepatic cells from E3 rats. The results suggested that a high constitutive expression of Hdac3 inhibiting the expression of PPAR-γ, LXR-α and CYP7A1 in liver contributes to HFD-MetS in E3 rats.
Collapse
Affiliation(s)
- Dongmin Li
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
A Retrospective on Nuclear Receptor Regulation of Inflammation: Lessons from GR and PPARs. PPAR Res 2011; 2011:742785. [PMID: 21941526 PMCID: PMC3175381 DOI: 10.1155/2011/742785] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/21/2011] [Accepted: 07/16/2011] [Indexed: 12/16/2022] Open
Abstract
Members of the nuclear receptor superfamily have vital roles in regulating immunity and inflammation. The founding member, glucocorticoid receptor (GR), is the prototype to demonstrate immunomodulation via transrepression of the AP-1 and NF-κB signaling pathways. Peroxisome proliferator-activated receptors (PPARs) have emerged as key regulators of inflammation. This review examines the history and current advances in nuclear receptor regulation of inflammation by the crosstalk with AP-1 and NF-κB signaling, focusing on the roles of GR and PPARs. A better understanding of the molecular mechanism by which nuclear receptors inhibit proinflammatory signaling pathways will enable novel therapies to treat chronic inflammation.
Collapse
|
230
|
Grimaldi G, Christian M, Steel JH, Henriet P, Poutanen M, Brosens JJ. Down-regulation of the histone methyltransferase EZH2 contributes to the epigenetic programming of decidualizing human endometrial stromal cells. Mol Endocrinol 2011; 25:1892-903. [PMID: 21903722 DOI: 10.1210/me.2011-1139] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Differentiation of human endometrial stromal cells (HESC) into decidual cells represents a highly coordinated process essential for embryo implantation. We show that decidualizing HESC down-regulate the histone methyltransferase enhancer of Zeste homolog 2 (EZH2), resulting in declining levels of trimethylation of histone 3 on lysine 27 (H3K27me3) at the proximal promoters of key decidual marker genes PRL and IGFBP1. Loss of H3K27me3 was associated with a reciprocal enrichment in acetylation of the same lysine residue, indicating active remodeling from repressive to transcriptionally permissive chromatin. Chromatin immunoprecipitation coupled with DNA microarray analysis demonstrated that decidualization triggers genome-wide changes in H3K27me3 distribution that only partly overlap those observed upon EZH2 knockdown in undifferentiated HESC. Gene ontology revealed that gain of the repressive H3K27me3 mark in response to decidualization and upon EZH2 knockdown in undifferentiated cells was enriched at the promoter regions of genes involved in transcriptional regulation and growth/cell proliferation, respectively. However, loss of the H3K27me3 mark (indicating increased chromatin accessibility) in decidualizing cells and upon EZH2 knockdown occurred at selective loci enriched for genes functionally implicated in responses to stimulus. In agreement, EZH2 knockdown in undifferentiated HESC was sufficient to augment the induction of decidual marker genes in response to cyclic AMP and progesterone signaling. Thus, loss of EZH2-dependent methyltransferase activity in the endometrium is integral to the process of chromatin remodeling that enables the transition from a proliferative to a decidual phenotype in response to differentiation cues.
Collapse
Affiliation(s)
- Giulia Grimaldi
- Institute of Reproductive and Developmental Biology, Hammersmith Campus, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
231
|
Sun Z, Feng D, Everett LJ, Bugge A, Lazar MA. Circadian epigenomic remodeling and hepatic lipogenesis: lessons from HDAC3. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 76:49-55. [PMID: 21900149 PMCID: PMC3755609 DOI: 10.1101/sqb.2011.76.011494] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Circadian rhythms have evolved to anticipate metabolic needs across the 24-h light/dark cycle. This is accomplished by circadian expression of metabolic genes orchestrated by transcription factors through chromatin remodeling and histone modifications. Our recent genome-wide study on histone deacetylase 3 (HDAC3) in mouse liver provides novel insights into the molecular link between circadian rhythm and hepatic de novo lipogenesis. We found that liver-specific knockout of HDAC3 in adult mouse displays severe hepatic steatosis associated with enhanced de novo lipogenesis and increased expression of lipogenic genes. Genome-wide analysis (ChIP-seq) revealed a pronounced circadian pattern of HDAC3 occupancy on genes involved in lipid metabolism, which is inversely related to histone acetylation and RNA polymerase II recruitment at these sites. The cistromes of HDAC3 and its binding partner, nuclear receptor corepressor (NCoR), significantly overlap with that of Rev-erbα, a nuclear receptor directly involved in the core circadian machinery. Knockout of Rev-erbα in mouse also leads to hepatic steatosis and enhanced de novo lipogenesis. Collectively, these data suggest that the circadian epigenomic remodeling controlled by HDAC3, and largely directed by Rev-erbα, is essential for homeostasis of the lipogenic process in liver.
Collapse
Affiliation(s)
- Z Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
232
|
Sun Z, Singh N, Mullican SE, Everett LJ, Li L, Yuan L, Liu X, Epstein JA, Lazar MA. Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J Biol Chem 2011; 286:33301-9. [PMID: 21808063 DOI: 10.1074/jbc.m111.277707] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many human diseases result from the influence of the nutritional environment on gene expression. The environment interacts with the genome by altering the epigenome, including covalent modification of nucleosomal histones. Here, we report a novel and dramatic influence of diet on the phenotype and survival of mice in which histone deacetylase 3 (Hdac3) is deleted postnatally in heart and skeletal muscle. Although embryonic deletion of myocardial Hdac3 causes major cardiomyopathy that reduces survival, we found that excision of Hdac3 in heart and muscle later in development leads to a much milder phenotype and does not reduce survival when mice are fed normal chow. Remarkably, upon switching to a high fat diet, the mice begin to die within weeks and display signs of severe hypertrophic cardiomyopathy and heart failure. Down-regulation of myocardial mitochondrial bioenergetic genes, specifically those involved in lipid metabolism, precedes the full development of cardiomyopathy, suggesting that HDAC3 is important in maintaining proper mitochondrial function. These data suggest that loss of the epigenomic modifier HDAC3 causes dietary lethality by compromising the ability of cardiac mitochondria to respond to changes of nutritional environment. In addition, this study provides a mouse model for diet-inducible heart failure.
Collapse
Affiliation(s)
- Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and Department of Genetics, and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Linney E, Perz-Edwards A, Kelley B. Identification and characterization of a functional zebrafish smrt corepressor (ncor2). Gene 2011; 486:31-6. [PMID: 21767619 DOI: 10.1016/j.gene.2011.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
Abstract
The retinoic acid receptors (RARs or rars) and the thyroid hormone receptors are members of the steroid receptor superfamily that interact with their DNA response elements (for RARs: retinoic acid response elements or RAREs) in the regulatory regions of promoters in the absence of their ligand. In this ligand minus configuration, it has been suggested that the RAR provides a binding site for a corepressor (SMRT or N-CoR) that also brings in other proteins to repress the gene. In the presence of the ligand, the receptor goes through an allosteric change eliminating the corepressor binding site and providing a coactivator binding site. In this manuscript we describe the isolation of the zebrafish corepressor, smrt. We show that its association with the zebrafish rar aa is sensitive to retinoic acid and that the corepressor mRNA is present in 8 cell zebrafish embryos - a time at which the embryonic genome is not active. We suggest that this rar-corepressor complex may be part of an embryonic, epigenetic switch that keeps retinoic acid responsive genes off before retinoic becomes available to the embryo.
Collapse
Affiliation(s)
- Elwood Linney
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
234
|
Soriano FX, Hardingham GE. In cortical neurons HDAC3 activity suppresses RD4-dependent SMRT export. PLoS One 2011; 6:e21056. [PMID: 21695276 PMCID: PMC3111469 DOI: 10.1371/journal.pone.0021056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/19/2011] [Indexed: 11/17/2022] Open
Abstract
The transcriptional corepressor SMRT controls neuronal responsiveness of several transcription factors and can regulate neuroprotective and neurogenic pathways. SMRT is a multi-domain protein that complexes with HDAC3 as well as being capable of interactions with HDACs 1, 4, 5 and 7. We previously showed that in rat cortical neurons, nuclear localisation of SMRT requires histone deacetylase activity: Inhibition of class I/II HDACs by treatment with trichostatin A (TSA) causes redistribution of SMRT to the cytoplasm, and potentiates the activation of SMRT-repressed nuclear receptors. Here we have sought to identify the HDAC(s) and region(s) of SMRT responsible for anchoring it in the nucleus under normal circumstances and for mediating nuclear export following HDAC inhibition. We show that in rat cortical neurons SMRT export can be triggered by treatment with the class I-preferring HDAC inhibitor valproate and the HDAC2/3-selective inhibitor apicidin, and by HDAC3 knockdown, implicating HDAC3 activity as being required to maintain SMRT in the nucleus. HDAC3 interaction with SMRT's deacetylation activation domain (DAD) is known to be important for activation of HDAC3 deacetylase function. Consistent with a role for HDAC3 activity in promoting SMRT nuclear localization, we found that inactivation of SMRT's DAD by deletion or point mutation triggered partial redistribution of SMRT to the cytoplasm. We also investigated whether other regions of SMRT were involved in mediating nuclear export following HDAC inhibition. TSA- and valproate-induced SMRT export was strongly impaired by deletion of its repression domain-4 (RD4). Furthermore, over-expression of a region of SMRT containing the RD4 region suppressed TSA-induced export of full-length SMRT. Collectively these data support a model whereby SMRT's RD4 region can recruit factors capable of mediating nuclear export of SMRT, but whose function and/or recruitment is suppressed by HDAC3 activity. Furthermore, they underline the fact that HDAC inhibitors can cause reorganization and redistribution of corepressor complexes.
Collapse
Affiliation(s)
- Francesc X Soriano
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
235
|
Affiliation(s)
- Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Rita Castro
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Metabolism & Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Portugal
| | - Joseph Loscalzo
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
236
|
Zhang J, Henagan TM, Gao Z, Ye J. Inhibition of glyceroneogenesis by histone deacetylase 3 contributes to lipodystrophy in mice with adipose tissue inflammation. Endocrinology 2011; 152:1829-38. [PMID: 21406501 PMCID: PMC3075929 DOI: 10.1210/en.2010-0828] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have reported that the nuclear factor-κB (NF-κB) induces chronic inflammation in the adipose tissue of p65 transgenic (Tg) mice, in which the NF-κB subunit p65 (RelA) is overexpressed from the adipocyte protein 2 (aP2) gene promoter. Tg mice suffer a mild lipodystrophy and exhibit deficiency in adipocyte differentiation. To understand molecular mechanism of the defect in adipocytes, we investigated glyceroneogenesis by examining the activity of cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in adipocytes. In aP2-p65 Tg mice, Pepck expression is inhibited at both the mRNA and protein levels in adipose tissue. The mRNA reduction is a consequence of transcriptional inhibition but not alteration in mRNA stability. The Pepck gene promoter is inhibited by NF-κB, which enhances the corepressor activity through activation of histone deacetylase 3 (HDAC3) in the nucleus. HDAC3 suppresses Pepck transcription by inhibiting the transcriptional activators, peroxisome proliferator-activated receptor-γ, and cAMP response element binding protein. The NF-κB activity is abolished by Hdac3 knockdown or inhibition of HDAC3 catalytic activity. In a chromatin immunoprecipitation assay, HDAC3 interacts with peroxisome proliferator-activated receptor-γ and cAMP response element binding protein in the Pepck promoter when NF-κB is activated by TNF-α. These results suggest that HDAC3 mediates NF-κB activity to repress Pepck transcription. This mechanism is responsible for inhibition of glyceroneogenesis in adipocytes, which contributes to lipodystrophy in the aP2-p65 Tg mice.
Collapse
Affiliation(s)
- Jin Zhang
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Antioxidant and Gene Regulation, Baton Rouge, Louisiana 70808, USA.
| | | | | | | |
Collapse
|
237
|
McQuown SC, Wood MA. HDAC3 and the molecular brake pad hypothesis. Neurobiol Learn Mem 2011; 96:27-34. [PMID: 21521655 DOI: 10.1016/j.nlm.2011.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/25/2011] [Accepted: 04/08/2011] [Indexed: 12/26/2022]
Abstract
Successful transcription of specific genes required for long-term memory processes involves the orchestrated effort of not only transcription factors, but also very specific enzymatic protein complexes that modify chromatin structure. Chromatin modification has been identified as a pivotal molecular mechanism underlying certain forms of synaptic plasticity and memory. The best-studied form of chromatin modification in the learning and memory field is histone acetylation, which is regulated by histone acetyltransferases and histone deacetylases (HDACs). HDAC inhibitors have been shown to strongly enhance long-term memory processes, and recent work has aimed to identify contributions of individual HDACs. In this review, we focus on HDAC3 and discuss its recently defined role as a negative regulator of long-term memory formation. HDAC3 is part of a corepressor complex and has direct interactions with Class II HDACs that may be important for its molecular and behavioral consequences. And last, we propose the "molecular brake pad" hypothesis of HDAC function. The HDACs and associated corepressor complexes may function in neurons, in part, as "molecular brake pads." HDACs are localized to promoters of active genes and act as a persistent clamp that requires strong activity-dependent signaling to temporarily release these complexes (or brake pads) to activate gene expression required for long-term memory formation. Thus, HDAC inhibition removes the "molecular brake pads" constraining the processes necessary for long-term memory and results in strong, persistent memory formation.
Collapse
Affiliation(s)
- Susan C McQuown
- University of California, Irvine, Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Institute for Memory Impairments and Neurological Disorders, United States
| | | |
Collapse
|
238
|
Abstract
Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyltranserases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3-FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3-FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3-FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation.
Collapse
|
239
|
Pham L, Kaiser B, Romsa A, Schwarz T, Gopalakrishnan R, Jensen ED, Mansky KC. HDAC3 and HDAC7 have opposite effects on osteoclast differentiation. J Biol Chem 2011; 286:12056-65. [PMID: 21324898 DOI: 10.1074/jbc.m110.216853] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylases (HDACs) are negative regulators of transcription. Endochondral bone formation including chondrocyte and osteoblast maturation is regulated by HDACs. Very little is known about the role HDACs play in osteoclast differentiation. It has been previously reported that HDAC inhibitors, trichostatin A and sodium butyrate, suppress osteoclast differentiation through multiple mechanisms. In this study, we report that suppression of HDAC3 expression similar to HDAC inhibitors inhibits osteoclast differentiation, whereas osteoclasts suppressed for HDAC7 expression had accelerated differentiation when compared with control cells. Mitf, a transcription factor, is necessary for osteoclast differentiation. We demonstrate that Mitf and HDAC7 interact in RAW 264 cells and osteoclasts. The transcriptional activity of Mitf is repressed by HDAC7. Lastly, we show that either the amino or the carboxyl terminus of HDAC7 is sufficient for transcriptional repression and that the repression of HDAC7 is insensitive to trichostatin A, indicating that HDAC7 represses Mitf at least in part by deacetylation-independent mechanism.
Collapse
Affiliation(s)
- Lan Pham
- Department of Developmental and Surgical Science, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
240
|
Greco TM, Yu F, Guise AJ, Cristea IM. Nuclear import of histone deacetylase 5 by requisite nuclear localization signal phosphorylation. Mol Cell Proteomics 2011; 10:M110.004317. [PMID: 21081666 PMCID: PMC3033682 DOI: 10.1074/mcp.m110.004317] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase 5 (HDAC5), a class IIa deacetylase, is a prominent regulator of cellular and epigenetic processes that underlie the progression of human disease, ranging from cardiac hypertrophy to cancer. Although it is established that phosphorylation mediates 14-3-3 protein binding and provides the essential link between HDAC5 nucleo-cytoplasmic shuttling and transcriptional repression, thus far only four phospho-acceptor sites have been functionally characterized. Here, using a combinatorial proteomics approach and phosphomutant screening, we present the first evidence that HDAC5 has at least 17 in vivo phosphorylation sites within functional domains, including Ser278 and Ser279 within the nuclear localization signal (NLS), Ser1108 within the nuclear export signal, and Ser755 in deacetylase domain. Global and targeted MS/MS analyses of NLS peptides demonstrated the presence of single (Ser278 and Ser279) and double (Ser278/Ser279) phosphorylations. The double S278/279A mutation showed reduced association with HDAC3, slightly decreased deacetylation activity, and significantly increased cytoplasmic localization compared with wild type HDAC5, whereas the S278A and S1108A phosphomutants were not altered. Live cell imaging revealed a deficiency in nuclear import of S278/279A HDAC5. Phosphomutant stable cell lines confirmed the cellular redistribution of NLS mutants and revealed a more pronounced cytoplasmic localization for the single S279A mutant. Proteomic analysis of immunoisolated S278/279A, S279A, and S259/498A mutants linked altered cellular localization to changes in protein interactions. S278/279A and S279A HDAC5 showed reduced association with the NCoR-HDAC3 nuclear corepressor complex as well as protein kinase D enzymes, which were potentiated in the S259/498A mutant. These results provide the first link between phosphorylation outside the known 14-3-3 sites and downstream changes in protein interactions. Together these studies identify Ser279 as a critical phosphorylation within the NLS involved in the nuclear import of HDAC5, providing a regulatory point in nucleo-cytoplasmic shuttling that may be conserved in other class IIa HDACs-HDAC4 and HDAC9.
Collapse
Affiliation(s)
| | | | - Amanda J. Guise
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, U.S.A
| | - Ileana M. Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, U.S.A
- § To whom correspondence should be addressed: 210 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544. Tel.: 6092589417; Fax: 6092584575; E-mail:
| |
Collapse
|
241
|
Genetic analysis implicates the Set3/Hos2 histone deacetylase in the deposition and remodeling of nucleosomes containing H2A.Z. Genetics 2011; 187:1053-66. [PMID: 21288874 DOI: 10.1534/genetics.110.125419] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histone variants and histone modification complexes act to regulate the functions of chromatin. In Saccharomyces cerevisiae the histone variant H2A.Z is encoded by HTZ1. Htz1 is dispensable for viability in budding yeast, but htz1Δ is synthetic sick or lethal with the null alleles of about 200 nonessential genes. One of the strongest of these interactions is with the deletion of SET3, which encodes a subunit of the Set3/Hos2 histone deacetylase complex. Little is known about the functions of Set3, and interpreting these genetic interactions remains a highly challenging task. Here we report the results of a forward genetic screen to identify bypass suppressors of the synthetic slow-growth phenotype of htz1Δ set3Δ. Among the identified loss-of-function suppressors are genes encoding subunits of the HDA1 deacetylase complex, the SWR1 complex, the H2B deubiquitination module of SAGA, the proteasome, Set1, and Sir3. This constellation of suppressor genes is uncommon among the global set of htz1Δ synthetic interactions. BDF1, AHC1, RMR1, and CYC8 were identified as high-copy suppressors. We also identified interactions with SLX5 and SLX8, encoding the sumoylation-targeted ubiquitin ligase complex. In the context of htz1Δ set3Δ, suppressors in the SWR1 and the H2B deubiquitination complexes show strong functional similarity, as do suppressors in the silencing genes and the proteasome. Surprisingly, while both htz1Δ set3Δ and swr1Δ set3Δ have severe slow-growth phenotypes, the htz1Δ swr1Δ set3Δ triple mutant grows relatively well. We propose that Set3 has previously unrecognized functions in the dynamic deposition and remodeling of nucleosomes containing H2A.Z.
Collapse
|
242
|
Abstract
Nuclear receptors (NRs) represent a vital class of ligand-activated transcription factors responsible for coordinately regulating the expression of genes involved in numerous biological processes. Transcriptional regulation by NRs is conducted through interactions with multiple coactivator or corepressor complexes that modify the chromatin environment to facilitate or inhibit RNA polymerase II binding and transcription initiation. In recent years, studies have identified specific biological roles for cofactors mediating NR signaling through epigenetic modifications such as acetylation and methylation of histones. Intriguingly, genome-wide analysis of NR and cofactor localization has both confirmed findings from single-gene studies and revealed new insights into the relationships between NRs, cofactors and target genes in determining gene expression. Here, we review recent developments in the understanding of epigenetic regulation by NRs across the genome within the context of the well-established background of cofactor complexes and their roles in histone modification.
Collapse
Affiliation(s)
- Christopher D Green
- Chinese Academy of Sciences Key Laboratory of Molecular Developmental Biology, Center for Molecular Systems Biology, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing, 100101, China
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences–MaxPlanck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | | |
Collapse
|
243
|
Oberoi J, Fairall L, Watson PJ, Yang JC, Czimmerer Z, Kampmann T, Goult BT, Greenwood JA, Gooch JT, Kallenberger BC, Nagy L, Neuhaus D, Schwabe JW. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol 2011; 18:177-84. [PMID: 21240272 PMCID: PMC3232451 DOI: 10.1038/nsmb.1983] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 11/08/2010] [Indexed: 11/08/2022]
Abstract
Eukaryotic transcriptional repressors function by recruiting large coregulatory complexes that target histone deacetylase enzymes to gene promoters and enhancers. Transcriptional repression complexes, assembled by the corepressor NCoR and its homolog SMRT, are crucial in many processes, including development and metabolic physiology. The core repression complex involves the recruitment of three proteins, HDAC3, GPS2 and TBL1, to a highly conserved repression domain within SMRT and NCoR. We have used structural and functional approaches to gain insight into the architecture and biological role of this complex. We report the crystal structure of the tetrameric oligomerization domain of TBL1, which interacts with both SMRT and GPS2, and the NMR structure of the interface complex between GPS2 and SMRT. These structures, together with computational docking, mutagenesis and functional assays, reveal the assembly mechanism and stoichiometry of the corepressor complex.
Collapse
Affiliation(s)
- Jasmeen Oberoi
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Ji-Chun Yang
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - Zsolt Czimmerer
- Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Department of Biochemistry and Molecular Biology, Life Sciences Building, Medical and Health Science Center, University of Debrecen, Debrecen, Egyetem ter 1. H-4032 Hungary
| | - Thorsten Kampmann
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Benjamin T. Goult
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Jacquie A. Greenwood
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - John T. Gooch
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | | | - Laszlo Nagy
- Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Department of Biochemistry and Molecular Biology, Life Sciences Building, Medical and Health Science Center, University of Debrecen, Debrecen, Egyetem ter 1. H-4032 Hungary
| | - David Neuhaus
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| |
Collapse
|
244
|
Varlakhanova N, Hahm JB, Privalsky ML. Regulation of SMRT corepressor dimerization and composition by MAP kinase phosphorylation. Mol Cell Endocrinol 2011; 332:180-8. [PMID: 20965228 PMCID: PMC3011023 DOI: 10.1016/j.mce.2010.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/30/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
The SMRT (Silencing Mediator of Retinoid and Thyroid hormone receptors) corepressor mediates gene repression by nuclear receptors and other transcriptional factors. The SMRT protein serves as a key nucleating core that organizes the assembly of a larger corepressor complex. We report here that SMRT interacts with itself to form a protein dimer, and that Erk2, a mitogen-activated protein (MAP) kinase, disrupts this SMRT self-dimerization in vitro and in vivo. Notably Erk2 phosphorylation also results in a re-organization of the overall corepressor complex, characterized by a reduced sedimentation coefficient, partial release of HDAC3, TBL-1, and TBLR-1, and inhibition of transcriptional repression. We propose that SMRT dimers form the central platform on which additional corepressor components assemble, and that kinase signaling modifies the architecture, composition, and function of this complex. These observations contribute to our understanding of how the SMRT corepressor complex assembles and is regulated during cell proliferation and differentiation.
Collapse
Affiliation(s)
- Natalia Varlakhanova
- Department of Microbiology, College of Biological Sciences, University of California at Davis, United States
| | | | | |
Collapse
|
245
|
Sommerfeld A, Krones-Herzig A, Herzig S. Transcriptional co-factors and hepatic energy metabolism. Mol Cell Endocrinol 2011; 332:21-31. [PMID: 21112373 DOI: 10.1016/j.mce.2010.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 01/24/2023]
Abstract
After binding to their cognate DNA-binding partner, transcriptional co-factors exert their function through the recruitment of enzymatic, chromatin-modifying activities. In turn, the assembly of co-factor-associated multi-protein complexes efficiently impacts target gene expression. Recent advances have established transcriptional co-factor complexes as a critical regulatory level in energy homeostasis and aberrant co-factor activity has been linked to the pathogenesis of severe metabolic disorders including obesity, type 2 diabetes and other components of the Metabolic Syndrome. The liver represents the key peripheral organ for the maintenance of systemic energy homeostasis, and aberrations in hepatic glucose and lipid metabolism have been causally linked to the manifestation of disorders associated with the Metabolic Syndrome. Therefore, this review focuses on the role of distinct classes of transcriptional co-factors in hepatic glucose and lipid homeostasis, emphasizing pathway-specific functions of these co-factors under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Anke Sommerfeld
- Department Molecular Metabolic Control, DKFZ-ZMBH Alliance, German Cancer Research Center Heidelberg, Germany
| | | | | |
Collapse
|
246
|
Transducin β-like protein 1 recruits nuclear factor κB to the target gene promoter for transcriptional activation. Mol Cell Biol 2010; 31:924-34. [PMID: 21189284 DOI: 10.1128/mcb.00576-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nuclear factor κB (NF-κB) signaling controls a wide range of cellular functions such as tumor progression and invasion by inducing gene expression. Upon stimulation, NF-κB is translocated to the nucleus and binds to its target gene promoters to activate transcription by recruiting transcription coactivators. Although significant progress has been made in understanding NF-κB-mediated transactivation, little is known about how NF-κB is recruited to its target gene promoters. Here, we report that transducin β-like protein 1 (TBL1) controls the expression of NF-κB target genes by directly binding with NF-κB and facilitating its recruitment to target gene promoters. Tumor necrosis factor alpha stimulation triggered the formation of an NF-κB and TBL1 complex and subsequent target gene promoter binding. Knockdown of TBL1 impaired the recruitment of NF-κB to its target gene promoters. Interestingly, analysis of the Oncomine database revealed that TBL1 mRNA levels were significantly higher in invasive breast cancer tissues than in breast adenocarcinoma tissue. Consistently, TBL1 knockdown significantly reduced the invasive potential of breast cancer cells by inhibiting NF-κB. Our results reveal a new mechanism for the regulation of NF-κB activation, with important implications for the development of novel strategies for cancer therapy by targeting NF-κB.
Collapse
|
247
|
Segré CV, Chiocca S. Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol 2010; 2011:690848. [PMID: 21197454 PMCID: PMC3004424 DOI: 10.1155/2011/690848] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/15/2010] [Indexed: 11/18/2022] Open
Abstract
Class I histone deacetylases (HDACs) are cellular enzymes expressed in many tissues and play crucial roles in differentiation, proliferation, and cancer. HDAC1 and HDAC2 in particular are highly homologous proteins that show redundant or specific roles in different cell types or in response to different stimuli and signaling pathways. The molecular details of this dual regulation are largely unknown. HDAC1 and HDAC2 are not only protein modifiers, but are in turn regulated by post-translational modifications (PTMs): phosphorylation, acetylation, ubiquitination, SUMOylation, nitrosylation, and carbonylation. Some of these PTMs occur and crosstalk specifically on HDAC1 or HDAC2, creating a rational "code" for a differential, context-related regulation. The global comprehension of this PTM code is central for dissecting the role of single HDAC1 and HDAC2 in physiology and pathology.
Collapse
Affiliation(s)
- Chiara V. Segré
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
248
|
Manipulating protein acetylation in breast cancer: a promising approach in combination with hormonal therapies? J Biomed Biotechnol 2010; 2011:856985. [PMID: 21188173 PMCID: PMC3004450 DOI: 10.1155/2011/856985] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/03/2010] [Indexed: 01/17/2023] Open
Abstract
Estrogens play an essential role in the normal physiology of the breast as well as in mammary tumorigenesis. Their effects are mediated by two nuclear estrogen receptors, ERα and β, which regulate transcription of specific genes by interacting with multiprotein complexes, including histone deacetylases (HDACs). During the past few years, HDACs have raised great interest as therapeutic targets in the field of cancer therapy. In breast cancer, several experimental arguments suggest that HDACs are involved at multiple levels in mammary tumorigenesis: their expression is deregulated in breast tumors; they interfere with ER signaling in intricate ways, restoring hormone sensitivity in models of estrogen resistance, and they clinically represent new potential targets for HDACs inhibitors (HDIs) in combination with hormonal therapies. In this paper, we will describe these different aspects and underline the clinical interest of HDIs in the context of breast cancer resistance to hormone therapies (HTs).
Collapse
|
249
|
Loyer P, Busson A, Trembley JH, Hyle J, Grenet J, Zhao W, Ribault C, Montier T, Kidd VJ, Lahti JM. The RNA binding motif protein 15B (RBM15B/OTT3) is a functional competitor of serine-arginine (SR) proteins and antagonizes the positive effect of the CDK11p110-cyclin L2α complex on splicing. J Biol Chem 2010; 286:147-59. [PMID: 21044963 DOI: 10.1074/jbc.m110.192518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Here, we report the identification of the RNA binding motif protein RBM15B/OTT3 as a new CDK11(p110) binding partner that alters the effects of CDK11 on splicing. RBM15B was initially identified as a binding partner of the Epstein-Barr virus mRNA export factor and, more recently, as a cofactor of the nuclear export receptor NXF1. In this study, we found that RBM15B co-elutes with CDK11(p110), cyclin L2α, and serine-arginine (SR) proteins, including SF2/ASF, in a large nuclear complex of ∼1-MDa molecular mass following size exclusion chromatography. Using co-immunoprecipitation experiments and in vitro pulldown assays, we mapped two distinct domains of RBM15B that are essential for its direct interaction with the N-terminal extension of CDK11(p110), cyclin L2α, and SR proteins such as 9G8 and SF2/ASF. Finally, we established that RBM15B is a functional competitor of the SR proteins SF2/ASF and 9G8, inhibits formation of the functional spliceosomal E complex, and antagonizes the positive effect of the CDK11(p110)-cyclin L2α complex on splicing both in vitro and in vivo.
Collapse
Affiliation(s)
- Pascal Loyer
- INSERM UMR 991 Foie, Métabolismes et Cancer, IFR140, Université de Rennes 1, Hôpital Pontchaillou, 35033 Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Chini CCS, Escande C, Nin V, Chini EN. HDAC3 is negatively regulated by the nuclear protein DBC1. J Biol Chem 2010; 285:40830-7. [PMID: 21030595 DOI: 10.1074/jbc.m110.153270] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
HDAC3 is a member of the class I histone deacetylase family that regulates gene expression by deacetylation of histones and non-histone proteins. HDAC3 activity has been shown to be modulated by interaction with the co-repressors NCoR and SMRT. Here, we present evidence that the nuclear protein DBC1 is an endogenous inhibitor of HDAC3. DBC1 has been previously identified as a regulator of some nuclear receptors, the methyltransferase SUV39H1, and the NAD-dependent deacetylase SIRT1. Furthermore, DBC1 has been shown to influence transcription regulation and apoptosis, and it may also act as a tumor suppressor. We found that DBC1 interacts and specifically inhibits the deacetylase HDAC3. This interaction depends on the N terminus of DBC1 and the C terminus of HDAC3. Expression of DBC1 not only inhibited HDAC3 activity but also altered its subcellular distribution. In addition, knockdown of endogenous DBC1 in cells and knock-out in mouse tissues increased HDAC3 deacetylase activity. Together, these results identify DBC1 as a new regulator of HDAC3 and demonstrate that DBC1 is a negative regulator of two key distinct deacetylases, SIRT1 and HDAC3. These findings may lead to a better understanding of the biological roles of DBC1 and HDAC3 in metabolic diseases and cancer.
Collapse
Affiliation(s)
- Claudia C S Chini
- Laboratory of Signal Transduction, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|