201
|
Strigini M, Leulier F. The role of the microbial environment in Drosophila post-embryonic development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:39-52. [PMID: 26827889 DOI: 10.1016/j.dci.2016.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 05/14/2023]
Abstract
Development, growth and maturation of animals are under genetic and environmental control. Multicellular organisms interact throughout their lives with a variety of environment- and body-associated microorganisms. It has now been appreciated that the very conspicuous and varied microbial population associated with the food and the gastro-intestinal tract is a critical factor that can influence growth. Beyond the phenomenology, the mechanisms underlying the beneficial effects of microbes on development are being revealed from studies in Drosophila melanogaster, a particularly well suited system for a mechanistic understanding of host/microbiota interactions. Association of otherwise germ-free eggs with specific bacterial strains isolated from Drosophila gut samples can accelerate growth in larvae raised on restrictive diets. We review advances made possible by the exploitation of such simplified gnotobiotic systems in the search for the genes, molecules and physiological adaptations responsible for this effect in both host and microbes. Transposon mutagenesis and gene-trait match studies in bacteria can identify the key microbial genes and metabolites required for the beneficial effect, acetic acid being one of them. In the fly, functional genomic analysis, transcriptomics and metabolomics point to the modulation of systemic insulin and steroid hormone signalling as well as the regulation of intestinal physiology, including the enhancement of intestinal protease activity, as crucial mediators of the host's response.
Collapse
Affiliation(s)
- Maura Strigini
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| |
Collapse
|
202
|
Vianna MCB, Poleto DC, Gomes PF, Valente V, Paçó‐Larson ML. Drosophila ataxin-2 gene encodes two differentially expressed isoforms and its function in larval fat body is crucial for development of peripheral tissues. FEBS Open Bio 2016; 6:1040-1053. [PMID: 27833845 PMCID: PMC5095142 DOI: 10.1002/2211-5463.12124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 08/02/2016] [Accepted: 09/01/2016] [Indexed: 01/28/2023] Open
Abstract
Different isoforms of ataxin‐2 are predicted in Drosophila and may underlie different cellular processes. Here, we validated the isoforms B and C of Drosophila ataxin‐2 locus (dAtx2), which we found to be expressed in various tissues and at different levels during development. dAtx2‐B mRNA was detected at low amounts during all developmental stages, whereas dAtx2‐C mRNA levels increase by eightfold from L3 to pupal–adult stages. Higher amounts of dAtx2‐B protein were detected in embryos, while dAtx2‐C protein was also expressed in higher levels in pupal–adult stages, indicating post‐transcriptional control for isoform B and transcription induction for isoform C, respectively. Moreover, in the fat body of L3 larvae dAtx2‐C, but not dAtx2‐B, accumulates in cytoplasmic foci that colocalize with sec23, a marker of endoplasmic reticulum exit sites (ERES). Interestingly, animals subjected to selective knockdown of dAtx2 in the larval fat body do not complete metamorphosis and die at the third larval stage or early puparium. Additionally, larvae knocked down for dAtx2, grown at 29 °C, are significantly smaller than control animals due to reduction in DNA replication and cell growth, which are consistent with the decreased levels of phosphorylated‐AKT observed in the fat body. Based on the localization of ataxin‐2 (dAtx2‐C) in ERESs, and on the phenotypes observed by dAtx2 knockdown in the larval fat body, we speculate a possible role for this protein in processes that regulate ERES formation. These data provide new insights into the biological function of ataxin‐2 with potential relevance to neurodegenerative diseases.
Collapse
Affiliation(s)
- Murilo Carlos Bizam Vianna
- Department of Cellular and Molecular BiologyRibeirão Preto School of MedicineUniversity of São PauloRibeirão PretoSPBrazil
- Present address: Center of Biological SciencesState University of LondrinaCampus Universitário, LondrinaPR 86057‐97Brazil
| | - Deise Cristina Poleto
- Department of Cellular and Molecular BiologyRibeirão Preto School of MedicineUniversity of São PauloRibeirão PretoSPBrazil
| | - Paula Fernanda Gomes
- Department of Cellular and Molecular BiologyRibeirão Preto School of MedicineUniversity of São PauloRibeirão PretoSPBrazil
| | - Valéria Valente
- Department of Cellular and Molecular BiologyRibeirão Preto School of MedicineUniversity of São PauloRibeirão PretoSPBrazil
- Present address: Department of Clinical AnalysisFaculty of Pharmaceutical Sciences of AraraquaraUniversity of São Paulo State (UNESP)R. Expedicionários do Brasil, 1628, AraraquaraSP 14801‐902Brazil
| | - Maria Luisa Paçó‐Larson
- Department of Cellular and Molecular BiologyRibeirão Preto School of MedicineUniversity of São PauloRibeirão PretoSPBrazil
| |
Collapse
|
203
|
Gokhale RH, Hayashi T, Mirque CD, Shingleton AW. Intra-organ growth coordination in Drosophila is mediated by systemic ecdysone signaling. Dev Biol 2016; 418:135-145. [DOI: 10.1016/j.ydbio.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 07/17/2016] [Accepted: 07/17/2016] [Indexed: 12/21/2022]
|
204
|
Jaszczak JS, Halme A. Arrested development: coordinating regeneration with development and growth in Drosophila melanogaster. Curr Opin Genet Dev 2016; 40:87-94. [PMID: 27394031 PMCID: PMC5135572 DOI: 10.1016/j.gde.2016.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/19/2016] [Accepted: 06/16/2016] [Indexed: 01/01/2023]
Abstract
The capacity for tissues to regenerate often varies during development. A better understanding how developmental context regulates regenerative capacity will be an important step towards enhancing the regenerative capacity of tissues to repair disease or damage. Recent work examining the regeneration of imaginal discs in the fruit fly, Drosophila melanogaster, has begun to identify mechanisms by which developmental progress restricts regeneration, and elucidate how Drosophila coordinates regenerative repair with the growth and development of the entire organism. Here we review recent advances in describing the interplay between development and tissue regeneration in Drosophila and identify questions that arise from these findings.
Collapse
Affiliation(s)
- Jacob S Jaszczak
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Adrian Halme
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
205
|
|
206
|
Sears JC, Broihier HT. FoxO regulates microtubule dynamics and polarity to promote dendrite branching in Drosophila sensory neurons. Dev Biol 2016; 418:40-54. [PMID: 27546375 DOI: 10.1016/j.ydbio.2016.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/15/2023]
Abstract
The size and shape of dendrite arbors are defining features of neurons and critical determinants of neuronal function. The molecular mechanisms establishing arborization patterns during development are not well understood, though properly regulated microtubule (MT) dynamics and polarity are essential. We previously found that FoxO regulates axonal MTs, raising the question of whether it also regulates dendritic MTs and morphology. Here we demonstrate that FoxO promotes dendrite branching in all classes of Drosophila dendritic arborization (da) neurons. FoxO is required both for initiating growth of new branches and for maintaining existing branches. To elucidate FoxO function, we characterized MT organization in both foxO null and overexpressing neurons. We find that FoxO directs MT organization and dynamics in dendrites. Moreover, it is both necessary and sufficient for anterograde MT polymerization, which is known to promote dendrite branching. Lastly, FoxO promotes proper larval nociception, indicating a functional consequence of impaired da neuron morphology in foxO mutants. Together, our results indicate that FoxO regulates dendrite structure and function and suggest that FoxO-mediated pathways control MT dynamics and polarity.
Collapse
Affiliation(s)
- James C Sears
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
207
|
Di Cara F, King-Jones K. The Circadian Clock Is a Key Driver of Steroid Hormone Production in Drosophila. Curr Biol 2016; 26:2469-2477. [PMID: 27546572 DOI: 10.1016/j.cub.2016.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/17/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022]
Abstract
Biological clocks allow organisms to anticipate daily environmental changes such as temperature fluctuations, abundance of daylight, and nutrient availability. Many circadian-controlled physiological states are coordinated by the release of systemically acting hormones, including steroids and insulin [1-7]. Thus, hormones relay circadian outputs to target tissues, and disrupting these endocrine rhythms impairs human health by affecting sleep patterns, energy homeostasis, and immune functions [8-10]. It is largely unclear, however, whether circadian circuits control hormone levels indirectly via central timekeeping neurons or whether peripheral endocrine clocks can modulate hormone synthesis directly. We show here that perturbing the circadian clock, specifically in the major steroid hormone-producing gland of Drosophila, the prothoracic gland (PG), unexpectedly blocks larval development due to an inability to produce sufficient steroids. This is surprising, because classic circadian null mutants are viable and result in arrhythmic adults [4, 11-14]. We found that Timeless and Period, both core components of the insect clock [15], are required for transcriptional upregulation of steroid hormone-producing enzymes. Timeless couples the circadian machinery directly to the two canonical pathways that regulate steroid synthesis in insects, insulin and PTTH signaling [16], respectively. Activating insulin signaling directly modulates Timeless function, suggesting that the local clock in the PG is normally synced with systemic insulin cues. Because both PTTH and systemic insulin signaling are themselves under circadian control, we conclude that de-synchronization of a local endocrine clock with external circadian cues is the primary cause for steroid production to fail.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Cell Biology, University of Alberta, 5-19 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
208
|
Jayakumar S, Richhariya S, Reddy OV, Texada MJ, Hasan G. Drosophila larval to pupal switch under nutrient stress requires IP3R/Ca(2+) signalling in glutamatergic interneurons. eLife 2016; 5:e17495. [PMID: 27494275 PMCID: PMC4993588 DOI: 10.7554/elife.17495] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Neuronal circuits are known to integrate nutritional information, but the identity of the circuit components is not completely understood. Amino acids are a class of nutrients that are vital for the growth and function of an organism. Here, we report a neuronal circuit that allows Drosophila larvae to overcome amino acid deprivation and pupariate. We find that nutrient stress is sensed by the class IV multidendritic cholinergic neurons. Through live calcium imaging experiments, we show that these cholinergic stimuli are conveyed to glutamatergic neurons in the ventral ganglion through mAChR. We further show that IP3R-dependent calcium transients in the glutamatergic neurons convey this signal to downstream medial neurosecretory cells (mNSCs). The circuit ultimately converges at the ring gland and regulates expression of ecdysteroid biosynthetic genes. Activity in this circuit is thus likely to be an adaptation that provides a layer of regulation to help surpass nutritional stress during development.
Collapse
Affiliation(s)
- Siddharth Jayakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - O Venkateswara Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Michael J Texada
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
209
|
Roles of mechanistic target of rapamycin and transforming growth factor-β signaling in the molting gland (Y-organ) of the blackback land crab, Gecarcinus lateralis. Comp Biochem Physiol A Mol Integr Physiol 2016; 198:15-21. [DOI: 10.1016/j.cbpa.2016.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/23/2022]
|
210
|
Marcus SR, Fiumera AC. Atrazine exposure affects longevity, development time and body size in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:18-25. [PMID: 27317622 PMCID: PMC4969214 DOI: 10.1016/j.jinsphys.2016.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 05/13/2023]
Abstract
Atrazine is the one of the most widely used herbicides in the United States and non-target organisms may encounter it in the environment. Atrazine is known to affect male reproduction in both vertebrates and invertebrates but less is known about its effects on other fitness traits. Here we assessed the effects of five different chronic exposure levels on a variety of fitness traits in Drosophila melanogaster. We measured male and female longevity, development time, proportion pupated, proportion emerged, body size, female mating rate, fertility and fecundity. Atrazine exposure decreased the proportion pupated, the proportion emerged and adult survival. Development time was also affected by atrazine and exposed flies pupated and emerged earlier than controls. Although development time was accelerated, body size was actually larger in some of the exposures. Atrazine exposure had no effect on female mating rate and the effects on female fertility and fecundity were only observed in one of the two independent experimental blocks. Many of the traits showed non-monotonic dose response curves, where the intermediate concentrations showed the largest effects. Overall this study shows that atrazine influences a variety of life history traits in the model genetic system, D. melanogaster, and future studies should aim to identify the molecular mechanisms of toxicity.
Collapse
Affiliation(s)
- Sarah R Marcus
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
| | - Anthony C Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
211
|
Li YF, Chen XY, Zhang CD, Tang XF, Wang L, Liu TH, Pan MH, Lu C. Effects of starvation and hormones on DNA synthesis in silk gland cells of the silkworm, Bombyx mori. INSECT SCIENCE 2016; 23:569-578. [PMID: 25558018 DOI: 10.1111/1744-7917.12199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Silk gland cells of silkworm larvae undergo multiple cycles of endomitosis for the synthesis of silk proteins during the spinning phase. In this paper, we analyzed the endomitotic DNA synthesis of silk gland cells during larval development, and found that it was a periodic fluctuation, increasing during the vigorous feeding phase and being gradually inhibited in the next molting phase. That means it might be activated by a self-regulating process after molting. The expression levels of cyclin E, cdt1 and pcna were consistent with these developmental changes. Moreover, we further examined whether these changes in endomitotic DNA synthesis resulted from feeding or hormonal stimulation. The results showed that DNA synthesis could be inhibited by starvation and re-activated by re-feeding, and therefore appears to be dependent on nutrition. DNA synthesis was suppressed by in vivo treatment with 20-hydroxyecdysone (20E). However, there was no effect on DNA synthesis by in vitro 20E treatment or by either in vivo or in vitro juvenile hormone treatment. The levels of Akt and 4E-BP phosphorylation in the silk glands were also reduced by starvation and in vivo treatment with 20E. These results indicate that the activation of endomitotic DNA synthesis during the intermolt stages is related to feeding and DNA synthesis is inhibited indirectly by 20E.
Collapse
Affiliation(s)
- Yao-Feng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiang-Yun Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun-Dong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Xiao-Fang Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - La Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| |
Collapse
|
212
|
Ou Q, Zeng J, Yamanaka N, Brakken-Thal C, O'Connor MB, King-Jones K. The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation. Cell Rep 2016; 16:247-262. [PMID: 27320926 DOI: 10.1016/j.celrep.2016.05.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/01/2016] [Accepted: 05/12/2016] [Indexed: 11/17/2022] Open
Abstract
Steroid hormones are ancient signaling molecules found in vertebrates and insects alike. Both taxa show intriguing parallels with respect to how steroids function and how their synthesis is regulated. As such, insects are excellent models for studying universal aspects of steroid physiology. Here, we present a comprehensive genomic and genetic analysis of the principal steroid hormone-producing organs in two popular insect models, Drosophila and Bombyx. We identified 173 genes with previously unknown specific expression in steroid-producing cells, 15 of which had critical roles in development. The insect neuropeptide PTTH and its vertebrate counterpart ACTH both regulate steroid production, but molecular targets of these pathways remain poorly characterized. Identification of PTTH-dependent gene sets identified the nuclear receptor HR4 as a highly conserved target in both Drosophila and Bombyx. We consider this study to be a critical step toward understanding how steroid hormone production and release are regulated in all animal models.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Jie Zeng
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Naoki Yamanaka
- Institute for Integrative Genome Biology, Center for Disease Vector Research, and Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Christina Brakken-Thal
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
213
|
Rohner PT, Blanckenhorn WU, Puniamoorthy N. Sexual selection on male size drives the evolution of male-biased sexual size dimorphism via the prolongation of male development. Evolution 2016; 70:1189-99. [DOI: 10.1111/evo.12944] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick T. Rohner
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190, 8057 Zurich Switzerland
| | - Wolf U. Blanckenhorn
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190, 8057 Zurich Switzerland
| | | |
Collapse
|
214
|
Davidowitz G. Endocrine Proxies Can Simplify Endocrine Complexity to Enable Evolutionary Prediction. Integr Comp Biol 2016; 56:198-206. [DOI: 10.1093/icb/icw021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
215
|
Knockdown of a putative insulin-like peptide gene LdILP2 in Leptinotarsa decemlineata by RNA interference impairs pupation and adult emergence. Gene 2016; 581:170-7. [DOI: 10.1016/j.gene.2016.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/02/2015] [Accepted: 01/22/2016] [Indexed: 11/21/2022]
|
216
|
Wang Y, da Cruz TC, Pulfemuller A, Grégoire S, Ferveur JF, Moussian B. INHIBITION OF FATTY ACID DESATURASES IN Drosophila melanogaster LARVAE BLOCKS FEEDING AND DEVELOPMENTAL PROGRESSION. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:6-23. [PMID: 27037621 DOI: 10.1002/arch.21329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Fatty acid desaturases are metabolic setscrews. To study their systemic impact on growth in Drosophila melanogaster, we inhibited fatty acid desaturases using the inhibitor CAY10566. As expected, the amount of desaturated lipids is reduced in larvae fed with CAY10566. These animals cease feeding soon after hatching, and their growth is strongly attenuated. A starvation program is not launched, but the expression of distinct metabolic genes is activated, possibly to mobilize storage material. Without attaining the normal size, inhibitor-fed larvae molt to the next stage indicating that the steroid hormone ecdysone triggers molting correctly. Nevertheless, after molting, expression of ecdysone-dependent regulators is not induced. While control larvae molt a second time, these larvae fail to do so and die after few days of straying. These effects are similar to those observed in experiments using larvae deficient for the fatty acid desaturase1 gene. Based on these data, we propose that the ratio of saturated to unsaturated fatty acids adjusts a sensor system that directs feeding behavior. We also hypothesize that loss of fatty acid desaturase activity leads to a block of the genetic program of development progression indirectly by switching on a metabolic compensation program.
Collapse
Affiliation(s)
- Yiwen Wang
- Animal Genetics, Universität Tübingen, Tübingen, Germany
| | | | | | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne, Dijon, France
| | | |
Collapse
|
217
|
Jun JW, Han G, Yun HM, Lee GJ, Hyun S. Torso, a Drosophila receptor tyrosine kinase, plays a novel role in the larval fat body in regulating insulin signaling and body growth. J Comp Physiol B 2016; 186:701-9. [PMID: 27126913 DOI: 10.1007/s00360-016-0992-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
Torso is a receptor tyrosine kinase whose localized activation at the termini of the Drosophila embryo is mediated by its ligand, Trunk. Recent studies have unveiled a second function of Torso in the larval prothoracic gland (PG) as the receptor for the prothoracicotropic hormone, which triggers pupariation. As such, inhibition of Torso in the PG prolongs the larval growth period, thereby increasing the final pupa size. Here, we report that Torso also acts in the larval fat body, regulating body size in a manner opposite from that of Torso in PG. We confirmed the expression of torso mRNA in the larval fat body and its reduction by RNA interference (RNAi). Fat body-specific knockdown of torso, by either of the two independent RNAi transgenes, significantly decreased the final pupal size. We found that torso knockdown suppresses insulin/target of rapamycin (TOR) signaling in the fat body, as confirmed by repression of Akt and S6K. Notably, the decrease in insulin/TOR signaling and decrease of pupal size induced by the knockdown of torso were rescued by the expression of a constitutively active form of the insulin receptor or by the knockdown of FOXO. Our study revealed a novel role for Torso in the fat body with respect to regulation of insulin/TOR signaling and body size. This finding exemplifies the contrasting effects of the same gene expressed in two different organs on organismal physiology.
Collapse
Affiliation(s)
- Jong Woo Jun
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Gangsik Han
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Hyun Myoung Yun
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Gang Jun Lee
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea.
| |
Collapse
|
218
|
Carthew RW, Agbu P, Giri R. MicroRNA function in Drosophila melanogaster. Semin Cell Dev Biol 2016; 65:29-37. [PMID: 27000418 DOI: 10.1016/j.semcdb.2016.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/19/2022]
Abstract
Over the last decade, microRNAs have emerged as critical regulators in the expression and function of animal genomes. This review article discusses the relationship between microRNA-mediated regulation and the biology of the fruit fly Drosophila melanogaster. We focus on the roles that microRNAs play in tissue growth, germ cell development, hormone action, and the development and activity of the central nervous system. We also discuss the ways in which microRNAs affect robustness. Many gene regulatory networks are robust; they are relatively insensitive to the precise values of reaction constants and concentrations of molecules acting within the networks. MicroRNAs involved in robustness appear to be nonessential under uniform conditions used in conventional laboratory experiments. However, the robust functions of microRNAs can be revealed when environmental or genetic variation otherwise has an impact on developmental outcomes.
Collapse
Affiliation(s)
- Richard W Carthew
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| | - Pamela Agbu
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA
| | - Ritika Giri
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA
| |
Collapse
|
219
|
Effect of BBX-B8 overexpression on development, body weight, silk protein synthesis and egg diapause of Bombyx mori. Transgenic Res 2016; 25:507-16. [DOI: 10.1007/s11248-016-9947-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
|
220
|
McKinney DA, Eum JH, Dhara A, Strand MR, Brown MR. Calcium influx enhances neuropeptide activation of ecdysteroid hormone production by mosquito ovaries. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:160-169. [PMID: 26772671 PMCID: PMC4767660 DOI: 10.1016/j.ibmb.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
A critical step in mosquito reproduction is the ingestion of a blood meal from a vertebrate host. In mosquitoes like Aedes aegypti, blood feeding stimulates the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3). This induces the ovaries to produce ecdysteroid hormone (ECD), which then drives egg maturation. In many immature insects, prothoracicotropic hormone (PTTH) stimulates the prothoracic glands to produce ECD that directs molting and metamorphosis. The receptors for OEH, ILP3 and PTTH are different receptor tyrosine kinases with OEH and ILP3 signaling converging downstream in the insulin pathway and PTTH activating the mitogen-activated protein kinase pathway. Calcium (Ca(2+)) flux and cAMP have also been implicated in PTTH signaling, but the role of Ca(2+) in OEH, ILP3, and cAMP signaling in ovaries is unknown. Here, we assessed whether Ca(2+) flux affects OEH, ILP3, and cAMP activity in A. aegypti ovaries and also asked whether PTTH stimulated ovaries to produce ECD. Results indicated that Ca(2+) flux enhanced but was not essential for OEH or ILP3 activity, whereas cAMP signaling was dependent on Ca(2+) flux. Recombinant PTTH from Bombyx mori fully activated ECD production by B. mori PTGs, but exhibited no activity toward A. aegypti ovaries. Recombinant PTTH from A. aegypti also failed to stimulate either B. mori PTGs or A. aegypti ovaries to produce ECD. We discuss the implications of these results in the context of mosquito reproduction and ECD biosynthesis by insects generally.
Collapse
Affiliation(s)
- David A McKinney
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Jai-Hoon Eum
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Animesh Dhara
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
221
|
Mendes CC, Mirth CK. Stage-Specific Plasticity in Ovary Size Is Regulated by Insulin/Insulin-Like Growth Factor and Ecdysone Signaling in Drosophila. Genetics 2016; 202:703-19. [PMID: 26715667 PMCID: PMC4788244 DOI: 10.1534/genetics.115.179960] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023] Open
Abstract
Animals from flies to humans adjust their development in response to environmental conditions through a series of developmental checkpoints, which alter the sensitivity of organs to environmental perturbation. Despite their importance, we know little about the molecular mechanisms through which this change in sensitivity occurs. Here we identify two phases of sensitivity to larval nutrition that contribute to plasticity in ovariole number, an important determinant of fecundity, in Drosophila melanogaster. These two phases of sensitivity are separated by the developmental checkpoint called "critical weight"; poor nutrition has greater effects on ovariole number in larvae before critical weight than after. We find that this switch in sensitivity results from distinct developmental processes. In precritical weight larvae, poor nutrition delays the onset of terminal filament cell differentiation, the starting point for ovariole development, and strongly suppresses the rate of terminal filament addition and the rate of increase in ovary volume. Conversely, in postcritical weight larvae, poor nutrition affects only the rate of increase in ovary volume. Our results further indicate that two hormonal pathways, the insulin/insulin-like growth factor and the ecdysone-signaling pathways, modulate the timing and rates of all three developmental processes. The change in sensitivity in the ovary results from changes in the relative contribution of each pathway to the rates of terminal filament addition and increase in ovary volume before and after critical weight. Our work deepens our understanding of how hormones act to modify the sensitivity of organs to environmental conditions, thereby affecting their plasticity.
Collapse
Affiliation(s)
- Cláudia C Mendes
- Development, Evolution, and the Environment Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Christen K Mirth
- Development, Evolution, and the Environment Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
222
|
Kučerová L, Kubrak OI, Bengtsson JM, Strnad H, Nylin S, Theopold U, Nässel DR. Slowed aging during reproductive dormancy is reflected in genome-wide transcriptome changes in Drosophila melanogaster. BMC Genomics 2016; 17:50. [PMID: 26758761 PMCID: PMC4711038 DOI: 10.1186/s12864-016-2383-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/06/2016] [Indexed: 12/28/2022] Open
Abstract
Background In models extensively used in studies of aging and extended lifespan, such as C. elegans and Drosophila, adult senescence is regulated by gene networks that are likely to be similar to ones that underlie lifespan extension during dormancy. These include the evolutionarily conserved insulin/IGF, TOR and germ line-signaling pathways. Dormancy, also known as dauer stage in the larval worm or adult diapause in the fly, is triggered by adverse environmental conditions, and results in drastically extended lifespan with negligible senescence. It is furthermore characterized by increased stress resistance and somatic maintenance, developmental arrest and reallocated energy resources. In the fly Drosophila melanogaster adult reproductive diapause is additionally manifested in arrested ovary development, improved immune defense and altered metabolism. However, the molecular mechanisms behind this adaptive lifespan extension are not well understood. Results A genome wide analysis of transcript changes in diapausing D. melanogaster revealed a differential regulation of more than 4600 genes. Gene ontology (GO) and KEGG pathway analysis reveal that many of these genes are part of signaling pathways that regulate metabolism, stress responses, detoxification, immunity, protein synthesis and processes during aging. More specifically, gene readouts and detailed mapping of the pathways indicate downregulation of insulin-IGF (IIS), target of rapamycin (TOR) and MAP kinase signaling, whereas Toll-dependent immune signaling, Jun-N-terminal kinase (JNK) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways are upregulated during diapause. Furthermore, we detected transcriptional regulation of a large number of genes specifically associated with aging and longevity. Conclusions We find that many affected genes and signal pathways are shared between dormancy, aging and lifespan extension, including IIS, TOR, JAK/STAT and JNK. A substantial fraction of the genes affected by diapause have also been found to alter their expression in response to starvation and cold exposure in D. melanogaster, and the pathways overlap those reported in GO analysis of other invertebrates in dormancy or even hibernating mammals. Our study, thus, shows that D. melanogaster is a genetically tractable model for dormancy in other organisms and effects of dormancy on aging and lifespan. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2383-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucie Kučerová
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm, Sweden.
| | - Olga I Kubrak
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| | - Jonas M Bengtsson
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Sören Nylin
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| | - Ulrich Theopold
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm, Sweden.
| | - Dick R Nässel
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
223
|
Niwa YS, Niwa R. Transcriptional regulation of insect steroid hormone biosynthesis and its role in controlling timing of molting and metamorphosis. Dev Growth Differ 2016; 58:94-105. [PMID: 26667894 PMCID: PMC11520982 DOI: 10.1111/dgd.12248] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/11/2015] [Accepted: 10/11/2015] [Indexed: 01/11/2023]
Abstract
The developmental transition from juvenile to adult is often accompanied by many systemic changes in morphology, metabolism, and reproduction. Curiously, both mammalian puberty and insect metamorphosis are triggered by a pulse of steroid hormones, which can harmonize gene expression profiles in the body and thus orchestrate drastic biological changes. However, understanding of how the timing of steroid hormone biosynthesis is regulated at the molecular level is poor. The principal insect steroid hormone, ecdysteroid, is biosynthesized from dietary cholesterol in the specialized endocrine organ called the prothoracic gland. The periodic pulses of ecdysteroid titers determine the timing of molting and metamorphosis. To date, at least nine families of ecdysteroidogenic enzyme genes have been identified. Expression levels of these genes correlate well with ecdysteroid titers, indicating that the transcriptional regulatory network plays a critical role in regulating the ecdysteroid biosynthesis pathway. In this article, we summarize the transcriptional regulation of ecdysteroid biosynthesis. We first describe the development of prothoracic gland cells during Drosophila embryogenesis, and then provide an overview of the transcription factors that act in ecdysteroid biosynthesis and signaling. We also discuss the external signaling pathways that target these transcriptional regulators. Furthermore, we describe conserved and/or diverse aspects of steroid hormone biosynthesis in insect species as well as vertebrates.
Collapse
Affiliation(s)
- Yuko S Niwa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
- PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, 332-0012, Saitama, Japan
| |
Collapse
|
224
|
Cai MJ, Zhao WL, Jing YP, Song Q, Zhang XQ, Wang JX, Zhao XF. 20-hydroxyecdysone activates Forkhead box O to promote proteolysis during Helicoverpa armigera molting. Development 2016; 143:1005-15. [DOI: 10.1242/dev.128694] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022]
Abstract
Insulin inhibits transcription factor forkhead box O (FoxO) activity, and the steroid hormone 20-hydroxyecdysone (20E) activates FoxO; however, the mechanism is unclear. We hypothesized that 20E upregulates phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN) expression to activate FoxO, thereby promoting proteolysis during molting in the lepidopteran insect Helicoverpa armigera. FoxO expression is increased during molting and metamorphosis. The knockdown of FoxO in fifth instar larvae results in larval molting failure. 20E induces FoxO non-phosphorylation and nuclear translocation. Insulin, via Akt, induces FoxO phosphorylation and cytoplasm localization. 20E represses insulin-induced Akt phosphorylation and FoxO phosphorylation. 20E, via ecdysone receptor B1 (EcRB1) and the ultraspiracle protein (USP1), upregulates PTEN expression, which represses Akt phosphorylation, thereby repressing FoxO phosphorylation. The non-phosphorylated FoxO enters the nucleus and attaches to a FoxO binding element in the upstream region of the Broad isoform 7 (BrZ7) gene to regulate BrZ7 transcription under 20E induction. 20E upregulates FoxO expression via EcRB1 and USP1. FoxO regulation of BrZ7 expression regulates CarboxypeptidaseA expression for final proteolysis during insect molting. Hence, 20E activates FoxO via upregulating PTEN expression to counteract insulin activity and promote proteolysis.
Collapse
Affiliation(s)
- Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wen-Li Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yu-Pu Jing
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Qian Song
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Qian Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
225
|
Valzania L, Ono H, Ignesti M, Cavaliere V, Bernardi F, Gamberi C, Lasko P, Gargiulo G. Drosophila 4EHP is essential for the larval-pupal transition and required in the prothoracic gland for ecdysone biosynthesis. Dev Biol 2015; 410:14-23. [PMID: 26721418 DOI: 10.1016/j.ydbio.2015.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 10/25/2022]
Abstract
Maternal expression of the translational regulator 4EHP (eIF4E-Homologous Protein) has an established role in generating protein gradients essential for specifying the Drosophila embryonic pattern. We generated a null mutation of 4EHP, which revealed for the first time that it is essential for viability and for completion of development. In fact, 4EHP null larvae, and larvae ubiquitously expressing RNAi targeting 4EHP, are developmentally delayed, fail to grow and eventually die. In addition, we found that expressing RNAi that targets 4EHP specifically in the prothoracic gland disrupted ecdysone biosynthesis, causing a block of the transition from the larval to pupal stages. This phenotype can be rescued by dietary administration of ecdysone. Consistent with this, 4EHP is highly expressed in the prothoracic gland and it is required for wild type expression levels of steroidogenic enzymes. Taken together, these results uncover a novel essential function for 4EHP in regulating ecdysone biosynthesis.
Collapse
Affiliation(s)
- Luca Valzania
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Hajime Ono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Marilena Ignesti
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Fabio Bernardi
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Chiara Gamberi
- Department of Biology, McGill University, Montreal, Quebec, Canada H3G 0B1; Department of Biology, Concordia University, Montreal, Quebec, Canada H4B 1R6.
| | - Paul Lasko
- Department of Biology, McGill University, Montreal, Quebec, Canada H3G 0B1.
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy.
| |
Collapse
|
226
|
Wu YB, Yang WJ, Xie YF, Xu KK, Tian Y, Yuan GR, Wang JJ. Molecular characterization and functional analysis of BdFoxO gene in the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Gene 2015; 578:219-24. [PMID: 26701614 DOI: 10.1016/j.gene.2015.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 11/15/2022]
Abstract
The forkhead box O transcription factor (FoxO) is an important downstream transcription factor in the well-conserved insulin signaling pathway, which regulates the body size and development of insects. In this study, the FoxO gene (BdFoxO) was identified from the oriental fruit fly, Bactrocera dorsalis (Hendel). The open reading frame of BdFoxO (2732 bp) encoded a 910 amino acid protein, and the sequence was well conserved with other insect species. The BdFoxO was highly expressed in larvae and pupae among different development stages, and the highest tissue-specific expression level was found in the fat bodies compared to the testis, ovary, head, thorax, midgut, and Malpighian tubules of adults. Interestingly, we found BdFoxO expression was also up-regulated by starvation, but down-regulated when re-fed. Moreover, the injection of BdFoxO double-stranded RNAs into third-instar larvae significantly reduced BdFoxO transcript levels, which in turn down-regulated the expression of other four genes in the insulin signaling pathway. The silencing of BdFoxO resulted in delayed pupation, and the insect body weight increased significantly compared with that of the control. These results suggested that BdFoxO plays an important role in body size and development in B. dorsalis.
Collapse
Affiliation(s)
- Yi-Bei Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wen-Jia Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yi-Fei Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Kang-Kang Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yi Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
227
|
Das S, Pitts NL, Mudron MR, Durica DS, Mykles DL. Transcriptome analysis of the molting gland (Y-organ) from the blackback land crab, Gecarcinus lateralis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 17:26-40. [PMID: 26689334 DOI: 10.1016/j.cbd.2015.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/19/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022]
Abstract
In decapod crustaceans, arthropod steroid hormones or ecdysteroids regulate molting. These hormones are synthesized and released from a pair of molting glands called the Y-organs (YO). Cyclic nucleotide, mTOR, and TGFβ/Smad signaling pathways mediate molt cycle-dependent phase transitions in the YO. To further identify the genes involved in the regulation of molting, a YO transcriptome was generated from three biological replicates of intermolt blackback land crab, Gecarcinus lateralis. Illumina sequencing of cDNA libraries generated 227,811,829 100-base pair (bp) paired-end reads; following trimming, 90% of the reads were used for further analyses. The trimmed reads were assembled de novo using Trinity software to generate 288,673 contigs with a mean length of 872 bp and a median length of 1842 bp. Redundancy among contig sequences was reduced by CD-HIT-EST, and the output constituted the baseline transcriptome database. Using Bowtie2, 92% to 93% of the reads were mapped back to the transcriptome. Individual contigs were annotated using BLAST, HMMER, TMHMM, SignalP, and Trinotate, resulting in assignments of 20% of the contigs. Functional and pathway annotations were carried out via gene ontology (GO) and KEGG orthology (KO) analyses; 58% and 44% of the contigs with BLASTx hits were assigned to GO and KO terms, respectively. The gene expression profile was similar to a crayfish YO transcriptome database, and the relative abundance of each contig was highly correlated among the three G. lateralis replicates. Signal transduction pathway orthologs were well represented, including those in the mTOR, TGFβ, cyclic nucleotide, MAP kinase, calcium, VEGF, phosphatidylinositol, ErbB, Wnt, Hedgehog, Jak-STAT, and Notch pathways.
Collapse
Affiliation(s)
- Sunetra Das
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Natalie L Pitts
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Megan R Mudron
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - David S Durica
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
228
|
Ureña E, Pirone L, Chafino S, Pérez C, Sutherland JD, Lang V, Rodriguez MS, Lopitz-Otsoa F, Blanco FJ, Barrio R, Martín D. Evolution of SUMO Function and Chain Formation in Insects. Mol Biol Evol 2015; 33:568-84. [PMID: 26538142 PMCID: PMC4866545 DOI: 10.1093/molbev/msv242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
SUMOylation, the covalent binding of Small Ubiquitin-like Modifier (SUMO) to target proteins, is a posttranslational modification that regulates critical cellular processes in eukaryotes. In insects, SUMOylation has been studied in holometabolous species, particularly in the dipteran Drosophila melanogaster, which contains a single SUMO gene (smt3). This has led to the assumption that insects contain a single SUMO gene. However, the analysis of insect genomes shows that basal insects contain two SUMO genes, orthologous to vertebrate SUMO1 and SUMO2/3. Our phylogenetical analysis reveals that the SUMO gene has been duplicated giving rise to SUMO1 and SUMO2/3 families early in Metazoan evolution, and that later in insect evolution the SUMO1 gene has been lost after the Hymenoptera divergence. To explore the consequences of this loss, we have examined the characteristics and different biological functions of the two SUMO genes (SUMO1 and SUMO3) in the hemimetabolous cockroach Blattella germanica and compared them with those of Drosophila Smt3. Here, we show that the metamorphic role of the SUMO genes is evolutionary conserved in insects, although there has been a regulatory switch from SUMO1 in basal insects to SUMO3 in more derived ones. We also show that, unlike vertebrates, insect SUMO3 proteins cannot form polySUMO chains due to the loss of critical lysine residues within the N-terminal part of the protein. Furthermore, the formation of polySUMO chains by expression of ectopic human SUMO3 has a deleterious effect in Drosophila. These findings contribute to the understanding of the functional consequences of the evolution of SUMO genes.
Collapse
Affiliation(s)
- Enric Ureña
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Lucia Pirone
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Silvia Chafino
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Coralia Pérez
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | | | - Valérie Lang
- Cancer Unit, Inbiomed, San Sebastian, Gipuzkoa, Spain
| | | | | | - Francisco J Blanco
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
229
|
Schmitt S, Ugrankar R, Greene SE, Prajapati M, Lehmann M. Drosophila Lipin interacts with insulin and TOR signaling pathways in the control of growth and lipid metabolism. J Cell Sci 2015; 128:4395-406. [PMID: 26490996 DOI: 10.1242/jcs.173740] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/12/2015] [Indexed: 01/20/2023] Open
Abstract
Lipin proteins have key functions in lipid metabolism, acting as both phosphatidate phosphatases (PAPs) and nuclear regulators of gene expression. We show that the insulin and TORC1 pathways independently control functions of Drosophila Lipin (dLipin). Reduced signaling through the insulin receptor strongly enhanced defects caused by dLipin deficiency in fat body development, whereas reduced signaling through TORC1 led to translocation of dLipin into the nucleus. Reduced expression of dLipin resulted in decreased signaling through the insulin-receptor-controlled PI3K-Akt pathway and increased hemolymph sugar levels. Consistent with this, downregulation of dLipin in fat body cell clones caused a strong growth defect. The PAP but not the nuclear activity of dLipin was required for normal insulin pathway activity. Reduction of other enzymes of the glycerol-3 phosphate pathway affected insulin pathway activity in a similar manner, suggesting an effect that is mediated by one or more metabolites associated with the pathway. Taken together, our data show that dLipin is subject to intricate control by the insulin and TORC1 pathways, and that the cellular status of dLipin impacts how fat body cells respond to signals relayed through the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Sandra Schmitt
- Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA
| | - Rupali Ugrankar
- Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA
| | - Stephanie E Greene
- Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA
| | - Meenakshi Prajapati
- Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA
| | - Michael Lehmann
- Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
230
|
Llorens JV, Metzendorf C, Missirlis F, Lind MI. Mitochondrial iron supply is required for the developmental pulse of ecdysone biosynthesis that initiates metamorphosis in Drosophila melanogaster. J Biol Inorg Chem 2015; 20:1229-38. [PMID: 26468126 DOI: 10.1007/s00775-015-1302-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
Abstract
Synthesis of ecdysone, the key hormone that signals the termination of larval growth and the initiation of metamorphosis in insects, is carried out in the prothoracic gland by an array of iron-containing cytochrome P450s, encoded by the halloween genes. Interference, either with iron-sulfur cluster biogenesis in the prothoracic gland or with the ferredoxins that supply electrons for steroidogenesis, causes a block in ecdysone synthesis and developmental arrest in the third instar larval stage. Here we show that mutants in Drosophila mitoferrin (dmfrn), the gene encoding a mitochondrial carrier protein implicated in mitochondrial iron import, fail to grow and initiate metamorphosis under dietary iron depletion or when ferritin function is partially compromised. In mutant dmfrn larvae reared under iron replete conditions, the expression of halloween genes is increased and 20-hydroxyecdysone (20E), the active form of ecdysone, is synthesized. In contrast, addition of an iron chelator to the diet of mutant dmfrn larvae disrupts 20E synthesis. Dietary addition of 20E has little effect on the growth defects, but enables approximately one-third of the iron-deprived dmfrn larvae to successfully turn into pupae and, in a smaller percentage, into adults. This partial rescue is not observed with dietary supply of ecdysone's precursor 7-dehydrocholesterol, a precursor in the ecdysone biosynthetic pathway. The findings reported here support the notion that a physiological supply of mitochondrial iron for the synthesis of iron-sulfur clusters and heme is required in the prothoracic glands of insect larvae for steroidogenesis. Furthermore, mitochondrial iron is also essential for normal larval growth.
Collapse
Affiliation(s)
- Jose V Llorens
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala, Sweden
| | - Christoph Metzendorf
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Mexico City, Mexico.
| | - Maria I Lind
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala, Sweden.
| |
Collapse
|
231
|
Lavrynenko O, Rodenfels J, Carvalho M, Dye NA, Lafont R, Eaton S, Shevchenko A. The ecdysteroidome of Drosophila: influence of diet and development. Development 2015; 142:3758-68. [PMID: 26395481 DOI: 10.1242/dev.124982] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/03/2015] [Indexed: 01/06/2023]
Abstract
Ecdysteroids are the hormones regulating development, physiology and fertility in arthropods, which synthesize them exclusively from dietary sterols. But how dietary sterol diversity influences the ecdysteroid profile, how animals ensure the production of desired hormones and whether there are functional differences between different ecdysteroids produced in vivo remains unknown. This is because currently there is no analytical technology for unbiased, comprehensive and quantitative assessment of the full complement of endogenous ecdysteroids. We developed a new LC-MS/MS method to screen the entire chemical space of ecdysteroid-related structures and to quantify known and newly discovered hormones and their catabolites. We quantified the ecdysteroidome in Drosophila melanogaster and investigated how the ecdysteroid profile varies with diet and development. We show that Drosophila can produce four different classes of ecdysteroids, which are obligatorily derived from four types of dietary sterol precursors. Drosophila makes makisterone A from plant sterols and epi-makisterone A from ergosterol, the major yeast sterol. However, they prefer to selectively utilize scarce ergosterol precursors to make a novel hormone 24,28-dehydromakisterone A and trace cholesterol to synthesize 20-hydroxyecdysone. Interestingly, epi-makisterone A supports only larval development, whereas all other ecdysteroids allow full adult development. We suggest that evolutionary pressure against producing epi-C-24 ecdysteroids might explain selective utilization of ergosterol precursors and the puzzling preference for cholesterol.
Collapse
Affiliation(s)
- Oksana Lavrynenko
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Jonathan Rodenfels
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Maria Carvalho
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Natalie A Dye
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Rene Lafont
- Sorbonne Universités, University Pierre and Marie Curie, Paris 06, IBPS-BIOSIPE, 7 Quai Saint Bernard, Case Courrier 29, Paris Cedex 05 75252, France
| | - Suzanne Eaton
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Andrej Shevchenko
- Max Planck Institute for Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany
| |
Collapse
|
232
|
Yan Y, Wang H, Chen H, Lindström-Battle A, Jiao R. Ecdysone and Insulin Signaling Play Essential Roles in Readjusting the Altered Body Size Caused by the dGPAT4 Mutation in Drosophila. J Genet Genomics 2015; 42:487-94. [DOI: 10.1016/j.jgg.2015.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 12/19/2022]
|
233
|
Boulan L, Milán M, Léopold P. The Systemic Control of Growth. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a019117. [PMID: 26261282 DOI: 10.1101/cshperspect.a019117] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Growth is a complex process that is intimately linked to the developmental program to form adults with proper size and proportions. Genetics is an important determinant of growth, as exemplified by the role of local diffusible molecules setting up organ proportions. In addition, organisms use adaptive responses allowing modulating the size of individuals according to environmental cues, for example, nutrition. Here, we describe some of the physiological principles participating in the determination of final individual size.
Collapse
Affiliation(s)
- Laura Boulan
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| | - Marco Milán
- 5ICREA, Parc Cientific de Barcelona, 08028 Barcelona, Spain
| | - Pierre Léopold
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| |
Collapse
|
234
|
Xie XJ, Hsu FN, Gao X, Xu W, Ni JQ, Xing Y, Huang L, Hsiao HC, Zheng H, Wang C, Zheng Y, Xiaoli AM, Yang F, Bondos SE, Ji JY. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol 2015. [PMID: 26222308 PMCID: PMC4519132 DOI: 10.1371/journal.pbio.1002207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval–pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval–pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval–pupal transition. During the larval-pupal transition in Drosophila, CDK8-CycC helps to link nutrient intake to development by activating ecdysone receptor-dependent transcription and to fat metabolism by inhibiting SREBP-activated gene expression. Arthropods are estimated to account for over 80% of animal species on earth. Characterized by their rigid exoskeletons, juvenile arthropods must periodically shed their thick outer cuticles by molting in order to grow. The steroid hormone ecdysone plays an essential role in regulating the timing of developmental transitions, but exactly how ecdysone and its receptor EcR activates transcription correctly after integrating nutritional and developmental cues remains unknown. Our developmental genetic analyses of two Drosophila mutants, cdk8 and cycC, show that they are lethal during the prepupal stage, with aberrant accumulation of fat and a severely delayed larval–pupal transition. As we have reported previously, CDK8-CycC inhibits fat accumulation by directly inactivating SREBP, a master transcription factor that controls the expression of lipogenic genes, which explains the abnormal fat accumulation in the cdk8 and cycC mutants. We find that CDK8 and CycC are required for EcR to bind to its target genes, serving as transcriptional cofactors for EcR-dependent gene expression. The expression of EcR target genes is compromised in cdk8 and cycC mutants and underpins the retarded pupariation phenotype. Starvation of feeding larvae precociously up-regulates CDK8 and EcR, prematurely down-regulates SREBP activity, and leads to early pupariation, whereas re-feeding starved larvae has opposite effects. Taken together, these results suggest that CDK8 and CycC play important roles in coordinating nutrition intake with fat metabolism by directly inhibiting SREBP-dependent gene expression and regulating developmental timing by activating EcR-dependent transcription in Drosophila.
Collapse
Affiliation(s)
- Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Jian-Quan Ni
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, China
| | - Yue Xing
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Liying Huang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Hao-Ching Hsiao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Frelinghuysen Road, Piscataway, New Jersey, United States of America
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine; Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yani Zheng
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Alus M. Xiaoli
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fajun Yang
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
235
|
Liu CY, Zhao WL, Wang JX, Zhao XF. Cyclin-dependent kinase regulatory subunit 1 promotes cell proliferation by insulin regulation. Cell Cycle 2015. [PMID: 26199131 DOI: 10.1080/15384101.2015.1053664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase regulatory subunit 1 (CKS1) helps regulate the cell cycle to increase cell number. However, the hormonal regulation on CKS1 expression is not well understood. We report that CKS1 is involved in the promotion of cell proliferation with insulin regulation in the lepidopteran insect Helicoverpa armigera. CKS1 is expressed in various tissues during the larval feeding stage. CKS1 knockdown results in larval death, body weight decrease, pupation time delay, and small-sized pupa formation. The underlying mechanism involves the blocking of cell proliferation and the repression of gene expression in the insulin pathway after CKS1 knockdown. CKS1 overexpression in the epidermal cell line results in cell proliferation. The N45 amino acid asparagine in the CKS domain is essential for the function of CKS in cell proliferation. CKS1 is upregulated by insulin via an insulin receptor, but is repressed by a high level of steroid hormone 20-hydroxyecdysone (20E). Results suggest that CKS1 promotes cell proliferation and body growth in coordination with the regulatory actions of insulin and steroid hormone 20E.
Collapse
Affiliation(s)
- Chun-Yan Liu
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences; Shandong University ; Jinan , Shandong , China
| | - Wen-Li Zhao
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences; Shandong University ; Jinan , Shandong , China
| | - Jin-Xing Wang
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences; Shandong University ; Jinan , Shandong , China
| | - Xiao-Fan Zhao
- a Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences; Shandong University ; Jinan , Shandong , China
| |
Collapse
|
236
|
Herboso L, Oliveira MM, Talamillo A, Pérez C, González M, Martín D, Sutherland JD, Shingleton AW, Mirth CK, Barrio R. Ecdysone promotes growth of imaginal discs through the regulation of Thor in D. melanogaster. Sci Rep 2015. [PMID: 26198204 PMCID: PMC4510524 DOI: 10.1038/srep12383] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animals have a determined species-specific body size that results from the combined action of hormones and signaling pathways regulating growth rate and duration. In Drosophila, the steroid hormone ecdysone controls developmental transitions, thereby regulating the duration of the growth period. Here we show that ecdysone promotes the growth of imaginal discs in mid-third instar larvae, since imaginal discs from larvae with reduced or no ecdysone synthesis are smaller than wild type due to smaller and fewer cells. We show that insulin-like peptides are produced and secreted normally in larvae with reduced ecdysone synthesis, and upstream components of insulin/insulin-like signaling are activated in their discs. Instead, ecdysone appears to regulate the growth of imaginal discs via Thor/4E-BP, a negative growth regulator downstream of the insulin/insulin-like growth factor/Tor pathways. Discs from larvae with reduced ecdysone synthesis have elevated levels of Thor, while mutations in Thor partially rescue their growth. The regulation of organ growth by ecdysone is evolutionarily conserved in hemimetabolous insects, as shown by our results obtained using Blattella germanica. In summary, our data provide new insights into the relationship between components of the insulin/insulin-like/Tor and ecdysone pathways in the control of organ growth.
Collapse
Affiliation(s)
- Leire Herboso
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Marisa M Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Talamillo
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Coralia Pérez
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Monika González
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - David Martín
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | - Christen K Mirth
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
237
|
Hentze JL, Carlsson MA, Kondo S, Nässel DR, Rewitz KF. The Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in Drosophila. Sci Rep 2015; 5:11680. [PMID: 26123697 PMCID: PMC4485031 DOI: 10.1038/srep11680] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 06/03/2015] [Indexed: 01/23/2023] Open
Abstract
Coordinating metabolism and feeding is important to avoid obesity and metabolic diseases, yet the underlying mechanisms, balancing nutrient intake and metabolic expenditure, are poorly understood. Several mechanisms controlling these processes are conserved in Drosophila, where homeostasis and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). Here, we provide evidence that the Drosophila neuropeptide Allatostatin A (AstA) regulates AKH and DILP signaling. The AstA receptor gene, Dar-2, is expressed in both the insulin and AKH producing cells. Silencing of Dar-2 in these cells results in changes in gene expression and physiology associated with reduced DILP and AKH signaling and animals lacking AstA accumulate high lipid levels. This suggests that AstA is regulating the balance between DILP and AKH, believed to be important for the maintenance of nutrient homeostasis in response to changing ratios of dietary sugar and protein. Furthermore, AstA and Dar-2 are regulated differentially by dietary carbohydrates and protein and AstA-neuronal activity modulates feeding choices between these types of nutrients. Our results suggest that AstA is involved in assigning value to these nutrients to coordinate metabolic and feeding decisions, responses that are important to balance food intake according to metabolic needs.
Collapse
Affiliation(s)
- Julie L. Hentze
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark
- Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen 2100, Denmark
| | - Mikael A. Carlsson
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, Stockholm 106 91, Sweden
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, Stockholm 106 91, Sweden
| | - Kim F. Rewitz
- Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen 2100, Denmark
| |
Collapse
|
238
|
Hatem NE, Wang Z, Nave KB, Koyama T, Suzuki Y. The role of juvenile hormone and insulin/TOR signaling in the growth of Manduca sexta. BMC Biol 2015; 13:44. [PMID: 26108483 PMCID: PMC4499214 DOI: 10.1186/s12915-015-0155-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In many insect species, fitness trade-offs exist between maximizing body size and developmental speed. Understanding how various species evolve different life history strategies requires knowledge of the physiological mechanisms underlying the regulation of body size and developmental timing. Here the roles of juvenile hormone (JH) and insulin/target of rapamycin (TOR) signaling in the regulation of the final body size were examined in the tobacco hornworm, Manduca sexta. RESULTS Feeding rapamycin to wild-type larvae decreased the growth rate but did not alter the peak size of the larvae. In contrast, feeding rapamycin to the JH-deficient black mutant larvae caused the larvae to significantly increase the peak size relative to the DMSO-fed control animals by lengthening the terminal growth period. Furthermore, the critical weight was unaltered by feeding rapamycin, indicating that in Manduca, the critical weight is not influenced by insulin/TOR signaling. In addition, post-critical weight starved black mutant Manduca given rapamycin underwent metamorphosis sooner than those that were fed, mimicking the "bail-out mechanism". CONCLUSIONS Our study demonstrates that JH masks the effects of insulin/TOR signaling in the determination of the final body size and that the critical weights in Drosophila and Manduca rely on distinct mechanisms that reflect different life history strategies. Our study also suggests that TOR signaling lengthens the terminal growth period in Manduca as it does in Drosophila, and that JH levels determine the relative contributions of nutrient- and body size-sensing pathways to metamorphic timing.
Collapse
Affiliation(s)
- Nicole E Hatem
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA.
| | - Zhou Wang
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA.
| | - Keelin B Nave
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA.
| | - Takashi Koyama
- Development, Evolution and the Environment Lab, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA.
| |
Collapse
|
239
|
Nitric Oxide Synthase Regulates Growth Coordination During Drosophila melanogaster Imaginal Disc Regeneration. Genetics 2015; 200:1219-28. [PMID: 26081194 DOI: 10.1534/genetics.115.178053] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/15/2015] [Indexed: 11/18/2022] Open
Abstract
Mechanisms that coordinate growth during development are essential for producing animals with proper organ proportion. Here we describe a pathway through which tissues communicate to coordinate growth. During Drosophila melanogaster larval development, damage to imaginal discs activates a regeneration checkpoint through expression of Dilp8. This both produces a delay in developmental timing and slows the growth of undamaged tissues, coordinating regeneration of the damaged tissue with developmental progression and overall growth. Here we demonstrate that Dilp8-dependent growth coordination between regenerating and undamaged tissues, but not developmental delay, requires the activity of nitric oxide synthase (NOS) in the prothoracic gland. NOS limits the growth of undamaged tissues by reducing ecdysone biosynthesis, a requirement for imaginal disc growth during both the regenerative checkpoint and normal development. Therefore, NOS activity in the prothoracic gland coordinates tissue growth through regulation of endocrine signals.
Collapse
|
240
|
Fresán U, Cuartero S, O'Connor MB, Espinàs ML. The insulator protein CTCF regulates Drosophila steroidogenesis. Biol Open 2015; 4:852-7. [PMID: 25979705 PMCID: PMC4571099 DOI: 10.1242/bio.012344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The steroid hormone ecdysone is a central regulator of insect development. In this report we show that CTCF expression in the prothoracic gland is required for full transcriptional activation of the Halloween genes spookier, shadow and noppera-bo, which encode ecdysone biosynthetic enzymes, and for proper timing of ecdysone-responsive gene expression. Loss of CTCF results in delayed and less synchronized larval development that can only be rescued by feeding larvae with both, the steroid hormone 20-hydroxyecdysone and cholesterol. Moreover, CTCF-knockdown in prothoracic gland cells leads to increased lipid accumulation. In conclusion, the insulator protein CTCF is required for Halloween gene expression and cholesterol homeostasis in ecdysone-producing cells controlling steroidogenesis.
Collapse
Affiliation(s)
- Ujué Fresán
- Institute of Molecular Biology of Barcelona, IBMB-CSIC, and Institute for Research in Biomedicine IRB, Barcelona 08028, Spain
| | - Sergi Cuartero
- Institute of Molecular Biology of Barcelona, IBMB-CSIC, and Institute for Research in Biomedicine IRB, Barcelona 08028, Spain
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - M Lluisa Espinàs
- Institute of Molecular Biology of Barcelona, IBMB-CSIC, and Institute for Research in Biomedicine IRB, Barcelona 08028, Spain Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
241
|
Xu KK, Yang WJ, Tian Y, Wu YB, Wang JJ. Insulin signaling pathway in the oriental fruit fly: The role of insulin receptor substrate in ovarian development. Gen Comp Endocrinol 2015; 216:125-33. [PMID: 25499646 DOI: 10.1016/j.ygcen.2014.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/09/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022]
Abstract
Insulin signaling pathways have integral roles in regulating organ growth and body size of insects. Here, we identified and characterized six insulin signaling pathway components-InR, IRS, PI3K92E, PI3K21B, Akt, and PDK-from Bactrocera dorsalis. Quantitative real-time polymerase chain reaction was used to establish gene expression profiles for the insulin signaling pathway components for different developmental stages and tissues, and in response to 20-hydroxyecdysone (20E) and starvation. IRS, PI3K92E, and PI3K21B were highly expressed in the head, while InR, Akt, and PDK were most abundant in Malpighian tubules. Both IRS and PI3K92E were highly expressed during the larval-pupal and pupal-adult transition, while the remaining four genes were highly expressed only during the pupal-adult transition. Following initial exposure to 20E, the expression levels of most genes were significantly decreased. However, the expression levels of IRS, PI3K92E, and PI3K21B were significantly increased at 8 and 12h post-treatment compared with the control. Moreover, we found that most insulin signaling pathway genes in B. dorsalis were up-regulated in response to starvation, but decreased when re-fed. On the contrary, transcript levels of PI3K21B decreased significantly during starvation. Furthermore, injection of IRS dsRNA into adult females significantly reduced IRS transcript levels. Suppression of IRS expression inhibited ovarian development, and the average ovary size was reduced by 33% compared with the control. This study provides new insight into the roles of insulin signaling pathway components in B. dorsalis, and demonstrates an important role for IRS in ovarian development.
Collapse
Affiliation(s)
- Kang-Kang Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wen-Jia Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yi Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yi-Bei Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
242
|
Nevado J, Rosenfeld JA, Mena R, Palomares-Bralo M, Vallespín E, Ángeles Mori M, Tenorio JA, Gripp KW, Denenberg E, Del Campo M, Plaja A, Martín-Arenas R, Santos-Simarro F, Armengol L, Gowans G, Orera M, Sanchez-Hombre MC, Corbacho-Fernández E, Fernández-Jaén A, Haldeman-Englert C, Saitta S, Dubbs H, Bénédicte DB, Li X, Devaney L, Dinulos MB, Vallee S, Crespo MC, Fernández B, Fernández-Montaño VE, Rueda-Arenas I, de Torres ML, Ellison JW, Raskin S, Venegas-Vega CA, Fernández-Ramírez F, Delicado A, García-Miñaúr S, Lapunzina P. PIAS4 is associated with macro/microcephaly in the novel interstitial 19p13.3 microdeletion/microduplication syndrome. Eur J Hum Genet 2015; 23:1615-26. [PMID: 25853300 DOI: 10.1038/ejhg.2015.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/23/2014] [Accepted: 02/17/2015] [Indexed: 12/24/2022] Open
Abstract
Array comparative genomic hybridization (aCGH) is a powerful genetic tool that has enabled the identification of novel imbalances in individuals with intellectual disability (ID), autistic disorders and congenital malformations. Here we report a 'genotype first' approach using aCGH on 13 unrelated patients with 19p13.3 submicroscopic rearrangement (11 deletions and 2 duplications) and review cases in the literature and in public databases. Shared phenotypic features suggest that these patients represent an interstitial microdeletion/microduplication syndrome at 19p13.3. Common features consist of abnormal head circumference in most patients (macrocephaly with the deletions and microcephaly with the duplications), ID with developmental delay (DD), hypotonia, speech delay and common dysmorphic features. The phenotype is associated with at least a ~0.113 Mb critical region harboring three strong candidate genes probably associated with DD, ID, speech delay and other dysmorphic features: MAP2K2, ZBTB7A and PIAS4, an E3 ubiquitin ligase involved in the ubiquitin signaling pathways, which we hypothesize for the first time to be associated with head size in humans.
Collapse
Affiliation(s)
- Julián Nevado
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Jill A Rosenfeld
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, WA, USA
| | - Rocío Mena
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - María Palomares-Bralo
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Elena Vallespín
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - María Ángeles Mori
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Jair A Tenorio
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Karen W Gripp
- AI DuPont Hospital for Children, Wilmington, DE, USA
| | | | | | | | - Rubén Martín-Arenas
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | | | | | | | | | | | - Sulagna Saitta
- Medical Genetics Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Holly Dubbs
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Xia Li
- Ameripath Northeast, Shelton, CT, USA
| | - Lani Devaney
- Henry Ford Health System, Sterling Heights, Michigan, USA
| | | | | | - M Carmen Crespo
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Blanca Fernández
- Section Cytogenetics, INGEMM-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Victoria E Fernández-Montaño
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Inmaculada Rueda-Arenas
- Section of Functional and Structural Genomics Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - María Luisa de Torres
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Section Cytogenetics, INGEMM-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | | | - Salmo Raskin
- Center for Health and Biological Sciences, Pontifícia Universidade Católica do Paraná (PUC-PR), Curitiba, Brazil
| | - Carlos A Venegas-Vega
- Genetic Unit Hospital General de México, México, México.,School of Medicine. Universidad Autónoma de México, México, México
| | | | - Alicia Delicado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Section Cytogenetics, INGEMM-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Sixto García-Miñaúr
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Section of Clinical Genetics, INGEMM-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Section of Clinical Genetics, INGEMM-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
243
|
Gokhale RH, Shingleton AW. Size control: the developmental physiology of body and organ size regulation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:335-56. [PMID: 25808999 DOI: 10.1002/wdev.181] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/08/2015] [Accepted: 01/29/2015] [Indexed: 01/04/2023]
Abstract
The developmental regulation of final body and organ size is fundamental to generating a functional and correctly proportioned adult. Research over the last two decades has identified a long list of genes and signaling pathways that, when perturbed, influence final body size. However, body and organ size are ultimately a characteristic of the whole organism, and how these myriad genes and pathways function within a physiological context to control size remains largely unknown. In this review, we first describe the major size-regulatory signaling pathways: the Insulin/IGF-, RAS/RAF/MAPK-, TOR-, Hippo-, and JNK-signaling pathways. We then explore what is known of how these pathways regulate five major aspects of size regulation: growth rate, growth duration, target size, negative growth and growth coordination. While this review is by no means exhaustive, our goal is to provide a conceptual framework for integrating the mechanisms of size control at a molecular-genetic level with the mechanisms of size control at a physiological level.
Collapse
Affiliation(s)
- Rewatee H Gokhale
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Alexander W Shingleton
- Department of Biology, Lake Forest College, Lake Forest, IL, USA.,Department of Zoology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
244
|
Sopko R, Lin YB, Makhijani K, Alexander B, Perrimon N, Brückner K. A systems-level interrogation identifies regulators of Drosophila blood cell number and survival. PLoS Genet 2015; 11:e1005056. [PMID: 25749252 PMCID: PMC4352040 DOI: 10.1371/journal.pgen.1005056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/05/2015] [Indexed: 12/12/2022] Open
Abstract
In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - You Bin Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
245
|
Carvalho MJA, Mirth CK. Coordinating morphology with behavior during development: an integrative approach from a fly perspective. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
246
|
Rodenfels J, Lavrynenko O, Ayciriex S, Sampaio JL, Carvalho M, Shevchenko A, Eaton S. Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development. Genes Dev 2015; 28:2636-51. [PMID: 25452274 PMCID: PMC4248294 DOI: 10.1101/gad.249763.114] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rodenfels et al. show that the Drosophila intestine responds to nutrient availability by regulating production of a circulating lipoprotein-associated form of Hedgehog (Hh). Levels of circulating Hh tune the rates of growth and developmental timing in a coordinated fashion. Circulating Hh is especially important during starvation, when it is also required for mobilization of fat body triacylglycerol stores. In Drosophila larvae, growth and developmental timing are regulated by nutrition in a tightly coordinated fashion. The networks that couple these processes are far from understood. Here, we show that the intestine responds to nutrient availability by regulating production of a circulating lipoprotein-associated form of the signaling protein Hedgehog (Hh). Levels of circulating Hh tune the rates of growth and developmental timing in a coordinated fashion. Circulating Hh signals to the fat body to control larval growth. It regulates developmental timing by controlling ecdysteroid production in the prothoracic gland. Circulating Hh is especially important during starvation, when it is also required for mobilization of fat body triacylglycerol (TAG) stores. Thus, we demonstrate that Hh, previously known only for its local morphogenetic functions, also acts as a lipoprotein-associated endocrine hormone, coordinating the response of multiple tissues to nutrient availability.
Collapse
Affiliation(s)
- Jonathan Rodenfels
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Oksana Lavrynenko
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Sophie Ayciriex
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Julio L Sampaio
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Maria Carvalho
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Suzanne Eaton
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
247
|
Okabe F, Nakagiri Y, Yamada T, Kose H. Laser induced injury caused hyperglycemia-like effect in Drosophila larva: a possible insect model for posttraumatic diabetes. J Vet Med Sci 2015; 77:601-4. [PMID: 25649060 PMCID: PMC4478742 DOI: 10.1292/jvms.14-0631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic patients need particular care in case of infection, digestive disorder or
external injury, because external stress often exasperates the glucose metabolism, which
is known as “sick day management”. In addition, severe trauma can be a cause of
hyperglycemia with insulin resistance. In spite of critical component of the treatment,
the precise mechanisms of how trauma develops posttraumatic diabetes remain unknown. Here,
we ablated body wall muscles in Drosophila larvae by laser beam and found
that the level of trehalose, the principal sugar circulating in the hemolymph or in the
tissues of most insects, was increased. The model may provide a helpful tool to understand
the relationship between trauma and sugar metabolism.
Collapse
Affiliation(s)
- Fumio Okabe
- Department of Life Science, Division of Natural Sciences, International Christian University, Mitaka, Tokyo 181-8585, Japan
| | | | | | | |
Collapse
|
248
|
Autocrine regulation of ecdysone synthesis by β3-octopamine receptor in the prothoracic gland is essential for Drosophila metamorphosis. Proc Natl Acad Sci U S A 2015; 112:1452-7. [PMID: 25605909 DOI: 10.1073/pnas.1414966112] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In Drosophila, pulsed production of the steroid hormone ecdysone plays a pivotal role in developmental transitions such as metamorphosis. Ecdysone production is regulated in the prothoracic gland (PG) by prothoracicotropic hormone (PTTH) and insulin-like peptides (Ilps). Here, we show that monoaminergic autocrine regulation of ecdysone biosynthesis in the PG is essential for metamorphosis. PG-specific knockdown of a monoamine G protein-coupled receptor, β3-octopamine receptor (Octβ3R), resulted in arrested metamorphosis due to lack of ecdysone. Knockdown of tyramine biosynthesis genes expressed in the PG caused similar defects in ecdysone production and metamorphosis. Moreover, PTTH and Ilps signaling were impaired by Octβ3R knockdown in the PG, and activation of these signaling pathways rescued the defect in metamorphosis. Thus, monoaminergic autocrine signaling in the PG regulates ecdysone biogenesis in a coordinated fashion on activation by PTTH and Ilps. We propose that monoaminergic autocrine signaling acts downstream of a body size checkpoint that allows metamorphosis to occur when nutrients are sufficiently abundant.
Collapse
|
249
|
Navrotskaya V, Oxenkrug G, Vorobyova L, Summergrad P. Attenuation of high sucrose diet-induced insulin resistance in tryptophan 2,3-dioxygenase deficient Drosophila melanogaster vermilion mutants. ACTA ACUST UNITED AC 2015; 1:93-95. [PMID: 26191458 DOI: 10.15761/iod.1000120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exposure to high sugar diet (HSD) serves as an experimental model of insulin resistance (IR) and type 2 diabetes (T2D) in mammals and insects. Peripheral IR induced by HSD delays emergence of pupae from larvae and decreases body weight of Drosophila imago. Understanding of mechanisms of IR/T2D is essential for refining T2D prevention and treatment strategies. Dysregulation of tryptophan (TRP) - kynurenine (KYN) pathway was suggested as one of the mechanisms of IR development. Rate-limiting enzyme of TRP - KYN pathway in Drosophila is TRP 2,3-dioxygenase (TDO), an evolutionary conserved ortholog of human TDO. In insects TDO is encoded by vermilion gene. TDO is not active in vermilion mutants. In order to evaluate the possible impact of deficient formation of KYN from TRP on the inducement of IR by HSD, we compared the effect of HSD in wild type (Oregon) and vermilion mutants of Drosophila melanogaster by assessing the time of white pupae emergence from larva and body weight of imago. Delay of emergence of pupae from larvae induced by high sucrose diet was less pronounced in vermilion (1.4 days) than in Oregon flies (3.3 days) in comparison with flies maintained on standard diet. Exposure to high sucrose diet decreased body weight of Oregon (but not vermilion) imago. Attenuation of high sucrose diet-induced IR/T2D in vermilion flies might depend on deficiency of TRP - KYN pathway. Besides IR/T2D, HSD induces obesity in Drosophila. Future studies of HSD-induced obesity and IR/T2D in TDO deficient vermilion mutants of Drosophila might help to understand the mechanisms of high association between IR/T2D and obesity. Modulation of TRP - KYN metabolism might be utilized for prevention and treatment of IR/T2D.
Collapse
Affiliation(s)
- Valeriya Navrotskaya
- Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Gregory Oxenkrug
- Psychiatry and Inflammation Program, Department of Psychiatry, Tufts University/Tufts Medical Center, Boston, MA, USA
| | - Lyudmila Vorobyova
- Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Paul Summergrad
- Psychiatry and Inflammation Program, Department of Psychiatry, Tufts University/Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
250
|
Gu SH, Chen CH, Hsieh YC, Lin PL, Young SC. Modulatory effects of bombyxin on ecdysteroidogenesis in Bombyx mori prothoracic glands. JOURNAL OF INSECT PHYSIOLOGY 2015; 72:61-69. [PMID: 25497117 DOI: 10.1016/j.jinsphys.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/12/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
In the present study, we investigated the modulatory effects of ecdysteroidogenesis of prothoracic glands (PGs) by bombyxin, an endogenous insulin-like peptide in the silkworm, Bombyx mori. The results showed that bombyxin stimulated ecdysteroidogenesis during a long-term incubation period and in a dose-dependent manner. Moreover, the injection of bombyxin into day 4-last instar larvae increased ecdysteroidogenesis 24h after the injection, indicating its possible in vivo function. Phosphorylation of the insulin receptor and Akt, and the target of rapamycin (TOR) signaling were stimulated by bombyxin, and stimulation of Akt phosphorylation and TOR signaling appeared to be dependent on phosphatidylinositol 3-kinase (PI3K). Bombyxin inhibited the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), and the inhibition appeared to be PI3K-independent. Bombyxin-stimulated ecdysteroidogenesis was blocked by either an inhibitor of PI3K (LY294002) or a chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, AICAR), indicating involvement of the PI3K/Akt and AMPK signaling pathway. Bombyxin did not stimulate extracellular signal-regulated kinase (ERK) signaling of PGs. Bombyxin, but not prothoracicotropic hormone (PTTH) stimulated cell viability of PGs. In addition, bombyxin treatment also affected mRNA expression levels of insulin receptor, Akt, AMPKα, -β, and -γ in time-dependent manners. These results suggest that bombyxin modulates ecdysteroidogenesis in B. mori PGs during development.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science,1 Kuan-Chien Road, Taichung 404-19, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Yun-Chin Hsieh
- Department of Biology, National Museum of Natural Science,1 Kuan-Chien Road, Taichung 404-19, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science,1 Kuan-Chien Road, Taichung 404-19, Taiwan, ROC
| | - Shun-Chieh Young
- Department of Biology, National Museum of Natural Science,1 Kuan-Chien Road, Taichung 404-19, Taiwan, ROC
| |
Collapse
|