201
|
Bao H, Liu Y, Zhang M, Chen Z, Zhang W, Ge Y, Kang D, Gao F, Shen Y. Increased β-site APP cleaving enzyme 1-mediated insulin receptor cleavage in type 2 diabetes mellitus with cognitive impairment. Alzheimers Dement 2021; 17:1097-1108. [PMID: 33410588 DOI: 10.1002/alz.12276] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Patients with type 2 diabetes mellitus (T2DM) are at a high risk of cognitive impairment, with insulin resistance playing a pivotal role. β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is considered a predictor of Alzheimer's disease. However, the potential roles of BACE1 in insulin resistance and the risk of cognitive impairment in T2DM remain unclear. METHODS We measured plasma BACE1 levels, BACE1 cleavage activities for Swedish mutant amyloid precursor protein (APPsw) and insulin receptor β subunit (INSR-β), and soluble INSR (sINSR) levels in a clinical cohort study. RESULTS T2DM patients with or without cognitive impairment exhibited elevated plasma BACE1 levels and BACE1 enzymatic activities for APPsw and INSR-β, and sINSR levels. Moreover, the glycemic status correlated with elevated BACE1 levels and BACE1-mediated INSR cleavage, which was associated with insulin resistance. DISCUSSION The elevated BACE1 levels in T2DM may contribute to increasing the cognitive impairment risk through both amyloidogenesis and insulin resistance.
Collapse
Affiliation(s)
- Hong Bao
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiming Liu
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengguo Zhang
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zuolong Chen
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Zhang
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yuhao Ge
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Dongmei Kang
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
202
|
Cheon SY, Song J. The Association between Hepatic Encephalopathy and Diabetic Encephalopathy: The Brain-Liver Axis. Int J Mol Sci 2021; 22:ijms22010463. [PMID: 33466498 PMCID: PMC7796499 DOI: 10.3390/ijms22010463] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatic encephalopathy (HE) is one of the main consequences of liver disease and is observed in severe liver failure and cirrhosis. Recent studies have provided significant evidence that HE shows several neurological symptoms including depressive mood, cognitive dysfunction, impaired circadian rhythm, and attention deficits as well as motor disturbance. Liver disease is also a risk factor for the development of diabetes mellitus. Diabetic encephalopathy (DE) is characterized by cognitive dysfunction and motor impairment. Recent research investigated the relationship between metabolic changes and the pathogenesis of neurological disease, indicating the importance between metabolic organs and the brain. Given that a diverse number of metabolites and changes in the brain contribute to neurologic dysfunction, HE and DE are emerging types of neurologic disease. Here, we review significant evidence of the association between HE and DE, and summarise the common risk factors. This review may provide promising therapeutic information and help to design a future metabolic organ-related study in relation to HE and DE.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
203
|
Hong S, Han K, Park CY. The insulin resistance by triglyceride glucose index and risk for dementia: population-based study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:9. [PMID: 33402193 PMCID: PMC7786939 DOI: 10.1186/s13195-020-00758-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022]
Abstract
Background Insulin resistance is suggested to have negative effects on cognition; however, results from large population studies are lacking. In this study, the potential relationships between the triglyceride glucose (TyG) index, a simple surrogate marker of insulin resistance, and dementia were evaluated using a large-scale population dataset. Methods This was a retrospective, observational, cohort study using data from the National Health Information Database from 2009 to 2015 and included 5,586,048 participants 40 years age or older. The TyG index was used as a measure of insulin resistance, and participants were divided into quartiles based on TyG index. The incidence of dementia was assessed using hazard ratios (HRs) estimated with Cox proportional hazard modeling. Results During a median follow-up of 7.21 years, dementia was diagnosed in 142,714 (2.55%) participants. Alzheimer’s disease (AD) and vascular dementia (VD) were diagnosed in 74.3% and 12.5% of the participants. Multivariate-adjusted HRs for patients in the TyG index 4th quartile were higher for dementia (HRs = 1.14; 95% confidence interval [CI] 1.12–1.16), AD (HRs = 1.12; 95% CI 1.09–1.14), and VD (HRs = 1.18; 95% CI 1.12–1.23) compared with the 1st quartile of TyG index; however, this had a small effect size (Cohen’s d = 0.10, 0.08, and 0.13, respectively). These effects were independent of age, sex, smoking status, physical activity, body mass index, systolic blood pressure, and total cholesterol. Conclusion In this large population study, TyG index was associated with an increased risk of dementia, including AD and VD, that was independent of traditional cardiovascular risk factors, although the effect size of the TyG index was small. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-020-00758-4.
Collapse
Affiliation(s)
- Sangmo Hong
- Department of Internal Medicine, Hanyang University, College of Medicine, 222, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, 369, Sangdo-Ro, Dongjak-Gu, Seoul, Republic of Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29, Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea.
| |
Collapse
|
204
|
4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021; 44:S40-S52. [PMID: 33298415 DOI: 10.2337/dc21-s004] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc21-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc21-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
205
|
Luo H, Tan C, Adhikari S, Plassman B, Kamer A, Sloan F, Schwartz M, Qi X, Wu B. Effects of the Co-occurrence of Diabetes Mellitus and Tooth Loss on Cognitive Function. Curr Alzheimer Res 2021; 18:1023-1031. [PMID: 34951384 PMCID: PMC8810293 DOI: 10.2174/1567205019666211223093057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Both diabetes mellitus (DM) and poor oral health are common chronic conditions and risk factors of Alzheimer's disease and related dementia among older adults. This study assessed the effects of DM and complete tooth loss (TL) on cognitive function, accounting for their interactions. METHODS Longitudinal data were obtained from the 2006, 2012, and 2018 waves of the Health and Retirement Study. This cohort study included 7,805 respondents aged 65 years or older with 18,331 person-year observations. DM and complete TL were self-reported. Cognitive function was measured by the Telephone Interview for Cognitive Status. Random-effect regressions were used to test the associations, overall and stratified by sex. RESULTS Compared with older adults without neither DM nor complete TL, those with both conditions (b = -1.35, 95% confidence interval [CI]: -1.68, -1.02), with complete TL alone (b = -0.67, 95% CI: -0.88, -0.45), or with DM alone (b = -0.40, 95% CI: -0.59, -0.22), had lower cognitive scores. The impact of having both conditions was significantly greater than that of having DM alone (p < .001) or complete TL alone (p = 0.001). Sex-stratified analyses showed the effects were similar in males and females, except having DM alone was not significant in males. CONCLUSION The co-occurrence of DM and complete TL poses an additive risk for cognition. Healthcare and family-care providers should pay attention to the cognitive health of patients with both DM and complete TL. Continued efforts are needed to improve older adults' access to dental care, especially for individuals with DM.
Collapse
Affiliation(s)
- Huabin Luo
- East Carolina University, Brody School of Medicine, Greenville, USA
| | - Chenxin Tan
- New York University, Rory Meyers College of Nursing New York, USA
| | | | | | - Angela Kamer
- New York University College of Dentistry, New York, USA
| | - Frank Sloan
- Duke University School of Medicine, Durham, USA
| | - Mark Schwartz
- New York University Grossman School of Medicine, New York, USA
| | - Xiang Qi
- New York University, Rory Meyers College of Nursing New York, USA
| | - Bei Wu
- New York University, Rory Meyers College of Nursing New York, USA
| |
Collapse
|
206
|
Tseng CH. Vildagliptin Has a Neutral Association With Dementia Risk in Type 2 Diabetes Patients. Front Endocrinol (Lausanne) 2021; 12:637392. [PMID: 33995274 PMCID: PMC8120263 DOI: 10.3389/fendo.2021.637392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/12/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND AIMS Animal studies suggested that vildagliptin might exert a beneficial effect on cognitive function. The present study evaluated whether the use of vildagliptin in patients with type 2 diabetes mellitus might affect dementia risk. METHODS The database of Taiwan's National Health Insurance was used to enroll an unmatched cohort and a propensity score-matched-pair cohort of ever and never users of vildagliptin from patients with newly diagnosed diabetes mellitus during 2002-2014. The patients should be alive on January 1, 2015 and were followed up for dementia diagnosis until December 31, 2016. Unadjusted and multivariate-adjusted hazard ratios (HR) and their 95% confidence intervals (CI) were estimated for vildagliptin ever versus never users, for cumulative duration and cumulative dose of vildagliptin therapy categorized into tertiles versus never users, and for cumulative duration and cumulative dose treated as continuous variables. RESULTS There were 355610 never users and 43196 ever users in the unmatched cohort and 40489 never users and 40489 ever users in the matched cohort. In the unmatched cohort, unadjusted HR (95% CI) was 0.929 (0.683-1.264) and the multivariate-adjusted HR (95% CI) was 0.922 (0.620-1.372). In the matched cohort, the unadjusted HR (95% CI) was 0.930 (0.616-1.402) and the multivariate-adjusted HR (95% CI) was 0.825 (0.498-1.367). None of the analyses conducted for cumulative duration and cumulative dose was significant, either being treated as tertile cutoffs or as continuous variables, in either the unmatched cohort or the matched cohort. CONCLUSIONS This study showed a neutral effect of vildagliptin on dementia risk.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
- *Correspondence: Chin-Hsiao Tseng,
| |
Collapse
|
207
|
Brzecka A, Madetko N, Nikolenko VN, Ashraf GM, Ejma M, Leszek J, Daroszewski C, Sarul K, Mikhaleva LM, Somasundaram SG, Kirkland CE, Bachurin SO, Aliev G. Sleep Disturbances and Cognitive Impairment in the Course of Type 2 Diabetes-A Possible Link. Curr Neuropharmacol 2020; 19:78-91. [PMID: 32148197 PMCID: PMC7903492 DOI: 10.2174/1570159x18666200309101750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing number of patients worldwide with sleep disturbances and diabetes. Various sleep disorders, including long or short sleep duration and poor sleep quality of numerous causes, may increase the risk of diabetes. Some symptoms of diabetes, such as painful peripheral neuropathy and nocturia, or associated other sleep disorders, such as sleep breathing disorders or sleep movement disorders, may influence sleep quality and quantity. Both sleep disorders and diabetes may lead to cognitive impairment. The risk of development of cognitive impairment in diabetic patients may be related to vascular and non-vascular and other factors, such as hypoglycemia, hyperglycemia, central insulin resistance, amyloid and tau deposits and other causes. Numerous sleep disorders, e.g., sleep apnea, restless legs syndrome, insomnia, and poor sleep quality are most likely are also associated with cognitive impairment. Adequate functioning of the system of clearance of the brain from toxic substances, such as amyloid β, i.e. glymphatic system, is related to undisturbed sleep and prevents cognitive impairment. In the case of coexistence, sleep disturbances and diabetes either independently lead to and/or mutually aggravate cognitive impairment.
Collapse
Affiliation(s)
- Anna Brzecka
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Madetko
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Vladimir N Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Cyryl Daroszewski
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina Sarul
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology,3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426, United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426, United States
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| |
Collapse
|
208
|
Dyer AH, McKenna L, Batten I, Jones K, Widdowson M, Dunne J, Conlon N, Reilly R, Woods CP, O’Neill D, Gibney J, Bourke NM, Kennelly SP. Peripheral Inflammation and Cognitive Performance in Middle-Aged Adults With and Without Type 2 Diabetes: Results From the ENBIND Study. Front Aging Neurosci 2020; 12:605878. [PMID: 33424582 PMCID: PMC7793991 DOI: 10.3389/fnagi.2020.605878] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/04/2020] [Indexed: 01/07/2023] Open
Abstract
Midlife Type 2 Diabetes Mellitus (T2DM) is associated with a greater risk of dementia in later life. Peripheral inflammation and its impact on cognition is proposed as one of the pathological mechanisms mediating this link. However, studies have primarily focused on older individuals with established cognitive impairment and a long duration of T2DM. Importantly, knowledge of which individuals with midlife T2DM who are at greatest risk of later cognitive decline is lacking. We examined the cross-sectional relationship between serum levels of 8 pro-inflammatory markers (IL-1β, IL-6, TNF-α, IL-8, MCP-1, CXCL10, IL-12p70, CRP) and performance on a detailed neuropsychological assessment battery in middle-aged adults with uncomplicated T2DM (N = 89; 52 ± 8.1 years, 47% female) and matched healthy controls (N = 50; 52 ± 8.3 years, 59% female). Linear regression was used to analyze associations between serum markers and cognitive performance in the overall cohort, followed by a T2DM∗protein concentration interaction analysis to identify any T2DM-specific effects. We observed a significant T2DM-specific association between serum TNF-α levels and scores on the Paired Associates Learning (PAL) task (β: -3.16, SE: 1.32, p = 0.01, Std. Beta: -0.94), a task with significant working memory demands previously implicated in T2DM-related cognitive dysfunction. However, this did not persist on controlling for multiple testing. We provide exploratory evidence for a significant T2DM-specific relationship between serum TNF-α and memory performance. These findings require further replication and longitudinal analysis with the aim of selecting-out individuals with midlife T2DM at risk of future cognitive decline for potential preventative interventions.
Collapse
Affiliation(s)
- Adam H. Dyer
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, St. James’s Hospital, Dublin, Ireland
- Department of Immunology, St. James’s Hospital, Dublin, Ireland
| | - Louise McKenna
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Isabella Batten
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, St. James’s Hospital, Dublin, Ireland
| | - Karen Jones
- Department of Immunology, St. James’s Hospital, Dublin, Ireland
| | - Matthew Widdowson
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Jean Dunne
- Department of Immunology, St. James’s Hospital, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St. James’s Hospital, Dublin, Ireland
| | - Richard Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Conor P. Woods
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Desmond O’Neill
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - James Gibney
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Nollaig M. Bourke
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, St. James’s Hospital, Dublin, Ireland
| | - Sean P. Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
209
|
Huynh K, Lim WLF, Giles C, Jayawardana KS, Salim A, Mellett NA, Smith AAT, Olshansky G, Drew BG, Chatterjee P, Martins I, Laws SM, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Arnold M, Nho K, Saykin AJ, Baillie R, Han X, Kaddurah-Daouk R, Martins RN, Meikle PJ. Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer's disease. Nat Commun 2020; 11:5698. [PMID: 33173055 PMCID: PMC7655942 DOI: 10.1038/s41467-020-19473-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2020] [Indexed: 11/22/2022] Open
Abstract
Changes to lipid metabolism are tightly associated with the onset and pathology of Alzheimer's disease (AD). Lipids are complex molecules comprising many isomeric and isobaric species, necessitating detailed analysis to enable interpretation of biological significance. Our expanded targeted lipidomics platform (569 species across 32 classes) allows for detailed lipid separation and characterisation. In this study we examined peripheral samples of two cohorts (AIBL, n = 1112 and ADNI, n = 800). We are able to identify concordant peripheral signatures associated with prevalent AD arising from lipid pathways including; ether lipids, sphingolipids (notably GM3 gangliosides) and lipid classes previously associated with cardiometabolic disease (phosphatidylethanolamine and triglycerides). We subsequently identified similar lipid signatures in both cohorts with future disease. Lastly, we developed multivariate lipid models that improved classification and prediction. Our results provide a holistic view between the lipidome and AD using a comprehensive approach, providing targets for further mechanistic investigation.
Collapse
Affiliation(s)
- Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Monash University, Melbourne, VIC, 3800, Australia
| | - Wei Ling Florence Lim
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Cooperative research Centre (CRC) for Mental Health, Sydney, NSW, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Agus Salim
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Mathematics and Statistics, La Trobe University, Melbourne, VIC, Australia
- Melbourne School of Global and Population Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | | | | | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Monash University, Melbourne, VIC, 3800, Australia
| | - Pratishtha Chatterjee
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- KaRa Institute of Neurological Disease, Sydney, NSW, Australia
| | - Ian Martins
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Cooperative research Centre (CRC) for Mental Health, Sydney, NSW, Australia
| | - Simon M Laws
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Ashley I Bush
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Christopher C Rowe
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, VIC, 3050, Australia
| | - Colin L Masters
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| | - Ralph N Martins
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.
- Cooperative research Centre (CRC) for Mental Health, Sydney, NSW, Australia.
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.
- KaRa Institute of Neurological Disease, Sydney, NSW, Australia.
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, WA, Australia.
- Australian Alzheimer's Research Foundation, Nedlands, WA, Australia.
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
210
|
Palavicini JP, Chen J, Wang C, Wang J, Qin C, Baeuerle E, Wang X, Woo JA, Kang DE, Musi N, Dupree JL, Han X. Early disruption of nerve mitochondrial and myelin lipid homeostasis in obesity-induced diabetes. JCI Insight 2020; 5:137286. [PMID: 33148881 PMCID: PMC7710310 DOI: 10.1172/jci.insight.137286] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic neuropathy is a major complication of diabetes. Current treatment options alleviate pain but do not stop the progression of the disease. At present, there are no approved disease-modifying therapies. Thus, developing more effective therapies remains a major unmet medical need. Seeking to better understand the molecular mechanisms driving peripheral neuropathy, as well as other neurological complications associated with diabetes, we performed spatiotemporal lipidomics, biochemical, ultrastructural, and physiological studies on PNS and CNS tissue from multiple diabetic preclinical models. We unraveled potentially novel molecular fingerprints underlying nerve damage in obesity-induced diabetes, including an early loss of nerve mitochondrial (cardiolipin) and myelin signature (galactosylceramide, sulfatide, and plasmalogen phosphatidylethanolamine) lipids that preceded mitochondrial, myelin, and axonal structural/functional defects; started in the PNS; and progressed to the CNS at advanced diabetic stages. Mechanistically, we provided substantial evidence indicating that these nerve mitochondrial/myelin lipid abnormalities are (surprisingly) not driven by hyperglycemia, dysinsulinemia, or insulin resistance, but rather associate with obesity/hyperlipidemia. Importantly, our findings have major clinical implications as they open the door to novel lipid-based biomarkers to diagnose and distinguish different subtypes of diabetic neuropathy (obese vs. nonobese diabetics), as well as to lipid-lowering therapeutic strategies for treatment of obesity/diabetes-associated neurological complications and for glycemic control.
Collapse
Affiliation(s)
- Juan P. Palavicini
- Barshop Institute for Longevity and Aging Studies and
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Juan Chen
- Barshop Institute for Longevity and Aging Studies and
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Studies and
| | - Jianing Wang
- Barshop Institute for Longevity and Aging Studies and
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies and
| | - Eric Baeuerle
- Barshop Institute for Longevity and Aging Studies and
| | - Xinming Wang
- Byrd Alzheimer’s Center and Research Institute, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jung A. Woo
- Byrd Alzheimer’s Center and Research Institute, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - David E. Kang
- Byrd Alzheimer’s Center and Research Institute, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies and
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jeffrey L. Dupree
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Research Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
211
|
Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, Bringas-Vega ML, García-del-Barco-Herrera D, Berlanga-Saez JO, García-Ojalvo A, Valdés-Sosa MJ, Valdés-Sosa PA. Insulin Resistance at the Crossroad of Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne) 2020; 11:560375. [PMID: 33224105 PMCID: PMC7674493 DOI: 10.3389/fendo.2020.560375] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin plays a major neuroprotective and trophic function for cerebral cell population, thus countering apoptosis, beta-amyloid toxicity, and oxidative stress; favoring neuronal survival; and enhancing memory and learning processes. Insulin resistance and impaired cerebral glucose metabolism are invariantly reported in Alzheimer's disease (AD) and other neurodegenerative processes. AD is a fatal neurodegenerative disorder in which progressive glucose hypometabolism parallels to cognitive impairment. Although AD may appear and progress in virtue of multifactorial nosogenic ingredients, multiple interperpetuative and interconnected vicious circles appear to drive disease pathophysiology. The disease is primarily a metabolic/energetic disorder in which amyloid accumulation may appear as a by-product of more proximal events, especially in the late-onset form. As a bridge between AD and type 2 diabetes, activation of c-Jun N-terminal kinase (JNK) pathway with the ensued serine phosphorylation of the insulin response substrate (IRS)-1/2 may be at the crossroads of insulin resistance and its subsequent dysmetabolic consequences. Central insulin axis bankruptcy translates in neuronal vulnerability and demise. As a link in the chain of pathogenic vicious circles, mitochondrial dysfunction, oxidative stress, and peripheral/central immune-inflammation are increasingly advocated as major pathology drivers. Pharmacological interventions addressed to preserve insulin axis physiology, mitochondrial biogenesis-integral functionality, and mitophagy of diseased organelles may attenuate the adjacent spillover of free radicals that further perpetuate mitochondrial damages and catalyze inflammation. Central and/or peripheral inflammation may account for a local flood of proinflammatory cytokines that along with astrogliosis amplify insulin resistance, mitochondrial dysfunction, and oxidative stress. All these elements are endogenous stressor, pro-senescent factors that contribute to JNK activation. Taken together, these evidences incite to identify novel multi-mechanistic approaches to succeed in ameliorating this pandemic affliction.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén-Nieto
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Nadia Rodríguez-Rodríguez
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Maria Luisa Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | | | - Jorge O. Berlanga-Saez
- Applied Mathematics Department, Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariana García-Ojalvo
- Tissue Repair and Cytoprotection Research Group, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mitchell Joseph Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| | - Pedro A. Valdés-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neurosciences Center, Cubanacan, Havana, Cuba
| |
Collapse
|
212
|
Iannucci J, Rao HV, Grammas P. High Glucose and Hypoxia-Mediated Damage to Human Brain Microvessel Endothelial Cells Induces an Altered, Pro-Inflammatory Phenotype in BV-2 Microglia In Vitro. Cell Mol Neurobiol 2020; 42:985-996. [PMID: 33136275 PMCID: PMC8942976 DOI: 10.1007/s10571-020-00987-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023]
Abstract
Diabetes is strongly linked to the development of Alzheimer’s disease (AD), though the mechanisms for this enhanced risk are unclear. Because vascular inflammation is a consistent feature of both diabetes and AD, the cerebral microcirculation could be a key target for the effects of diabetes in the brain. The goal of this study is to explore whether brain endothelial cells, injured by diabetes-related insults, glucose and hypoxia, can affect inflammatory and activation processes in microglia in vitro. Human brain microvascular endothelial cells (HBMVECs) were either treated with 5 mM glucose (control), 30 mM glucose (high glucose), exposed to hypoxia, or exposed to hypoxia plus high glucose. HBMVEC-conditioned medium was then used to treat BV-2 microglia. Alterations in microglia phenotype were assessed through measurement of nitric oxide (NO), cytokine production, microglial activation state markers, and microglial phagocytosis. HBMVECs were injured by exposure to glucose and/or hypoxia, as assessed by release of LDH, interleukin (IL)-1β, and reactive oxygen species (ROS). HBMVECs injured by glucose and hypoxia induced increases in microglial production of NO, tumor necrosis factor-α (TNFα) and matrix metalloproteinase (MMP)-9. Injured HBMVECs significantly increased microglial expression of CD11c and CLEC7A, and decreased expression of the homeostatic marker P2RY12. Finally, bead uptake by BV-2 cells, an index of phagocytic ability, was elevated by conditioned media from injured HBMVECs. The demonstration that injury to brain endothelial cells by diabetic-associated insults, glucose and hypoxia, promotes microglial inflammation supports the idea that the cerebral microcirculation is a critical locus for the deleterious effects of diabetes in the AD brain.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States. .,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Haripriya Vittal Rao
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States.,Wake Forest Baptist Medical Center, Winston-Salem, Wake Forest, NC, 27101, USA
| | - Paula Grammas
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, 130 Flagg Road, Kingston, RI, 02881, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
213
|
Tristão Pereira C, Diao Y, Yin T, da Silva AR, Lanz B, Pierzchala K, Poitry-Yamate C, Jelescu IO. Synchronous nonmonotonic changes in functional connectivity and white matter integrity in a rat model of sporadic Alzheimer's disease. Neuroimage 2020; 225:117498. [PMID: 33164858 DOI: 10.1016/j.neuroimage.2020.117498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/16/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022] Open
Abstract
Brain glucose hypometabolism has been singled out as an important contributor and possibly main trigger to Alzheimer's disease (AD). Intracerebroventricular injections of streptozotocin (icv-STZ) cause brain glucose hypometabolism without systemic diabetes. Here, a first-time longitudinal study of brain glucose metabolism, functional connectivity and white matter microstructure was performed in icv-STZ rats using PET and MRI. Histological markers of pathology were tested at an advanced stage of disease. STZ rats exhibited altered functional connectivity and intra-axonal damage and demyelination in brain regions typical of AD, in a temporal pattern of acute injury, transient recovery/compensation and chronic degeneration. In the context of sustained glucose hypometabolism, these nonmonotonic trends - also reported in behavioral studies of this animal model as well as in human AD - suggest a compensatory mechanism, possibly recruiting ketone bodies, that allows a partial and temporary repair of brain structure and function. The early acute phase could thus become a valuable therapeutic window to strengthen the recovery phase and prevent or delay chronic degeneration, to be considered both in preclinical and clinical studies of AD. In conclusion, this work reveals the consequences of brain insulin resistance on structure and function, highlights signature nonmonotonic trajectories in their evolution and proposes potent MRI-derived biomarkers translatable to human AD and diabetic populations.
Collapse
Affiliation(s)
- Catarina Tristão Pereira
- Centre d'Imagerie Biomédicale, EPFL, Station 6, Lausanne 1015, Switzerland; Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Yujian Diao
- Centre d'Imagerie Biomédicale, EPFL, Station 6, Lausanne 1015, Switzerland; Laboratoire d'Imagerie Fonctionnelle et Métabolique, EPFL, Lausanne, Switzerland
| | - Ting Yin
- Centre d'Imagerie Biomédicale, EPFL, Station 6, Lausanne 1015, Switzerland
| | - Analina R da Silva
- Centre d'Imagerie Biomédicale, EPFL, Station 6, Lausanne 1015, Switzerland
| | - Bernard Lanz
- Laboratoire d'Imagerie Fonctionnelle et Métabolique, EPFL, Lausanne, Switzerland
| | | | | | - Ileana O Jelescu
- Centre d'Imagerie Biomédicale, EPFL, Station 6, Lausanne 1015, Switzerland.
| |
Collapse
|
214
|
Danat IM, Clifford A, Partridge M, Zhou W, Bakre AT, Chen A, McFeeters D, Smith T, Wan Y, Copeland J, Anstey KJ, Chen R. Impacts of Overweight and Obesity in Older Age on the Risk of Dementia: A Systematic Literature Review and a Meta-Analysis. J Alzheimers Dis 2020; 70:S87-S99. [PMID: 30689574 PMCID: PMC6700617 DOI: 10.3233/jad-180763] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: It is unclear whether overweight and obesity in older age reduces or increases the risk of incident dementia. Objective: To assess the impacts of overweight and obesity in older age on incident dementia. Methods: We searched cohort studies reporting body weight measured in older age and dementia through PubMed, Embase, Medline, PyschInfo, and Cochrane library until July 2016. Sixteen articles were identified for the review. We pooled data from them and a new unpublished study from China, to calculate relative risk (RR) of incident dementia in relation to body mass index (BMI) and waist circumference (WC). Results: All 16 cohort studies were undertaken in high income countries, with follow-up periods ranging between 3 to 18 years. Thirteen studies showed an inverse association between BMI and dementia, and three studies demonstrated a positive association. Pooled RR of dementia in relation to continuous BMI from 14 studied populations, including the new Chinese data, was 0.97 (95% CI 0.95–1.00); in those followed up <9 years it was 0.95 (0.93–0.96) while in ≥9 years follow-up it was 1.03 (0.96–1.11). In five studied populations examining categorical BMI, RR of dementia in older people classified as overweight and obese was 0.98 (0.54–1.77) and 1.17 (0.65–2.10) respectively, in comparison with other weights. The pooled WC data showed no association between increased WC and reduced risk of dementia. Conclusion: The current evidence did not support a paradox on beneficial impacts of overweight and obesity in older age on incident dementia. More studies with long term follow up are needed to clarify the association of body weight in older age with dementia risk.
Collapse
Affiliation(s)
- Isaac M Danat
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Angela Clifford
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Martin Partridge
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Weiju Zhou
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Aishat T Bakre
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Anthony Chen
- Faculty of Sciences and Technology, Middlesex University, London, UK
| | - Danielle McFeeters
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Tina Smith
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Yuhui Wan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - John Copeland
- Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | - Kaarin J Anstey
- School of Psychology, University of New South Wales and Neuroscience Research Australia, Sydney, Australia
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
215
|
Anstey KJ, Ee N, Eramudugolla R, Jagger C, Peters R. A Systematic Review of Meta-Analyses that Evaluate Risk Factors for Dementia to Evaluate the Quantity, Quality, and Global Representativeness of Evidence. J Alzheimers Dis 2020; 70:S165-S186. [PMID: 31306123 PMCID: PMC6700718 DOI: 10.3233/jad-190181] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: The translation of evidence on dementia risk factors into clinical advice requires careful evaluation of the methodology and scope of data from which risk estimates are obtained. Objective: To evaluate the quantity, quality, and representativeness of evidence, we conducted a review of reviews of risk factors for Alzheimer’s disease (AD), Vascular dementia (VaD), and Any Dementia. Methods: PubMed, Cochrane library, and the Global Index Medicus were searched to identify meta-analyses of observational studies of risk factors for AD, VaD, and Any Dementia. PROSPERO CRD42017053920. Results: Meta-analysis data were available for 34 risk factors for AD, 26 risk factors for Any Dementia and eight for VaD. Quality of evidence varied greatly in terms of the number of contributing studies, whether data on midlife exposure was available, and consistency of measures. The most evidence was available for cardiovascular risk factors. The most geographically representative evidence (five of six global regions) was available for alcohol, physical activity, diabetes, high midlife BMI, antihypertensives, and motor function. Evidence from Australia/Oceana or Africa was limited. With the exception of diabetes, meta-analysis data were unavailable from Latin America/Caribbean. Midlife specific data were only available for cholesterol and arthritis. Conclusion: There is a lack of midlife specific data, limited data on VaD, and a lack of geographical representation for many risk factors for dementia. The quality, quantity, and representativeness of evidence needs to be considered before recommendations are made about the relevance of risk factors in mid- or late-life or for dementia subtypes.
Collapse
Affiliation(s)
- Kaarin J Anstey
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Nicole Ee
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | | | - Carol Jagger
- Newcastle Institute for Ageing, Newcastle University, Newcastle, UK
| | - Ruth Peters
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| |
Collapse
|
216
|
Diniz Pereira J, Gomes Fraga V, Morais Santos AL, Carvalho MDG, Caramelli P, Braga Gomes K. Alzheimer's disease and type 2 diabetes mellitus: A systematic review of proteomic studies. J Neurochem 2020; 156:753-776. [PMID: 32909269 DOI: 10.1111/jnc.15166] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/15/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Similar to dementia, the risk for developing type 2 diabetes mellitus (T2DM) increases with age, and T2DM also increases the risk for dementia, particularly Alzheimer's disease (AD). Although T2DM is primarily a peripheral disorder and AD is a central nervous system disease, both share some common features as they are chronic and complex diseases, and both show involvement of oxidative stress and inflammation in their progression. These characteristics suggest that T2DM may be associated with AD, which gave rise to a new term, type 3 diabetes (T3DM). In this study, we searched for matching peripheral proteomic biomarkers of AD and T2DM based in a systematic review of the available literature. We identified 17 common biomarkers that were differentially expressed in both patients with AD or T2DM when compared with healthy controls. These biomarkers could provide a useful workflow for screening T2DM patients at risk to develop AD.
Collapse
Affiliation(s)
- Jessica Diniz Pereira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Gomes Fraga
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Luiza Morais Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Caramelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
217
|
Bhatia P, Singh N. Ameliorative effect of ozagrel, a thromboxane A2 synthase inhibitor, in hyperhomocysteinemia-induced experimental vascular cognitive impairment and dementia. Fundam Clin Pharmacol 2020; 35:650-666. [PMID: 33020931 DOI: 10.1111/fcp.12610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The present study investigates the effect of ozagrel, a selective thromboxane A2 (TXA2) inhibitor, in rat model of hyperhomocysteinemia (HHcy)-induced vascular cognitive impairment and dementia (VCID). Wistar rats were administered L-methionine (1.7 g/kg/day; p.o. × 8 weeks) to induce VCID. Morris water maze (MWM) test was employed to assess learning and memory. Endothelial dysfunction was assessed in the isolated aorta by observing endothelial-dependent vasorelaxation and levels of serum nitrite. Various biochemical and histopathological estimations were also performed. L-methionine produced significant impairment in endothelium-dependent vasorelaxation and decreases serum nitrite levels indicating endothelial dysfunction. Further, these animals performed poorly on MWM, depicting impairment of learning and memory. Further, a significant rise in brain oxidative stress level (indicated by increase in brain thiobarbituric acid-reactive species and decrease in reduced glutathione levels), brain acetylcholinesterase activity, brain myeloperoxidase activity, brain TNF-α and IL-6 levels, and brain leukocyte (neutrophil) infiltration was also observed. Treatment of ozagrel (10 and 20 mg/kg, p. o.)/donepezil (0.5 mg/kg, i.p., serving as standard) ameliorated L-methionine-induced endothelial dysfunction, memory deficits, and biochemical and histopathological changes. It may be concluded that ozagrel markedly improved endothelial dysfunction, learning and memory, and biochemical and histopathological alteration associated with L-methionine-induced VCID and that TXA2 can be considered as an important therapeutic target for the management of VCID.
Collapse
Affiliation(s)
- Pankaj Bhatia
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
218
|
Bonds JA, Shetti A, Stephen TKL, Bonini MG, Minshall RD, Lazarov O. Deficits in hippocampal neurogenesis in obesity-dependent and -independent type-2 diabetes mellitus mouse models. Sci Rep 2020; 10:16368. [PMID: 33004912 PMCID: PMC7530538 DOI: 10.1038/s41598-020-73401-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
Hippocampal neurogenesis plays an important role in learning and memory function throughout life. Declines in this process have been observed in both aging and Alzheimer's disease (AD). Type 2 Diabetes mellitus (T2DM) is a disorder characterized by insulin resistance and impaired glucose metabolism. T2DM often results in cognitive decline in adults, and significantly increases the risk of AD development. The pathways underlying T2DM-induced cognitive deficits are not known. Some studies suggest that alterations in hippocampal neurogenesis may contribute to cognitive deterioration, however, the fate of neurogenesis in these studies is highly controversial. To address this problem, we utilized two models of T2DM: (1) obesity-independent MKR transgenic mice expressing a mutated form of the human insulin-like growth factor 1 receptor (IGF-1R) in skeletal muscle, and (2) Obesity-dependent db/db mice harboring a mutation in the leptin receptor. Our results show that both models of T2DM display compromised hippocampal neurogenesis. We show that the number of new neurons in the hippocampus of these mice is reduced. Clone formation capacity of neural progenitor cells isolated from the db/db mice is deficient. Expression of insulin receptor and epidermal growth factor receptor was reduced in hippocampal neurospheres isolated from db/db mice. Results from this study warrant further investigation into the mechanisms underlying decreased neurogenesis in T2DM and its link to the cognitive decline observed in this disorder.
Collapse
Affiliation(s)
- Jacqueline A Bonds
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 578 CME (M/C 512), 808 South Wood Street, Chicago, IL, 60612, USA
| | - Aashutosh Shetti
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 578 CME (M/C 512), 808 South Wood Street, Chicago, IL, 60612, USA
| | - Terilyn K L Stephen
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 578 CME (M/C 512), 808 South Wood Street, Chicago, IL, 60612, USA
| | - Marcelo G Bonini
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine of Northwestern University, Chicago, IL, 60612, USA
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 578 CME (M/C 512), 808 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
219
|
Lang X, Zhao N, He Q, Li X, Li X, Sun C, Zhang X. Treadmill exercise mitigates neuroinflammation and increases BDNF via activation of SIRT1 signaling in a mouse model of T2DM. Brain Res Bull 2020; 165:30-39. [PMID: 32987101 DOI: 10.1016/j.brainresbull.2020.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Although previous studies showed that exercise can improve cognitive dysfunction in type 2 diabetes (T2DM), the underlying mechanism remains unclear. Sirtuin 1 (SIRT1) has been shown to play a role in regulating inflammatory responses in the brain and increasing BDNF expression. This study investigated the effects of treadmill exercise on the hippocampal inflammatory response and BDNF expression in a T2DM mice model. We also tested whether these effects are SIRT1-dependent. In this study, C57BL/ 6 mice were used to construct T2DM model by a high-fat diet and STZ injection. We found that treadmill exercise for 8 weeks can significantly improve the cognitive dysfunction, alleviate activation of proinflammatory microglia M1 (Iba1 labeling) in the hippocampus of T2DM mice, and reduce the levels of proinflammatory factors IL-1β, IL-6, TNF-α, increase the expression levels of anti-inflammatory factors IL-10, TGF-β1, and promote the release of BDNF. We also found that exercise activate the signaling pathway of SIRT1/ NF-κB and SIRT1/ PGC-1α/ FNDC5/ BDNF. After the application of nicotinamide (NAM, SIRT1 inhibitor), the positive effects of exercise were remarkably suppressed. Our results showed that long-term moderate intensity treadmill exercise can alleviate inflammatory response in the hippocampus and increase BDNF expression in T2DM mice by activating SIRT1.
Collapse
Affiliation(s)
| | - Na Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Qiang He
- School of Physical Education of Shandong University, Jinan, China
| | - Xun Li
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuejiao Li
- School of Physical Education of Shandong University, Jinan, China
| | - Chuanning Sun
- School of Physical Education of Shandong University, Jinan, China
| | - Xianliang Zhang
- School of Physical Education of Shandong University, Jinan, China.
| |
Collapse
|
220
|
Reilly AM, Tsai AP, Lin PB, Ericsson AC, Oblak AL, Ren H. Metabolic Defects Caused by High-Fat Diet Modify Disease Risk through Inflammatory and Amyloidogenic Pathways in a Mouse Model of Alzheimer's Disease. Nutrients 2020; 12:nu12102977. [PMID: 33003412 PMCID: PMC7600118 DOI: 10.3390/nu12102977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
High-fat diet (HFD) has been shown to accelerate Alzheimer’s disease (AD) pathology, but the exact molecular and cellular mechanisms remain incompletely understood. Moreover, it is unknown whether AD mice are more susceptible to HFD-induced metabolic dysfunctions. To address these questions, we used 5xFAD mice as an Alzheimer’s disease model to study the physiological and molecular underpinning between HFD-induced metabolic defects and AD pathology. We systematically profiled the metabolic parameters, the gut microbiome composition, and hippocampal gene expression in 5xFAD and wild type (WT) mice fed normal chow diet and HFD. HFD feeding impaired energy metabolism in male 5xFAD mice, leading to increased locomotor activity, energy expenditure, and food intake. 5xFAD mice on HFD had elevated circulating lipids and worsened glucose intolerance. HFD caused profound changes in gut microbiome compositions, though no difference between genotype was detected. We measured hippocampal mRNAs related to AD neuropathology and neuroinflammation and showed that HFD elevated the expression of apoptotic, microglial, and amyloidogenic genes in 5xFAD mice. Pathway analysis revealed that differentially regulated genes were involved in insulin signaling, cytokine signaling, cellular stress, and neurotransmission. Collectively, our results showed that 5xFAD mice were more susceptible to HFD-induced metabolic dysregulation and suggest that targeting metabolic dysfunctions can ameliorate AD symptoms via effects on insulin signaling and neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Austin M. Reilly
- Stark Neurosciences Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.R.); (A.P.T.); (P.B.L.); (A.L.O.)
| | - Andy P. Tsai
- Stark Neurosciences Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.R.); (A.P.T.); (P.B.L.); (A.L.O.)
| | - Peter B. Lin
- Stark Neurosciences Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.R.); (A.P.T.); (P.B.L.); (A.L.O.)
| | - Aaron C. Ericsson
- Metagenomics Center, University of Missouri, Columbia, MO 65201, USA;
| | - Adrian L. Oblak
- Stark Neurosciences Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.R.); (A.P.T.); (P.B.L.); (A.L.O.)
| | - Hongxia Ren
- Stark Neurosciences Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.R.); (A.P.T.); (P.B.L.); (A.L.O.)
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-274-1567
| |
Collapse
|
221
|
Cukierman-Yaffe T, Gerstein HC, Colhoun HM, Diaz R, García-Pérez LE, Lakshmanan M, Bethel A, Xavier D, Probstfield J, Riddle MC, Rydén L, Atisso CM, Hall S, Rao-Melacini P, Basile J, Cushman WC, Franek E, Keltai M, Lanas F, Leiter LA, Lopez-Jaramillo P, Pirags V, Pogosova N, Raubenheimer PJ, Shaw JE, Sheu WHH, Temelkova-Kurktschiev T. Effect of dulaglutide on cognitive impairment in type 2 diabetes: an exploratory analysis of the REWIND trial. Lancet Neurol 2020; 19:582-590. [PMID: 32562683 DOI: 10.1016/s1474-4422(20)30173-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diabetes is an independent risk factor for cognitive impairment. We aimed to investigate the association between the glucagon-like peptide-1 (GLP-1) receptor agonist dulaglutide and cognitive impairment as an exploratory analysis within the Researching Cardiovascular Events With a Weekly Incretin in Diabetes (REWIND) trial. METHODS REWIND is a randomised, double-blind placebo-controlled trial at 371 sites in 24 countries. We included men and women (aged ≥50 years) with either established or newly diagnosed type 2 diabetes and additional cardiovascular risk factors, glycated haemoglobin of up to 9·5% (80 mmol/mol) on a maximum of two oral glucose-lowering drugs with or without basal insulin, and a body-mass index of at least 23 kg/m2. Participants were randomly assigned (1:1) subcutaneous injections once a week of either dulaglutide (1·5 mg) or an equal volume of matching placebo. Randomisation was done using a computer-generated code with stratification by site. Participants and all study personnel were masked to treatment allocation until the database was locked. Participants were followed up at least every 6 months for the composite primary outcome of stroke, myocardial infarction, or death from cardiovascular or unknown causes. Cognitive function was assessed at baseline and during follow-up using the Montreal Cognitive Assessment (MoCA) and Digit Symbol Substitution Test (DSST). We present here the exploratory primary cognitive outcome, which was the first occurrence of a follow-up score on MoCA or DSST that was 1·5 SDs or more below the baseline mean score in the participant's country. All analyses were done using an intention-to-treat approach. The REWIND trial is registered with ClinicalTrials.gov, NCT01394952. FINDINGS Between Aug 18, 2011, and Aug 14, 2013, 9901 participants were randomly assigned to either dulaglutide (n=4949) or placebo (n=4952). During median follow-up of 5·4 (IQR 5·1-5·9) years, 8828 participants provided a baseline and one or more follow-up MoCA or DSST scores, of whom 4456 were assigned dulaglutide and 4372 were assigned placebo. The cognitive outcome occurred in 4·05 per 100 patient-years in participants assigned dulaglutide and 4·35 per 100 patient-years in people assigned placebo (hazard ratio [HR] 0·93, 95% CI 0·85-1·02; p=0·11). After post-hoc adjustment for individual standardised baseline scores, the hazard of substantive cognitive impairment was reduced by 14% in those assigned dulaglutide (HR 0·86, 95% CI 0·79-0·95; p=0·0018). INTERPRETATION Long-term treatment with dulaglutide might reduce cognitive impairment in people with type 2 diabetes. Further studies of this drug focused on brain health and cognitive function are clearly indicated. FUNDING Eli Lilly and Company.
Collapse
Affiliation(s)
- Tali Cukierman-Yaffe
- Endocrinology Institute, Gertner Institute, Sheba Medical Center, Ramat-Gan, Israel; Epidemiology Department, Sackler School of Medicine, Herceg Institute of Aging, Tel Aviv University, Tel Aviv, Israel
| | - Hertzel C Gerstein
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada.
| | | | - Rafael Diaz
- Estudios Clínicos Latino América, Rosario, Argentina
| | | | | | | | | | | | - Matthew C Riddle
- Department of Medicine, Oregon Health and Science University Portland, OR, USA
| | - Lars Rydén
- Department of Medicine K2, Karolinska Institutet, Stockholm, Sweden
| | | | - Stephanie Hall
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Purnima Rao-Melacini
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Jan Basile
- Medical University of South Carolina, Charleston, SC, USA
| | | | - Edward Franek
- Mossakowski Medical Research Centre, Polish Academy of Sciences and Central Clinical Hospital, Warsaw, Poland
| | - Matyas Keltai
- Semmelweis University, Hungarian Institute of Cardiology, Budapest, Hungary
| | | | - Lawrence A Leiter
- Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | | | | | - Nana Pogosova
- National Medical Research Center of Cardiology, Moscow, Russia
| | | | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Wayne H-H Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | |
Collapse
|
222
|
Hay M, Barnes C, Huentelman M, Brinton R, Ryan L. Hypertension and Age-Related Cognitive Impairment: Common Risk Factors and a Role for Precision Aging. Curr Hypertens Rep 2020; 22:80. [PMID: 32880739 PMCID: PMC7467861 DOI: 10.1007/s11906-020-01090-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose of Review Precision Aging® is a novel concept that we have recently employed to describe how the model of precision medicine can be used to understand and define the multivariate risks that drive age-related cognitive impairment (ARCI). Hypertension and cardiovascular disease are key risk factors for both brain function and cognitive aging. In this review, we will discuss the common mechanisms underlying the risk factors for both hypertension and ARCI and how the convergence of these mechanisms may be amplified in an individual to drive changes in brain health and accelerate cognitive decline. Recent Findings Currently, our cognitive health span does not match our life span. Age-related cognitive impairment and preventing and treating ARCI will require an in-depth understanding of the interrelated risk factors, including individual genetic profiles, that affect brain health and brain aging. Hypertension and cardiovascular disease are important risk factors for ARCI. And, many of the risk factors for developing hypertension, such as diabetes, smoking, stress, viral infection, and age, are shared with the development of ARCI. We must first understand the mechanisms common to the converging risk factors in hypertension and ARCI and then design person-specific therapies to optimize individual brain health. Summary The understanding of the convergence of shared risk factors between hypertension and ARCI is required to develop individualized interventions to optimize brain health across the life span. We will conclude with a discussion of possible steps that may be taken to decrease ARCI and optimize an individual’s cognitive life span.
Collapse
Affiliation(s)
- Meredith Hay
- Department of Physiology, University of Arizona, 1501 N Campbell Rd, Room 4103, Tucson, AZ, 85724, USA.
- Psychology Department, University of Arizona, Tucson, AZ, USA.
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA.
| | - Carol Barnes
- Psychology Department, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Matt Huentelman
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Neurogenomics Division, TGen, Phoenix, AZ, USA
| | - Roberta Brinton
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Center for Innovative Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Lee Ryan
- Psychology Department, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
223
|
Butterfield DA, Boyd-Kimball D. Mitochondrial Oxidative and Nitrosative Stress and Alzheimer Disease. Antioxidants (Basel) 2020; 9:E818. [PMID: 32887505 PMCID: PMC7554713 DOI: 10.3390/antiox9090818] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022] Open
Abstract
Oxidative and nitrosative stress are widely recognized as critical factors in the pathogenesis and progression of Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI). A major source of free radicals that lead to oxidative and nitrosative damage is mitochondria. This review paper discusses oxidative and nitrosative stress and markers thereof in the brain, along with redox proteomics, which are techniques that have been pioneered in the Butterfield laboratory. Selected biological alterations in-and oxidative and nitrosative modifications of-mitochondria in AD and MCI and systems of relevance thereof also are presented. The review article concludes with a section on the implications of mitochondrial oxidative and nitrosative stress in MCI and AD with respect to imaging studies in and targeted therapies toward these disorders. Taken together, this review provides support for the notion that brain mitochondrial alterations in AD and MCI are key components of oxidative and nitrosative stress observed in these two disorders, and as such, they provide potentially promising therapeutic targets to slow-and hopefully one day stop-the progression of AD, which is a devastating dementing disorder.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601, USA;
| |
Collapse
|
224
|
Lazarov O, Minshall RD, Bonini MG. Harnessing neurogenesis in the adult brain-A role in type 2 diabetes mellitus and Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:235-269. [PMID: 32854856 DOI: 10.1016/bs.irn.2020.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Some metabolic disorders, such as type 2 diabetes mellitus (T2DM) are risk factors for the development of cognitive deficits and Alzheimer's disease (AD). Epidemiological studies suggest that in people with T2DM, the risk of developing dementia is 2.5 times higher than that in the non-diabetic population. The signaling pathways that underlie the increased risk and facilitate cognitive deficits are not fully understood. In fact, the cause of memory deficits in AD is not fully elucidated. The dentate gyrus of the hippocampus plays an important role in memory formation. Hippocampal neurogenesis is the generation of new neurons and glia in the adult brain throughout life. New neurons incorporate in the granular cell layer of the dentate gyrus and play a role in learning and memory and hippocampal plasticity. A large body of studies suggests that hippocampal neurogenesis is impaired in mouse models of AD and T2DM. Recent evidence shows that hippocampal neurogenesis is also impaired in human patients exhibiting mild cognitive impairment or AD. This review discusses the role of hippocampal neurogenesis in the development of cognitive deficits and AD, and considers inflammatory and endothelial signaling pathways in T2DM that may compromise hippocampal neurogenesis and cognitive function, leading to AD.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, The University of Illinois at Chicago, Chicago, IL, United States.
| | - Richard D Minshall
- Department of Pharmacology, The University of Illinois at Chicago, Chicago, IL, United States; Department of Anesthesiology, The University of Illinois at Chicago, Chicago, IL, United States
| | - Marcelo G Bonini
- Department of Medicine (Hematology/Oncology), Feinberg School of Medicine of Northwestern University and Basic Sciences Research, Robert H. Lurie Comprehensive Cancer Centre, Chicago, IL, United States
| |
Collapse
|
225
|
Kampanellou E, Wilberforce M, Worden A, Giebel C, Challis D, Bhui K. The Barts Explanatory Model Inventory for Dementia: An item reduction approach based on responses from South Asian communities. Int J Geriatr Psychiatry 2020; 35:916-925. [PMID: 32337760 DOI: 10.1002/gps.5313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cultural differences in how the symptoms, causes, consequences, and treatments of dementia are understood and interpreted by South Asian people are a commonly expressed reason for late- or nonuse of mental health and care services. However, systematic collection of information on South Asian perceptions of dementia is hindered by a lack of appropriate instrumentation. OBJECTIVES To produce a shortened version of the Barts Explanatory Model Inventory for Dementia (BEMI-D) schedule. METHODS A two stage item reduction approach was employed first using multidimensional scaling categorizing items as core, intermediate, or outlier. Then, item review was undertaken using three criteria: literature importance, clinical face validity, and sub-group prevalence. The analysis followed a nonmetric multidimensional scaling method based on a two-way proximity matrix. RESULTS The original BEMI-D had 197 items allocated to four checklists: symptoms, causes, consequences, and treatments. The two stage item reduction approach resulted in the removal of 75 items. These reductions were achieved across all four checklists in relatively equal proportions. There was no evidence of substantive content loss in the revised schedule. The reduced version of the schedule comprises 122 items. CONCLUSIONS A condensed version of the BEMI-D is more efficient as an assessment schedule that captures the culturally diverse perceptions of memory problems for South Asians offering a balanced trade-off between feasibility of use and content validity.
Collapse
Affiliation(s)
| | | | - Angela Worden
- Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Clarissa Giebel
- Institute of Population Health Sciences, University of Liverpool, Liverpool, UK.,NIHR ARC NWC, Liverpool, UK
| | - David Challis
- Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Kamaldeep Bhui
- Centre for Psychiatry, Queen Mary University of London, London, UK
| |
Collapse
|
226
|
Nazu NA, Wikström K, Lamidi ML, Lindström J, Tirkkonen H, Rautiainen P, Laatikainen T. Association of mental disorders and quality of diabetes care - A six-year follow-up study of type 2 diabetes patients in North Karelia, Finland. Diabetes Res Clin Pract 2020; 166:108312. [PMID: 32673698 DOI: 10.1016/j.diabres.2020.108312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 02/05/2023]
Abstract
AIMS To compare the quality of diabetes care among type 2 diabetes patients with and without mental disorders during six-year follow-up in North Karelia, Finland. METHODS All type 2 diabetes patients (n = 10190) were analysed using the electronic health records data from 2011-12 to 2015-16. The diabetes care was evaluated using the measurement activity and the achievement of the treatment targets for HbA1c and LDL. RESULTS Monitoring of HbA1c and LDL levels improved among all patient groups, except the dementia patients. The proportion of those achieving the HbA1c target declined and those achieving the LDL target improved in all patient groups. Differences in the changes of achievement of the target HbA1c level among patients with dementia and depression were observed when compared with those having only type 2 diabetes. CONCLUSIONS This study highlights the challenge of glucose level management as the age and comorbidities of the patients related to the care and achievements of the treatment targets. Mental disorders that are likely to affect patients' adherence to medication and other treatments should be taken into account and more support for self-care should be provided to such patients. Improvement in the achievement of LDL target address the progress in the prevention of macrovascular complications.
Collapse
Affiliation(s)
- Nazma Akter Nazu
- Department of Public Health, University of Helsinki, PO BOX 63, 00014 University of Helsinki, Finland.
| | - Katja Wikström
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO BOX 1627, 70211 Kuopio, Finland; Department of Public Health Solutions, Finnish Institute for Health and Welfare, PO BOX 30, 00271 Helsinki, Finland
| | - Marja-Leena Lamidi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO BOX 1627, 70211 Kuopio, Finland
| | - Jaana Lindström
- Department of Public Health, University of Helsinki, PO BOX 63, 00014 University of Helsinki, Finland; Department of Public Health Solutions, Finnish Institute for Health and Welfare, PO BOX 30, 00271 Helsinki, Finland
| | - Hilkka Tirkkonen
- Joint Municipal Authority for North Karelia Social and Health Services (Siun Sote), Tikkamäentie 16, 70210 Joensuu, Finland
| | - Päivi Rautiainen
- Joint Municipal Authority for North Karelia Social and Health Services (Siun Sote), Tikkamäentie 16, 70210 Joensuu, Finland
| | - Tiina Laatikainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, PO BOX 1627, 70211 Kuopio, Finland; Department of Public Health Solutions, Finnish Institute for Health and Welfare, PO BOX 30, 00271 Helsinki, Finland; Joint Municipal Authority for North Karelia Social and Health Services (Siun Sote), Tikkamäentie 16, 70210 Joensuu, Finland
| |
Collapse
|
227
|
Ahmed HA, Ishrat T. The Brain AT2R-a Potential Target for Therapy in Alzheimer's Disease and Vascular Cognitive Impairment: a Comprehensive Review of Clinical and Experimental Therapeutics. Mol Neurobiol 2020; 57:3458-3484. [PMID: 32533467 PMCID: PMC8109287 DOI: 10.1007/s12035-020-01964-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Dementia is a potentially avertable tragedy, currently considered among the top 10 greatest global health challenges of the twenty-first century. Dementia not only robs individuals of their dignity and independence, it also has a ripple effect that starts with the inflicted individual's family and projects to the society as a whole. The constantly growing number of cases, along with the lack of effective treatments and socioeconomic impact, poses a serious threat to the sustainability of our health care system. Hence, there is a worldwide effort to identify new targets for the treatment of Alzheimer's disease (AD), the leading cause of dementia. Due to its multifactorial etiology and the recent clinical failure of several novel amyloid-β (Aβ) targeting therapies, a comprehensive "multitarget" approach may be most appropriate for managing this condition. Interestingly, renin angiotensin system (RAS) modulators were shown to positively impact all the factors involved in the pathophysiology of dementia including vascular dysfunction, Aβ accumulation, and associated cholinergic deficiency, in addition to tau hyperphosphorylation and insulin derangements. Furthermore, for many of these drugs, the preclinical evidence is also supported by epidemiological data and/or preliminary clinical trials. The purpose of this review is to provide a comprehensive update on the major causes of dementia including the risk factors, current diagnostic criteria, pathophysiology, and contemporary treatment strategies. Moreover, we highlight the angiotensin II receptor type 2 (AT2R) as an effective drug target and present ample evidence supporting its potential role and clinical applications in cognitive impairment to encourage further investigation in the clinical setting.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
228
|
King MR, Anderson NJ, Deciu M, Guernsey LS, Cundiff M, Hajizadeh S, Jolivalt CG. Insulin deficiency, but not resistance, exaggerates cognitive deficits in transgenic mice expressing human amyloid and tau proteins. Reversal by Exendin-4 treatment. J Neurosci Res 2020; 98:2357-2369. [PMID: 32737929 DOI: 10.1002/jnr.24706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022]
Abstract
Epidemiological studies have pointed at diabetes as a risk factor for Alzheimer's disease (AD) and this has been supported by several studies in animal models of both type 1 and type 2 diabetes. However, side-by-side comparison of the two types of diabetes is limited. We investigated the role of insulin deficiency and insulin resistance in the development of memory impairments and the effect of Exendin-4 (Ex4) treatment in a mouse model of AD. Three-4-month-old female wild type (WT) mice and mice overexpressing human tau and amyloid precursor protein (TAPP) were injected with streptozotocin (STZ) or fed a high-fat diet (HFD). A second study was performed in TAPP-STZ mice treated with Ex4, a long-lasting analog of GLP-1. Plasma and brain were collected at study termination for ELISA, Western blot, and immunohistochemistry analysis. Learning and memory deficits were impaired in TAPP transgenic mice compared with WT mice at the end of the study. Deficits were exaggerated by insulin deficiency in TAPP mice but 12 weeks of insulin resistance did not affect memory performances in either WT or TAPP mice. Levels of phosphorylated tau were increased in the brain of WT-STZ and TAPP-STZ mice but not in the brain of WT or TAPP mice on HFD. In the TAPP-STZ mice, treatment with Ex4 initiated after established cognitive deficits ameliorated learning, but not memory, impairments. This was accompanied by the reduction of amyloid β and phosphorylated tau expression. Theses studies support the role of Ex4 in AD, independently from its actions on diabetes.
Collapse
Affiliation(s)
- Matthew R King
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nicholas J Anderson
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Mihaela Deciu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Lucie S Guernsey
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Morgan Cundiff
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Shohreh Hajizadeh
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Corinne G Jolivalt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
229
|
Ponvilawan B, Charoenngam N, Rittiphairoj T, Ungprasert P. Ankylosing spondylitis is associated with an increased risk of dementia: A systematic review and meta-analysis. Int J Rheum Dis 2020; 23:1452-1459. [PMID: 32715652 DOI: 10.1111/1756-185x.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To investigate the relationship between ankylosing spondylitis (AS) and risk of dementia. METHODS Potentially eligible studies that compared the risk of developing dementia between patients with AS and individuals without AS were identified from MEDLINE and EMBASE databases from inception to May 2019 using a search strategy that comprised terms for "dementia" and "ankylosing spondylitis". Eligible studies could be either cohort studies or case-control studies. For cohort design, eligible studies included patients with AS and comparators without AS and followed them for incident dementia. For case-control design, eligible studies included cases with dementia and controls without dementia and explored prior history of AS in both groups. Effect estimate and standard error from each study were extracted and combined together using the random effect, generic inverse variance. Funnel plot was used to assess for publication bias. RESULTS A total of 7091 articles were identified using the aforementioned search strategy. After 2 rounds of independent review by 3 investigators, 4 studies fulfilled the inclusion criteria and were included into the meta-analysis. The risk of developing dementia was significantly higher among patients with AS than individuals without AS with the pooled relative risk of 1.19 (95% CI 1.01-1.41; I2 = 76%). The funnel plot was relatively symmetric and was not suggestive of presence of publication bias. CONCLUSION A significantly 1.2 fold higher risk of developing dementia among patients with AS was demonstrated by this systematic review and meta-analysis.
Collapse
Affiliation(s)
- Ben Ponvilawan
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nipith Charoenngam
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanitsara Rittiphairoj
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Patompong Ungprasert
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
230
|
Imbimbo BP, Lozupone M, Watling M, Panza F. Discontinued disease-modifying therapies for Alzheimer's disease: status and future perspectives. Expert Opin Investig Drugs 2020; 29:919-933. [PMID: 32657175 DOI: 10.1080/13543784.2020.1795127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the main cause of dementia and represents a huge burden for patients, carers, and healthcare systems. Extensive efforts for over 20 years have failed to find effective disease-modifying drugs. Although amyloid-β (Aβ) accumulation in the brain predicts cognitive decline, effective reduction of plaque load by numerous drug candidates has not yielded significant clinical benefits. A similar pattern is now emerging for drugs which target hyperphosphorylated tau, and trials with anti-inflammatory drugs have been negative despite neuroinflammation appearing to have a crucial role in AD pathogenesis. AREAS COVERED This article reviews key drugs that have been discontinued while in development for AD and delineates the future landscape for present and alternative approaches. EXPERT OPINION Anti-Aβ drugs have failed to validate the Aβ cascade hypothesis of AD. Early findings suggest that the same is happening with therapeutics targeting tau and focussing future research solely on anti-tau drugs is inappropriate. Alternative targets should be pursued, including apolipoprotein E, immunomodulation, plasma exchange, protein autophagy and clearance, mitochondrial dysfunction, abnormal glucose metabolism, neurovascular unit support, epigenetic dysregulation, synaptic loss and dysfunction, microbiota dysbiosis, and combination therapies. Meanwhile, repurposing of drugs approved for other indications is justified where scientific rationale and robust preclinical evidence exist.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici , Parma, Italy
| | - Madia Lozupone
- Unit of Epidemiological Research on Aging "Greatage Study", National Institute of Gastroenterology and Research Hospital IRCCS "S. de Bellis" , Bari, Italy.,Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro , Bari, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Partners , Reading, UK
| | - Francesco Panza
- Unit of Epidemiological Research on Aging "Greatage Study", National Institute of Gastroenterology and Research Hospital IRCCS "S. de Bellis" , Bari, Italy
| |
Collapse
|
231
|
Wang S, Lv W, Zhang H, Liu Y, Li L, Jefferson JR, Guo Y, Li M, Gao W, Fang X, Paul IA, Rajkowska G, Shaffery JP, Mosley TH, Hu X, Liu R, Wang Y, Yu H, Roman RJ, Fan F. Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. GeroScience 2020; 42:1387-1410. [PMID: 32696219 DOI: 10.1007/s11357-020-00233-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a leading risk factor for aging-related dementia; however, the underlying mechanisms are not well understood. The present study, utilizing a non-obese T2DN diabetic model, demonstrates that the myogenic response of the middle cerebral artery (MCA) and parenchymal arteriole (PA) and autoregulation of cerebral blood flow (CBF) in the surface and deep cortex were impaired at both young and old ages. The impaired CBF autoregulation was more severe in old than young DM rats, and in the deep than the surface cortex. The myogenic tone of the MCA was enhanced at perfusion pressure in the range of 40-100 mmHg in young DM rats but was reduced at 140-180 mmHg in old DM rats. No change of the myogenic tone of the PA was observed in young DM rats, whereas it was significantly reduced at 30-60 mmHg in old DM rats. Old DM rats had enhanced blood-brain barrier (BBB) leakage and neurodegeneration, reduced vascular density, tight junction, and pericyte coverage on cerebral capillaries in the CA3 region in the hippocampus. Additionally, DM rats displayed impaired functional hyperemia and spatial learning and short- and long-term memory at both young and old ages. Old DM rats had impaired non-spatial short-term memory. These results revealed that impaired CBF autoregulation and enhanced BBB leakage plays an essential role in the pathogenesis of age- and diabetes-related dementia. These findings will lay the foundations for the discovery of anti-diabetic therapies targeting restoring CBF autoregulation to prevent the onset and progression of dementia in elderly DM.
Collapse
Affiliation(s)
- Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.,Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Longyang Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Joshua R Jefferson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Man Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ian A Paul
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - James P Shaffery
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Thomas H Mosley
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.,Department of Medicine (Geriatrics), University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Xinlin Hu
- Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yangang Wang
- Department of Endocrinology and Metabolic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
232
|
Kim OY, Song J. The importance of BDNF and RAGE in diabetes-induced dementia. Pharmacol Res 2020; 160:105083. [PMID: 32679182 DOI: 10.1016/j.phrs.2020.105083] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 01/11/2023]
Abstract
Diabetes-induced dementia is an emerging neurodisorder all over the world. The prevalence rates of dementia and diabetes have been gradually increasing worldwide. Diabetes has been known to lead to oxidative stress, inflammation aggravation, and hyperglycemia conditions in the brain. Various diabetic implications cause the lower secretion of brain-derived neurotrophic factor (BDNF) and the increase of receptor for advanced glycation end products (RAGE), ultimately leading to both cerebrovascular dysfunction and cognitive decline. Here, we summarized the significant evidences highlighting the specific mechanisms between BDNF and RAGE and cerebrovascular dysfunction and memory function and how these relate to diabetes-induced dementia. Especially, we review that the association between BDFN and RAGE in neuroinflammation, the reduction of long-term potentiation, and the vascular implications in brain.
Collapse
Affiliation(s)
- Oh Yoen Kim
- The Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea; The Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan 49315, Republic of Korea.
| | - Juhyun Song
- The Department of Anatomy, Chonnam National University, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
233
|
Arseniou S, Siokas V, Aloizou AM, Stamati P, Mentis AFA, Tsouris Z, Dastamani M, Peristeri E, Valotassiou V, Bogdanos DP, Hadjigeorgiou GM, Dardiotis E. SLC2A3 rs12842 polymorphism and risk for Alzheimer’s disease. Neurol Res 2020; 42:853-861. [DOI: 10.1080/01616412.2020.1786973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stylianos Arseniou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Polyxeni Stamati
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexios-Fotios A. Mentis
- Department of Microbiology, University of Thessaly, University Hospital of Larissa, Larissa, Greece
- Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Metaxia Dastamani
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Eleni Peristeri
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Varvara Valotassiou
- Department of Nuclear Medicine, University Hospital of Larissa, Mezourlo Larissa, Greece
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
234
|
Mejido DC, Peny JA, Vieira MN, Ferreira ST, De Felice FG. Insulin and leptin as potential cognitive enhancers in metabolic disorders and Alzheimer's disease. Neuropharmacology 2020; 171:108115. [DOI: 10.1016/j.neuropharm.2020.108115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023]
|
235
|
Sinclair A, Abdelhafiz A. Cognitive Dysfunction in Older Adults with Type 2 Diabetes: Links, Risks, and Clinical Implications. Clin Geriatr Med 2020; 36:407-417. [PMID: 32586471 DOI: 10.1016/j.cger.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The prevalence of comorbid diabetes and cognitive dysfunction increases as the population ages. Diabetes increases the risk of progression of cognitive dysfunction through a spectrum of cognitive decline to mild cognitive impairment then to dementia. Cognitive dysfunction, especially impairment in the executive domain, has a negative impact on patients' self-care tasks. With further progression of dementia and the development of behavioral problems, the challenge to carers and health care professionals looking after these patients is significant. Therefore, clinical trials are needed to explore the impact of novel hypoglycemic therapy on cognitive function as an important outcome in this population.
Collapse
Affiliation(s)
- Alan Sinclair
- Foundation for Diabetes Research in Older People, Diabetes Frail Ltd, Droitwich Spa WR9 0QH, UK; Kings College, London SE1 9NH, UK.
| | - Ahmed Abdelhafiz
- Department of Geriatric Medicine, Rotherham General Hospital, Moorgate Road, Rotherham S60 2UD, UK
| |
Collapse
|
236
|
Spinelli M, Fusco S, Grassi C. Brain insulin resistance impairs hippocampal plasticity. VITAMINS AND HORMONES 2020; 114:281-306. [PMID: 32723548 DOI: 10.1016/bs.vh.2020.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutrient-related signals have been demonstrated to influence brain development and cognitive functions. In particular, insulin signaling has been shown to impact on molecular cascades underlying hippocampal plasticity, learning and memory. Alteration of brain insulin signaling interferes with the maintenance of neural stem cell niche and neuronal activity in the hippocampus. Brain insulin resistance is also emerging as key factor causing the cognitive impairment observed in metabolic and neurodegenerative diseases. Here, we review the molecular mechanisms involved in the insulin modulation of both adult neurogenesis and synaptic activity in the hippocampus. We also summarize the effects of altered insulin sensitivity on hippocampal plasticity. Finally, we reassume the experimental and epidemiological evidence highlighting the critical role of brain insulin resistance at the crossroad between type 2 diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
237
|
A tale of two cinnamons: A comparative review of the clinical evidence of Cinnamomum verum and C. cassia as diabetes interventions. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
238
|
Pražienková V, Schirmer C, Holubová M, Železná B, Kuneš J, Galas MC, Maletínská L. Lipidized Prolactin-Releasing Peptide Agonist Attenuates Hypothermia-Induced Tau Hyperphosphorylation in Neurons. J Alzheimers Dis 2020; 67:1187-1200. [PMID: 30689580 DOI: 10.3233/jad-180837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, characterized by the accumulation of extracellular amyloid plaques and intraneuronal neurofibrillary tangles. These tangles mainly consist of hyperphosphorylated tau protein. As it induces tau hyperphosphorylation in vitro and in vivo, hypothermia is a useful tool for screening potential neuroprotective compounds that ameliorate tau pathology. In this study, we examined the effect of prolactin-releasing peptide (PrRP), its lipidized analog palm11-PrRP31 and glucagon-like-peptide-1 agonist liraglutide, substances with anorexigenic and antidiabetic properties, on tau phosphorylation and on the main kinases and phosphatases involved in AD development. Our study was conducted in a neuroblastoma cell line SH-SY5Y and rat primary neuronal cultures under normothermic and hypothermic conditions. Hypothermia induced a significant increase in tau phosphorylation at the pThr212 and pSer396/pSer404 epitopes. The palmitoylated analogs liraglutide and palm11-PrRP31 attenuated tau hyperphosphorylation, suggesting their potential use in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Claire Schirmer
- Université Lille, INSERM, CHU Lille, UMR - S 1172 - Jean Pierre Aubert Research Centre, Alzheimer and Tauopathies, Lille, France
| | - Martina Holubová
- Institute of Organic Chemistry and Biochemistry, AS CR, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, AS CR, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, AS CR, Prague, Czech Republic.,Institute of Physiology, AS CR, Prague, Czech Republic
| | - Marie-Christine Galas
- Université Lille, INSERM, CHU Lille, UMR - S 1172 - Jean Pierre Aubert Research Centre, Alzheimer and Tauopathies, Lille, France
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, AS CR, Prague, Czech Republic
| |
Collapse
|
239
|
Picone P, Di Carlo M, Nuzzo D. Obesity and Alzheimer’s disease: Molecular bases. Eur J Neurosci 2020; 52:3944-3950. [DOI: 10.1111/ejn.14758] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Pasquale Picone
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| | - Marta Di Carlo
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| | - Domenico Nuzzo
- Consiglio Nazionale delle Ricerche Istituto per la Ricerca e l’Innovazione Biomedica (CNR‐IRIB) Palermo Italy
| |
Collapse
|
240
|
Biessels GJ, Nobili F, Teunissen CE, Simó R, Scheltens P. Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective. Lancet Neurol 2020; 19:699-710. [PMID: 32445622 DOI: 10.1016/s1474-4422(20)30139-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/20/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
People with type 2 diabetes are at an increased risk of cognitive impairment and dementia (including Alzheimer's disease), as well as subtle forms of cognitive dysfunction. Current diabetes guidelines recommend screening for cognitive impairment in groups at high risk and providing guidance for diabetes management in patients with diabetes and cognitive impairment. Yet, no disease-modifying treatment is available and important questions remain about the mechanisms underlying diabetes-associated cognitive dysfunction. These mechanisms are likely to be multifactorial and different for subtle and more severe forms of diabetes-associated cognitive dysfunction. Over the past years, research on dementia, brain ageing, diabetes, and vascular disease has identified novel biomarkers of specific dementia aetiologies, brain parenchymal injury, and cerebral blood flow and metabolism. These markers shed light on the processes underlying diabetes-associated cognitive dysfunction, have clear applications in current research and increasingly in clinical diagnosis, and might ultimately guide targeted treatment.
Collapse
Affiliation(s)
- Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands.
| | - Flavio Nobili
- Department of Neuroscience, Ophthalmology, Genetics, and Child and Mother Health, University of Genoa, Genoa, Italy; Clinical Neurology Unit, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam, Netherlands
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
241
|
Cooke S, Pennington K, Jones A, Bridle C, Smith MF, Curtis F. Effects of exercise, cognitive, and dual-task interventions on cognition in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS One 2020; 15:e0232958. [PMID: 32407347 PMCID: PMC7224461 DOI: 10.1371/journal.pone.0232958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/25/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Previous evidence has shown significant effects of exercise, cognitive and dual-task training for improving cognition in healthy cohorts. The effects of these types of interventions in type 2 diabetes mellitus is unclear. The aim of this research was to systematically review evidence, and estimate the effect, of exercise, cognitive, and dual-task interventions on cognition in type 2 diabetes mellitus. Method Electronic databases including PubMed, EMBASE, CINAHL, PsycINFO, SPORTDiscus, and MEDLINE were searched for ongoing and completed interventional trials investigating the effect of either an exercise, cognitive or dual-task intervention on cognition in type 2 diabetes mellitus. Results Nine trials met the inclusion criteria–one dual-task, two cognitive, and six exercise. Meta-analyses of exercise trials showed no significant effects of exercise on measures of executive function (Stroop task, SMD = -0.31, 95% CI -0.71–0.09, P = 0.13, trail making test part A SMD = 0.28, 95% CI -0.20–0.77 P = 0.25, trail making test part B SMD = -0.15, 95% CI -0.64–0.34 P = 0.54, digit symbol SMD = 0.09, 95% CI -0.39–0.57 P = 0.72), and memory (immediate memory SMD = 0.20, 95% CI -0.28–0.69, P = 0.41 and delayed memory SMD = -0.06, 95% CI -0.55–0.42, P = 0.80). A meta-analysis could not be conducted using cognitive or dual-task data, but individual trials did report a favourable effect of interventions on cognition. Risk of bias was considered moderate to high for the majority of included trials. Conclusions Meta-analyses of exercise trials identified a small effect size (0.31), which whilst not significant warrants further investigation. Larger and more robust trials are needed that report evidence using appropriate reporting guidelines (e.g. CONSORT) to increase confidence in the validity of results. Trial registration Protocol was registered (CRD42017058526) on the International Prospective Register of Systematic Reviews (http://www.crd.york.ac.uk/PROSPERO).
Collapse
Affiliation(s)
- Samuel Cooke
- Lincoln International Institute for Rural Health, University of Lincoln, Lincoln, United Kingdom
| | - Kyla Pennington
- School of Psychology, University of Lincoln, Lincoln, United Kingdom
| | - Arwel Jones
- Lincoln International Institute for Rural Health, University of Lincoln, Lincoln, United Kingdom
| | - Chris Bridle
- School of Psychology, University of Bedfordshire, Luton, United Kingdom
| | - Mark F. Smith
- School of Sports and Exercise Science, University of Lincoln, Lincoln, United Kingdom
| | - Ffion Curtis
- Lincoln International Institute for Rural Health, University of Lincoln, Lincoln, United Kingdom
- * E-mail:
| |
Collapse
|
242
|
Salas J, Morley JE, Scherrer JF, Floyd JS, Farr SA, Zubatsky M, Barthold D, Dublin S. Risk of incident dementia following metformin initiation compared with noninitiation or delay of antidiabetic medication therapy. Pharmacoepidemiol Drug Saf 2020; 29:623-634. [PMID: 32363681 DOI: 10.1002/pds.5014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/31/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Emerging evidence suggests metformin compared with sulfonylurea is associated with an 8% to 10% lower risk for dementia. Guidelines recommend metformin as initial diabetes treatment, but there is still the question of treatment timing. Thus, the risk of dementia associated with initiating metformin compared with not initiating or delaying treatment was examined. METHODS A retrospective cohort study (1996 to 2015) was conducted with electronic health records from Veteran Health Affairs (VHA; n = 112 845) and Kaiser Permanente Washington (KPW; n = 14 333) healthcare systems. Patients were aged ≥50 years, had a hemoglobin A1c (HbA1c) between 6.5 and <9.5 mg/dL, and did not have dementia or fills for antidiabetic medications before cohort entry. Initiators started metformin monotherapy and noninitiators used no antidiabetic medications in the 6 months after the first qualifying HbA1c. The primary outcome was incident dementia. Propensity scores and inverse probability of treatment weighting (IPTW) controlled for confounding in Cox proportional hazards models. RESULTS During a median follow-up of 6.2 years in VHA and 6.8 years in KPW, there were 7547 new dementia cases in VHA and 1090 in KPW. After IPTW, there was no association between initiation of metformin (vs no initial treatment) and incident dementia in VHA (HR = 1.04; 95% confidence interval [CI]: 0.95-1.13) or KPW (HR = 0.81; 95% CI: 0.51-1.28). Results did not differ by age, baseline HbA1c, or race. CONCLUSIONS Results do not support initiating metformin earlier to prevent cognitive decline and, thus, may dampen enthusiasm for metformin as a potential antidementia drug. Randomized clinical trials could help clarify the relationship between metformin and cognitive decline.
Collapse
Affiliation(s)
- Joanne Salas
- Department of Family and Community Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Harry S. Truman Veterans Administration Medical Center, Research Service, Columbia, Missouri, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey F Scherrer
- Department of Family and Community Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Harry S. Truman Veterans Administration Medical Center, Research Service, Columbia, Missouri, USA
| | - James S Floyd
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Susan A Farr
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA.,Saint Louis Veterans Affairs Medical Center, Research Service, John Cochran Division, St. Louis, Missouri, USA
| | - Max Zubatsky
- Department of Family and Community Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Doug Barthold
- Department of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Sascha Dublin
- Department of Epidemiology, University of Washington, Seattle, Washington, USA.,Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| |
Collapse
|
243
|
Autophagy Dysfunction in Alzheimer's Disease: Mechanistic Insights and New Therapeutic Opportunities. Biol Psychiatry 2020; 87:797-807. [PMID: 31262433 DOI: 10.1016/j.biopsych.2019.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 05/11/2019] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss due to aberrant accumulation of misfolded proteins inside and outside neurons and glial cells, leading to a loss of cellular protein homeostasis. Today, no therapy is available to block or slow down AD progression, and the mechanisms of the disease are not fully understood. Autophagy is an intracellular degradation pathway crucial to maintaining cellular homeostasis by clearing damaged organelles, pathogens, and unwanted protein aggregates. In recent years, autophagy dysfunction has gained considerable attention in AD and other neurodegenerative diseases because it has been linked to the accumulation of misfolded proteins that ultimately causes neuronal death in many of these disorders. Interestingly, autophagy-activating compounds have also shown some promising results in both clinical trials and preclinical studies. This review aims at summarizing the current knowledge on autophagy dysfunction in the context of AD pathophysiology, providing recent mechanistic insights on AD-mediated autophagic flux disruption and highlighting potential and novel therapeutic opportunities that target this system for AD therapy.
Collapse
|
244
|
Madhusudhanan J, Suresh G, Devanathan V. Neurodegeneration in type 2 diabetes: Alzheimer's as a case study. Brain Behav 2020; 10:e01577. [PMID: 32170854 PMCID: PMC7218246 DOI: 10.1002/brb3.1577] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Rigorous research in the last few years has shown that in addition to the classical mechanism of neurodegeneration, certain unconventional mechanisms may also lead to neurodegenerative disease. One of them is a widely studied metabolic disorder: type 2 diabetes mellitus (T2DM). We now have a clear understanding of glucose-mediated neurodegeneration, mostly from studies in Alzheimer's disease (AD) models. AD is recognized to be significantly associated with hyperglycemia, even earning the term "type 3 diabetes." Here, we review first the pathophysiology of AD, both from the perspective of classical protein accumulation, as well as the newer T2DM-dependent mechanisms supported by findings from patients with T2DM. Secondly, we review the different pathways through which neurodegeneration is aggravated in hyperglycemic conditions taking AD as a case study. Finally, some of the current advances in AD management as a result of recent research developments in metabolic disorders-driven neurodegeneration are also discussed. METHODS Relevant literatures found from PubMed search were reviewed. RESULTS Apart from the known causes of AD, type 2 diabetes opens a new window to the AD pathology in several ways. It is a bidirectional interaction, of which, the molecular and signaling mechanisms are recently studied. This is our attempt to connect all of them to draw a complete mechanistic explanation for the neurodegeneration in T2DM. Refer to Figure 3. CONCLUSION The perspective of AD as a classical neurodegenerative disease is changing, and it is now being looked at from a zoomed-out perspective. The correlation between T2DM and AD is something observed and studied extensively. It is promising to know that there are certain advances in AD management following these studies.
Collapse
Affiliation(s)
- Jalaja Madhusudhanan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Gowthaman Suresh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
245
|
Cheng H, Gang X, Liu Y, Wang G, Zhao X, Wang G. Mitochondrial dysfunction plays a key role in the development of neurodegenerative diseases in diabetes. Am J Physiol Endocrinol Metab 2020; 318:E750-E764. [PMID: 31714795 DOI: 10.1152/ajpendo.00179.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria have an essential function in cell survival due to their role in bioenergetics, reactive oxygen species generation, calcium buffering, and other metabolic activities. Mitochondrial dysfunctions are commonly found in neurodegenerative diseases (NDs), and diabetes is a risk factor for NDs. However, the role of mitochondria in diabetic neurodegeneration is still unclear. In the present study, we review the latest evidence on the role of mitochondrial dysfunctions in the development of diabetes-related NDs and the underlying molecular mechanisms. Hypoglycemic agents, especially metformin, have been proven to have neuroprotective effects in the treatment of diabetes, in which mitochondria could act as one of the underlying mechanisms. Other hypoglycemic agents, including thiazolidinediones (TZDs), dipeptidyl peptidase 4 (DPP-4) inhibitors, and glucagon-like peptide 1 (GLP-1) receptor agonists, have gained more attention because of their beneficial effects on NDs, presumably by improving mitochondrial function. Our review highlights the notion that mitochondria could be a promising therapeutic target in the treatment of NDs in patients with diabetes.
Collapse
Affiliation(s)
- Han Cheng
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yujia Liu
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Gang Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
246
|
Thomassen JQ, Tolstrup JS, Benn M, Frikke-Schmidt R. Type-2 diabetes and risk of dementia: observational and Mendelian randomisation studies in 1 million individuals. Epidemiol Psychiatr Sci 2020; 29:e118. [PMID: 32326995 PMCID: PMC7214711 DOI: 10.1017/s2045796020000347] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/21/2020] [Accepted: 03/22/2020] [Indexed: 01/10/2023] Open
Abstract
AIMS In observational studies, type-2 diabetes is associated with increased risk of dementia; however, the causal nature of this association remains unanswered. In an unselected nationwide study of all Danes, we wanted to test whether type-2 diabetes is associated with dementia subtypes, and to test whether potential associations are of a causal nature. METHODS In the current study of nationwide observational registry data in all Danes above the age of 65 years (n = 784 434) combined with genetic consortia data on 213 370 individuals, we investigated the associations between type-2 diabetes and Alzheimer's disease, vascular dementia, unspecified dementia and all-cause dementia, and whether observational associations were of a causal nature by applying a two-sample Mendelian randomisation strategy. We addressed key biases inherent in Mendelian randomisation approaches. RESULTS Important confounders (age, ethnicity, size of community, region, civil status and education level) were captured on all 784 434 individuals and adjusted for in the models. Multifactorial adjusted hazard ratios were 1.13 (1.06-1.21) for Alzheimer's disease, 1.98 (1.83-2.14) for vascular dementia, 1.53 (1.48-1.59) for unspecified dementia and 1.48 (1.44-1.53) for all-cause dementia in persons with type-2 diabetes v. without. Results were similar for men and women. The two-sample Mendelian randomisation estimate for the association between the genetic instrument and Alzheimer's disease was 1.04 (0.98-1.10), consistent with sensitivity estimates, addressing pleiotropy, measurement bias and weak instrument bias. CONCLUSIONS In a nationwide study of all Danes above the age of 65 years, we show that type-2 diabetes is associated with major subtypes of dementia - with particularly strong associations for vascular dementia and unspecified dementia - the two types of dementia with the most obvious vascular pathologies. Although the present two-sample Mendelian randomisation approach using genetic consortia data suggests that type-2 diabetes is not a direct cause of Alzheimer's disease, we were unable to test the causal nature of type-2 diabetes for vascular dementia and unspecified dementia, because no publicly available genetic consortia data yet exist for these dementia endpoints. The causal nature of type-2 diabetes for dementia with vascular pathologies is pivotal questions to solve for future public health recommendations and therapeutic advice.
Collapse
Affiliation(s)
| | | | - Marianne Benn
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
247
|
Li L, Cavuoto M, Biddiscombe K, Pike KE. Diabetes Mellitus Increases Risk of Incident Dementia in APOE ɛ4 Carriers: A Meta-Analysis. J Alzheimers Dis 2020; 74:1295-1308. [DOI: 10.3233/jad-191068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lily Li
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Marina Cavuoto
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Karen Biddiscombe
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Kerryn E. Pike
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
248
|
Ihara M, Saito S. Drug Repositioning for Alzheimer’s Disease: Finding Hidden Clues in Old Drugs. J Alzheimers Dis 2020; 74:1013-1028. [DOI: 10.3233/jad-200049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Japan
| |
Collapse
|
249
|
Sluggett JK, Koponen M, Bell JS, Taipale H, Tanskanen A, Tiihonen J, Uusitupa M, Tolppanen AM, Hartikainen S. Metformin and Risk of Alzheimer's Disease Among Community-Dwelling People With Diabetes: A National Case-Control Study. J Clin Endocrinol Metab 2020; 105:5645285. [PMID: 31778170 DOI: 10.1210/clinem/dgz234] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/27/2019] [Indexed: 02/04/2023]
Abstract
CONTEXT Type 2 diabetes has been linked with an increased risk of Alzheimer's disease (AD). Studies on the association between metformin use and AD have reported conflicting results. OBJECTIVE To investigate whether metformin use modifies the association between diabetes and incident, clinically verified AD. DESIGN Nested case-control study. SETTING All community-dwelling people in Finland. PARTICIPANTS Cases were all community-dwelling Finns with AD diagnosed from 2005 to 2011 and with diabetes diagnosed ≥ 3 years before AD (n = 9862). Cases were matched with up to 2 control persons by age, sex, and diabetes duration (n = 19 550). MAIN OUTCOME MEASURE Cumulative metformin exposure was determined from reimbursed dispensings over a 10- to 16-year period. Adjusted odds ratios (aORs) were calculated using conditional logistic regression to estimate associations, with adjustment for potential confounders. RESULTS A total of 7225 (73.3%) cases and 14528 (74.3%) controls received metformin at least once. Metformin use (ever use) was not associated with incident AD (aOR 0.99; 95% confidence interval [CI], 0.94-1.05). The adjusted odds of AD were lower among people dispensed metformin for ≥ 10 years (aOR 0.85; 95% CI, 0.76-0.95), those dispensed cumulative defined daily doses (DDDs) of < 1825-3650 (aOR 0.91; 95% CI, 0.84-0.98) and > 3650 DDDs (aOR 0.77; 95% CI, 0.67-0.88), and among persons dispensed an average of 2 g metformin daily (aOR 0.89; 95% CI, 0.82-0.96). CONCLUSION In this large national sample we found no evidence that metformin use increases the risk of AD. Conversely, long-term and high-dose metformin use was associated with a lower risk of incident AD in older people with diabetes.
Collapse
Affiliation(s)
- Janet K Sluggett
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- NHMRC Cognitive Decline Partnership Centre, Hornsby Ku-ring-gai Hospital, Hornsby, New South Wales, Australia
| | - Marjaana Koponen
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Kuopio Research Centre for Geriatric Care, University of Eastern Finland, Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - J Simon Bell
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- NHMRC Cognitive Decline Partnership Centre, Hornsby Ku-ring-gai Hospital, Hornsby, New South Wales, Australia
- Kuopio Research Centre for Geriatric Care, University of Eastern Finland, Kuopio, Finland
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Heidi Taipale
- Kuopio Research Centre for Geriatric Care, University of Eastern Finland, Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Antti Tanskanen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Public Health Evaluation and Projection, National Institute for Health and Welfare, Helsinki, Finland
| | - Jari Tiihonen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Anna-Maija Tolppanen
- Kuopio Research Centre for Geriatric Care, University of Eastern Finland, Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Sirpa Hartikainen
- Kuopio Research Centre for Geriatric Care, University of Eastern Finland, Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
250
|
Eiser AR. Prevention of Dementia: Integrative Medicine and Its Differing Epistemology. Am J Med 2020; 133:407-408. [PMID: 31525337 DOI: 10.1016/j.amjmed.2019.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Arnold R Eiser
- Adjunct Senior Fellow, Leonard Davis Institute, University of Pennsylvania, Philadelphia; Professor Emeritus, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|