201
|
Yang Y, Song S, Meng Q, Wang L, Li X, Xie S, Chen Y, Jiang X, Wang C, Lu Y, Xin X, Pu H, Gui X, Li T, Xu J, Li J, Jia S, Lu D. miR24-2 accelerates progression of liver cancer cells by activating Pim1 through tri-methylation of Histone H3 on the ninth lysine. J Cell Mol Med 2020; 24:2772-2790. [PMID: 32030886 PMCID: PMC7077597 DOI: 10.1111/jcmm.15030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/07/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Several microRNAs are associated with carcinogenesis and tumour progression. Herein, our observations suggest both miR24‐2 and Pim1 are up‐regulated in human liver cancers, and miR24‐2 accelerates growth of liver cancer cells in vitro and in vivo. Mechanistically, miR24‐2 increases the expression of N6‐adenosine‐methyltransferase METTL3 and thereafter promotes the expression of miR6079 via RNA methylation modification. Furthermore, miR6079 targets JMJD2A and then increased the tri‐methylation of histone H3 on the ninth lysine (H3K9me3). Therefore, miR24‐2 inhibits JMJD2A by increasing miR6079 and then increases H3K9me3. Strikingly, miR24‐2 increases the expression of Pim1 dependent on H3K9me3 and METTL3. Notably, our findings suggest that miR24‐2 alters several related genes (pHistone H3, SUZ12, SUV39H1, Nanog, MEKK4, pTyr) and accelerates progression of liver cancer cells through Pim1 activation. In particular, Pim1 is required for the oncogenic action of miR24‐2 in liver cancer. This study elucidates a novel mechanism for miR24‐2 in liver cancer and suggests that miR24‐2 may be used as novel therapeutic targets of liver cancer.
Collapse
Affiliation(s)
- Yuxin Yang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China.,School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shuting Song
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Qiuyu Meng
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Liyan Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaonan Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Sijie Xie
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yingjie Chen
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaoxue Jiang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chen Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yanan Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaoru Xin
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hu Pu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xin Gui
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Tianming Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jie Xu
- School of Medicine, Tongji University, Shanghai, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai, China
| | - Dongdong Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| |
Collapse
|
202
|
Salinas RD, Connolly DR, Song H. Invited Review: Epigenetics in neurodevelopment. Neuropathol Appl Neurobiol 2020; 46:6-27. [PMID: 32056273 PMCID: PMC7174139 DOI: 10.1111/nan.12608] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/21/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022]
Abstract
Neural development requires the orchestration of dynamic changes in gene expression to regulate cell fate decisions. This regulation is heavily influenced by epigenetics, heritable changes in gene expression not directly explained by genomic information alone. An understanding of the complexity of epigenetic regulation is rapidly emerging through the development of novel technologies that can assay various features of epigenetics and gene regulation. Here, we provide a broad overview of several commonly investigated modes of epigenetic regulation, including DNA methylation, histone modifications, noncoding RNAs, as well as epitranscriptomics that describe modifications of RNA, in neurodevelopment and diseases. Rather than functioning in isolation, it is being increasingly appreciated that these various modes of gene regulation are dynamically interactive and coordinate the complex nature of neurodevelopment along multiple axes. Future work investigating these interactions will likely utilize 'multi-omic' strategies that assay cell fate dynamics in a high-dimensional and high-throughput fashion. Novel human neurodevelopmental models including iPSC and cerebral organoid systems may provide further insight into human-specific features of neurodevelopment and diseases.
Collapse
Affiliation(s)
- Ryan D. Salinas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel R. Connolly
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
203
|
Song H, Wang Y, Wang R, Zhang X, Liu Y, Jia G, Chen PR. SFPQ Is an FTO-Binding Protein that Facilitates the Demethylation Substrate Preference. Cell Chem Biol 2020; 27:283-291.e6. [PMID: 31981477 DOI: 10.1016/j.chembiol.2020.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/15/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
The fat mass and obesity-associated protein (FTO) is the first identified demethylase of the internal RNA modification N6-methyladenosine (m6A), which also exhibits demethylation activity toward N6,2'-O-dimethyladenosine (m6Am) and N1-methyladenosine (m1A). Demethylation of m6A at specific sites on target transcripts is a key enzymatic function of FTO that modulates diverse physiological and/or pathological processes. However, how FTO selects target RNA and whether additional interaction proteins facilitate this process remain elusive. Herein, via the genetically encoded and site-specific photocrosslinking strategy, we identified the major RNA-binding protein SFPQ as a direct interaction partner of FTO. Our study showed that FTO and SFPQ were located in close proximity throughout the transcriptome and that overexpression of SFPQ led to the demethylation of adjacent m6As, likely through recruiting FTO to these specific RNA sites. These results uncovered a new layer of regulation mechanism that may assist FTO to gain substrate specificity.
Collapse
Affiliation(s)
- Haiping Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ye Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruixiang Wang
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Xiao Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yaping Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
204
|
Wang Y, Wang R, Yao B, Hu T, Li Z, Liu Y, Cui X, Cheng L, Song W, Huang S, Fu X. TNF-α suppresses sweat gland differentiation of MSCs by reducing FTO-mediated m 6A-demethylation of Nanog mRNA. SCIENCE CHINA. LIFE SCIENCES 2020; 63:80-91. [PMID: 31637575 DOI: 10.1007/s11427-019-9826-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 01/05/2023]
Abstract
An effect of inhibition of tumor necrosis factor-α (TNF-α) on differentiation of mesenchymal stromal cells (MSCs) has been demonstrated, but the exact mechanisms that govern MSCs differentiation remain to be further elucidated. Here, we show that TNF-α inhibits the differentiation of MSCs to sweat glands in a specific sweat gland-inducing environment, accompanied with reduced expression of Nanog, a core pluripotency factor. We elucidated that fat mass and obesity-associated protein (FTO)-mediated m6A demethylation is involved in the regulation of MSCs differentiation potential. Exposure of MSCs to TNF-α reduced expression of FTO, which demethylated Nanog mRNA. Reduced expression of FTO increased Nanog mRNA methylation, decreased Nanog mRNA and protein expression, and significantly inhibited MSCs capacity for differentiation to sweat gland cells. Our finding is the first to elucidate the functional importance of m6A modification in MSCs, providing new insights that the microenvironment can regulate the multipotency of MSCs at the post-transcriptional level. Moreover, to maintain differentiation capacity of MSCs by regulating m6A modification suggested a novel potential therapeutic target for stem cell-mediated regenerative medicine.
Collapse
Affiliation(s)
- Yihui Wang
- Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
| | - Rui Wang
- Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
| | - Bin Yao
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
| | - Tian Hu
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
- School of Medicine, Nankai University, Tianjin, 300052, China
| | - Zhao Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China
| | - Yufan Liu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China
| | - Xiaoli Cui
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
| | - Liuhanghang Cheng
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
| | - Wei Song
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
| | - Sha Huang
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China.
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China.
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China.
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China.
| |
Collapse
|
205
|
Identification of METTL14 in Kidney Renal Clear Cell Carcinoma Using Bioinformatics Analysis. DISEASE MARKERS 2019; 2019:5648783. [PMID: 31976022 PMCID: PMC6954481 DOI: 10.1155/2019/5648783] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023]
Abstract
The kidney renal clear cell carcinoma (KIRC) with poor prognosis is the main histological subtype of the renal cell carcinoma, accounting for 80–90% of patients. Currently, the N6-methyladenosine (m6A) epitranscriptional modification draws much attention. The m6A RNA modification, the most plentiful internal modification of mRNAs and noncoding RNAs in the majority of eukaryotes, regulates mRNAs at different levels and is involved in disease occurrence and progression. The GTExPortal and TCGAportal were applied to investigate the METTL14 mRNA expression in different tissues and KIRC stages. The Human Protein Atlas was used to verify the location of METTL14 in KIRC tissues. The main microRNAs (miRNAs) related to KIRC were analyzed using OncoLnc and starBase, while corresponding circular RNAs (circRNAs) interacting with miRNAs were predicted via circBank; then, the METTL14-miRNA-circRNA interaction network was established. The level of methyltransferase-like 14 (METTL14) mRNA was significantly lower in KIRC tissues compared with normal kidney tissues, which was relative to clinical and pathological stages. circRNAs may regulate METTL14 mRNA as miRNAs sponge to affect the KIRC progression. METTL14 mRNA is likely to regulate PTEN mRNA expression via changing its m6A RNA modification level. METTL14 mRNA expression negatively correlated with the KIRC stages and positively correlated with KIRC patients' overall survival, which has great potential to serve as a clinical biomarker in KIRC.
Collapse
|
206
|
Roy R, Shiina N, Wang DO. More dynamic, more quantitative, unexpectedly intricate: Advanced understanding on synaptic RNA localization in learning and memory. Neurobiol Learn Mem 2019; 168:107149. [PMID: 31881355 DOI: 10.1016/j.nlm.2019.107149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023]
Abstract
Synaptic signaling exhibits great diversity, complexity, and plasticity which necessitates maintenance and rapid modification of a local proteome. One solution neurons actively exploit to meet such demands is the strategic deposition of mRNAs encoding proteins for both basal and experience-driven activities into ribonucleoprotein complexes at the synapse. Transcripts localized in this manner can be rapidly accessed for translation in response to a diverse range of stimuli in a temporal- and spatially-restricted manner. Here we review recent findings on localized RNAs and RNA binding proteins in the context of learning and memory, as revealed by cutting-edge in-vitro and in-vivo technologies capable of yielding quantitative and dynamic information. The new technologies include proteomic and transcriptomic analyses, high-resolution multiplexed RNA imaging, single-molecule RNA tracking in living neurons, animal models and human neuron cell models. Among many recent advances in the field, RNA chemical modification has emerged as one of the new regulatory layers of gene expression at synapse that is complex and yet largely unexplored. These exciting new discoveries have enhanced our understanding of the modulation mechanisms of synaptic gene expression and their roles in cognition.
Collapse
Affiliation(s)
- Rohini Roy
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, SOKENDAI, Okazaki, Japan; Exploratory Research Center on Life and Living Systems, Okazaki, Japan.
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, China; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto, Japan.
| |
Collapse
|
207
|
The m 6A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci 2019; 21:36-51. [PMID: 31804615 DOI: 10.1038/s41583-019-0244-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 02/08/2023]
Abstract
The field of epitranscriptomics examines the recently deciphered form of gene expression regulation that is mediated by type- and site-specific RNA modifications. Similarly to the role played by epigenetic mechanisms - which operate via DNA and histone modifications - epitranscriptomic modifications are involved in the control of the delicate gene expression patterns that are needed for the development and activity of the nervous system and are essential for basic and higher brain functions. Here we describe the mechanisms that are involved in the writing, erasing and reading of N6-methyladenosine, the most prevalent internal mRNA modification, and the emerging roles played by N6-methyladenosine in the nervous system.
Collapse
|
208
|
Flamand MN, Meyer KD. The epitranscriptome and synaptic plasticity. Curr Opin Neurobiol 2019; 59:41-48. [PMID: 31108373 PMCID: PMC6858947 DOI: 10.1016/j.conb.2019.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
RNA modifications, collectively referred to as 'the epitranscriptome,' have recently emerged as a pervasive feature of cellular mRNAs which have diverse impacts on gene expression. In the last several years, technological advances improving our ability to identify mRNA modifications, coupled with the discovery of proteins that add and remove these marks, have substantially expanded our knowledge of how the epitranscriptome shapes gene expression. Efforts to uncover functional roles for mRNA modifications have begun to reveal important roles for some marks within the nervous system, and animal models have emerged which demonstrate severe neurodevelopmental and neurocognitive abnormalities resulting from the loss of mRNA modification machinery. Here, we review the recent advances in the field of neuroepitranscriptomics, with a particular emphasis on how modifications to mRNAs within the brain contribute to synaptic activity.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
209
|
Koppers M, Cagnetta R, Shigeoka T, Wunderlich LCS, Vallejo-Ramirez P, Qiaojin Lin J, Zhao S, Jakobs MAH, Dwivedy A, Minett MS, Bellon A, Kaminski CF, Harris WA, Flanagan JG, Holt CE. Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. eLife 2019; 8:e48718. [PMID: 31746735 PMCID: PMC6894925 DOI: 10.7554/elife.48718] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Extrinsic cues trigger the local translation of specific mRNAs in growing axons via cell surface receptors. The coupling of ribosomes to receptors has been proposed as a mechanism linking signals to local translation but it is not known how broadly this mechanism operates, nor whether it can selectively regulate mRNA translation. We report that receptor-ribosome coupling is employed by multiple guidance cue receptors and this interaction is mRNA-dependent. We find that different receptors associate with distinct sets of mRNAs and RNA-binding proteins. Cue stimulation of growing Xenopus retinal ganglion cell axons induces rapid dissociation of ribosomes from receptors and the selective translation of receptor-specific mRNAs. Further, we show that receptor-ribosome dissociation and cue-induced selective translation are inhibited by co-exposure to translation-repressive cues, suggesting a novel mode of signal integration. Our findings reveal receptor-specific interactomes and suggest a generalizable model for cue-selective control of the local proteome.
Collapse
Affiliation(s)
- Max Koppers
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Roberta Cagnetta
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Toshiaki Shigeoka
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Lucia CS Wunderlich
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Pedro Vallejo-Ramirez
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Julie Qiaojin Lin
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Sixian Zhao
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Maximilian AH Jakobs
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Asha Dwivedy
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael S Minett
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Anaïs Bellon
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Clemens F Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - William A Harris
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - John G Flanagan
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | - Christine E Holt
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
210
|
FTO: An Emerging Molecular Player in Neuropsychiatric Diseases. Neuroscience 2019; 418:15-24. [DOI: 10.1016/j.neuroscience.2019.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/01/2023]
|
211
|
Chokkalla AK, Mehta SL, Kim T, Chelluboina B, Kim JY, Vemuganti R. Transient Focal Ischemia Significantly Alters the m 6A Epitranscriptomic Tagging of RNAs in the Brain. Stroke 2019; 50:2912-2921. [PMID: 31436138 PMCID: PMC6759411 DOI: 10.1161/strokeaha.119.026433] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Purpose- Adenosine in many types of RNAs can be converted to m6A (N6-methyladenosine) which is a highly dynamic epitranscriptomic modification that regulates RNA metabolism and function. Of all organs, the brain shows the highest abundance of m6A methylation of RNAs. As recent studies showed that m6A modification promotes cell survival after adverse conditions, we currently evaluated the effect of stroke on cerebral m6A methylation in mRNAs and lncRNAs. Methods- Adult C57BL/6J mice were subjected to transient middle cerebral artery occlusion. In the peri-infarct cortex, m6A levels were measured by dot blot analysis, and transcriptome-wide m6A changes were profiled using immunoprecipitated methylated RNAs with microarrays (44 122 mRNAs and 12 496 lncRNAs). Gene ontology analysis was conducted to understand the functional implications of m6A changes after stroke. Expression of m6A writers, readers, and erasers was also estimated in the ischemic brain. Results- Global m6A levels increased significantly at 12 hours and 24 hours of reperfusion compared with sham. While 139 transcripts (122 mRNAs and 17 lncRNAs) were hypermethylated, 8 transcripts (5 mRNAs and 3 lncRNAs) were hypomethylated (>5-fold compared with sham) in the ischemic brain at 12 hours reperfusion. Inflammation, apoptosis, and transcriptional regulation are the major biological processes modulated by the poststroke differentially m6A methylated mRNAs. The m6A writers were unaltered, but the m6A eraser (fat mass and obesity-associated protein) decreased significantly after stroke compared with sham. Conclusions- This is the first study to show that stroke alters the cerebral m6A epitranscriptome, which might have functional implications in poststroke pathophysiology. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Suresh L. Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Joo Yong Kim
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA
| |
Collapse
|
212
|
Pilžys T, Marcinkowski M, Kukwa W, Garbicz D, Dylewska M, Ferenc K, Mieczkowski A, Kukwa A, Migacz E, Wołosz D, Mielecki D, Klungland A, Piwowarski J, Poznański J, Grzesiuk E. ALKBH overexpression in head and neck cancer: potential target for novel anticancer therapy. Sci Rep 2019; 9:13249. [PMID: 31519943 PMCID: PMC6744417 DOI: 10.1038/s41598-019-49550-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
The nine identified human homologues of E. coli AlkB 2-oxoglutarate (2OG) and Fe(II)-dependent dioxygenase, ALKBH1-8 and FTO, display different substrate specificities and diverse biological functions. Here we discovered the combined overexpression of members of the ALKBH family in head and neck squamous cell carcinomas (HNSCC). We found direct correlation of ALKBH3 and FTO expression with primary HNSCC tumor size. We observed unidentified thus far cytoplasmic localization of ALKBH2 and 5 in HNSCC, suggesting abnormal role(s) of ALKBH proteins in cancer. Further, high expression of ALKBHs was observed not only in HNSCC, but also in several cancerous cell lines and silencing ALKBH expression in HeLa cancer cells resulted in dramatically decreased survival. Considering the discovered impact of high expression of ALKBH proteins on HNSCC development, we screened for ALKBH blockers among newly synthetized anthraquinone derivatives and demonstrated their potential to support standard anticancer therapy.
Collapse
Affiliation(s)
- Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Kukwa
- Department of Otolaryngology, Medical University of Warsaw, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Dylewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Ferenc
- Veterinary Research Centre and Center for Biomedical Research, Department of Large Animal Diseases with the Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Kukwa
- Department of Otolaryngology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Migacz
- Department of Otolaryngology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Wołosz
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
213
|
Zhou LL, Yang CG. Targeting Epitranscriptomic Proteins for Therapeutic Intervention. Biochemistry 2019; 59:125-127. [DOI: 10.1021/acs.biochem.9b00755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lin-Lin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
214
|
Zhang Q, Riddle RC, Yang Q, Rosen CR, Guttridge DC, Dirckx N, Faugere MC, Farber CR, Clemens TL. The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc Natl Acad Sci U S A 2019; 116:17980-17989. [PMID: 31434789 PMCID: PMC6731662 DOI: 10.1073/pnas.1905489116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fat mass and obesity-associated gene (FTO) encodes an m6A RNA demethylase that controls mRNA processing and has been linked to both obesity and bone mineral density in humans by genome-wide association studies. To examine the role of FTO in bone, we characterized the phenotype of mice lacking Fto globally (FtoKO ) or selectively in osteoblasts (FtoOcKO ). Both mouse models developed age-related reductions in bone volume in both the trabecular and cortical compartments. RNA profiling in osteoblasts following acute disruption of Fto revealed changes in transcripts of Hspa1a and other genes in the DNA repair pathway containing consensus m6A motifs required for demethylation by FtoFto KO osteoblasts were more susceptible to genotoxic agents (UV and H2O2) and exhibited increased rates of apoptosis. Importantly, forced expression of Hspa1a or inhibition of NF-κB signaling normalized the DNA damage and apoptotic rates in Fto KO osteoblasts. Furthermore, increased metabolic stress induced in mice by feeding a high-fat diet induced greater DNA damage in osteoblast of FtoOc KO mice compared to controls. These data suggest that FTO functions intrinsically in osteoblasts through Hspa1a-NF-κB signaling to enhance the stability of mRNA of proteins that function to protect cells from genotoxic damage.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| | - Qian Yang
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
| | - Clifford R Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074
| | - Denis C Guttridge
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425
| | - Naomi Dirckx
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287
| | | | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, MD 21287;
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| |
Collapse
|
215
|
Li J, Yang X, Qi Z, Sang Y, Liu Y, Xu B, Liu W, Xu Z, Deng Y. The role of mRNA m 6A methylation in the nervous system. Cell Biosci 2019; 9:66. [PMID: 31452869 PMCID: PMC6701067 DOI: 10.1186/s13578-019-0330-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
Epitranscriptomics, also known as “RNA epigenetics”, is a chemical modification for RNA regulation. Ribonucleic acid (RNA) methylation is considered to be a major discovery following the deoxyribonucleic acid (DNA) and histone methylation. Messenger RNA (mRNA) methylation modification accounts for more than 60% of all RNA modifications and N6-methyladenosine (m6A) is known as one of the most common type of eukaryotic mRNA methylation modifications in current. The m6A modification is a dynamic reversible modification, which can directly or indirectly affect biological processes, such as RNA degradation, translation and splicing, and can play important biological roles in vivo. This article introduces the mRNA m6A methylation modification enzymes and binding proteins, and reviews the research progress and related mechanisms of the role of mRNA m6A methylation in the nervous system from the aspects of neural stem cells, learning and memory, brain development, axon growth and glioblastoma.
Collapse
Affiliation(s)
- Jiashuo Li
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Xinxin Yang
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Zhipeng Qi
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Yanqi Sang
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Yanan Liu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Bin Xu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Wei Liu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Zhaofa Xu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Yu Deng
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| |
Collapse
|
216
|
Peer E, Moshitch-Moshkovitz S, Rechavi G, Dominissini D. The Epitranscriptome in Translation Regulation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032623. [PMID: 30037968 DOI: 10.1101/cshperspect.a032623] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cellular proteome reflects the total outcome of many regulatory mechanisms that affect the metabolism of messenger RNA (mRNA) along its pathway from synthesis to degradation. Accumulating evidence in recent years has uncovered the roles of a growing number of mRNA modifications in every step along this pathway, shaping translational output. mRNA modifications affect the translation machinery directly, by influencing translation initiation, elongation and termination, or by altering mRNA levels and subcellular localization. Features of modification-related translational control are described, charting a new and complex layer of translational regulation.
Collapse
Affiliation(s)
- Eyal Peer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Cancer Research Center and Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer 5262160, Israel
| | - Sharon Moshitch-Moshkovitz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Cancer Research Center and Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer 5262160, Israel
| | - Gideon Rechavi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Cancer Research Center and Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer 5262160, Israel
| | - Dan Dominissini
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Cancer Research Center and Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer 5262160, Israel
| |
Collapse
|
217
|
Weng YL, Wang X, An R, Cassin J, Vissers C, Liu Y, Liu Y, Xu T, Wang X, Wong SZH, Joseph J, Dore LC, Dong Q, Zheng W, Jin P, Wu H, Shen B, Zhuang X, He C, Liu K, Song H, Ming GL. Epitranscriptomic m 6A Regulation of Axon Regeneration in the Adult Mammalian Nervous System. Neuron 2019; 97:313-325.e6. [PMID: 29346752 DOI: 10.1016/j.neuron.2017.12.036] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/05/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
N6-methyladenosine (m6A) affects multiple aspects of mRNA metabolism and regulates developmental transitions by promoting mRNA decay. Little is known about the role of m6A in the adult mammalian nervous system. Here we report that sciatic nerve lesion elevates levels of m6A-tagged transcripts encoding many regeneration-associated genes and protein translation machinery components in the adult mouse dorsal root ganglion (DRG). Single-base resolution m6A-CLIP mapping further reveals a dynamic m6A landscape in the adult DRG upon injury. Loss of either m6A methyltransferase complex component Mettl14 or m6A-binding protein Ythdf1 globally attenuates injury-induced protein translation in adult DRGs and reduces functional axon regeneration in the peripheral nervous system in vivo. Furthermore, Pten deletion-induced axon regeneration of retinal ganglion neurons in the adult central nervous system is attenuated upon Mettl14 knockdown. Our study reveals a critical epitranscriptomic mechanism in promoting injury-induced protein synthesis and axon regeneration in the adult mammalian nervous system.
Collapse
Affiliation(s)
- Yi-Lan Weng
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xu Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ran An
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jessica Cassin
- Human Genetic Pre-graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Caroline Vissers
- Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuanyuan Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Yajing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tianlei Xu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Xinyuan Wang
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Basic Medical Sciences, Fudan University, Shanghai 200040, China
| | - Samuel Zheng Hao Wong
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica Joseph
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Louis C Dore
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Qiang Dong
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Zheng
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Kai Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Human Genetic Pre-graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
218
|
Malvi P, Wang B, Shah S, Gupta R. Dissecting the role of RNA modification regulatory proteins in melanoma. Oncotarget 2019. [DOI: 10.18632/oncotarget.26959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Parmanand Malvi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Biao Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Shreni Shah
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Romi Gupta
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| |
Collapse
|
219
|
Malvi P, Wang B, Shah S, Gupta R. Dissecting the role of RNA modification regulatory proteins in melanoma. Oncotarget 2019; 10:3745-3759. [PMID: 31217906 PMCID: PMC6557201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/29/2019] [Indexed: 11/12/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. Despite recent advances in medicine and the development of new treatments for melanoma, cures remain elusive as acquired resistance to both targeted and immunotherapies are becoming common. Therefore, more studies are conducted to dissect underlying molecular mechanisms that drive melanoma growth in order to provide better therapeutic option. Here, employing a comprehensive and unbiased analysis of different RNA modification regulatory proteins using various publicly available databases we identify the most relevant RNA modifying proteins that plays crucial role in melanoma development. Our study started with the analysis of various genetic alterations (amplifications, mutations/deletion) as well as RNA overexpression of these RNA modification regulatory proteins in The Cancer Genome Atlas melanoma database. We then analyzed their expression in The Human Protein Atlas data. The result of analysis revealed that only a subset of RNA modification regulatory proteins are overexpressed in >75% of melanoma patient cases as compared to normal skin. However, when examined in Oncomine dataset we found only two genes (METTL4 and DNMT3A) were significantly overexpressed in melanoma samples versus normal skin samples and matched with the results of The Human Protein Atlas data. Therefore, we functionally validated METTL4 and DNMT3A using shRNA-mediated knockdown and found that their knockdown in melanoma cells led to melanoma cells growth inhibition. Collectively, in this study, we investigated the epitranscriptomic landscape of melanoma using various publicly available database and identified DNMT3A and METTL4 as the most relevant potential regulators of melanoma growth.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Biao Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Shreni Shah
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Romi Gupta
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| |
Collapse
|
220
|
m 6A Regulates Neurogenesis and Neuronal Development by Modulating Histone Methyltransferase Ezh2. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:154-168. [PMID: 31154015 PMCID: PMC6620265 DOI: 10.1016/j.gpb.2018.12.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/12/2018] [Accepted: 12/21/2018] [Indexed: 01/10/2023]
Abstract
N6-methyladenosine (m6A), catalyzed by the methyltransferase complex consisting of Mettl3 and Mettl14, is the most abundant RNA modification in mRNAs and participates in diverse biological processes. However, the roles and precise mechanisms of m6A modification in regulating neuronal development and adult neurogenesis remain unclear. Here, we examined the function of Mettl3, the key component of the complex, in neuronal development and adult neurogenesis of mice. We found that the depletion of Mettl3 significantly reduced m6A levels in adult neural stem cells (aNSCs) and inhibited the proliferation of aNSCs. Mettl3 depletion not only inhibited neuronal development and skewed the differentiation of aNSCs more toward glial lineage, but also affected the morphological maturation of newborn neurons in the adult brain. m6A immunoprecipitation combined with deep sequencing (MeRIP-seq) revealed that m6A was predominantly enriched in transcripts related to neurogenesis and neuronal development. Mechanistically, m6A was present on the transcripts of histone methyltransferase Ezh2, and its reduction upon Mettl3 knockdown decreased both Ezh2 protein expression and consequent H3K27me3 levels. The defects of neurogenesis and neuronal development induced by Mettl3 depletion could be rescued by Ezh2 overexpression. Collectively, our results uncover a crosstalk between RNA and histone modifications and indicate that Mettl3-mediated m6A modification plays an important role in regulating neurogenesis and neuronal development through modulating Ezh2.
Collapse
|
221
|
Zhuang M, Li X, Zhu J, Zhang J, Niu F, Liang F, Chen M, Li D, Han P, Ji SJ. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Res 2019; 47:4765-4777. [PMID: 30843071 PMCID: PMC6511866 DOI: 10.1093/nar/gkz157] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/02/2022] Open
Abstract
N 6-Methyladenosine (m6A) is a dynamic mRNA modification which regulates protein expression in various posttranscriptional levels. Functional studies of m6A in nervous system have focused on its writers and erasers so far, whether and how m6A readers mediate m6A functions through recognizing and binding their target mRNA remains poorly understood. Here, we find that the expression of axon guidance receptor Robo3.1 which plays important roles in midline crossing of spinal commissural axons is regulated precisely at translational level. The m6A reader YTHDF1 binds to and positively regulates translation of m6A-modified Robo3.1 mRNA. Either mutation of m6A sites in Robo3.1 mRNA or YTHDF1 knockdown or knockout leads to dramatic reduction of Robo3.1 protein without affecting Robo3.1 mRNA level. Specific ablation of Ythdf1 in spinal commissural neurons results in pre-crossing axon guidance defects. Our findings identify a mechanism that YTHDF1-mediated translation of m6A-modified Robo3.1 mRNA controls pre-crossing axon guidance in spinal cord.
Collapse
Affiliation(s)
- Mengru Zhuang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech-HKUST Joint PhD Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xinbei Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junda Zhu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jian Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fugui Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech-HIT Joint Graduate Program, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fanghao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- SUSTech-HIT Joint Graduate Program, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Mengxian Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Duo Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peng Han
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sheng-Jian Ji
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute of Neuroscience, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
222
|
Shi H, Wei J, He C. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Mol Cell 2019; 74:640-650. [PMID: 31100245 PMCID: PMC6527355 DOI: 10.1016/j.molcel.2019.04.025] [Citation(s) in RCA: 1177] [Impact Index Per Article: 196.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Cellular RNAs are naturally decorated with a variety of chemical modifications. The structural diversity of the modified nucleosides provides regulatory potential to sort groups of RNAs for organized metabolism and functions, thus affecting gene expression. Recent years have witnessed a burst of interest in and understanding of RNA modification biology, thanks to the emerging transcriptome-wide sequencing methods for mapping modified sites, highly sensitive mass spectrometry for precise modification detection and quantification, and extensive characterization of the modification "effectors," including enzymes ("writers" and "erasers") that alter the modification level and binding proteins ("readers") that recognize the chemical marks. However, challenges remain due to the vast heterogeneity in expression abundance of different RNA species, further complicated by divergent cell-type-specific and tissue-specific expression and localization of the effectors as well as modifications. In this review, we highlight recent progress in understanding the function of N6-methyladenosine (m6A), the most abundant internal mark on eukaryotic mRNA, in light of the specific biological contexts of m6A effectors. We emphasize the importance of context for RNA modification regulation and function.
Collapse
Affiliation(s)
- Hailing Shi
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
223
|
Chen X, Yu C, Guo M, Zheng X, Ali S, Huang H, Zhang L, Wang S, Huang Y, Qie S, Wang J. Down-Regulation of m6A mRNA Methylation Is Involved in Dopaminergic Neuronal Death. ACS Chem Neurosci 2019; 10:2355-2363. [PMID: 30835997 DOI: 10.1021/acschemneuro.8b00657] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
N6-Methyladenosine (m6A) is the most prevalent internal modification that occurs in the mRNA of eukaryotes and plays a vital role in the post-transcriptional regulation. Recent studies highlighted the biological significance of m6A modification in the nervous system, and its dysregulation has been shown to be related to degenerative and neurodevelopmental diseases. Parkinson's disease (PD) is a common age-related neurological disorder with its pathogenesis still not fully elucidated. Reports have shown that epigenetic mechanisms including DNA methylation and histone acetylation, which alter gene expression, are associated with PD. In this study, we found that global m6A modification of mRNAs is down-regulated in 6-OHDA-induced PC12 cells and the striatum of PD rat brain. To further explore the relationship between m6A mRNA methylation and molecular mechanism of PD, we decreased m6A in dopaminergic cells by overexpressing a nucleic acid demethylase, FTO, or by m6A inhibitor. The results showed that m6A reduction could induce the expression of N-methyl-d-aspartate (NMDA) receptor 1, and elevate oxidative stress and Ca2+ influx, resulting in dopaminergic neuron apoptosis. Collectively, m6A modification may play a vital role in the death of dopaminergic neuron, which provides a novel view of mRNA methylation to understand the epigenetic regulation of Parkinson's disease.
Collapse
Affiliation(s)
- Xuechai Chen
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Chunyu Yu
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Minjun Guo
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Xiaotong Zheng
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Sakhawat Ali
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Hua Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Lihua Zhang
- Beijing Municipal Center for Food Safety Monitoring and Risk Assessment, 64 Shixing Street, Shijingshan District, Beijing 100041, China
| | - Shensen Wang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital affiliated to Capital Medical University, Xixiazhuang, Badachu Road, Shijingshan
District, Beijing 100144, China
| | - Juan Wang
- College of Life Science and Bioengineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100122, China
| |
Collapse
|
224
|
Zhang F, Kang Y, Wang M, Li Y, Xu T, Yang W, Song H, Wu H, Shu Q, Jin P. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum Mol Genet 2019; 27:3936-3950. [PMID: 30107516 DOI: 10.1093/hmg/ddy292] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification of mammalian messenger RNAs (mRNAs) and long non-coding RNAs. The biological functions of this reversible RNA modification can be interpreted by cytoplasmic and nuclear 'm6A reader' proteins to fine-tune gene expression, such as mRNA degradation and translation initiation. Here we profiled transcriptome-wide m6A sites in adult mouse cerebral cortex, underscoring that m6A is a widespread epitranscriptomic modification in brain. Interestingly, the mRNA targets of fragile X mental retardation protein (FMRP), a selective RNA-binding protein, are enriched for m6A marks. Loss of functional FMRP leads to Fragile X syndrome (FXS), the most common inherited form of intellectual disability. Transcriptome-wide gene expression profiling identified 2035 genes differentially expressed in the absence of FMRP in cortex, and 92.5% of 174 downregulated FMRP targets are marked by m6A. Biochemical analyses indicate that FMRP binds to the m6A sites of its mRNA targets and interacts with m6A reader YTHDF2 in an RNA-independent manner. FMRP maintains the stability of its mRNA targets while YTHDF2 promotes the degradation of these mRNAs. These data together suggest that FMRP regulates the stability of its m6A-marked mRNA targets through YTHDF2, which could potentially contribute to the molecular pathogenesis of FXS.
Collapse
Affiliation(s)
- Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mengli Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Tianlei Xu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Institute for Regenerative Medicine and The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Qiang Shu
- The Children's Hospital and Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
225
|
Huang Y, Su R, Sheng Y, Dong L, Dong Z, Xu H, Ni T, Zhang ZS, Zhang T, Li C, Han L, Zhu Z, Lian F, Wei J, Deng Q, Wang Y, Wunderlich M, Gao Z, Pan G, Zhong D, Zhou H, Zhang N, Gan J, Jiang H, Mulloy JC, Qian Z, Chen J, Yang CG. Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell 2019; 35:677-691.e10. [PMID: 30991027 PMCID: PMC6812656 DOI: 10.1016/j.ccell.2019.03.006] [Citation(s) in RCA: 565] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 01/08/2019] [Accepted: 03/16/2019] [Indexed: 11/24/2022]
Abstract
FTO, an mRNA N6-methyladenosine (m6A) demethylase, was reported to promote leukemogenesis. Using structure-based rational design, we have developed two promising FTO inhibitors, namely FB23 and FB23-2, which directly bind to FTO and selectively inhibit FTO's m6A demethylase activity. Mimicking FTO depletion, FB23-2 dramatically suppresses proliferation and promotes the differentiation/apoptosis of human acute myeloid leukemia (AML) cell line cells and primary blast AML cells in vitro. Moreover, FB23-2 significantly inhibits the progression of human AML cell lines and primary cells in xeno-transplanted mice. Collectively, our data suggest that FTO is a druggable target and that targeting FTO by small-molecule inhibitors holds potential to treat AML.
Collapse
MESH Headings
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/antagonists & inhibitors
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/chemistry
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Cycle Checkpoints/drug effects
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacokinetics
- Enzyme Inhibitors/pharmacology
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Methylation
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Transgenic
- Molecular Targeted Therapy
- Protein Conformation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Signal Transduction
- Structure-Activity Relationship
- U937 Cells
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yue Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Su
- Department of Systems Biology and Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Yue Sheng
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lei Dong
- Department of Systems Biology and Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Ze Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongjiao Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tengfeng Ni
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zijie Scott Zhang
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Tao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenying Li
- Department of Systems Biology and Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Key Laboratory of Hematopoietic Malignancies, Department of Hematology, The First Affiliated Hospital Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Li Han
- Department of Systems Biology and Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA
| | - Zhenyun Zhu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fulin Lian
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiangbo Wei
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yungui Wang
- Key Laboratory of Hematopoietic Malignancies, Department of Hematology, The First Affiliated Hospital Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhiwei Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guoyu Pan
- University of the Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dafang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Zhou
- University of the Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Naixia Zhang
- University of the Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhijian Qian
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Jianjun Chen
- Department of Systems Biology and Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA.
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
226
|
Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The Critical Role of RNA m6A Methylation in Cancer. Cancer Res 2019; 79:1285-1292. [DOI: 10.1158/0008-5472.can-18-2965] [Citation(s) in RCA: 489] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
|
227
|
Laffleur B, Basu U. Biology of RNA Surveillance in Development and Disease. Trends Cell Biol 2019; 29:428-445. [PMID: 30755352 DOI: 10.1016/j.tcb.2019.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023]
Abstract
The 'RNA world', in which RNA molecules stored information and acquired enzymatic properties, has been proposed to have preceded organism life. RNA is now recognized for its central role in biology, with accumulating evidence implicating coding and noncoding (nc)RNAs in myriad mechanisms regulating cellular physiology and disequilibrium in transcriptomes resulting in pathological conditions. Nascently synthesized RNAs are subjected to stringent regulation by sophisticated RNA surveillance pathways. In this review, we integrate these pathways from a developmental viewpoint, proposing RNA surveillance as the convergence of mechanisms that ensure the exact titration of RNA molecules in a spatiotemporally controlled manner, leading to development without the onset of pathological conditions, including cancer.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
228
|
Marshall PR, Bredy TW. Neuroepigenetic mechanisms underlying fear extinction: emerging concepts. Psychopharmacology (Berl) 2019; 236:133-142. [PMID: 30506235 PMCID: PMC7293886 DOI: 10.1007/s00213-018-5084-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
An understanding of how memory is acquired and how it can be modified in fear-related anxiety disorders, with the enhancement of failing memories on one side and a reduction or elimination of traumatic memories on the other, is a key unmet challenge in the fields of neuroscience and neuropsychiatry. The latter process depends on an important form of learning called fear extinction, where a previously acquired fear-related memory is decoupled from its ability to control behaviour through repeated non-reinforced exposure to the original fear-inducing cue. Although simple in description, fear extinction relies on a complex pattern of brain region and cell-type specific processes, some of which are unique to this form of learning and, for better or worse, contribute to the inherent instability of fear extinction memory. Here, we explore an emerging layer of biology that may compliment and enrich the synapse-centric perspective of fear extinction. As opposed to the more classically defined role of protein synthesis in the formation of fear extinction memory, a neuroepigenetic view of the experience-dependent gene expression involves an appreciation of dynamic changes in the state of the entire cell: from a transient change in plasticity at the level of the synapse, to potentially more persistent long-term effects within the nucleus. A deeper understanding of neuroepigenetic mechanisms and how they influence the formation and maintenance of fear extinction memory has the potential to enable the development of more effective treatment approaches for fear-related neuropsychiatric conditions.
Collapse
Affiliation(s)
- Paul R Marshall
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
229
|
Abstract
The central dogma of molecular biology introduced by Crick describes a linear flow of information from DNA to mRNA to protein. Since then it has become evident that RNA undergoes several maturation steps such as capping, splicing, 3'-end processing, and editing. Likewise, nucleotide modifications are common in mRNA and are present in all organisms impacting on the regulation of gene expression. The most abundant modification found in mRNA is N6-methyladenosine (m6A). Deposition of m6A is a nuclear process and is performed by a megadalton writer complex primarily on mRNAs, but also on microRNAs and lncRNAs. The m6A methylosome is composed of the enzymatic core components METTL3 and METTL14, and several auxiliary proteins necessary for its correct positioning and functioning, which are WTAP, VIRMA, FLACC, RBM15, and HAKAI. The m6A epimark is decoded by YTH domain-containing reader proteins YTHDC and YTHDF, but METTLs can act as "readers" as well. Eraser proteins, such as FTO and ALKBH5, can remove the methyl group. Here we review recent progress on the role of m6A in regulating gene expression in light of Crick's central dogma of molecular biology. In particular, we address the complexity of the writer complex from an evolutionary perspective to obtain insights into the mechanism of ancient m6A methylation and its regulation.
Collapse
Affiliation(s)
- Dario L Balacco
- School of Biosciences, College of Life and Environmental Sciences , University of Birmingham , Edgbaston, Birmingham B15 2TT , United Kingdom
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences , University of Birmingham , Edgbaston, Birmingham B15 2TT , United Kingdom
| |
Collapse
|
230
|
Rajecka V, Skalicky T, Vanacova S. The role of RNA adenosine demethylases in the control of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:343-355. [PMID: 30550773 DOI: 10.1016/j.bbagrm.2018.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 01/21/2023]
Abstract
RNA modifications are being recognized as an essential factor in gene expression regulation. They play essential roles in germ line development, differentiation and disease. In eukaryotic mRNAs, N6-adenosine methylation (m6A) is the most prevalent internal chemical modification identified to date. The m6A pathway involves factors called writers, readers and erasers. m6A thus offers an interesting concept of dynamic reversible modification with implications in fine-tuning the cellular metabolism. In mammals, FTO and ALKBH5 have been initially identified as m6A erasers. Recently, FTO m6A specificity has been debated as new reports identify FTO targeting N6,2'-O-dimethyladenosine (m6Am). The two adenosine demethylases have diverse roles in the metabolism of mRNAs and their activity is involved in key processes, such as embryogenesis, disease or infection. In this article, we review the current knowledge of their function and mechanisms and discuss the existing contradictions in the field. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
Affiliation(s)
- Veronika Rajecka
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 625 00, Czech Republic
| | - Tomas Skalicky
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 625 00, Czech Republic
| | - Stepanka Vanacova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 625 00, Czech Republic.
| |
Collapse
|
231
|
A novel m 6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res 2018; 29:23-41. [PMID: 30514900 PMCID: PMC6318280 DOI: 10.1038/s41422-018-0113-8] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023] Open
Abstract
While N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic mRNA, is linked to cell differentiation and tissue development, the biological significance of m6A modification in mammalian glial development remains unknown. Here, we identify a novel m6A reader, Prrc2a (Proline rich coiled-coil 2 A), which controls oligodendrocyte specification and myelination. Nestin-Cre-mediated knockout of Prrc2a induces significant hypomyelination, decreased lifespan, as well as locomotive and cognitive defects in a mouse model. Further analyses reveal that Prrc2a is involved in oligodendrocyte progenitor cells (OPCs) proliferation and oligodendrocyte fate determination. Accordingly, oligodendroglial-lineage specific deletion of Prrc2a causes a similar phenotype of Nestin-Cre-mediated deletion. Combining transcriptome-wide RNA-seq, m6A-RIP-seq and Prrc2a RIP-seq analysis, we find that Olig2 is a critical downstream target gene of Prrc2a in oligodendrocyte development. Furthermore, Prrc2a stabilizes Olig2 mRNA through binding to a consensus GGACU motif in the Olig2 CDS (coding sequence) in an m6A-dependent manner. Interestingly, we also find that the m6A demethylase, Fto, erases the m6A modification of Olig2 mRNA and promotes its degradation. Together, our results indicate that Prrc2a plays an important role in oligodendrocyte specification through functioning as a novel m6A reader. These findings suggest a new avenue for the development of therapeutic strategies for hypomyelination-related neurological diseases.
Collapse
|
232
|
Abstract
Investigations over the past eight years of chemical modifications on messenger RNA (mRNA) have revealed a new level of posttranscriptional gene regulation in eukaryotes. Rapid progress in our understanding of these modifications, particularly, N6-methyladenosine (m6A), has revealed their roles throughout the life cycle of an mRNA transcript. m6A methylation provides a rapid mechanism for coordinated transcriptome processing and turnover that is important in embryonic development and cell differentiation. In response to cellular signals, m6A can also regulate the translation of specific pools of transcripts. These mechanisms can be hijacked in human diseases, including numerous cancers and viral infection. Beyond m6A, many other mRNA modifications have been mapped in the transcriptome, but much less is known about their biological functions. As methods continue to be developed, we will be able to study these modifications both more broadly and in greater depth, which will likely reveal a wealth of new RNA biology.
Collapse
Affiliation(s)
- Sigrid Nachtergaele
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, and Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA; ,
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, and Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA; ,
| |
Collapse
|
233
|
Meyer KD. m 6A-mediated translation regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:301-309. [PMID: 30342175 DOI: 10.1016/j.bbagrm.2018.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States of America.
| |
Collapse
|
234
|
Kretschmer J, Rao H, Hackert P, Sloan KE, Höbartner C, Bohnsack MT. The m 6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5'-3' exoribonuclease XRN1. RNA (NEW YORK, N.Y.) 2018; 24:1339-1350. [PMID: 29970596 PMCID: PMC6140455 DOI: 10.1261/rna.064238.117] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/26/2018] [Indexed: 05/20/2023]
Abstract
N6-methyladenosine (m6A) modifications in RNAs play important roles in regulating many different aspects of gene expression. While m6As can have direct effects on the structure, maturation, or translation of mRNAs, such modifications can also influence the fate of RNAs via proteins termed "readers" that specifically recognize and bind modified nucleotides. Several YTH domain-containing proteins have been identified as m6A readers that regulate the splicing, translation, or stability of specific mRNAs. In contrast to the other YTH domain-containing proteins, YTHDC2 has several defined domains and here, we have analyzed the contribution of these domains to the RNA and protein interactions of YTHDC2. The YTH domain of YTHDC2 preferentially binds m6A-containing RNAs via a conserved hydrophobic pocket, whereas the ankyrin repeats mediate an RNA-independent interaction with the 5'-3' exoribonuclease XRN1. We show that the YTH and R3H domains contribute to the binding of YTHDC2 to cellular RNAs, and using crosslinking and analysis of cDNA (CRAC), we reveal that YTHDC2 interacts with the small ribosomal subunit in close proximity to the mRNA entry/exit sites. YTHDC2 was recently found to promote a "fast-track" expression program for specific mRNAs, and our data suggest that YTHDC2 accomplishes this by recruitment of the RNA degradation machinery to regulate the stability of m6A-containing mRNAs and by utilizing its distinct RNA-binding domains to bridge interactions between m6A-containing mRNAs and the ribosomes to facilitate their efficient translation.
Collapse
Affiliation(s)
- Jens Kretschmer
- Department of Molecular Biology, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Harita Rao
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, 37077 Göttingen, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Katherine E Sloan
- Department of Molecular Biology, University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Claudia Höbartner
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, 37077 Göttingen, Germany
- Institute for Organic Chemistry, University Würzburg, 97074 Würzburg, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, 37073 Göttingen, Germany
- Göttingen Center for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
235
|
Bellon A, Mann F. Keeping up with advances in axon guidance. Curr Opin Neurobiol 2018; 53:183-191. [PMID: 30273799 DOI: 10.1016/j.conb.2018.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]
Abstract
Twenty-five years after the discovery of the first chemotropic molecules for growing axons, what are the new findings? This review describes the latest progress made in our understanding of the molecular control of axonal guidance in the vertebrate nervous system. Special focus will be given to new molecular players, their source and location in vivo, and the role of membrane/receptor trafficking and RNA-based mechanisms in axon guidance cue signalling.
Collapse
Affiliation(s)
- Anaïs Bellon
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM, Marseille, France.
| |
Collapse
|
236
|
Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H, Cui X, Su R, Klungland A, Jia G, Chen J, He C. Differential m 6A, m 6A m, and m 1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol Cell 2018; 71:973-985.e5. [PMID: 30197295 PMCID: PMC6151148 DOI: 10.1016/j.molcel.2018.08.011] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/03/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
FTO, the first RNA demethylase discovered, mediates the demethylation of internal N6-methyladenosine (m6A) and N6, 2-O-dimethyladenosine (m6Am) at the +1 position from the 5' cap in mRNA. Here we demonstrate that the cellular distribution of FTO is distinct among different cell lines, affecting the access of FTO to different RNA substrates. We find that FTO binds multiple RNA species, including mRNA, snRNA, and tRNA, and can demethylate internal m6A and cap m6Am in mRNA, internal m6A in U6 RNA, internal and cap m6Am in snRNAs, and N1-methyladenosine (m1A) in tRNA. FTO-mediated demethylation has a greater effect on the transcript levels of mRNAs possessing internal m6A than the ones with cap m6Am in the tested cells. We also show that FTO can directly repress translation by catalyzing m1A tRNA demethylation. Collectively, FTO-mediated RNA demethylation occurs to m6A and m6Am in mRNA and snRNA as well as m1A in tRNA.
Collapse
Affiliation(s)
- Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Fange Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Zhike Lu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310064, China
| | - Qili Fei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Yuxi Ai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - P Cody He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Hailing Shi
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Xiaolong Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway Institute of Basic Medical Sciences, University of Oslo, PO Box 1018 Blindern, 0315 Oslo, Norway
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA.
| |
Collapse
|
237
|
Khalil B, Morderer D, Price PL, Liu F, Rossoll W. mRNP assembly, axonal transport, and local translation in neurodegenerative diseases. Brain Res 2018; 1693:75-91. [PMID: 29462608 PMCID: PMC5997521 DOI: 10.1016/j.brainres.2018.02.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
The development, maturation, and maintenance of the mammalian nervous system rely on complex spatiotemporal patterns of gene expression. In neurons, this is achieved by the expression of differentially localized isoforms and specific sets of mRNA-binding proteins (mRBPs) that regulate RNA processing, mRNA trafficking, and local protein synthesis at remote sites within dendrites and axons. There is growing evidence that axons contain a specialized transcriptome and are endowed with the machinery that allows them to rapidly alter their local proteome via local translation and protein degradation. This enables axons to quickly respond to changes in their environment during development, and to facilitate axon regeneration and maintenance in adult organisms. Aside from providing autonomy to neuronal processes, local translation allows axons to send retrograde injury signals to the cell soma. In this review, we discuss evidence that disturbances in mRNP transport, granule assembly, axonal localization, and local translation contribute to pathology in various neurodegenerative diseases, including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Phillip L Price
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA; Department of Cell Biology, Emory University, Atlanta, GA 30322 USA
| | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA; Eye Center, The Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA.
| |
Collapse
|
238
|
Kadumuri RV, Janga SC. Epitranscriptomic Code and Its Alterations in Human Disease. Trends Mol Med 2018; 24:886-903. [PMID: 30120023 DOI: 10.1016/j.molmed.2018.07.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Innovations in epitranscriptomics have resulted in the identification of more than 160 RNA modifications to date. These developments, together with the recent discovery of writers, readers, and erasers of modifications occurring across a wide range of RNAs and tissue types, have led to a surge in integrative approaches for transcriptome-wide mapping of modifications and protein-RNA interaction profiles of epitranscriptome players. RNA modification maps and crosstalk between them have begun to elucidate the role of modifications as signaling switches, entertaining the notion of an epitranscriptomic code as a driver of the post-transcriptional fate of RNA. Emerging single-molecule sequencing technologies and development of antibodies specific to various RNA modifications could enable charting of transcript-specific epitranscriptomic marks across cell types and their alterations in disease.
Collapse
Affiliation(s)
- Rajashekar Varma Kadumuri
- Department of BioHealth Informatics, School of Informatics and Computing, Walker Plaza Building, Indiana University-Purdue University Indianapolis, 719 Indiana Avenue, Suite 319, Indianapolis, IN 46202, USA
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Walker Plaza Building, Indiana University-Purdue University Indianapolis, 719 Indiana Avenue, Suite 319, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Medical Research and Library Building, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202, USA; Centre for Computational Biology and Bioinformatics, 5021 Health Information and Translational Sciences, Indiana University School of Medicine, 410 West 10th Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
239
|
Widagdo J, Anggono V. The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity. J Neurochem 2018; 147:137-152. [PMID: 29873074 DOI: 10.1111/jnc.14481] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 12/27/2022]
Abstract
Research over the past decade has provided strong support for the importance of various epigenetic mechanisms, including DNA and histone modifications in regulating activity-dependent gene expression in the mammalian central nervous system. More recently, the emerging field of epitranscriptomics revealed an equally important role of post-transcriptional RNA modifications in shaping the transcriptomic landscape of the brain. This review will focus on the methylation of the adenosine base at the N6 position, termed N6 methyladenosine (m6A), which is the most abundant internal modification that decorates eukaryotic messenger RNAs. Given its prevalence and dynamic regulation in the adult brain, the m6A-epitranscriptome provides an additional layer of regulation on RNA that can be controlled in a context- and stimulus-dependent manner. Conceptually, m6A serves as a molecular switch that regulates various aspects of RNA function, including splicing, stability, localization, or translational control. The versatility of m6A function is typically determined through interaction or disengagement with specific classes of m6A-interacting proteins. Here we review recent advances in the field and provide insights into the roles of m6A in regulating brain function, from development to synaptic plasticity, learning, and memory. We also discuss how aberrant m6A signaling may contribute to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
240
|
Fry NJ, Law BA, Ilkayeva OR, Carraway KR, Holley CL, Mansfield KD. N 6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression. Oncotarget 2018; 9:31231-31243. [PMID: 30131850 PMCID: PMC6101291 DOI: 10.18632/oncotarget.25782] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
The mRNA modification N6-methyladenosine (m6A) is involved in many post-transcriptional regulatory processes including mRNA stability and translational efficiency. However, it is also imperative to correlate these processes with phenotypic outputs during cancer progression. Here we report that m6A levels are significantly decreased in genetically-defined immortalized and oncogenically-transformed human mammary epithelial cells (HMECs), as compared with their primary cell predecessor. Furthermore, the m6A methyltransferase (METTL3) is decreased and the demethylase (ALKBH5) is increased in the immortalized and transformed cell lines, providing a possible mechanism for this basal change in m6A levels. Although the immortalized and transformed cells showed lower m6A levels than their primary parental cell line, overexpression of METTL3 and METTL14, or ALKBH5 knockdown to increase m6A levels in transformed cells increased proliferation and migration. Remarkably, these treatments had little effect on the immortalized cells. Together, these results suggest that m6A modification may be downregulated in immortalized cells as a brake against malignant progression. Finally, we found that m6A levels in the immortalized and transformed cells increased in response to hypoxia without corresponding changes in METTL3, METTL14 or ALKBH5 expression, suggesting a novel pathway for regulation of m6A levels under stress.
Collapse
Affiliation(s)
- Nate J Fry
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Brittany A Law
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Kristen R Carraway
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | - Kyle D Mansfield
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
241
|
Chen K, Wei Z, Liu H, de Magalhães JP, Rong R, Lu Z, Meng J. Enhancing Epitranscriptome Module Detection from m 6A-Seq Data Using Threshold-Based Measurement Weighting Strategy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2075173. [PMID: 30013979 PMCID: PMC6022261 DOI: 10.1155/2018/2075173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/27/2018] [Indexed: 02/04/2023]
Abstract
To date, with well over 100 different types of RNA modifications associated with various molecular functions identified on diverse types of RNA molecules, the epitranscriptome has emerged to be an important layer for gene expression regulation. It is of crucial importance and increasing interest to understand how the epitranscriptome is regulated to facilitate different biological functions from a global perspective, which may be carried forward by finding biologically meaningful epitranscriptome modules that respond to upstream epitranscriptome regulators and lead to downstream biological functions; however, due to the intrinsic properties of RNA molecules, RNA modifications, and relevant sequencing technique, the epitranscriptome profiled from high-throughput sequencing approaches often suffers from various artifacts, jeopardizing the effectiveness of epitranscriptome modules identification when using conventional approaches. To solve this problem, we developed a convenient measurement weighting strategy, which can largely tolerate the artifacts of high-throughput sequencing data. We demonstrated on real data that the proposed measurement weighting strategy indeed brings improved performance in epitranscriptome module discovery in terms of both module accuracy and biological significance. Although the new approach is integrated with Euclidean distance measurement in a hierarchical clustering scenario, it has great potential to be extended to other distance measurements and algorithms as well for addressing various tasks in epitranscriptome analysis. Additionally, we show for the first time with rigorous statistical analysis that the epitranscriptome modules are biologically meaningful with different GO functions enriched, which established the functional basis of epitranscriptome modules, fulfilled a key prerequisite for functional characterization, and deciphered the epitranscriptome and its regulation.
Collapse
Affiliation(s)
- Kunqi Chen
- Department of Biological Sciences, RCPM, URCHT, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, UK
| | - Zhen Wei
- Department of Biological Sciences, RCPM, URCHT, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX, Liverpool, UK
| | - Hui Liu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | | | - Rong Rong
- Department of Biological Sciences, RCPM, URCHT, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L7 8TX, Liverpool, UK
| | - Zhiliang Lu
- Department of Biological Sciences, RCPM, URCHT, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L7 8TX, Liverpool, UK
| | - Jia Meng
- Department of Biological Sciences, RCPM, URCHT, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
- Institute of Integrative Biology, University of Liverpool, L7 8TX, Liverpool, UK
| |
Collapse
|
242
|
Wang CX, Cui GS, Liu X, Xu K, Wang M, Zhang XX, Jiang LY, Li A, Yang Y, Lai WY, Sun BF, Jiang GB, Wang HL, Tong WM, Li W, Wang XJ, Yang YG, Zhou Q. METTL3-mediated m6A modification is required for cerebellar development. PLoS Biol 2018; 16:e2004880. [PMID: 29879109 PMCID: PMC6021109 DOI: 10.1371/journal.pbio.2004880] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/27/2018] [Accepted: 05/15/2018] [Indexed: 01/26/2023] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is the most abundant modification on mRNAs and plays important roles in various biological processes. The formation of m6A is catalyzed by a methyltransferase complex including methyltransferase-like 3 (METTL3) as a key factor. However, the in vivo functions of METTL3 and m6A modification in mammalian development remain unclear. Here, we show that specific inactivation of Mettl3 in mouse nervous system causes severe developmental defects in the brain. Mettl3 conditional knockout (cKO) mice manifest cerebellar hypoplasia caused by drastically enhanced apoptosis of newborn cerebellar granule cells (CGCs) in the external granular layer (EGL). METTL3 depletion–induced loss of m6A modification causes extended RNA half-lives and aberrant splicing events, consequently leading to dysregulation of transcriptome-wide gene expression and premature CGC death. Our findings reveal a critical role of METTL3-mediated m6A in regulating the development of mammalian cerebellum. N6-methyladenosine (m6A) is an abundant modification in mRNA molecules and regulates mRNA metabolism and various biological processes, such as cell fate control, early embryonic development, sex determination, and diseases like diabetes and obesity. Adenosine methylation is regulated by a large methyltransferase complex and by demethylases, as well as by other binding proteins. METTL3 is one of the core subunits of the methyltransferase complex catalyzing m6A formation. However, the role of METTL3-mediated m6A in mammalian brain development remains unclear mainly because of the lack of specific spatiotemporal knockout animal models, as conventional METTL3 knockout in mice leads to early embryonic death. In this study, we specifically inactivated METTL3 in the developing mouse brain. We detected a drastic depletion of m6A accompanied by severe developmental defects in the cerebellum of these mice. Further analysis established that METTL3-mediated m6A participates in cerebellar development by controlling mRNA stability of genes related to cerebellar development and apoptosis and by regulating alternative splicing of pre-mRNAs of synapse-associated genes.
Collapse
Affiliation(s)
- Chen-Xin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guan-Shen Cui
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Xiuying Liu
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xin-Xin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Yuan Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ang Li
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Wei-Yi Lai
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bao-Fa Sun
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hai-Lin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wei-Min Tong
- Department of Pathology, Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XJW); (YGY); (QZ)
| | - Yun-Gui Yang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XJW); (YGY); (QZ)
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XJW); (YGY); (QZ)
| |
Collapse
|
243
|
Angelova MT, Dimitrova DG, Dinges N, Lence T, Worpenberg L, Carré C, Roignant JY. The Emerging Field of Epitranscriptomics in Neurodevelopmental and Neuronal Disorders. Front Bioeng Biotechnol 2018; 6:46. [PMID: 29707539 PMCID: PMC5908907 DOI: 10.3389/fbioe.2018.00046] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 01/19/2023] Open
Abstract
Analogous to DNA methylation and histone modifications, RNA modifications represent a novel layer of regulation of gene expression. The dynamic nature and increasing number of RNA modifications offer new possibilities to rapidly alter gene expression upon specific environmental changes. Recent lines of evidence indicate that modified RNA molecules and associated complexes regulating and “reading” RNA modifications play key roles in the nervous system of several organisms, controlling both, its development and function. Mutations in several human genes that modify transfer RNA (tRNA) have been linked to neurological disorders, in particular to intellectual disability. Loss of RNA modifications alters the stability of tRNA, resulting in reduced translation efficiency and generation of tRNA fragments, which can interfere with neuronal functions. Modifications present on messenger RNAs (mRNAs) also play important roles during brain development. They contribute to neuronal growth and regeneration as well as to the local regulation of synaptic functions. Hence, potential combinatorial effects of RNA modifications on different classes of RNA may represent a novel code to dynamically fine tune gene expression during brain function. Here we discuss the recent findings demonstrating the impact of modified RNAs on neuronal processes and disorders.
Collapse
Affiliation(s)
- Margarita T Angelova
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Dilyana G Dimitrova
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Nadja Dinges
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Tina Lence
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Lina Worpenberg
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Clément Carré
- Drosophila Genetics and Epigenetics, Sorbonne Université, Centre National de la Recherche Scientifique, Biologie du Développement-Institut de Biologie Paris Seine, Paris, France
| | - Jean-Yves Roignant
- Laboratory of RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
244
|
Sahoo PK, Smith DS, Perrone-Bizzozero N, Twiss JL. Axonal mRNA transport and translation at a glance. J Cell Sci 2018; 131:jcs196808. [PMID: 29654160 PMCID: PMC6518334 DOI: 10.1242/jcs.196808] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Localization and translation of mRNAs within different subcellular domains provides an important mechanism to spatially and temporally introduce new proteins in polarized cells. Neurons make use of this localized protein synthesis during initial growth, regeneration and functional maintenance of their axons. Although the first evidence for protein synthesis in axons dates back to 1960s, improved methodologies, including the ability to isolate axons to purity, highly sensitive RNA detection methods and imaging approaches, have shed new light on the complexity of the transcriptome of the axon and how it is regulated. Moreover, these efforts are now uncovering new roles for locally synthesized proteins in neurological diseases and injury responses. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of how axonal mRNA transport and translation are regulated, and discuss their emerging links to neurological disorders and neural repair.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| | - Deanna S Smith
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, 1 University of New Mexico, MSC08 4740, Albuquerque, NM 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., CLS 401, Columbia, SC 29208, USA
| |
Collapse
|
245
|
Cioni JM, Koppers M, Holt CE. Molecular control of local translation in axon development and maintenance. Curr Opin Neurobiol 2018; 51:86-94. [PMID: 29549711 DOI: 10.1016/j.conb.2018.02.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 11/27/2022]
Abstract
The tips of axons are often far away from the cell soma where most proteins are synthesized. Recent work has revealed that axonal mRNA transport and localised translation are key regulatory mechanisms that allow these distant outposts of the cell to respond rapidly to extrinsic factors and maintain axonal homeostasis. Here, we review recent evidence pointing to an increasingly broad role for local protein synthesis in controlling axon shape, synaptogenesis and axon survival by regulating diverse cellular processes such as vesicle trafficking, cytoskeletal remodelling and mitochondrial integrity. We further highlight current research on the regulatory mechanisms that coordinate the localization and translation of functionally linked mRNAs in axons.
Collapse
Affiliation(s)
- Jean-Michel Cioni
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Max Koppers
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
246
|
Zhao BS, Nachtergaele S, Roundtree IA, He C. Our views of dynamic N6-methyladenosine RNA methylation. RNA (NEW YORK, N.Y.) 2018; 24:268-272. [PMID: 29222116 PMCID: PMC5824347 DOI: 10.1261/rna.064295.117] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Boxuan Simen Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Sigrid Nachtergaele
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Ian A Roundtree
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|