201
|
Zhu Z, Guo H. Genetic basis of ethylene perception and signal transduction in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:808-15. [PMID: 18713391 DOI: 10.1111/j.1744-7909.2008.00710.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ethylene is a simple gaseous hormone in plants. It plays important roles in plant development and stress tolerance. In the presence of ethylene treatment, all ethylene receptors are in an activated form, which can physically interact with CTR1 and consequently recruit CTR1 protein to endoplasmic reticulum membraneto activate it. Activated CTR1 suppresses the downstream signal transduction by an unknown mechanism. Upon binding to its receptors, ethylene will inactivate the receptor/CTR1 module and in turn alleviate their inhibitory effect on two positive regulators acting downstream of CTR1: EIN2 and EIN3. Genetic study reveals that EIN2 is an essential component in the ethylene signaling pathway but its biochemical function remains a mystery. EIN3 is a plant-specific transcription factor and its protein abundance in the nucleus is rapidly induced upon ethylene treatment. In the absence of ethylene signal, EIN3 protein is degraded by an SCF complex containing one of the two F-box proteins EBF1/EBF2 in a 26S proteasome-dependent manner. EIN3 can bind to the promoter sequences of a number of downstream components, such as ERFs, which in turn bind to a GCC box, a cis-element found in many ethylene-regulated defense genes. Ethylene has been shown to also regulate many other hormones' signaling pathways including auxin, abscisic acid and jasmonic acid, implying the existence of complicated signaling networks in the growth, development and defense responses of various plants.
Collapse
Affiliation(s)
- Ziqiang Zhu
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
202
|
Gao Z, Wen CK, Binder BM, Chen YF, Chang J, Chiang YH, Kerris RJ, Chang C, Schaller GE. Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 2008; 283:23801-10. [PMID: 18577522 DOI: 10.1074/jbc.m800641200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gaseous hormone ethylene is perceived in Arabidopsis by a five member receptor family that consists of the subfamily 1 receptors ETR1 and ERS1 and the subfamily 2 receptors ETR2, ERS2, and EIN4. Previous work has demonstrated that the basic functional unit for the ethylene receptor, ETR1, is a disulfide-linked homodimer. We demonstrate here that ethylene receptors isolated from Arabidopsis also interact with each other through noncovalent interactions. Evidence that ETR1 associates with other ethylene receptors was obtained by co-purification of ETR1 with tagged versions of ERS1, ETR2, ERS2, and EIN4 from Arabidopsis membrane extracts. ETR1 preferentially associated with the subfamily 2 receptors compared with the subfamily 1 receptor ERS1, but ethylene treatment affected the interactions and relative composition of the receptor complexes. When transgenically expressed in yeast, ETR1 and ERS2 can form disulfide-linked heterodimers. In plant extracts, however, the association of ETR1 and ERS2 can be largely disrupted by treatment with SDS, supporting a higher order noncovalent interaction between the receptors. Yeast two-hybrid analysis demonstrated that the receptor GAF domains are capable of mediating heteromeric receptor interactions. Kinetic analysis of ethylene-insensitive mutants of ETR1 is consistent with their dominance being due in part to an ability to associate with other ethylene receptors. These data suggest that the ethylene receptors exist in plants as clusters in a manner potentially analogous to that found with the histidine kinase-linked chemoreceptors of bacteria and that interactions among receptors contribute to ethylene signal output.
Collapse
Affiliation(s)
- Zhiyong Gao
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Lin Z, Alexander L, Hackett R, Grierson D. LeCTR2, a CTR1-like protein kinase from tomato, plays a role in ethylene signalling, development and defence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:1083-93. [PMID: 18346193 PMCID: PMC2440563 DOI: 10.1111/j.1365-313x.2008.03481.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/22/2008] [Accepted: 02/27/2008] [Indexed: 05/18/2023]
Abstract
Arabidopsis AtCTR1 is a Raf-like protein kinase that interacts with ETR1 and ERS and negatively regulates ethylene responses. In tomato, several CTR1-like proteins could perform this role. We have characterized LeCTR2, which has similarity to AtCTR1 and also to EDR1, a CTR1-like Arabidopsis protein involved in defence and stress responses. Protein-protein interactions between LeCTR2 and six tomato ethylene receptors indicated that LeCTR2 interacts preferentially with the subfamily I ETR1-type ethylene receptors LeETR1 and LeETR2, but not the NR receptor or the subfamily II receptors LeETR4, LeETR5 and LeETR6. The C-terminus of LeCTR2 possesses serine/threonine kinase activity and is capable of auto-phosphorylation and phosphorylation of myelin basic protein in vitro. Overexpression of the LeCTR2 N-terminus in tomato resulted in altered growth habit, including reduced stature, loss of apical dominance, highly branched inflorescences and fruit trusses, indeterminate shoots in place of determinate flowers, and prolific adventitious shoot development from the rachis or rachillae of the leaves. Expression of the ethylene-responsive genes E4 and chitinase B was upregulated in transgenic plants, but ethylene production and the level of mRNA for the ethylene biosynthetic gene ACO1 was unaffected. The leaves and fruit of transgenic plants also displayed enhanced susceptibility to infection by the fungal pathogen Botrytis cinerea, which was associated with much stronger induction of pathogenesis-related genes such as PR1b1 and chitinase B compared with the wild-type. The results suggest that LeCTR2 plays a role in ethylene signalling, development and defence, probably through its interactions with the ETR1-type ethylene receptors of subfamily I.
Collapse
Affiliation(s)
| | | | | | - Don Grierson
- *For Correspondence. (fax +44 115 951 6334; e-mail )
| |
Collapse
|
204
|
Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. MOLECULAR PLANT 2008; 1:423-45. [PMID: 19825551 PMCID: PMC2954645 DOI: 10.1093/mp/ssn019] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We carried out transcriptional profiling analysis in 10-d-old Arabidopsis thaliana seedlings treated with oligogalacturonides (OGs), oligosaccharides derived from the plant cell wall, or the bacterial flagellin peptide Flg22, general elicitors of the basal defense response in plants. Although detected by different receptors, both OGs and Flg22 trigger a fast and transient response that is both similar and comprehensive, and characterized by activation of early stages of multiple defense signaling pathways, particularly JA-associated processes. However, the response to Flg22 is stronger in both the number of genes differentially expressed and the amplitude of change. The magnitude of induction of individual genes is in both cases dose-dependent, but, even at very high concentrations, OGs do not induce a response that is as comprehensive as that seen with Flg22. While high doses of either microbe-associated molecular pattern (MAMP) elicit a late response that includes activation of senescence processes, SA-dependent secretory pathway genes and PR1 expression are substantially induced only by Flg22. These results suggest a lower threshold for activation of early responses than for sustained or SA-mediated late defenses. Expression patterns of amino-cyclopropane-carboxylate synthase genes also implicate ethylene biosynthesis in regulation of the late innate immune response.
Collapse
Affiliation(s)
- Carine Denoux
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA
- Institut de Biologie Moléculaire des Plantes, CNRS, Université Louis Pasteur, Strasbourg, France
| | - Roberta Galletti
- Dipartimento di Biologia Vegetale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Nicole Mammarella
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Suresh Gopalan
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Danièle Werck
- Institut de Biologie Moléculaire des Plantes, CNRS, Université Louis Pasteur, Strasbourg, France
| | - Giulia De Lorenzo
- Dipartimento di Biologia Vegetale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simone Ferrari
- Dipartimento di Biologia Vegetale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Julia Dewdney
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 USA
| |
Collapse
|
205
|
Grefen C, Städele K, Růzicka K, Obrdlik P, Harter K, Horák J. Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. MOLECULAR PLANT 2008; 1:308-20. [PMID: 19825542 DOI: 10.1093/mp/ssm015] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The gaseous phytohormone ethylene regulates many developmental processes and responses to environmental conditions in higher plants. In Arabidopsis thaliana, ethylene perception and initiation of signaling are mediated by a family of five receptors which are related to prokaryotic two-component sensor histidine kinases. The transient expression of fluorescence-tagged receptors in tobacco (Nicotiana benthamiana) epidermal leaf cells demonstrated that all ethylene receptors are targeted to the ER endomembrane network and do not localize to the plasmalemma. In support of in planta overlay studies, the ethylene receptors form homomeric and heteromeric protein complexes at the ER in living plant cells, as shown by membrane recruitment assays. A comparable in vivo interaction pattern was found in the yeast mating-based split-ubiquitin system. The overlapping but distinct expression pattern of the ethylene receptor genes suggests a differential composition of the ethylene receptor complexes in different plant tissues. Our findings may have crucial functional implications on the ethylene receptor-mediated efficiency of hormone perception, induction of signaling, signal attenuation and output.
Collapse
Affiliation(s)
- Christopher Grefen
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
206
|
Voet-van-Vormizeele J, Groth G. Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1. MOLECULAR PLANT 2008; 1:380-7. [PMID: 19825547 DOI: 10.1093/mp/ssn004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Perception of the phytohormone ethylene is accomplished by a small family of integral membrane receptors. In Arabidopsis, five ethylene receptor proteins are known, including ethylene resistant 1 (ETR1). The hydrophobic amino-terminal domain of these receptors contains the ethylene-binding site while the carboxyl-terminal part consists of a histidine kinase domain and a response regulator domain, which are well known elements found in bacterial two-component signaling. The soluble membrane-extrinsic carboxyl-terminal part of the receptor, which is likely to play an important role in signal transduction, showed intrinsic kinase activity when expressed and purified on its own. However, a correlation between signal input and autokinase activity was not established in these studies, as receptors were missing the transmembrane amino-terminal sensor domain. Thus, it is still unclear whether autophosphorylation occurs in response to perception of the ethylene signal. Here, we report on autophosphorylation studies of purified full-length ETR1. Autokinase activity of the purified receptor is controlled by ethylene or by ethylene agonists like the pi-acceptor compound cyanide. In fact, both signal molecules were able to completely turn off the intrinsic kinase activity. Furthermore, the observed inhibition of autophosphorylation in ETR1 by both molecules could be prevented when the ethylene antagonist 1-methyl-cyclopropene (MCP) was applied.
Collapse
Affiliation(s)
- Jan Voet-van-Vormizeele
- Heinrich-Heine-Universität, Biochemie der Pflanzen, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | |
Collapse
|
207
|
Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JAH, Palme K. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. MOLECULAR PLANT 2008; 1:321-37. [PMID: 19825543 DOI: 10.1093/mp/ssm021] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, the hormone auxin shapes gene expression to regulate growth and development. Despite the detailed characterization of auxin-inducible genes, a comprehensive overview of the temporal and spatial dynamics of auxin-regulated gene expression is lacking. Here, we analyze transcriptome data from many publicly available Arabidopsis profiling experiments and assess tissue-specific gene expression both in response to auxin concentration and exposure time and in relation to other plant growth regulators. Our analysis shows that the primary response to auxin over a wide range of auxin application conditions and in specific tissues comprises almost exclusively the up-regulation of genes and identifies the most robust auxin marker genes. Tissue-specific auxin responses correlate with differential expression of Aux/IAA genes and the subsequent regulation of context- and sequence-specific patterns of gene expression. Changes in transcript levels were consistent with a distinct sequence of conjugation, increased transport capacity and down-regulation of biosynthesis in the temperance of high cellular auxin concentrations. Our data show that auxin regulates genes associated with the biosynthesis, catabolism and signaling pathways of other phytohormones. We present a transcriptional overview of the auxin response. Specific interactions between auxin and other phytohormones are highlighted, particularly the regulation of their metabolism. Our analysis provides a roadmap for auxin-dependent processes that underpins the concept of an 'auxin code'--a tissue-specific fingerprint of gene expression that initiates specific developmental processes.
Collapse
Affiliation(s)
- Ivan A Paponov
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
208
|
Zhong S, Lin Z, Grierson D. Tomato ethylene receptor-CTR interactions: visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:965-72. [PMID: 18349053 DOI: 10.1093/jxb/ern021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the model plant Arabidopsis, members of a family of two-component system His kinase-like ethylene receptors have direct protein-protein interactions with a single downstream Ser/Thr kinase CTR1. These components of the ethylene signalling network found in Arabidopsis are conserved in the climacteric fruit tomato, but both the ethylene receptors and CTR1-like proteins (LeCTRs) in tomato are encoded by multigene families. Here, using a yeast two-hybrid interaction assay, it is shown that the tomato receptors LeETR1, LeETR2, and NEVER-RIPE (NR) can interact with multiple LeCTRs. In vivo protein localization studies with fluorescent tagged proteins revealed that the ethylene receptor NR was targeted to the endoplasmic reticulum (ER) when transiently expressed in onion epidermal cells, whereas the four LeCTR proteins were found in the cytoplasm and nucleus. When co-expressed with NR, three LeCTRs (1, 3, and 4), but not LeCTR2, also adopted the same ER localization pattern in an NR receptor-dependent manner but not in the absence of NR. The receptor-CTR interactions were confirmed by biomolecular fluorescence complementation (BiFC) showing that NR could form a protein complex with LeCTR1, 3, and 4. This suggested that ethylene receptors recruit these LeCTR proteins to the ER membrane through direct protein-protein interaction. The receptor-CTR interactions and localization observed in the study reinforce the idea that ethylene receptors transmit the signal to the downstream CTRs and show that a single receptor can interact with multiple CTR proteins. It remains unclear whether the different LeCTRs are functionally redundant or have unique roles in ethylene signalling.
Collapse
Affiliation(s)
- Silin Zhong
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | |
Collapse
|
209
|
Dong CH, Rivarola M, Resnick JS, Maggin BD, Chang C. Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:275-86. [PMID: 17999643 PMCID: PMC2194639 DOI: 10.1111/j.1365-313x.2007.03339.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ethylene is an important plant growth regulator perceived by membrane-bound ethylene receptors. The ETR1 ethylene receptor is positively regulated by a predicted membrane protein, RTE1, based on genetic studies in Arabidopsis. RTE1 homologs exist in plants, animals and protists, but the molecular function of RTE1 is unknown. Here, we examine RTE1 expression and subcellular protein localization in order to gain a better understanding of RTE1 and its function in relation to ETR1. Arabidopsis plants transformed with the RTE1 promoter fused to the beta-glucuronidase (GUS) reporter gene revealed that RTE1 expression partly correlates with previously described sites of ETR1 expression or sites of ethylene response, such as the seedling root, root hairs and apical hook. RTE1 transcript levels are also enhanced by ethylene treatment, and reduced by the inhibition of ethylene signaling. For subcellular localization of RTE1, a functional RTE1 fusion to red fluorescent protein (RFP) was expressed under the control of the native RTE1 promoter. Using fluorescence microscopy, RTE1 was observed primarily at the Golgi apparatus and partially at the endoplasmic reticulum (ER) in stably transformed Arabidopsis protoplasts, roots and root hairs. Next, a functional ETR1 fusion to a 5xMyc epitope tag was expressed under the control of the native ETR1 promoter. Immunohistochemistry of root hairs not only showed ETR1 residing at the ER as previously reported, but revealed substantial localization of ETR1 at the Golgi apparatus. Lastly, we demonstrated the subcellular co-localization of RTE1 and ETR1. These findings support and enhance the genetic model that RTE1 plays a role in regulating ETR1.
Collapse
Affiliation(s)
| | | | | | - Benjamin D. Maggin
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
210
|
Oracz K, El-Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C. Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signalling pathway. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2241-51. [PMID: 18448476 PMCID: PMC2413275 DOI: 10.1093/jxb/ern089] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 02/29/2008] [Accepted: 03/04/2008] [Indexed: 05/18/2023]
Abstract
Freshly harvested sunflower (Helianthus annuus L.) seeds are considered to be dormant because they fail to germinate at relatively low temperatures (10 degrees C). This dormancy results mainly from an embryo dormancy and disappears during dry storage. Although endogenous ethylene is known to be involved in sunflower seed alleviation of dormancy, little attention had been paid to the possible role of cyanide, which is produced by the conversion of 1-aminocyclopropane 1-carboxylic acid to ethylene, in this process. The aims of this work were to investigate whether exogenous cyanide could improve the germination of dormant sunflower seeds and to elucidate its putative mechanisms of action. Naked dormant seeds became able to germinate at 10 degrees C when they were incubated in the presence of 1 mM gaseous cyanide. Other respiratory inhibitors showed that this effect did not result from an activation of the pentose phosphate pathway or the cyanide-insensitive pathway. Cyanide stimulated germination of dormant seeds in the presence of inhibitors of ethylene biosynthesis, but its improving effect required functional ethylene receptors. It did not significantly affect ethylene production and the expression of genes involved in ethylene biosynthesis or in the first steps of ethylene signalling pathway. However, the expression of the transcription factor Ethylene Response Factor 1 (ERF1) was markedly stimulated in the presence of gaseous cyanide. It is proposed that the mode of action of cyanide in sunflower seed dormancy alleviation does not involve ethylene production and that ERF1 is a common component of the ethylene and cyanide signalling pathways.
Collapse
Affiliation(s)
- Krystyna Oracz
- UPMC Université Paris 06, EA2388, Physiologie des semences, Site d'Ivry, Boîte courrier 152, 4 Place Jussieu, F-75005 Paris, France
- Department of Plant Physiology, Warsaw University of Life Sciences, Nowoursynowska 159, 02–776, Warsaw, Poland
| | - Hayat El-Maarouf-Bouteau
- UPMC Université Paris 06, EA2388, Physiologie des semences, Site d'Ivry, Boîte courrier 152, 4 Place Jussieu, F-75005 Paris, France
| | - Renata Bogatek
- Department of Plant Physiology, Warsaw University of Life Sciences, Nowoursynowska 159, 02–776, Warsaw, Poland
| | - Françoise Corbineau
- UPMC Université Paris 06, EA2388, Physiologie des semences, Site d'Ivry, Boîte courrier 152, 4 Place Jussieu, F-75005 Paris, France
| | - Christophe Bailly
- UPMC Université Paris 06, EA2388, Physiologie des semences, Site d'Ivry, Boîte courrier 152, 4 Place Jussieu, F-75005 Paris, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
211
|
McClellan CA, Chang C. The role of protein turnover in ethylene biosynthesis and response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2008; 175:24-31. [PMID: 18650958 PMCID: PMC2293297 DOI: 10.1016/j.plantsci.2008.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant growth and development is controlled by a set of hormones whose responses are tightly regulated in order to direct appropriate responses. In several hormone signaling pathways, protein turnover has emerged as a common regulatory element. Ethylene is a phytohormone that controls a variety of processes, including fruit ripening, senescence, and stress response. This review focuses on the regulation of the ethylene response pathway through protein degradation. Protein turnover has been found to regulate both ethylene biosynthesis and ethylene response. Ethylene production is regulated through the turnover of the biosynthetic enzyme ACS. Recently it was found that ethylene receptors are controlled by protein turnover as well. A third process in the control of ethylene signaling is the targeting of the ethylene response transcription factor ETHYLENE INSENSITIVE3 (EIN3) for degradation by the proteins EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2).
Collapse
Affiliation(s)
- Christopher A. McClellan
- University of Maryland, Department of Cell Biology and Molecular Genetics, Bioscience Research Building, College Park, MD 20742, USA
| | - Caren Chang
- University of Maryland, Department of Cell Biology and Molecular Genetics, Bioscience Research Building, College Park, MD 20742, USA
| |
Collapse
|
212
|
Yin XR, Chen KS, Allan AC, Wu RM, Zhang B, Lallu N, Ferguson IB. Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2097-108. [PMID: 18535296 PMCID: PMC2413272 DOI: 10.1093/jxb/ern067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 05/18/2023]
Abstract
Gene families associated with the ethylene signal transduction pathway in ripening kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang et A.R. Ferguson var. deliciosa cv. Hayward) were isolated from a kiwifruit expressed sequence tag (EST) database, including five ethylene receptor genes, two CTR1-like genes, and an EIN3-like gene AdEIL1. All were differentially expressed among various kiwifruit vine tissues, and none was fruit specific. During fruit development, levels of transcripts of AdERS1a, AdETR3, and the two CTR1-like genes decreased, whereas those of AdERS1b and AdETR2 peaked at 97 d after full bloom. In ripening kiwifruit, there was a diverse response of the ethylene receptor family to internal and external ethylene. AdERS1a, AdETR2, and AdETR3 expression increased at the climacteric stage and transcripts were induced by external ethylene treatment, while AdERS1b showed no response to ethylene. AdETR1 was negatively regulated by internal and external ethylene in ripening fruit. The two CTR1-like genes also had different expression patterns, with AdCTR1 increasing at the climacteric stage and AdCTR2 undergoing little change. 1-Methylcyclopropene treatment prevented the ethylene response of all components, but transient down-regulation was only found with AdETR2 and AdCTR1. Similar gene and ethylene responses were found in both fruit flesh and core tissues. The ethylene-induced down-regulation of AdETR1 suggests that it may have a role in sensing ethylene and transmitting this response to other members of the receptor family, thus activating the signal transduction pathway.
Collapse
Affiliation(s)
- Xue-ren Yin
- Laboratory of Fruit Molecular Physiology and Biotechnology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Biotechnology, Zhejiang University, Huajiachi Campus, Hangzhou 310029, PR China
- The Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| | - Kun-song Chen
- Laboratory of Fruit Molecular Physiology and Biotechnology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Biotechnology, Zhejiang University, Huajiachi Campus, Hangzhou 310029, PR China
- To whom correspondence should be addressed. E-mail: or
| | - Andrew C. Allan
- The Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| | - Rong-mei Wu
- The Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| | - Bo Zhang
- Laboratory of Fruit Molecular Physiology and Biotechnology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Biotechnology, Zhejiang University, Huajiachi Campus, Hangzhou 310029, PR China
| | - Nagin Lallu
- The Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
| | - Ian B. Ferguson
- The Horticulture and Food Research Institute of New Zealand, Private Bag 92169, Auckland, New Zealand
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
213
|
Jackson MB. Ethylene-promoted elongation: an adaptation to submergence stress. ANNALS OF BOTANY 2008; 101:229-48. [PMID: 17956854 PMCID: PMC2711016 DOI: 10.1093/aob/mcm237] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 06/26/2007] [Accepted: 07/13/2007] [Indexed: 05/20/2023]
Abstract
BACKGROUND A sizeable minority of taxa is successful in areas prone to submergence. Many such plants elongate with increased vigour when underwater. This helps to restore contact with the aerial environment by shortening the duration of inundation. Poorly adapted species are usually incapable of this underwater escape. SCOPE Evidence implicating ethylene as the principal factor initiating fast underwater elongation by leaves or stems is evaluated comprehensively along with its interactions with other hormones and gases. These interactions make up a sequence of events that link the perception of submergence to a prompt acceleration of extension. The review encompasses whole plant physiology, cell biology and molecular genetics. It includes assessments of how submergence threatens plant life and of the extent to which the submergence escape demonstrably improves the likelihood of survival. CONCLUSIONS Experimental testing over many years establishes ethylene-promoted underwater extension as one of the most convincing examples of hormone-mediated stress adaptation by plants. The research has utilized a wide range of species that includes numerous angiosperms, a fern and a liverwort. It has also benefited from detailed physiological and molecular studies of underwater elongation by rice (Oryza sativa) and the marsh dock (Rumex palustris). Despite complexities and interactions, the work reveals that the signal transduction pathway is initiated by the simple expediency of physical entrapment of ethylene within growing cells by a covering of water.
Collapse
Affiliation(s)
- Michael B Jackson
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| |
Collapse
|
214
|
Chen YF, Shakeel SN, Bowers J, Zhao XC, Etheridge N, Schaller GE. Ligand-induced Degradation of the Ethylene Receptor ETR2 through a Proteasome-dependent Pathway in Arabidopsis. J Biol Chem 2007; 282:24752-8. [PMID: 17595158 DOI: 10.1074/jbc.m704419200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein degradation plays an important role in modulating ethylene signal transduction in plants. Here we show that the ethylene receptor ETR2 is one such target for degradation and that its degradation is dependent upon perception of the signaling ligand ethylene. The ETR2 protein is initially induced by ethylene treatment, consistent with an increase in transcript levels. At ethylene concentrations above 1 mul/liter, however, ETR2 protein levels subsequently decrease in a post-transcriptional fashion. Genetic and chemical approaches indicate that ethylene perception by the receptors initiates the reduction in ETR2 protein levels. The ethylene-induced decrease in ETR2 levels is not affected by cycloheximide, an inhibitor of protein biosynthesis, but is affected by proteasome inhibitors, indicating a role for the proteasome in ETR2 degradation. Ethylene-induced degradation still occurs in seedlings treated with brefeldin A, indicating that degradation of ETR2 does not require exit from its subcellular location at the endoplasmic reticulum. These data support a model in which ETR2 is degraded by a proteasome-dependent pathway in response to ethylene binding. Implications of this model for ethylene signaling are discussed.
Collapse
Affiliation(s)
- Yi-Feng Chen
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
215
|
Sulmon C, Gouesbet G, El Amrani A, Couée I. Involvement of the ethylene-signalling pathway in sugar-induced tolerance to the herbicide atrazine in Arabidopsis thaliana seedlings. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1083-92. [PMID: 17293001 DOI: 10.1016/j.jplph.2006.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 09/14/2006] [Indexed: 05/13/2023]
Abstract
Soluble sugars can induce tolerance to otherwise lethal concentrations of the herbicide atrazine in Arabidopsis thaliana seedlings. This sugar-induced tolerance involves modifications of gene expression which are likely to be related to sugar and xenobiotic signal transduction. Since it has been suggested that ethylene- and sugar-signalling pathways may interact, the effects of glucose (Glc) and sucrose (Suc) on seedling growth and tolerance to atrazine were analysed in etr1-1, ein2-1, ein4, and sis1/ctr1-12 ethylene-signalling mutant backgrounds, where key steps of ethylene signal transduction are affected. Both ethylene-insensitive and ethylene-constitutive types of mutants were found to be affected in sugar-induced chlorophyll accumulation and root growth and in sugar-induced tolerance to atrazine. Interactions between ethylene and sugars were thus shown to take place during enhancement of seedling growth by low-to-moderate (up to 80 mM) sugar concentrations. The strong impairment of sugar-induced atrazine tolerance in etr1-1, ein2-1, and ein4 mutants demonstrated that this tolerance required active signalling pathways and could not be ascribed to mere metabolic effects nor to mere growth enhancement. Sugar-induced atrazine tolerance thus seemed to involve activation by sugar and atrazine of hexokinase-independent sugar signalling pathways and of ethylene signalling pathways, resulting in derepression of hexokinase-mediated Glc repression and in induction of protection mechanisms against atrazine injury.
Collapse
Affiliation(s)
- Cécile Sulmon
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
| | | | | | | |
Collapse
|
216
|
Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci U S A 2007; 104:6484-9. [PMID: 17389366 PMCID: PMC1851083 DOI: 10.1073/pnas.0610717104] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Indexed: 11/18/2022] Open
Abstract
The length of the Arabidopsis thaliana life cycle depends on the timing of the floral transition. Here, we define the relationship between the plant stress hormone ethylene and the timing of floral initiation. Ethylene signaling is activated by diverse environmental stresses, but it was not previously clear how ethylene regulates flowering. First, we show that ethylene delays flowering in Arabidopsis, and that this delay is partly rescued by loss-of-function mutations in genes encoding the DELLAs, a family of nuclear gibberellin (GA)-regulated growth-repressing proteins. This finding suggests that ethylene may act in part by modulating DELLA activity. We also show that activated ethylene signaling reduces bioactive GA levels, thus enhancing the accumulation of DELLAs. Next, we show that ethylene acts on DELLAs via the CTR1-dependent ethylene response pathway, most likely downstream of the transcriptional regulator EIN3. Ethylene-enhanced DELLA accumulation in turn delays flowering via repression of the floral meristem-identity genes LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Our findings establish a link between the CTR1/EIN3-dependent ethylene and GA-DELLA signaling pathways that enables adaptively significant regulation of plant life cycle progression in response to environmental adversity.
Collapse
Affiliation(s)
- Patrick Achard
- *Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UJ, United Kingdom
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université Louis Pasteur, 67084 Strasbourg, France
| | - Mourad Baghour
- Umeå Plant Science Center, Department of Forest and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Andrew Chapple
- *Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UJ, United Kingdom
| | - Peter Hedden
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom; and
| | - Dominique Van Der Straeten
- Unit Plant Hormone Signaling and Bio-Imaging, Department of Molecular Genetics, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université Louis Pasteur, 67084 Strasbourg, France
| | - Thomas Moritz
- Umeå Plant Science Center, Department of Forest and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Nicholas P. Harberd
- *Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UJ, United Kingdom
| |
Collapse
|
217
|
Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS. Modulation of ethylene responses affects plant salt-stress responses. PLANT PHYSIOLOGY 2007; 143:707-19. [PMID: 17189334 PMCID: PMC1803741 DOI: 10.1104/pp.106.094292] [Citation(s) in RCA: 337] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 12/11/2006] [Indexed: 05/13/2023]
Abstract
Ethylene signaling plays important roles in multiple aspects of plant growth and development. Its functions in abiotic stress responses remain largely unknown. Here, we report that alteration of ethylene signaling affected plant salt-stress responses. A type II ethylene receptor homolog gene NTHK1 (Nicotiana tabacum histidine kinase 1) from tobacco (N. tabacum) conferred salt sensitivity in NTHK1-transgenic Arabidopsis (Arabidopsis thaliana) plants as judged from the phenotypic change, the relative electrolyte leakage, and the relative root growth under salt stress. Ethylene precursor 1-aminocyclopropane-1-carboxylic acid suppressed the salt-sensitive phenotype. Analysis of Arabidopsis ethylene receptor gain-of-function mutants further suggests that receptor function may lead to salt-sensitive responses. Mutation of EIN2, a central component in ethylene signaling, also results in salt sensitivity, suggesting that EIN2-mediated signaling is beneficial for plant salt tolerance. Overexpression of the NTHK1 gene or the receptor gain-of-function activated expression of salt-responsive genes AtERF4 and Cor6.6. In addition, the transgene NTHK1 mRNA was accumulated under salt stress, suggesting a posttranscriptional regulatory mechanism. These findings imply that ethylene signaling may be required for plant salt tolerance.
Collapse
Affiliation(s)
- Wan-Hong Cao
- National Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
218
|
HALL MA, MOSHKOV IE, NOVIKOVA GV, MUR LAJ, SMITH AR. Ethylene signal perception and transduction: multiple paradigms? Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.2000.tb00060.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
219
|
Bürstenbinder K, Rzewuski G, Wirtz M, Hell R, Sauter M. The role of methionine recycling for ethylene synthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:238-49. [PMID: 17144895 DOI: 10.1111/j.1365-313x.2006.02942.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The methionine (Met) cycle contributes to sulfur metabolism through the conversion of methylthioadenosine (MTA) to Met at the expense of ATP. MTA is released as a by-product of ethylene synthesis from S-adenosylmethionine (AdoMet). Disruption of the Met cycle in the Arabidopsis mtk mutant resulted in an imbalance of AdoMet homeostasis at sulfur-limiting conditions, irrespective of the sulfur source supplied to the plants. At a low concentration of 100 mum sulfate, the mtk mutant had reduced AdoMet levels and growth was retarded as compared with wild type. An elevated production of ethylene was measured in seedlings of the ethylene-overproducing eto3 mutant. When Met cycle knockout and ethylene overproduction were combined in the mtk/eto3 double mutant, a reduced capacity for ethylene synthesis was observed in seedlings. Even though mature eto3 plants did not produce elevated ethylene levels, and AdoMet homeostasis in eto3 plants did not differ from that in wild type, shoot growth was severely retarded. The mtk/eto3 double mutant displayed a metabolic plant phenotype that was similar to mtk with reduced AdoMet levels at sulfur-limiting conditions. We conclude from our data that the Met cycle contributes to the maintenance of AdoMet homeostasis, especially when de novo AdoMet synthesis is limited. Our data further showed that the Met cycle is required to sustain high rates of ethylene synthesis. Expression of the Met cycle genes AtMTN1, AtMTN2, AtMTK, AtARD1, AtARD2, AtARD3 and AtARD4 was not regulated by ethylene. This result is in contrast to that found in rice where OsARD1 and OsMTK are induced in response to ethylene. We hypothesize that the regulation of the Met cycle by ethylene may be restricted to plants that naturally produce high quantities of ethylene for a prolonged period of time.
Collapse
|
220
|
Binder BM, O'Malley RC, Wang W, Zutz TC, Bleecker AB. Ethylene stimulates nutations that are dependent on the ETR1 receptor. PLANT PHYSIOLOGY 2006; 142:1690-700. [PMID: 17071649 PMCID: PMC1676061 DOI: 10.1104/pp.106.087858] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 10/17/2006] [Indexed: 05/12/2023]
Abstract
Ethylene influences a number of processes in Arabidopsis (Arabidopsis thaliana) through the action of five receptors. In this study, we used high-resolution, time-lapse imaging to examine the long-term effects of ethylene on growing, etiolated Arabidopsis seedlings. These measurements revealed that ethylene stimulates nutations of the hypocotyls with an average delay in onset of over 6 h. The nutation response was constitutive in ctr1-2 mutants maintained in air, whereas ein2-1 mutants failed to nutate when treated with ethylene. Ethylene-stimulated nutations were also eliminated in etr1-7 loss-of-function mutants. Transformation of the etr1-7 mutant with a wild-type genomic ETR1 transgene rescued the nutation phenotype, further supporting a requirement for ETR1. Loss-of-function mutations in the other receptor isoforms had no effect on ethylene-stimulated nutations. However, the double ers1-2 ers2-3 and triple etr2-3 ers2-3 ein4-4 loss-of-function mutants constitutively nutated in air. These results support a model where all the receptors are involved in ethylene-stimulated nutations, but the ETR1 receptor is required and has a contrasting role from the other receptor isoforms in this nutation phenotype. Naphthylphthalamic acid eliminated ethylene-stimulated nutations but had no effect on growth inhibition caused by ethylene, pointing to a role for auxin transport in the nutation phenotype.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
221
|
Wang W, Esch JJ, Shiu SH, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB. Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. THE PLANT CELL 2006; 18:3429-42. [PMID: 17189345 PMCID: PMC1785413 DOI: 10.1105/tpc.106.044537] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ethylene binding domain (EBD) of the Arabidopsis thaliana ETR1 receptor is modeled as three membrane-spanning helices. We surveyed ethylene binding activity in different kingdoms and performed a bioinformatic analysis of the EBD. Ethylene binding is confined to land plants, Chara, and a group of cyanobacteria but is largely absent in other organisms, consistent with our finding that EBD-like sequences are overrepresented among plant and cyanobacterial species. We made amino acid substitutions in 37 partially or completely conserved residues of the EBD and assayed their effects on ethylene binding and signaling. Mutations primarily in residues in Helices I and II midregions eliminated ethylene binding and conferred constitutive signaling, consistent with the inverse-agonist model of ethylene receptor signaling and indicating that these residues define the ethylene binding pocket. The largest class of mutations, clustered near the cytoplasmic ends of Helices I and III, gave normal ethylene binding activity yet still conferred constitutive signaling. Therefore, these residues may play a role in turning off the signal transmitter domain of the receptor. By contrast, only two mutations were loss of function with respect to signaling. These findings yield insight into the structure and function of the EBD and suggest a conserved role of the EBD as a negative regulator of the signal transmitter domain.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Binder BM. Ethylene-Stimulated Nutations Do Not Require ETR1 Receptor Histidine Kinase Activity. PLANT SIGNALING & BEHAVIOR 2006; 1:287-289. [PMID: 19704568 PMCID: PMC2634241 DOI: 10.4161/psb.1.6.3585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 11/06/2006] [Indexed: 05/28/2023]
Abstract
Ethylene influences the growth and development of plants through the action of receptors that have homology to bacterial two-component receptors. In bacteria these receptors function via autophosphorylation of a His residue in the kinase domain followed by phosphotransfer to a conserved Asp residue in a response regulator protein. In Arabidopsis, two of the five receptor isoforms are capable of His kinase activity. However, the role of His kinase activity and phosphotransfer is unclear in ethylene signaling. A previous study showed that ethylene stimulates nutations of the hypocotyl in etiolated Arabidopsis seedlings that are dependent on the ETR1 receptor isoform. The ETR1 receptor is the only isoform in Arabidopsis that contains both a functional His kinase domain and a receiver domain for phosphotransfer. Therefore, we examined the role that ETR1 His kinase activity and phosphotransfer plays in ethylene-stimulated nutations.
Collapse
|
223
|
Tanase K, Ichimura K. Expression of ethylene receptors Dl-ERS1-3 and Dl-ERS2, and ethylene response during flower senescence in Delphinium. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:1159-66. [PMID: 16500725 DOI: 10.1016/j.jplph.2005.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 12/16/2005] [Indexed: 05/06/2023]
Abstract
To clarify the relationships of flower senescence, especially sepal abscission, and ethylene receptor gene expression in different flower parts, we isolated two cDNAs encoding ethylene receptors Dl-ERS1-3 and Dl-ERS2 from Delphinium flowers. Deduced polypeptides possessed no response regulator domain, indicating that they belong to a family of ethylene response sensor (ERS) ethylene receptors. Dl-ERS1-3 and Dl-ERS2 exhibited constitutive levels during flower senescence. Exogenous ethylene increased transcript levels in sepals, which are influenced by ethylene but not in gynoecia and receptacles, which produce ethylene. It was suggested that expression of ethylene receptor genes under ethylene exposure was differentially regulated in each organ of the flower.
Collapse
Affiliation(s)
- Koji Tanase
- National Institute of Floricultural Science, National Agriculture and Bio-oriented Research Organization, Fujimoto 2-1, Tsukuba 305-8519, Ibaraki, Japan.
| | | |
Collapse
|
224
|
Arora A, Watanabe S, Ma B, Takada K, Ezura H. A novel ethylene receptor homolog gene isolated from ethylene-insensitive flowers of gladiolus (Gladiolus grandiflora hort.). Biochem Biophys Res Commun 2006; 351:739-44. [PMID: 17084812 DOI: 10.1016/j.bbrc.2006.10.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Accepted: 10/23/2006] [Indexed: 10/24/2022]
Abstract
Gladiolus is an ethylene insensitive flower whose exogenous ethylene and ethylene inhibitors have no effect on the petal senescence process. To study which processes in gladiolus are associated with changes in ethylene perception, two types of gladiolus genes, named GgERS1a and GgERS1b, respectively, homologous to the Arabidopsis ethylene receptor gene ERS1 were isolated. GgERS1a is conserved in terms of exon numbers and intron positions, whereas GgERS1b is almost same with GgERS1a except lacking 636 nucleotide encoding first and second histidine kinase (HisKA) motifs. The sequence data on full length genomic DNA indicated that both GgERS1a and b were spliced from different genomic DNA. As the result of mRNA expression study, in spite of lacking the two significant motifs, the expression of GgERS1b dramatically changed with advance in petal senescence, whereas the level of GgERS1a expressed highly and constitutively. The result suggests that both the genes possess a significant role for the subfunctionalization process to provide ethylene insensitivity in gladiolus flowers.
Collapse
Affiliation(s)
- Ajay Arora
- Gene Research Center, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
225
|
Xie F, Liu Q, Wen CK. Receptor signal output mediated by the ETR1 N terminus is primarily subfamily I receptor dependent. PLANT PHYSIOLOGY 2006; 142:492-508. [PMID: 16891553 PMCID: PMC1586051 DOI: 10.1104/pp.106.082628] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
etr1-1 is a dominant ethylene receptor gene in Arabidopsis (Arabidopsis thaliana) and confers ethylene insensitivity. The truncated etr1-1(1-349) protein is capable of repressing ethylene responses, whereas etr1(1-349) is not, lending support to a hypothesis that the dominant etr1-1(1-349) could convert wild-type receptors to an ethylene-insensitive state. Assuming that etr1-1(1-349) and etr1(1-349) would share the same signaling mechanism, we hypothesize that the etr1(1-349) protein is capable of repressing ethylene responses when not bound with ethylene. In this study, we show that both etr1(1-349) and etr1-1(1-349) are capable of receptor signal output, which is primarily dependent on subfamily I receptors. The etr1(1-349) and etr1-1(1-349) clones were individually transformed to mutants and the resulting phenotypes were scored. Each of those transgenes restored the rosette growth and flower fertility of etr1-7 ers1-2 to a similar extent. In contrast, neither etr1(1-349) nor etr1-1(1-349) was capable of signal output in etr1-7 ers1-3. The ERS1 transcript was detectable in ers1-2 but not in ers1-3, implying that ETR1 N-terminal signaling is subfamily I dependent. Loss of the subfamily II receptor genes did not perturb etr1-1(1-349)-mediated ethylene insensitivity. Possible roles of subfamily I receptors and disulfide linkages in ETR1 receptor signal output mediated through the N terminus are discussed.
Collapse
Affiliation(s)
- Fang Xie
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
226
|
Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL. Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. PLANT PHYSIOLOGY 2006; 142:380-97. [PMID: 16891544 PMCID: PMC1586034 DOI: 10.1104/pp.106.086371] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The two-component system (TCS), which works on the principle of histidine-aspartate phosphorelay signaling, is known to play an important role in diverse physiological processes in lower organisms and has recently emerged as an important signaling system in plants. Employing the tools of bioinformatics, we have characterized TCS signaling candidate genes in the genome of Oryza sativa L. subsp. japonica. We present a complete overview of TCS gene families in O. sativa, including gene structures, conserved motifs, chromosome locations, and phylogeny. Our analysis indicates a total of 51 genes encoding 73 putative TCS proteins. Fourteen genes encode 22 putative histidine kinases with a conserved histidine and other typical histidine kinase signature sequences, five phosphotransfer genes encoding seven phosphotransfer proteins, and 32 response regulator genes encoding 44 proteins. The variations seen between gene and protein numbers are assumed to result from alternative splicing. These putative proteins have high homology with TCS members that have been shown experimentally to participate in several important physiological phenomena in plants, such as ethylene and cytokinin signaling and phytochrome-mediated responses to light. We conclude that the overall architecture of the TCS machinery in O. sativa and Arabidopsis thaliana is similar, and our analysis provides insights into the conservation and divergence of this important signaling machinery in higher plants.
Collapse
Affiliation(s)
- Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | | | | | |
Collapse
|
227
|
De la Torre F, Del Carmen Rodríguez-Gacio M, Matilla AJ. How ethylene works in the reproductive organs of higher plants: a signaling update from the third millennium. PLANT SIGNALING & BEHAVIOR 2006; 1:231-42. [PMID: 19516984 PMCID: PMC2634124 DOI: 10.4161/psb.1.5.3389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 05/15/2023]
Abstract
Ethylene (ET) is a notable signaling molecule in higher plants. In the year 1993 the ET receptor gene, ETR1, was identified; this ETR1 receptor protein being the first plant hormone receptor to be isolated. It is striking that there are six ET receptors in tomato instead of five in Arabidopsis, the two best-known signaling-model systems. Even though over the last few years great progress has been made in elucidating the genes and proteins involved in ET signaling, the complete pathway remains to be established. The present review examines the most representative successive advances that have taken place in this millennium in terms of the signaling pathway of ET, as well as the implications of the signaling in the reproductive organs of plants (i.e., flowers, fruits, seeds and pollen grains). A detailed comparative study is made on the advances in knowledge in the last decade, showing how the characterization of ET signaling provides clues for understanding how higher plants regulate their ET sensitivity. Also, it is indicated that ET signaling is at present sparking interest within phytohormonal molecular physiology and biology, and it is explained why several socio-economic aspects (flowering and fruit ripening) are undoubtedly involved in ET physiology.
Collapse
Affiliation(s)
- Francisco De la Torre
- Department of Plant Physiology; Faculty of Pharmacy; University of Santiago de Compostela; Santiago de Compostela, Galicia, Spain
| | | | | |
Collapse
|
228
|
Papon N, Bremer J, Vansiri A, Glévarec G, Rideau M, Creche J. Molecular cloning and expression of a cDNA encoding a hybrid histidine kinase receptor in tropical periwinkle Catharanthus roseus. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:731-6. [PMID: 16773556 DOI: 10.1055/s-2006-924170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Signalling pathways involving histidine kinase receptors (HKRs) are widely used by prokaryotes and fungi to regulate a large palette of biological processes. In plants, HKRs are known to be implicated in cytokinin, ethylene, and osmosensing transduction pathways. In this work, a full length cDNA named CRCIK was isolated from the tropical species CATHARANTHUS ROSEUS (L.) G. Don. It encodes a 1205 amino acid protein that belongs to the hybrid HKR family. The deduced amino acid sequence shows the highest homology with AtHK1, an osmosensing HKR in ARABIDOPSIS THALIANA. In return, CrCIK protein shares very low identity with the other 10 ARABIDOPSIS HKRs. Southern blot analysis indicates that the CRCIK corresponding gene is either present in multiple copies or has very close homologues in the genome of the tropical periwinkle. The gene is widely expressed in the plant. In C. ROSEUS C20D cell suspension, it is slightly induced after exposure to low temperature, pointing to a putative role in cold-shock signal transduction.
Collapse
Affiliation(s)
- N Papon
- Laboratoire des Sciences Végétales, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | | | |
Collapse
|
229
|
Cao WH, Liu J, Zhou QY, Cao YR, Zheng SF, Du BX, Zhang JS, Chen SY. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. PLANT, CELL & ENVIRONMENT 2006; 29:1210-9. [PMID: 17080944 DOI: 10.1111/j.1365-3040.2006.01501.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ethylene has been regarded as a stress hormone involved in many stress responses. However, ethylene receptors have not been studied for the roles they played under salt stress condition. Previously, we characterized an ethylene receptor gene NTHK1 from tobacco, and found that NTHK1 is salt-inducible. Here, we report a further investigation towards the function of NTHK1 in response to salt stress by using a transgenic approach. We found that NTHK1 promotes leaf growth in the transgenic tobacco seedlings but affects salt sensitivity in these transgenic seedlings under salt stress condition. Differential Na+/K+ ratio was observed in the control Xanthi and NTHK1-transgenic plants after salt stress treatment. We further found that the NTHK1 transgene is also salt-inducible in the transgenic plants, and the higher NTHK1 expression results in early inductions of the ACC (1-aminocyclopropane-1-carboxylic acid) oxidase gene NtACO3 and ethylene responsive factor (ERF) genes NtERF1 and NtERF4 under salt stress. However, NTHK1 suppresses the salt-inducible expression of the ACC synthase gene NtACS1. These results indicate that NTHK1 regulates salt stress responses by affecting ion accumulation and related gene expressions, and hence have significance in elucidation of ethylene receptor functions during stress signal transduction.
Collapse
Affiliation(s)
- Wan-Hong Cao
- National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Bishopp A, Mähönen AP, Helariutta Y. Signs of change: hormone receptors that regulate plant development. Development 2006; 133:1857-69. [PMID: 16651539 DOI: 10.1242/dev.02359] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hormonal signalling plays a pivotal role in almost every aspect of plant development, and of high priority has been to identify the receptors that perceive these hormones. In the past seven months, the receptors for the plant hormones auxin, gibberellins and abscisic acid have been identified. These join the receptors that have previously been identified for ethylene,brassinosteroids and cytokinins. This review therefore comes at an exciting time for plant developmental biology, as the new findings shed light on our current understanding of the structure and function of the various hormone receptors, their related signalling pathways and their role in regulating plant development.
Collapse
Affiliation(s)
- Anthony Bishopp
- Plant Molecular Biology Laboratory, Institute of Biotechnology, POB 56, FI-00014, University of Helsinki, Finland
| | | | | |
Collapse
|
231
|
Resnick JS, Wen CK, Shockey JA, Chang C. REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci U S A 2006; 103:7917-22. [PMID: 16682642 PMCID: PMC1458508 DOI: 10.1073/pnas.0602239103] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis thaliana has five ethylene hormone receptors, which bind ethylene and elicit responses critical for plant growth and development. Here we describe a negative regulator of ethylene responses, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), which regulates the function of at least one of the receptors, ETR1, in Arabidopsis. RTE1 was identified based on the ability of rte1 mutations to suppress ethylene insensitivity of the dominant gain-of-function allele etr1-2. rte1 loss-of-function mutants have an enhanced ethylene response that closely resembles the etr1 null phenotype. The etr1 rte1 double null mutant is identical to the etr1 and rte1 single null mutants, suggesting that the two genes act in the same pathway. rte1 is unable to suppress the etr1-1 gain-of-function allele, placing RTE1 at or upstream of ETR1. rte1 also fails to suppress gain-of-function mutations in each of the four other ethylene receptor genes. RTE1 encodes a previously undescribed predicted membrane protein, which is highly conserved in plants, animals [corrected] and protists but absent in fungi and prokaryotes. Ethylene treatment induces RTE1 expression, and overexpression of RTE1 confers reduced ethylene sensitivity that partially depends on ETR1. These findings demonstrate that RTE1 is a negative regulator of ethylene signaling and suggest that RTE1 plays an important role in ETR1 function.
Collapse
Affiliation(s)
- Josephine S. Resnick
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Chi-Kuang Wen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Jason A. Shockey
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
232
|
Millenaar FF, Okyere J, May ST, van Zanten M, Voesenek LACJ, Peeters AJM. How to decide? Different methods of calculating gene expression from short oligonucleotide array data will give different results. BMC Bioinformatics 2006; 7:137. [PMID: 16539732 PMCID: PMC1431565 DOI: 10.1186/1471-2105-7-137] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 03/15/2006] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Short oligonucleotide arrays for transcript profiling have been available for several years. Generally, raw data from these arrays are analysed with the aid of the Microarray Analysis Suite or GeneChip Operating Software (MAS or GCOS) from Affymetrix. Recently, more methods to analyse the raw data have become available. Ideally all these methods should come up with more or less the same results. We set out to evaluate the different methods and include work on our own data set, in order to test which method gives the most reliable results. RESULTS Calculating gene expression with 6 different algorithms (MAS5, dChip PMMM, dChip PM, RMA, GC-RMA and PDNN) using the same (Arabidopsis) data, results in different calculated gene expression levels. Consequently, depending on the method used, different genes will be identified as differentially regulated. Surprisingly, there was only 27 to 36% overlap between the different methods. Furthermore, 47.5% of the genes/probe sets showed good correlation between the mismatch and perfect match intensities. CONCLUSION After comparing six algorithms, RMA gave the most reproducible results and showed the highest correlation coefficients with Real Time RT-PCR data on genes identified as differentially expressed by all methods. However, we were not able to verify, by Real Time RT-PCR, the microarray results for most genes that were solely calculated by RMA. Furthermore, we conclude that subtraction of the mismatch intensity from the perfect match intensity results most likely in a significant underestimation for at least 47.5% of the expression values. Not one algorithm produced significant expression values for genes present in quantities below 1 pmol. If the only purpose of the microarray experiment is to find new candidate genes, and too many genes are found, then mutual exclusion of the genes predicted by contrasting methods can be used to narrow down the list of new candidate genes by 64 to 73%.
Collapse
Affiliation(s)
- Frank F Millenaar
- Plant Ecophysiology, Institute of Environmental Biology, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - John Okyere
- Nottingham Arabidopsis Stock Centre (NASC), Plant Science Division, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Sean T May
- Nottingham Arabidopsis Stock Centre (NASC), Plant Science Division, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Laurentius ACJ Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Anton JM Peeters
- Plant Ecophysiology, Institute of Environmental Biology, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| |
Collapse
|
233
|
Abstract
With the isolation and characterization of the key enzymes and proteins, and the corresponding genes, involved in ethylene biosynthesis and sensing it has become possible to manipulate plant ethylene levels and thereby alter a wide range of physiological processes. The phytohormone ethylene is an essential signaling molecule that affects a large number of physiological processes; plants deprived of ethylene do not grow and develop normally. In a search for flexible on-off ethylene control, scientists have used inducible organ- and tissue-specific promoters to drive expression of different transgenes. Here, the various strategies that have been used to genetically engineer plants with decreased ethylene biosynthesis and sensitivity are reviewed and discussed.
Collapse
Affiliation(s)
- Jennifer C Czarny
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
234
|
Zhou HL, Cao WH, Cao YR, Liu J, Hao YJ, Zhang JS, Chen SY. Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett 2006; 580:1239-50. [PMID: 16442528 DOI: 10.1016/j.febslet.2006.01.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/09/2006] [Accepted: 01/12/2006] [Indexed: 10/25/2022]
Abstract
Ethylene receptors sense ethylene and regulate downstream signaling events. Tobacco ethylene receptor NTHK1, possessing Ser/Thr kinase activity, has been found to function in plant growth and salt-stress responses. NTHK1 contains transmembrane domains, a GAF domain, a kinase domain and a receiver domain. We examined roles of these domains in regulation of plant leaf growth, salt-stress responses and salt-responsive gene expressions using an overexpression approach. We found that the transgenic Arabidopsis plants harboring the transmembrane domain plus kinase domain exhibited large rosettes, had reduction in ethylene sensitivity, and showed enhanced salt sensitivity. The transgenic plants harboring the transmembrane domain plus GAF domain also showed larger rosettes. Truncations of NTHK1 affected salt-induced gene expressions. Transmembrane domain plus kinase domain promoted RD21A and VSP2 expression but decreased salt-induction of AtNAC2. The kinase domain itself promoted AtERF4 gene expression. The GAF domain itself enhanced Cor6.6 induction. Moreover, the NTHK1 functional kinase domain phosphorylated the HIS and ATP subdomains, and five putative phosphorylation sites were identified in these two subdomains. In addition, the salt-responsive element of the NTHK1 gene was in the transmembrane-coding region but not in the promoter region. These results indicate that NTHK1 domains or combination of them have specific functions in plant leaf growth, salt-stress response, gene expression and protein phosphorylation.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- National Key Lab of Plant Genomic, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
235
|
Benavente LM, Alonso JM. Molecular mechanisms of ethylene signaling in Arabidopsis. MOLECULAR BIOSYSTEMS 2006; 2:165-73. [PMID: 16880934 DOI: 10.1039/b513874d] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ethylene is a gaseous plant hormone involved in several important physiological processes throughout a plant's life cycle. Decades of scientific research devoted to deciphering how plants are able to sense and respond to this key molecule have culminated in the establishment of one of the best characterized signal transduction pathways in plants. The ethylene signaling pathway starts with the perception of this gaseous hormone by a family of membrane-anchored receptors followed by a Raf-like kinase CTR1 that is physically associated with the receptors and actively inhibits downstream components of the pathway. A major gap is represented by the mysterious plant protein EIN2 that genetically works downstream of CTR1 and upstream of the key transcription factor EIN3. Transcriptional regulation by EIN3 and EIN3-family members has emerged as a key aspect of ethylene responses. The major components of this transcriptional cascade have been characterized and the involvement of post-transcriptional control by ubiquitination has been determined. Nevertheless, many aspects of this pathway still remain unknown. Recent genomic studies aiming to provide a more comprehensive view of modulation of gene expression have further emphasized the ample role of ethylene in a myriad of cellular processes and particularly in its crosstalk with other important plant hormones. This review aims to serve as a guide to the main scientific discoveries that have shaped the field of ethylene biology in the recent years.
Collapse
Affiliation(s)
- Larissa M Benavente
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
236
|
Broekaert WF, Delauré SL, De Bolle MFC, Cammue BPA. The role of ethylene in host-pathogen interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:393-416. [PMID: 16602950 DOI: 10.1146/annurev.phyto.44.070505.143440] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The phytohormone ethylene is a principal modulator in many aspects of plant life, including various mechanisms by which plants react to pathogen attack. Induced ethylene biosynthesis and subsequent intracellular signaling through a single conserved pathway have been well characterized. This leads to a cascade of transcription factors consisting of primary EIN3-like regulators and downstream ERF-like transcription factors. The latter control the expression of various effector genes involved in various aspects of systemic induced defense responses. Moreover, at this level significant cross-talk occurs with other defense response pathways controlled by salicylic acid and jasmonate, eventually resulting in a differentiated disease response.
Collapse
Affiliation(s)
- Willem F Broekaert
- Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, 3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
237
|
Tatsuki M, Endo A. Analyses of Expression Patterns of Ethylene Receptor Genes in Apple (Malus domestica Borkh.) Fruits Treated with or without 1-Methylcyclopropene (1-MCP). ACTA ACUST UNITED AC 2006. [DOI: 10.2503/jjshs.75.481] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
238
|
Raghavan C, Ong EK, Dalling MJ, Stevenson TW. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 2005; 6:60-70. [PMID: 16317577 DOI: 10.1007/s10142-005-0012-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/15/2005] [Accepted: 09/25/2005] [Indexed: 11/29/2022]
Abstract
The chemical 2,4-dichlorophenoxyacetic acid (2,4-D) regulates plant growth and development and mimics auxins in exhibiting a biphasic mode of action. Although gene regulation in response to the natural auxin indole acetic acid (IAA) has been examined, the molecular mode of action of 2,4-D is poorly understood. Data from biochemical studies, (Grossmann (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506-508) proposed that at high concentrations, auxins and auxinic herbicides induced the plant hormones ethylene and abscisic acid (ABA), leading to inhibited plant growth and senescence. Further, in a recent gene expression study (Raghavan et al. (2005) Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 5:4-17), we have confirmed that at high concentrations, 2,4-D induced the expression of the gene NCED1, which encodes 9-cis-epoxycarotenoid dioxygenase, a key regulatory enzyme of ABA biosynthesis. To understand the concentration-dependent mode of action of 2,4-D, we further examined the regulation of whole genome of Arabidopsis in response to a range of 2,4-D concentrations from 0.001 to 1.0 mM, using the ATH1-121501 Arabidopsis whole genome microarray developed by Affymetrix. Results of this study indicated that 2,4-D induced the expression of auxin-response genes (IAA1, IAA13, IAA19) at both auxinic and herbicidal levels of application, whereas the TIR1 and ASK1 genes, which are associated with ubiquitin-mediated auxin signalling, were down-regulated in response to low concentrations of 2,4-D application. It was also observed that in response to low concentrations of 2,4-D, ethylene biosynthesis was induced, as suggested by the up-regulation of genes encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Although genes involved in ethylene biosynthesis were not regulated in response to 0.1 and 1.0 mM 2,4-D, ethylene signalling was induced as indicated by the down-regulation of CTR1 and ERS, both of which play a key role in the ethylene signalling pathway. In response to 1.0 mM 2,4-D, both ABA biosynthesis and signalling were induced, in contrast to the response to lower concentrations of 2,4-D where ABA biosynthesis was suppressed. We present a comprehensive model indicating a molecular mode of action for 2,4-D in Arabidopsis and the effects of this growth regulator on the auxin, ethylene and abscisic acid pathways.
Collapse
Affiliation(s)
- Chitra Raghavan
- School of Applied Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | | | | | | |
Collapse
|
239
|
De Paepe A, De Grauwe L, Bertrand S, Smalle J, Van der Straeten D. The Arabidopsis mutant eer2 has enhanced ethylene responses in the light. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2409-20. [PMID: 16043454 DOI: 10.1093/jxb/eri234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
By screening for ethylene response mutants in Arabidopsis, a novel mutant, eer2, was isolated which displays enhanced ethylene responses. On a low nutrient medium (LNM) light-grown eer2 seedlings showed a significant hypocotyl elongation in response to low levels of 1-amino-cyclopropane-1-carboxylate (ACC), the precursor of ethylene, compared with the wild type, indicating that eer2 is hypersensitive to ethylene. Treatment with 1-MCP (1-methylcyclopropene), a competitive inhibitor of ethylene signalling, suppressed this hypersensitive response, demonstrating that it is a bona fide ethylene effect. By contrast, roots of eer2 were less sensitive than the wild type to low concentrations of ACC. The ethylene levels in eer2 did not differ from the wild type, indicating that ethylene overproduction is not the primary cause of the eer2 phenotype. In addition to its enhanced ethylene response of hypocotyls, eer2 is also affected in the pattern of senescence and its phenotype depends on the nutritional status of the growth medium. Furthermore, linkage analysis of eer2 suggests that this mutant defines a new locus in ethylene signalling.
Collapse
Affiliation(s)
- Annelies De Paepe
- Unit Plant Hormone Signaling and Bio-imaging, Department of Molecular Genetics, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
240
|
Yoshida H, Nagata M, Saito K, Wang KLC, Ecker JR. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC PLANT BIOLOGY 2005; 5:14. [PMID: 16091151 PMCID: PMC1199607 DOI: 10.1186/1471-2229-5-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 08/10/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1) is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS), in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. RESULTS Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE) did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. CONCLUSION These results suggest that ETO1 family proteins specifically interact with and negatively regulate type 2 ACC synthases. Our data also show that Arabidopsis ETO1 can regulate type 2 ACS in a heterologous plant, tomato.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Department of Rice Research, National Agricultural Research Center, Jo-etsu, Niigata 943–0193, Japan
- Department of Low-Temperature Sciences, National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido 062–8555, Japan
| | - Masayasu Nagata
- Department of Physiology and Quality Science, National Institute of Vegetable and Tea Science, Ano, Mie 514–2392, Japan
| | - Koji Saito
- Department of Low-Temperature Sciences, National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido 062–8555, Japan
| | - Kevin LC Wang
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, U.S.A
- Present address: Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Joseph R Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, U.S.A
| |
Collapse
|
241
|
CHEN YIFENG, ETHERIDGE NAOMI, SCHALLER GERIC. Ethylene signal transduction. ANNALS OF BOTANY 2005; 95:901-15. [PMID: 15753119 PMCID: PMC4246747 DOI: 10.1093/aob/mci100] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/11/2004] [Accepted: 12/17/2004] [Indexed: 05/18/2023]
Abstract
BACKGROUND The phytohormone ethylene is a key regulator of plant growth and development. Components of the pathway for ethylene signal transduction were identified by genetic approaches in Arabidopsis and have now been shown to function in agronomically important plants as well. SCOPE This review focuses on recent advances in our knowledge on ethylene signal transduction, in particular on recently proposed components of the pathway, on the interaction between the pathway components and on the roles of transcriptional and post-transcriptional regulation in ethylene signalling. CONCLUSIONS Data indicate that the site of ethylene perception is at the endoplasmic reticulum and point to the importance of protein complexes in mediating the initial steps in ethylene signal transduction. The expression level of pathway components is regulated by both transcriptional and post-transcriptional mechanisms, degradation of the transcription factor EIN3 being a primary means by which the sensitivity of plants to ethylene is regulated. EIN3 also represents a control point for cross-talk with other signalling pathways, as exemplified by the effects of glucose upon its expression level. Amplification of the initial ethylene signal is likely to play a significant role in signal transduction and several mechanisms exist by which this may occur based on properties of known pathway components. Signal output from the pathway is mediated in part by carefully orchestrated changes in gene expression, the breadth of these changes now becoming clear through expression analysis using microarrays.
Collapse
Affiliation(s)
- YI-FENG CHEN
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - NAOMI ETHERIDGE
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - G. ERIC SCHALLER
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
242
|
Katz E, Riov J, Weiss D, Goldschmidt EE. The climacteric-like behaviour of young, mature and wounded citrus leaves. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1359-1367. [PMID: 15767320 DOI: 10.1093/jxb/eri137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although leaves and other vegetative tissues are generally considered as non-climacteric, citrus leaves show a climacteric system II behaviour after detachment. Upon harvest, young, fully expanded 'Valencia' orange (Citrus sinensis) leaves ( approximately 60-d-old) exhibited two phases of ethylene production. The first phase, up to 6 d after detachment, was characterized by a low and constant ethylene production (system I pathway), associated with a constitutive expression of ACC synthase 2 (CsACS2), CsERS1, and CsETR1. ACC synthase 1 (CsACS1) was not expressed during this phase and autoinhibition of ethylene production was apparent following treatment with exogenous ethylene or propylene. The second phase, 7-12 d after detachment, was characterized by a climacteric rise in ethylene production, preceded by the induction of CsACS1 and ACC oxidase 1 (CsACO1) gene expression in the system II pathway. This induction was accelerated and augmented by exogenous ethylene or propylene, indicating an autocatalytic system II ethylene biosynthesis. Mature leaves (6-8-months-old) behaved similarly, except that the climacteric peak in ethylene production occurred earlier (day 5). Young and mature leaves varied in the timing of the climacteric ethylene rise and CsACS1 and CsACO1 induction. The two phases of ethylene production, system I and system II, were also detected in wounded leaf discs of both young and mature leaves. The first phase peaked 15 min after excision and the second phase peaked after 6 h.
Collapse
Affiliation(s)
- Ehud Katz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
243
|
Abstract
In plants, ethylene gas functions as a potent endogenous growth regulator. In the model system Arabidopsis thaliana, the molecular mechanisms that underlie perception and transduction of the ethylene signal to the nucleus, where the transcription of hundreds of genes is altered, are being elucidated. In the current view, ethylene is sensed by a family of five receptors that show similarity to the bacterial two-component histidine kinases, and in plants function as negative regulators of the pathway. Binding of the ethylene gas turns off the receptors, resulting in the inactivation of another negative regulator of ethylene signaling, CTR1, a Raf-like protein kinase that directly interacts with the receptors. EIN2, a protein of unknown biochemical activity that functions as a positive regulator of the pathway, acts downstream of CTR. Derepression of EIN2 by ethylene upon disabling of the receptors and CTR1 leads to the activation of EIN3 and EIN3-like transcription factors. In the absence of ethylene, the levels of EIN3 protein are extremely low because of the function of two F-box-containing proteins, EBF1 and EBF2, that target EIN3 for proteosome-mediated degradation. In the presence of ethylene, the EIN3 protein accumulates in the nucleus and initiates a transcriptional cascade, resulting in the activation and repression of hundreds of genes. To date, the only empirically demonstrated direct target of EIN3 is the APETALA2 (AP2)-domain-containing transcription factor gene ERF1. The coregulation of ERF1 by another plant hormone, jasmonic acid, illustrates how a transcriptional cascade could be utilized in a combinatorial fashion to generate a large diversity of responses using a limited number of input signals. As new components and points of intersection with other pathways are identified, the Connections Map will be updated.
Collapse
Affiliation(s)
- Anna N Stepanova
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
244
|
Abstract
The structural simplicity of the plant hormone ethylene contrasts with its dramatic effects in various developmental processes, as well as in the cellular processes that ethylene initiates in response to a diversity of environmental signals. A single well-conserved signaling cascade mediates this broad spectrum of responses. Ethylene is perceived by a family of two-component histidine kinase receptors that become inactivated upon ethylene binding. In the absence of the hormone, the receptors activate CTR1, a negative regulator of ethylene responses. Sequence similarity between CTR1 and the Raf protein kinases implies involvement of a mitogen-activated protein kinase cascade in this signaling pathway. The protein EIN2 acts downstream of CTR1 and the possible kinase cascade. Although the biochemical function of EIN2 is not understood, its critical role is manifested by the complete ethylene insensitivity of EIN2 loss-of-function mutants. Downstream of EIN2, a family of plant-specific EIN3-like transcription factors mediate ethylene responses. The regulation of EIN3 stability by ethylene is accomplished by F-box-containing proteins that participate in the formation of a SKP1/cullin/F-box complex that targets proteins for degradation by the proteasome. A large number of ethylene-regulated genes have been identified, including the APETALA2 domain-containing transcription factor genes ERF1 and EDF1 to 4, which suggests the participation of a transcriptional cascade in the ethylene response. The differential regulation of some components of this complex nuclear cascade by other signaling pathways provides a possible mechanism for interaction and signal integration. As new points of intersection with other pathways and additional participants in the pathway are identified, the Connections Map will be updated to include this new information.
Collapse
Affiliation(s)
- Anna N Stepanova
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
245
|
O'Malley RC, Rodriguez FI, Esch JJ, Binder BM, O'Donnell P, Klee HJ, Bleecker AB. Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:651-9. [PMID: 15703053 DOI: 10.1111/j.1365-313x.2004.02331.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ethylene signaling in plants is mediated by a family of ethylene receptors related to bacterial two-component regulators. Expression in yeast of ethylene-binding domains from the five receptor isoforms from Arabidopsis thaliana and five-receptor isoforms from tomato confirmed that all members of the family are capable of high-affinity ethylene-binding activity. All receptor isoforms displayed a similar level of ethylene binding on a per unit protein basis, while members of both subfamily I and subfamily II from Arabidopsis showed similar slow-release kinetics for ethylene. Quantification of receptor-isoform mRNA levels in receptor-deficient Arabidopsis lines indicated a direct correlation between total message level and total ethylene-binding activity in planta. Increased expression of remaining receptor isoforms in receptor-deficient lines tended to compensate for missing receptors at the level of mRNA expression and ethylene-binding activity, but not at the level of receptor signaling, consistent with specialized roles for family members in receptor signal output.
Collapse
Affiliation(s)
- Ronan C O'Malley
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
246
|
Millenaar FF, Cox MCH, van Berkel YEMDJ, Welschen RAM, Pierik R, Voesenek LAJC, Peeters AJM. Ethylene-induced differential growth of petioles in Arabidopsis. Analyzing natural variation, response kinetics, and regulation. PLANT PHYSIOLOGY 2005; 137:998-1008. [PMID: 15728343 PMCID: PMC1065400 DOI: 10.1104/pp.104.053967] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plants can reorient their organs in response to changes in environmental conditions. In some species, ethylene can induce resource-directed growth by stimulating a more vertical orientation of the petioles (hyponasty) and enhanced elongation. In this study on Arabidopsis (Arabidopsis thaliana), we show significant natural variation in ethylene-induced petiole elongation and hyponastic growth. This hyponastic growth was rapidly induced and also reversible because the petioles returned to normal after ethylene withdrawal. To unravel the mechanisms behind the natural variation, two contrasting accessions in ethylene-induced hyponasty were studied in detail. Columbia-0 showed a strong hyponastic response to ethylene, whereas this response was almost absent in Landsberg erecta (Ler). To test whether Ler is capable of showing hyponastic growth at all, several signals were applied. From all the signals applied, only spectrally neutral shade (20 micromol m(-2) s(-1)) could induce a strong hyponastic response in Ler. Therefore, Ler has the capacity for hyponastic growth. Furthermore, the lack of ethylene-induced hyponastic growth in Ler is not the result of already-saturating ethylene production rates or insensitivity to ethylene, as an ethylene-responsive gene was up-regulated upon ethylene treatment in the petioles. Therefore, we conclude that Ler is missing an essential component between the primary ethylene signal transduction chain and a downstream part of the hyponastic growth signal transduction pathway.
Collapse
Affiliation(s)
- Frank F Millenaar
- Plant Ecophysiology, Utrecht University, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
247
|
Decreux A, Messiaen J. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. PLANT & CELL PHYSIOLOGY 2005; 46:268-78. [PMID: 15769808 DOI: 10.1093/pcp/pci026] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wall-associated kinase 1 (WAK1) is a transmembrane protein containing a cytoplasmic Ser/Thr kinase domain and an extracellular domain in contact with the pectin fraction of the plant cell walls. In order to characterize further the interaction of WAK1 with pectin, a 564 bp DNA sequence corresponding to amino acids 67-254 of the extracellular domain of WAK1 from Arabidopsis thaliana was cloned and expressed as a soluble recombinant peptide in yeast. Using enzyme-linked immunosorbent assays (ELISA), we show that peptide WAK(67-254) binds to polygalacturonic acid (PGA), oligogalacturonides, pectins extracted from A. thaliana cell walls and to structurally related alginates. Our results suggest that both ionic and steric interactions are required to match the relatively linear pectin backbone. Binding of WAK(67-254) to PGA, oligogalacturonides and alginates occurred only in the presence of calcium and in ionic conditions promoting the formation of calcium bridges between oligo-and polymers (also known as 'egg-boxes'). The conditions inhibiting the formation of calcium bridges (EDTA treatment, calcium substitution, high NaCl concentrations, depolymerization and methylesterification of pectins) also inhibited the binding of WAK(67-254) to calcium-induced egg-boxes. The relevance of this non-covalent link between WAK(67-254) and cell wall pectins is discussed in terms of cell elongation, cell differentiation and host-pathogen interactions.
Collapse
Affiliation(s)
- Annabelle Decreux
- FUNDP, Unité de Recherche en Biologie Végétale, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | |
Collapse
|
248
|
Yamasaki S, Fujii N, Takahashi H. Hormonal Regulation of Sex Expression in Plants. PLANT HORMONES 2005; 72:79-110. [PMID: 16492469 DOI: 10.1016/s0083-6729(05)72003-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Seiji Yamasaki
- Faculty of Education, Fukuoka University of Education 1-1 Akamabunkyomachi, Munakata, Fukuoka 811-4192, Japan
| | | | | |
Collapse
|
249
|
Abstract
Hormones are key regulators of plant growth and development. Genetic and biochemical studies have identified major factors that mediate ethylene biosynthesis and signal transduction. Substantial progress in the elucidation of the ethylene signal transduction pathway has been made, mainly by research on Arabidopsis thaliana. Research on ethylene biosynthesis and its regulation provided new insights, particularly on the posttranslational regulation of ethylene synthesis and the feedback from ethylene signal transduction. The identification of new components in the ethylene-response pathway and the elucidation of their mode of action provide a framework for understanding not only how plants sense and respond to this hormone but also how the signal is integrated with other inputs, ultimately determining the plant phenotype.
Collapse
Affiliation(s)
- Annelies De Paepe
- Unit Plant Hormone Signaling and Bio-imaging, Department of Molecular Genetics Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | |
Collapse
|
250
|
Abstract
Plants use a structurally very simple gas molecule, the hydrocarbon ethylene, to modulate various developmental programs and coordinate responses to a multitude of external stress factors. How this simple molecule generates such a diverse array of effects has been the subject of intense research for the past two decades. A fascinating signaling pathway, with classical as well as novel plant-specific signaling elements, is emerging from these studies. We describe the four main modules that constitute this signaling pathway: a phosphotransfer relay, an EIN2-based unit, a ubiquitin-mediated protein degradation component, and a transcriptional cascade. The canonical and Arabidopsis ethylene signaling pathways in the Signal Transduction Knowledge Environment Connections Maps provide a complete panoramic view of these signaling events in plants.
Collapse
Affiliation(s)
- Jose M Alonso
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|