201
|
Emmerechts J, Alfaro-Moreno E, Vanaudenaerde BM, Nemery B, Hoylaerts MF. Short-term exposure to particulate matter induces arterial but not venous thrombosis in healthy mice. J Thromb Haemost 2010; 8:2651-61. [PMID: 21029357 DOI: 10.1111/j.1538-7836.2010.04081.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Epidemiological findings suggest an association between exposure to particulate matter (PM) and venous thrombo-embolism. OBJECTIVES To investigate arterial vs. venous thrombosis, inflammation and coagulation in mice, (sub)acutely exposed to two types of PM. METHODS Various doses (25, 100 and 200 μg per animal) of urban particulate matter (UPM) or diesel exhaust particles (DEP) were intratracheally (i.t.) instilled in C57Bl6/n mice and several endpoints measured at 4, 10 and 24 h. Mice were also repeatedly exposed to 100 μg per animal on three consecutive days with endpoints measured 24 h after the last instillation. RESULTS Exposure to 200 μg per mouse UPM enhanced arterial thrombosis, but neither UPM nor DEP significantly enhanced venous thrombosis. Both types of PM induced dose-dependent increases in broncho-alveolar lavage fluid (BALF) total cell numbers (mainly neutrophils) and cytokines (IL-6, KC, MCP-1, RANTES, MIP-1α), with peaks at 4 h and overall higher values for UPM than for DEP. Systemic inflammation was limited to increased serum IL-6 levels, 4 h after UPM. Both types of PM induced similar and dose-dependent but modest increases in factor (F)VII, FVIII and fibrinogen. Three repeated instillations did not or only modestly enhance the proinflammatory and procoagulant status. CONCLUSIONS Compared with DEP, UPM induced more pronounced pulmonary inflammation, but both particle types triggered similar and mild short-term systemic effects. Hence, acute exposure to PM triggers activation of primary hemostasis in the mouse, but no substantial secondary hemostasis activation, resulting in arterial but not venous thrombogenicity.
Collapse
Affiliation(s)
- J Emmerechts
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
202
|
Stewart JC, Chalupa DC, Devlin RB, Frasier LM, Huang LS, Little EL, Lee SM, Phipps RP, Pietropaoli AP, Taubman MB, Utell MJ, Frampton MW. Vascular effects of ultrafine particles in persons with type 2 diabetes. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1692-8. [PMID: 20822968 PMCID: PMC3002188 DOI: 10.1289/ehp.1002237] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 09/07/2010] [Indexed: 05/22/2023]
Abstract
BACKGROUND Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. METHODS In a randomized, double-blind, crossover trial, 19 subjects with type 2 diabetes inhaled filtered air or 50 µg/m³ elemental carbon UFP (count median diameter, 32 nm) by mouthpiece for 2 hr at rest. We repeatedly measured markers of vascular activation, coagulation, and systemic inflammation before and after exposure. RESULTS Compared with air, particle exposure increased platelet expression of CD40 ligand (CD40L) and the number of platelet-leukocyte conjugates 3.5 hr after exposure. Soluble CD40L decreased with UFP exposure. Plasma von Willebrand factor increased immediately after exposure. There were no effects of particles on plasma tissue factor, coagulation factors VII or IX, or D-dimer. CONCLUSIONS Inhalation of elemental carbon UFP for 2-hr transiently activated platelets, and possibly the vascular endothelium, in people with type 2 diabetes.
Collapse
Affiliation(s)
- Judith C. Stewart
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - David C. Chalupa
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert B. Devlin
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Lauren M. Frasier
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Li-Shan Huang
- Department of Biostatistics and Computational Biology and
| | - Erika L. Little
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven M. Lee
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Richard P. Phipps
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Anthony P. Pietropaoli
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mark B. Taubman
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mark J. Utell
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mark W. Frampton
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Address correspondence to M.W. Frampton, University of Rochester Medical Center, 601 Elmwood Ave., Box 692, Rochester, NY 14642 USA. Telephone: (585) 275-4861. Fax: (585) 273-1114. E-mail:
| |
Collapse
|
203
|
Sehlstedt M, Behndig AF, Boman C, Blomberg A, Sandström T, Pourazar J. Airway inflammatory response to diesel exhaust generated at urban cycle running conditions. Inhal Toxicol 2010; 22:1144-50. [PMID: 21110774 DOI: 10.3109/08958378.2010.529181] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Diesel exhaust (DE) is an important component in traffic-related air pollution, associated with adverse health effects. DE generated at idling has been demonstrated to induce inflammation in human airways, in terms of inflammatory cell recruitment, enhanced expression of vascular endothelial adhesion molecules, cytokines, mitogen-activated protein kinases, and transcription factors in the bronchial epithelium. OBJECTIVE This study aimed to investigate airway inflammatory responses in healthy subjects exposed to DE generated during transient speed and engine load under the urban part of the European Transient Cycle. METHODS Fifteen healthy subjects were exposed to DE at an average particulate matter concentration of 270 µg/m(3) and filtered air for 1 h. Bronchoscopy with endobronchial mucosal biopsy sampling and airway lavage was performed 6 h postexposure. RESULTS Compared with filtered air, DE exposure caused an increased expression of the vascular endothelial adhesion molecules P-selectin and vascular cell adhesion molecule-1 (P = 0.036 and P = 0.030, respectively) in bronchial mucosal biopsies, together with increased numbers of bronchoalveolar lavage eosinophils (P = 0.017). CONCLUSIONS DE generated under urban running conditions increased bronchial adhesion molecule expressions, together with the novel finding of bronchoalveolar eosinophilia, which has not been shown after exposure to DE at idling. Variations in airway inflammatory response to DE generated under diverse running condition may be related to differences in exhaust composition.
Collapse
Affiliation(s)
- Maria Sehlstedt
- Department of Public Health and Clinical Medicine, Respiratory Medicine, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
204
|
Hesterberg TW, Long CM, Lapin CA, Hamade AK, Valberg PA. Diesel exhaust particulate (DEP) and nanoparticle exposures: what do DEP human clinical studies tell us about potential human health hazards of nanoparticles? Inhal Toxicol 2010; 22:679-94. [PMID: 20462394 DOI: 10.3109/08958371003758823] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Engineered nanoparticles (ENPs) are increasingly tested in cellular and laboratory-animal experiments for hazard potential, but there is a lack of health effects data for humans exposed to ENPs. However, human data for another source of nanoparticle (NP) exposure are available, notably for the NPs contained in diesel exhaust particulate (DEP). Studies of human volunteers exposed to diesel exhaust (DE) in research settings report DEP-NP number concentrations (i.e., >10(6) particles/cm(3)) that exceed number concentrations reported for worst-case exposure conditions for workers manufacturing and handling ENPs. Recent human DE exposure studies, using sensitive physiological instrumentation and well-characterized exposure concentrations and durations, suggest that elevated DE exposures from pre-2007 engines may trigger short-term changes in, for example, lung and systemic inflammation, thrombogenesis, vascular function, and brain activity. Considerable uncertainty remains both as to which DE constituents underlie the observed responses (i.e., DEP NPs, DEP mass, DE gases), and as to the implications of the observed short-term changes for the development of disease. Even so, these DE human clinical data do not give evidence of a unique toxicity for NPs as compared to other small particles. Of course, physicochemical properties of toxicological relevance may differ between DEP NPs and other NPs, yet overall, the DE human clinical data do not support the idea that elevated levels of NPs per se (at least in the DEP context) must be acutely toxic by virtue of their nano-sized nature alone.
Collapse
|
205
|
Chao MW, Kozlosky J, Po IP, Strickland PO, Svoboda KKH, Cooper K, Laumbach RJ, Gordon MK. Diesel exhaust particle exposure causes redistribution of endothelial tube VE-cadherin. Toxicology 2010; 279:73-84. [PMID: 20887764 DOI: 10.1016/j.tox.2010.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/07/2010] [Accepted: 09/21/2010] [Indexed: 11/18/2022]
Abstract
Whether diesel exhaust particles (DEPs) potentially have a direct effect on capillary endothelia was examined by following the adherens junction component, vascular endothelial cell cadherin (VE-cadherin). This molecule is incorporated into endothelial adherens junctions at the cell surface, where it forms homodimeric associations with adjacent cells and contributes to the barrier function of the vasculature (Dejana et al., 2008; Venkiteswaran et al., 2002; Villasante et al., 2007). Human umbilical vein endothelial cells (HUVECs) that were pre-formed into capillary-like tube networks in vitro were exposed to DEPs for 24h. After exposure, the integrity of VE-cadherin in adherens junctions was assessed by immunofluorescence analysis, and demonstrated that increasing concentrations of DEPs caused increasing redistribution of VE-cadherin away from the cell-cell junctions toward intracellular locations. Since HUVEC tube networks are three-dimensional structures, whether particles entered the endothelial cells or tubular lumens was also examined. The data indicate that translocation of the particles does occur. The results, obtained in a setting that removes the confounding effects of inflammatory cells or blood components, suggest that if DEPs encounter alveolar capillaries in vivo, they may be able to directly affect the endothelial cell-cell junctions.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Kipen H, Rich D, Huang W, Zhu T, Wang G, Hu M, Lu SE, Ohman-Strickland P, Zhu P, Wang Y, Zhang JJ. Measurement of inflammation and oxidative stress following drastic changes in air pollution during the Beijing Olympics: a panel study approach. Ann N Y Acad Sci 2010; 1203:160-7. [PMID: 20716299 DOI: 10.1111/j.1749-6632.2010.05638.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ambient air pollution has been linked to cardiovascular and respiratory morbidity and mortality in epidemiology studies. Frequently, oxidative and nitrosative stress are hypothesized to mediate these pollution effects, however precise mechanisms remain unclear. This paper describes the methodology for a major panel study to examine air pollution effects on these and other mechanistic pathways. The study took place during the drastic air pollution changes accompanying the 2008 Olympics in Beijing, China. After a general description of air pollution health effects, we provide a discussion of panel studies and describe the unique features of this study that make it likely to provide compelling results. This study should lead to a clearer and more precise definition of the role of oxidative and nitrosative stress, as well as other mechanisms, in determining acute morbidity and mortality from air pollution exposure.
Collapse
Affiliation(s)
- Howard Kipen
- University of Medicine and Dentistry of New Jersey - School of Public Health and Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Rich DQ, Kipen HM, Zhang J, Kamat L, Wilson AC, Kostis JB. Triggering of transmural infarctions, but not nontransmural infarctions, by ambient fine particles. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1229-34. [PMID: 20435544 PMCID: PMC2944082 DOI: 10.1289/ehp.0901624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 04/30/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND Previous studies have reported increased risk of myocardial infarction (MI) after increases in ambient particulate matter (PM) air pollution concentrations in the hours and days before MI onset. OBJECTIVES We hypothesized that acute increases in fine PM with aerodynamic diameter < or = 2.5 microm (PM(2.5)) may be associated with increased risk of MI and that chronic obstructive pulmonary disease (COPD) and diabetes may increase susceptibility to PM(2.5). We also explored whether both transmural and nontransmural infarctions were acutely associated with ambient PM(2.5) concentrations. METHODS We studied all hospital admissions from 2004 through 2006 for first acute MI of adult residents of New Jersey who lived within 10 km of a PM(2.5) monitoring site (n = 5,864), as well as ambient measurements of PM(2.5), nitrogen dioxide, sulfur dioxide, carbon monoxide, and ozone. RESULTS Using a time-stratified case-crossover design and conditional logistic regression showed that each interquartile-range increase in PM(2.5) concentration (10.8 microg/m3) in the 24 hr before arriving at the emergency department for MI was not associated with MI overall but was associated with an increased relative risk of a transmural infarction. We found no association between the same increase in PM(2.5) and nontransmural infarction. Further, subjects with COPD appeared to be particularly susceptible, but those with diabetes were not. CONCLUSIONS This PM-transmural infarction association is consistent with earlier studies of PM and MI. The lack of association with nontransmural infarction suggests that future studies that investigate the triggering of MI by ambient PM(2.5) concentrations should be stratified by infarction type.
Collapse
Affiliation(s)
- David Q Rich
- School of Public Health, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, USA.
| | | | | | | | | | | |
Collapse
|
208
|
Shaw CA, Robertson S, Miller MR, Duffin R, Tabor CM, Donaldson K, Newby DE, Hadoke PWF. Diesel exhaust particulate--exposed macrophages cause marked endothelial cell activation. Am J Respir Cell Mol Biol 2010; 44:840-51. [PMID: 20693402 DOI: 10.1165/rcmb.2010-0011oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exposure to air pollution containing diesel exhaust particulate (DEP) is linked to adverse cardiovascular events. This study tested the hypothesis that DEP not only causes direct endothelial cell injury, but also induces indirect endothelial cell activation via the release of soluble proinflammatory cytokines from macrophages. Human umbilical vein endothelial cells (HUVECs) and monocyte-derived macrophages (MDMs) were incubated with DEP (1-100 μg/ml; 24 h). Supernatants were analyzed for monocyte chemotactic protein (MCP)-1, IL6, IL8, and TNF-α. Indirect actions of DEP were investigated by incubating HUVECs with conditioned media from DEP-exposed MDMs in the presence and absence of the TNF-α inhibitor, etanercept. A modified Boyden chamber assay was used to determine whether HUVECs treated in this manner induced monocyte chemotaxis. Direct incubation with DEP induced a modest increase in MCP-1 concentration, but had no effect on IL-6 or IL-8 release from HUVECs. In contrast, direct treatment of MDMs with DEP had no effect on MCP-1, but elevated IL-8 and TNF-α concentrations. Incubation with conditioned media from DEP-exposed MDMs caused a dramatic amplification in MCP-1 and IL-6, but not IL-8, release from HUVECs. The potentiation of HUVEC activation was suppressed by TNF-α inhibition. MCP-1- and IL-6-containing HUVEC supernatants caused increased monocyte chemotaxis that was not inhibited by anti-MCP-1 antibodies. We conclude that DEP has only modest direct endothelial effects. In contrast, proinflammatory cytokines released from particle-laden MDMs appear to exacerbate endothelial activation after DEP exposure.
Collapse
Affiliation(s)
- Catherine A Shaw
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Sithu SD, Srivastava S, Siddiqui MA, Vladykovskaya E, Riggs DW, Conklin DJ, Haberzettl P, O'Toole TE, Bhatnagar A, D'Souza SE. Exposure to acrolein by inhalation causes platelet activation. Toxicol Appl Pharmacol 2010; 248:100-10. [PMID: 20678513 DOI: 10.1016/j.taap.2010.07.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 07/16/2010] [Accepted: 07/16/2010] [Indexed: 12/16/2022]
Abstract
Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5ppm for 6h) or sub-chronic (1ppm, 6h/day for 4days) acrolein inhalation exposures. The acute exposure to acrolein did not cause pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.
Collapse
Affiliation(s)
- Srinivas D Sithu
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Barath S, Mills NL, Lundbäck M, Törnqvist H, Lucking AJ, Langrish JP, Söderberg S, Boman C, Westerholm R, Löndahl J, Donaldson K, Mudway IS, Sandström T, Newby DE, Blomberg A. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Part Fibre Toxicol 2010; 7:19. [PMID: 20653945 PMCID: PMC2918524 DOI: 10.1186/1743-8977-7-19] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/23/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. OBJECTIVES To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. METHODS In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 microg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. MEASUREMENTS AND MAIN RESULTS Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). CONCLUSION Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds.
Collapse
Affiliation(s)
- Stefan Barath
- Department of Public Health and Clinical Medicine, Umeå University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Affiliation(s)
- Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, Division of Cardiovascular Medicine, Ohio State University, Columbus, USA.
| | | | | |
Collapse
|
212
|
Gerber Y, Myers V, Broday DM, Koton S, Steinberg DM, Drory Y. Cumulative exposure to air pollution and long term outcomes after first acute myocardial infarction: a population-based cohort study. Objectives and methodology. BMC Public Health 2010; 10:369. [PMID: 20576121 PMCID: PMC2904275 DOI: 10.1186/1471-2458-10-369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 06/24/2010] [Indexed: 11/10/2022] Open
Abstract
Background Cardiovascular disease is a leading cause of morbidity and mortality worldwide and epidemiological studies have consistently shown an increased risk for cardiovascular events in relation to exposure to air pollution. The Israel Study of First Acute Myocardial Infarction was designed to longitudinally assess clinical outcomes, psychosocial adjustment and quality of life in patients hospitalized with myocardial infarction. The current study, by introducing retrospective air pollution data, will examine the association between exposure to air pollution and outcome in myocardial infarction survivors. This report will describe the methods implemented and measures employed. The study specifically aims to examine the relationship between residential exposure to air pollution and long-term risk of recurrent coronary event, heart failure, stroke, cardiac and all-cause death in a geographically defined cohort of patients with myocardial infarction. Methods/Design All 1521 patients aged ≤65 years, admitted with first myocardial infarction between February 1992 and February 1993 to the 8 hospitals serving the population of central Israel, were followed for a median of 13 years. Data were collected on sociodemographic, clinical and environmental factors. Data from air quality monitoring stations will be incorporated retrospectively. Daily measures of air pollution will be summarised, allowing detailed maps to be developed in order to reflect chronic exposure for each participant. Discussion This study addresses some of the gaps in understanding of the prognostic importance of air pollution exposure after myocardial infarction, by allowing a sufficient follow-up period, using a well-defined community cohort, adequately controlling for multiple and multilevel confounding factors and providing extensive data on various outcomes.
Collapse
Affiliation(s)
- Yariv Gerber
- Dept, of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
213
|
Metassan S, Routledge MN, Lucking AJ, Uitte de Willige S, Philippou H, Mills NL, Newby DE, Ariëns RA. Fibrin clot structure remains unaffected in young, healthy individuals after transient exposure to diesel exhaust. Part Fibre Toxicol 2010; 7:17. [PMID: 20565709 PMCID: PMC2903495 DOI: 10.1186/1743-8977-7-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/16/2010] [Indexed: 11/10/2022] Open
Abstract
Exposure to urban particulate matter has been associated with an increased risk of cardiovascular disease and thrombosis. We studied the effects of transient exposure to diesel particles on fibrin clot structure of 16 healthy individuals (age 21- 44). The subjects were randomly exposed to diesel exhaust and filtered air on two separate occasions. Blood samples were collected before exposure, and 2 and 6 hours after exposure. There were no significant changes on clot permeability, maximum turbidity, lag time, fibre diameter, fibre density and fibrinogen level between samples taken after diesel exhaust exposure and samples taken after filtered air exposure. These data show that there are no prothrombotic changes in fibrin clot structure in young, healthy individuals exposed to diesel exhaust.
Collapse
Affiliation(s)
- Sofian Metassan
- Division of Cardiovascular and Diabetes Research, Section on Mechanisms of Thrombosis, Leeds Institute for Genetics Health and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Burgan O, Smargiassi A, Perron S, Kosatsky T. Cardiovascular effects of sub-daily levels of ambient fine particles: a systematic review. Environ Health 2010; 9:26. [PMID: 20550697 PMCID: PMC2895599 DOI: 10.1186/1476-069x-9-26] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 06/15/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND While the effects of daily fine particulate exposure (PM) have been well reviewed, the epidemiological and physiological evidence of cardiovascular effects associated to sub-daily exposures has not. We performed a theoretical model-driven systematic non-meta-analytical literature review to document the association between PM sub-daily exposures (< or =6 hours) and arrhythmia, ischemia and myocardial infarction (MI) as well as the likely mechanisms by which sub-daily PM exposures might induce these acute cardiovascular effects. This review was motivated by the assessment of the risk of exposure to elevated sub-daily levels of PM during fireworks displays. METHODS Medline and Elsevier's EMBase were consulted for the years 1996-2008. Search keywords covered potential cardiovascular effects, the pollutant of interest and the short duration of the exposure. Only epidemiological and experimental studies of adult humans (age > 18 yrs) published in English were reviewed. Information on design, population and PM exposure characteristics, and presence of an association with selected cardiovascular effects or physiological assessments was extracted from retrieved articles. RESULTS Of 231 articles identified, 49 were reviewed. Of these, 17 addressed the relationship between sub-daily exposures to PM and cardiovascular effects: five assessed ST-segment depression indicating ischemia, eight assessed arrhythmia or fibrillation and five considered MI. Epidemiologic studies suggest that exposure to sub-daily levels of PM is associated with MI and ischemic events in the elderly. Epidemiological studies of sub-daily exposures suggest a plausible biological mechanism involving the autonomic nervous system while experimental studies suggest that vasomotor dysfunction may also relate to the occurrence of MI and ischemic events. CONCLUSIONS Future studies should clarify associations between cardiovascular effects of sub-daily PM exposure with PM size fraction and concurrent gaseous pollutant exposures. Experimental studies appear more promising for elucidating the physiological mechanisms, time courses and causes than epidemiological studies which employ central pollution monitors for measuring effects and for assessing their time course. Although further studies are needed to strengthen the evidence, given that exposure to sub-daily high levels of PM (for a few hours) is frequent and given the suggestive evidence that sub-daily PM exposures are associated with the occurrence of cardiovascular effects, we recommend that persons with cardiovascular diseases avoid such situations.
Collapse
Affiliation(s)
- Omar Burgan
- Département de santé environnementale et santé au travail, Université de Montréal, Canada
| | - Audrey Smargiassi
- Département de santé environnementale et santé au travail, Université de Montréal, Canada
- Institut National de Santé Publique du Québec (INSPQ), 1301 Sherbrooke Est, Montréal (Québec), H2L 1M3, Canada
| | - Stéphane Perron
- Direction de Santé Publique de l'Agence de la Santé et des Services Sociaux de Montréal, Canada
| | - Tom Kosatsky
- British Columbia Center for Disease Control, Canada
| |
Collapse
|
215
|
Lucking AJ, Visvanathan A, Philippou H, Fraser S, Grant PJ, Connolly TM, Gardell SJ, Feuerstein GZ, Fox KAA, Booth NA, Newby DE. Effect of the small molecule plasminogen activator inhibitor-1 (PAI-1) inhibitor, PAI-749, in clinical models of fibrinolysis. J Thromb Haemost 2010; 8:1333-9. [PMID: 20345708 DOI: 10.1111/j.1538-7836.2010.03872.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The principal inhibitor of fibrinolysis in vivo is plasminogen activator inhibitor-1 (PAI-1). PAI-749 is a small molecule inhibitor of PAI-1 with proven antithrombotic efficacy in several preclinical models. OBJECTIVE To assess the effect of PAI-749, by using an established ex vivo clinical model of thrombosis and a range of complementary in vitro human plasma-based and whole blood-based models of fibrinolysis. METHODS In a double-blind, randomized, crossover study, ex vivo thrombus formation was assessed using the Badimon chamber in 12 healthy volunteers during extracorporeal administration of tissue-type plasminogen activator (t-PA) in the presence of PAI-749 or control. t-PA-mediated lysis of plasma clots and of whole blood model thrombi were assessed in vitro. The role of vitronectin was examined by assessing lysis of fibrin clots generated from purified plasma proteins. RESULTS There was a dose-dependent reduction in ex vivo thrombus formation by t-PA (P < 0.0001). PAI-749 had no effect on in vitro or ex vivo thrombus formation or fibrinolysis in the presence or absence of t-PA. Inhibition of PAI-1 with a blocking antibody enhanced fibrinolysis in vitro (P < 0.05). CONCLUSIONS Despite its efficacy in a purified human system and in preclinical models of thrombosis, the current study suggests that PAI-749 does not affect thrombus formation or fibrinolysis in a range of established human plasma and whole blood-based systems.
Collapse
Affiliation(s)
- A J Lucking
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010; 121:2331-78. [PMID: 20458016 DOI: 10.1161/cir.0b013e3181dbece1] [Citation(s) in RCA: 3871] [Impact Index Per Article: 276.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In 2004, the first American Heart Association scientific statement on "Air Pollution and Cardiovascular Disease" concluded that exposure to particulate matter (PM) air pollution contributes to cardiovascular morbidity and mortality. In the interim, numerous studies have expanded our understanding of this association and further elucidated the physiological and molecular mechanisms involved. The main objective of this updated American Heart Association scientific statement is to provide a comprehensive review of the new evidence linking PM exposure with cardiovascular disease, with a specific focus on highlighting the clinical implications for researchers and healthcare providers. The writing group also sought to provide expert consensus opinions on many aspects of the current state of science and updated suggestions for areas of future research. On the basis of the findings of this review, several new conclusions were reached, including the following: Exposure to PM <2.5 microm in diameter (PM(2.5)) over a few hours to weeks can trigger cardiovascular disease-related mortality and nonfatal events; longer-term exposure (eg, a few years) increases the risk for cardiovascular mortality to an even greater extent than exposures over a few days and reduces life expectancy within more highly exposed segments of the population by several months to a few years; reductions in PM levels are associated with decreases in cardiovascular mortality within a time frame as short as a few years; and many credible pathological mechanisms have been elucidated that lend biological plausibility to these findings. It is the opinion of the writing group that the overall evidence is consistent with a causal relationship between PM(2.5) exposure and cardiovascular morbidity and mortality. This body of evidence has grown and been strengthened substantially since the first American Heart Association scientific statement was published. Finally, PM(2.5) exposure is deemed a modifiable factor that contributes to cardiovascular morbidity and mortality.
Collapse
|
217
|
Langrish JP, Lundbäck M, Barath S, Söderberg S, Mills NL, Newby DE, Sandström T, Blomberg A. Exposure to nitrogen dioxide is not associated with vascular dysfunction in man. Inhal Toxicol 2010; 22:192-8. [PMID: 20047363 DOI: 10.3109/08958370903144105] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Exposure to air pollution is associated with increased cardiorespiratory morbidity and mortality. It is unclear whether these effects are mediated through combustion-derived particulate matter or gaseous components, such as nitrogen dioxide. OBJECTIVES To investigate the effect of nitrogen dioxide exposure on vascular vasomotor and six fibrinolytic functions. METHODS Ten healthy male volunteers were exposed to nitrogen dioxide at 4 ppm or filtered air for 1 h during intermittent exercise in a randomized double-blind crossover study. Bilateral forearm blood flow and fibrinolytic markers were measured before and during unilateral intrabrachial infusion of bradykinin (100-1000 pmol/min), acetylcholine (5-20 microg/min), sodium nitroprusside (2-8 microg/min), and verapamil (10-100 microg/min) 4 h after the exposure. Lung function was determined before and after the exposure, and exhaled nitric oxide at baseline and 1 and 4 h after the exposure. RESULTS There were no differences in resting forearm blood flow after either exposure. There was a dose-dependent increase in forearm blood flow with all vasodilators but this was similar after either exposure for all vasodilators (p > .05 for all). Bradykinin caused a dose-dependent increase in plasma tissue-plasminogen activator, but again there was no difference between the exposures. There were no changes in lung function or exhaled nitric oxide following either exposure. CONCLUSION Inhalation of nitrogen dioxide does not impair vascular vasomotor or fibrinolytic function. Nitrogen dioxide does not appear to be a major arbiter of the adverse cardiovascular effects of air pollution.
Collapse
Affiliation(s)
- Jeremy P Langrish
- Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Dales RE, Cakmak S, Vidal CB. Air pollution and hospitalization for venous thromboembolic disease in Chile. J Thromb Haemost 2010; 8:669-74. [PMID: 20088925 DOI: 10.1111/j.1538-7836.2010.03760.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ambient air pollution is a risk factor for stroke and myocardial infarction, possibly because of alterations in coagulation that influence the arterial circulation. Whether air pollution influences diseases associated with peripheral venous thrombogenesis remains largely unknown. OBJECTIVES To determine the association between air pollution and venous thromboembolic disease (VTE) in a sample of the general population. METHODS A time-series analysis was used to test the association between daily air pollution and VTE hospitalizations in Santiago between 2001 and 2005. Results were adjusted for long-term trends, day of the week and average daily humidex. RESULTS From a population of 5.4 million, there were, on average, 2.3 admissions for VTE per day. Pooled estimates of relative risk (RR) [95% confidence interval (CI)] of hospitalization for venous disease were: 1.07 (1.05, 1.09) for a 58.4 p.p.b. increase in ozone (O(3)); 1.06 (1.02, 1.09) for a 5.85 p.p.b. increase in sulphur dioxide (SO(2)); 1.08 (1.03, 1.12) for a 29.25 microg/m(3) increase in nitrogen dioxide (NO(2)); and 1.05 (1.03, 1.06) for a 20.02 microg/m(3) increase in particulate matter < or = 2.5 microm in mean aerodynamic diameter (PM(2.5)). For pulmonary embolism (PE) results were: 1.10 (1.07, 1.13) for O(3); 1.05 (1.02, 1.08) for SO(2); 1.07 (1.04, 1.09) for NO(2); and 1.05(1.03, 1.06) for PM(2.5), respectively. CONCLUSION Air pollution appears to be a risk factor for venous thrombosis and PE, a disease with a significant fatality rate.
Collapse
Affiliation(s)
- R E Dales
- (Epidemiology) Health Canada, University of Ottawa Department of Medicine, The Ottawa Hospital (General Campus), Ottawa, ON, Canada
| | | | | |
Collapse
|
219
|
Air pollution exposure--a trigger for myocardial infarction? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1486-99. [PMID: 20617041 PMCID: PMC2872334 DOI: 10.3390/ijerph7041486] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/26/2010] [Accepted: 03/28/2010] [Indexed: 11/17/2022]
Abstract
The association between ambient air pollution exposure and hospitalization for cardiovascular events has been reported in several studies with conflicting results. A case-crossover design was used to investigate the effects of air pollution in 660 first-time myocardial infarction cases in Stockholm in 1993–1994, interviewed shortly after diagnosis using a standard protocol. Air pollution data came from central urban background monitors. No associations were observed between the risk for onset of myocardial infarction and two-hour or 24-hour air pollution exposure. No evidence of susceptible subgroups was found. This study provides no support that moderately elevated air pollution levels trigger first-time myocardial infarction.
Collapse
|
220
|
Jacobs L, Emmerechts J, Mathieu C, Hoylaerts MF, Fierens F, Hoet PH, Nemery B, Nawrot TS. Air pollution related prothrombotic changes in persons with diabetes. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:191-6. [PMID: 20123602 PMCID: PMC2831916 DOI: 10.1289/ehp.0900942] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 10/22/2009] [Indexed: 05/03/2023]
Abstract
BACKGROUND Population studies suggest that persons with diabetes are more sensitive to the effects of particulate matter (PM) air pollution. However, the biological mechanisms of a possible prothrombotic effect underlying this enhanced susceptibility remain largely unknown. OBJECTIVE We hypothesized that exposure to PM causes prothrombotic changes in persons with diabetes, possibly via systemic inflammation. METHODS Our study included 137 nonsmoking adults with diabetes who were outpatients at the University Hospital Leuven. Recent exposure (2 hr before examination) to ambient PM was measured at the entrance of the hospital. Individual chronic exposure to PM was assessed by measuring the area occupied by carbon in airway macrophages obtained by sputum induction. Platelet function was measured ex vivo with the PFA-100 platelet function analyzer, which simulates a damaged blood vessel; we analyzed the function of platelets in primary hemostasis under high shear conditions. Total and differential blood leukocytes were counted. RESULTS Independent of antiplatelet medication, an interquartile range (IQR) increase of 39.2 microg/m3 in PM10 (PM with aerodynamic diameter <or= 10 microm) concentration measured 2 hr before the clinical examination (recent exposure) was associated with a decrease of 21.1 sec [95% confidence interval (CI), 35.3 to 6.8] in the PFA-100 closure time (i.e., increased platelet activation) and an increase in blood leukocytes of 512 per microliter of blood (95% CI, 45.2979). Each area increase of 0.25 microm2 (IQR) in carbon load of airway macrophages (chronic exposure) was associated with an increase of 687 leukocytes per microliter of blood (95% CI, 2241,150). CONCLUSIONS A relevant increase in recent PM exposure was associated with a change in platelet function toward a greater prothrombotic tendency. The magnitude of the change was about two-thirds (in the opposite direction) of the average effect of antiplatelet medication. Diabetic patients showed evidence of proinflammatory response to both recent and chronic exposure to PM air pollution.
Collapse
Affiliation(s)
- Lotte Jacobs
- Occupational and Environmental Medicine, Unit of Lung Toxicology
| | | | - Chantal Mathieu
- Department of Endocrinology, Katholique Universiteit Leuven, Leuven, Belgium
| | | | - Frans Fierens
- Belgian interregional Environment Agency, Brussels, Belgium
| | - Peter H. Hoet
- Occupational and Environmental Medicine, Unit of Lung Toxicology
| | - Benoit Nemery
- Occupational and Environmental Medicine, Unit of Lung Toxicology
- Address correspondence to B. Nemery, K.U. Leuven, Occupational and Environmental Medicine and Pneumology, Unit of Lung Toxicology, Herestraat 49 (O&N 706), B-3000 Leuven, Belgium. Telephone: 32-16-347121. Fax: 32-16-347124. E-mail:
| | - Tim S. Nawrot
- Occupational and Environmental Medicine, Unit of Lung Toxicology
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
221
|
Abstract
Ultrafine particles and engineered nanoparticles have unique aerodynamic and biochemical properties that affect the immune system and human health in ways that are different from or exceed those seen with gases or larger particulates. These effects result from a unique set of physical characteristics and surface moieties, which generate an ability of UFPs to enter tissues and cells, interact with proteins and DNA at a molecular level and directly and indirectly modulate the immune system by novel mechanisms. In recent years, a new field known as nanotechnology has impacted multiple industries by taking advantage of the special qualities of these small "atomic-sized" particles. Nanomedicine has already opened up a new avenue of research in cancer therapy, drug delivery and immune regulation. While the benefits of this new science to human civilization are seemingly immeasurable, it is also important to appreciate that these particles can also lead to harmful effects on human health. In vitro and animal studies are showing that nanoparticles and UFPs are capable of activating proinflammatory cytokines, chemokines and adhesion molecules, with recruitment of inflammatory cells including basophils, macrophages, dendritic cells, T cells, neutrophils and eosinophils. These changes may have an impact on immune defense, but also on the Th1/Th2 balance, and even on non-immunologic function. Resulting immune system derangement can lead to increases in incidence of autoimmune, allergic and even neoplastic diseases. Cardiorespiratory effects have been observed to occur in humans. Much further research is needed to establish safe exposure levels for this important new class of particulates.
Collapse
Affiliation(s)
- Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| |
Collapse
|
222
|
Chelliah R, Lucking AJ, Tattersall L, Daga S, Beresford-Cleary NJ, Cortas K, Fox KAA, Feuerstein GZ, Connolly TM, Newby DE. P-selectin antagonism reduces thrombus formation in humans. J Thromb Haemost 2009; 7:1915-9. [PMID: 19691482 DOI: 10.1111/j.1538-7836.2009.03587.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Interaction of P-selectin with its glycoprotein ligand (P-selectin glycoprotein ligand type 1) mediates inflammatory processes that may also include vascular thrombosis. Platelet P-selectin expression is increased in patients with coronary heart disease, and its antagonism represents a potential future therapeutic target for the prevention and treatment of atherothrombosis. AIM To investigate the effects of the novel small molecule P-selectin antagonist PSI-697 on thrombus formation in humans. METHODS AND RESULTS In a double-blind randomized crossover study, thrombus formation was measured in 12 healthy volunteers, using the Badimon ex vivo perfusion chamber under conditions of low and high shear stress. Saline placebo, low-dose (2 m) and high-dose (20 m) PSI-697 and the glycoprotein IIb-IIIa receptor antagonist tirofiban (50 ng mL(-1)) were administered into the extracorporeal circuit prior to the perfusion chamber. As compared with saline placebo, blockade of platelet glycoprotein IIb-IIIa receptor with tirofiban produced 28% and 56% reductions in thrombus formation in the low-shear and high-shear chambers, respectively. PSI-697 caused a dose-dependent, but more modest, reduction in thrombus formation. Low-dose PSI-796 (2 m) reduced total thrombus area by 14% (P = 0.04) and 30% (P = 0.0002) in the low-shear and high-shear chambers, respectively. At the high dose (20 m), PSI-697 reduced total thrombus area by 18% (P = 0.0094) and 41% (P = 0.0008) in the low-shear and high-shear chambers, respectively. CONCLUSIONS P-selectin antagonism with PSI-697 reduces ex vivo thrombus formation in humans. These findings provide further evidence that P-selectin antagonism may be a potential target for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- R Chelliah
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Seaton A, Tran L, Aitken R, Donaldson K. Nanoparticles, human health hazard and regulation. J R Soc Interface 2009; 7 Suppl 1:S119-29. [PMID: 19726441 DOI: 10.1098/rsif.2009.0252.focus] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
New developments in technology usually entail some hazard as well as advantage to a society. Hazard of a material translates into risk by exposure of humans and/or their environment to the agent in question, and risk is reduced by control of exposure, usually guided by regulation based on understanding of the mechanisms of harm. We illustrate risks relating to the causation of diseases associated with exposure to aerosols of combustion particles and asbestos, leading to paradigms of particle toxicity, and discuss analogies with potential exposure to manufactured nanoparticles (NPs). We review the current understanding of the hazard of NPs derived from the new science of nanotoxicology and the limited research to date into human exposure to these particles. We identify gaps in knowledge relating to the properties of NPs that might determine toxicity and in understanding the most appropriate ways both to measure this in the laboratory and to assess it in the workplace. Nevertheless, we point out that physical principles governing the behaviour of such particles allow determination of practical methods of protecting those potentially exposed. Finally, we discuss the early steps towards regulation and the difficulties facing regulators in controlling potentially harmful exposures in the absence of sufficient scientific evidence.
Collapse
Affiliation(s)
- Anthony Seaton
- Safety of Nanomaterials Interdisciplinary Research Centre, Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK.
| | | | | | | |
Collapse
|
224
|
Oudin A, Stroh E, Strömberg U, Jakobsson K, Björk J. Long-term exposure to air pollution and hospital admissions for ischemic stroke. A register-based case-control study using modelled NO(x) as exposure proxy. BMC Public Health 2009; 9:301. [PMID: 19691845 PMCID: PMC2736944 DOI: 10.1186/1471-2458-9-301] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/19/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-term exposure to air pollution is a hypothesized risk factor for ischemic stroke. In a large case-control study with a complete study base, we investigated whether hospital admissions for ischemic stroke were associated with residential concentrations of outdoor NOx, as a proxy for exposure to air pollution, in the region of Scania, Southern Sweden. METHODS We used a two-phase case-control study design, including as first-phase controls all individuals born between 1923 and 1965 and residing in Scania in 2002 (N = 556 912). We defined first-phase cases as first-time ischemic stroke patients residing in Scania and registered in the Swedish stroke register between 2001 and 2005 (N = 4 904) and second-phase cases as cases for whom we had information on smoking status, diabetes, and medication for hypertension (N = 4 375). For the controls, information on these covariables was collected from a public health survey, resulting in 4 716 second-phase controls. With a geographical information system and an emission database, individual residential outdoor annual mean NOx concentration was modelled. The data were analyzed with logistic regression. RESULTS We found no evident association between NOx and ischemic stroke. For example, the odds ratio for ischemic stroke associated with the NOx category 20-30 microg/m3 compared to the reference category of <10 microg/m3 was 0.95 (95% CI 0.86-1.06). CONCLUSION In this study area, with generally low levels of air pollution, using a complete study base, high-quality ascertainment of cases, and individually modelled exposure, we did not observe any clear association between NOx and ischemic stroke hospital admissions.
Collapse
Affiliation(s)
- Anna Oudin
- Department of Occupational and Environmental Medicine, Lund University Hospital, Lund, Sweden.
| | | | | | | | | |
Collapse
|
225
|
Knol AB, de Hartog JJ, Boogaard H, Slottje P, van der Sluijs JP, Lebret E, Cassee FR, Wardekker JA, Ayres JG, Borm PJ, Brunekreef B, Donaldson K, Forastiere F, Holgate ST, Kreyling WG, Nemery B, Pekkanen J, Stone V, Wichmann HE, Hoek G. Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways. Part Fibre Toxicol 2009; 6:19. [PMID: 19630955 PMCID: PMC2731037 DOI: 10.1186/1743-8977-6-19] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 07/24/2009] [Indexed: 11/10/2022] Open
Abstract
Background Exposure to fine ambient particulate matter (PM) has consistently been associated with increased morbidity and mortality. The relationship between exposure to ultrafine particles (UFP) and health effects is less firmly established. If UFP cause health effects independently from coarser fractions, this could affect health impact assessment of air pollution, which would possibly lead to alternative policy options to be considered to reduce the disease burden of PM. Therefore, we organized an expert elicitation workshop to assess the evidence for a causal relationship between exposure to UFP and health endpoints. Methods An expert elicitation on the health effects of ambient ultrafine particle exposure was carried out, focusing on: 1) the likelihood of causal relationships with key health endpoints, and 2) the likelihood of potential causal pathways for cardiac events. Based on a systematic peer-nomination procedure, fourteen European experts (epidemiologists, toxicologists and clinicians) were selected, of whom twelve attended. They were provided with a briefing book containing key literature. After a group discussion, individual expert judgments in the form of ratings of the likelihood of causal relationships and pathways were obtained using a confidence scheme adapted from the one used by the Intergovernmental Panel on Climate Change. Results The likelihood of an independent causal relationship between increased short-term UFP exposure and increased all-cause mortality, hospital admissions for cardiovascular and respiratory diseases, aggravation of asthma symptoms and lung function decrements was rated medium to high by most experts. The likelihood for long-term UFP exposure to be causally related to all cause mortality, cardiovascular and respiratory morbidity and lung cancer was rated slightly lower, mostly medium. The experts rated the likelihood of each of the six identified possible causal pathways separately. Out of these six, the highest likelihood was rated for the pathway involving respiratory inflammation and subsequent thrombotic effects. Conclusion The overall medium to high likelihood rating of causality of health effects of UFP exposure and the high likelihood rating of at least one of the proposed causal mechanisms explaining associations between UFP and cardiac events, stresses the importance of considering UFP in future health impact assessments of (transport-related) air pollution, and the need for further research on UFP exposure and health effects.
Collapse
Affiliation(s)
- Anne B Knol
- Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Lundbäck M, Mills NL, Lucking A, Barath S, Donaldson K, Newby DE, Sandström T, Blomberg A. Experimental exposure to diesel exhaust increases arterial stiffness in man. Part Fibre Toxicol 2009; 6:7. [PMID: 19284640 PMCID: PMC2660278 DOI: 10.1186/1743-8977-6-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 03/13/2009] [Indexed: 11/22/2022] Open
Abstract
Introduction Exposure to air pollution is associated with increased cardiovascular morbidity, although the underlying mechanisms are unclear. Vascular dysfunction reduces arterial compliance and increases central arterial pressure and left ventricular after-load. We determined the effect of diesel exhaust exposure on arterial compliance using a validated non-invasive measure of arterial stiffness. Methods In a double-blind randomized fashion, 12 healthy volunteers were exposed to diesel exhaust (approximately 350 μg/m3) or filtered air for one hour during moderate exercise. Arterial stiffness was measured using applanation tonometry at the radial artery for pulse wave analysis (PWA), as well as at the femoral and carotid arteries for pulse wave velocity (PWV). PWA was performed 10, 20 and 30 min, and carotid-femoral PWV 40 min, post-exposure. Augmentation pressure (AP), augmentation index (AIx) and time to wave reflection (Tr) were calculated. Results Blood pressure, AP and AIx were generally low reflecting compliant arteries. In comparison to filtered air, diesel exhaust exposure induced an increase in AP of 2.5 mmHg (p = 0.02) and in AIx of 7.8% (p = 0.01), along with a 16 ms reduction in Tr (p = 0.03), 10 minutes post-exposure. Conclusion Acute exposure to diesel exhaust is associated with an immediate and transient increase in arterial stiffness. This may, in part, explain the increased risk for cardiovascular disease associated with air pollution exposure. If our findings are confirmed in larger cohorts of susceptible populations, this simple non-invasive method of assessing arterial stiffness may become a useful technique in measuring the impact of real world exposures to combustion derived-air pollution.
Collapse
Affiliation(s)
- Magnus Lundbäck
- Department of Respiratory Medicine and Allergy, University Hospital, Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, Sandström T, Blomberg A, Newby DE. Adverse cardiovascular effects of air pollution. ACTA ACUST UNITED AC 2008; 6:36-44. [PMID: 19029991 DOI: 10.1038/ncpcardio1399] [Citation(s) in RCA: 475] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 10/03/2008] [Indexed: 02/07/2023]
Abstract
Air pollution is increasingly recognized as an important and modifiable determinant of cardiovascular disease in urban communities. Acute exposure has been linked to a range of adverse cardiovascular events including hospital admissions with angina, myocardial infarction, and heart failure. Long-term exposure increases an individual's lifetime risk of death from coronary heart disease. The main arbiter of these adverse health effects seems to be combustion-derived nanoparticles that incorporate reactive organic and transition metal components. Inhalation of this particulate matter leads to pulmonary inflammation with secondary systemic effects or, after translocation from the lung into the circulation, to direct toxic cardiovascular effects. Through the induction of cellular oxidative stress and proinflammatory pathways, particulate matter augments the development and progression of atherosclerosis via detrimental effects on platelets, vascular tissue, and the myocardium. These effects seem to underpin the atherothrombotic consequences of acute and chronic exposure to air pollution. An increased understanding of the mediators and mechanisms of these processes is necessary if we are to develop strategies to protect individuals at risk and reduce the effect of air pollution on cardiovascular disease.
Collapse
|