201
|
Nagy R, Grob H, Weder B, Green P, Klein M, Frelet-Barrand A, Schjoerring JK, Brearley C, Martinoia E. The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 2009; 284:33614-22. [PMID: 19797057 DOI: 10.1074/jbc.m109.030247] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arabidopsis possesses a superfamily of ATP-binding cassette (ABC) transporters. Among these, the multidrug resistance-associated protein AtMRP5/AtABCC5 regulates stomatal aperture and controls plasma membrane anion channels of guard cells. Remarkably, despite the prominent role of AtMRP5 in conferring partial drought insensitivity upon Arabidopsis, we know little of the biochemical function of AtMRP5. Our phylogenetic analysis showed that AtMRP5 is closely related to maize MRP4, mutation of which confers a low inositol hexakisphosphate kernel phenotype. We now show that insertion mutants of AtMRP5 display a low inositol hexakisphosphate phenotype in seed tissue and that this phenotype is associated with alterations of mineral cation and phosphate status. By heterologous expression in yeast, we demonstrate that AtMRP5 encodes a specific and high affinity ATP-dependent inositol hexakisphosphate transporter that is sensitive to inhibitors of ABC transporters. Moreover, complementation of the mrp5-1 insertion mutants of Arabidopsis with the AtMRP5 cDNA driven from a guard cell-specific promoter restores the sensitivity of the mutant to abscisic acid-mediated inhibition of stomatal opening. Additionally, we show that mutation of residues of the Walker B motif prevents restoring the multiple phenotypes associated with mrp5-1. Our findings highlight a novel function of plant ABC transporters that may be relevant to other kingdoms. They also extend the signaling repertoire of this ubiquitous inositol polyphosphate signaling molecule.
Collapse
Affiliation(s)
- Réka Nagy
- University of Zurich, Institute of Plant Biology, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Inositol pyrophosphates are involved in a variety of cellular functions, but the specific pathways and/or downstream targets remain poorly characterized. In the present study we use Saccharomyces cerevisiae mutants to examine the potential roles of inositol pyrophosphates in responding to cell damage caused by ROS (reactive oxygen species). Yeast lacking kcs1 [the S. cerevisiae IP6K (inositol hexakisphosphate kinase)] have greatly reduced IP7 (diphosphoinositol pentakisphosphate) and IP8 (bisdiphosphoinositol tetrakisphosphate) levels, and display increased resistance to cell death caused by H2O2, consistent with a sustained activation of DNA repair mechanisms controlled by the Rad53 pathway. Other Rad53-controlled functions, such as actin polymerization, appear unaffected by inositol pyrophosphates. Yeast lacking vip1 [the S. cerevisiae PP-IP5K (also known as IP7K, IP7 kinase)] accumulate large amounts of the inositol pyrophosphate IP7, but have no detectable IP8, indicating that this enzyme represents the physiological IP7 kinase. Similar to kcs1Delta yeast, vip1Delta cells showed an increased resistance to cell death caused by H2O2, indicating that it is probably the double-pyrophosphorylated form of IP8 [(PP)2-IP4] which mediates the H2O2 response. However, these inositol pyrophosphates are not involved in directly sensing DNA damage, as kcs1Delta cells are more responsive to DNA damage caused by phleomycin. We observe in vivo a rapid decrease in cellular inositol pyrophosphate levels following exposure to H2O2, and an inhibitory effect of H2O2 on the enzymatic activity of Kcs1 in vitro. Furthermore, parallel cysteine mutagenesis studies performed on mammalian IP6K1 are suggestive that the ROS signal might be transduced by the direct modification of this evolutionarily conserved class of enzymes.
Collapse
|
203
|
Hürlimann HC, Pinson B, Stadler-Waibel M, Zeeman SC, Freimoser FM. The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. EMBO Rep 2009; 10:1003-8. [PMID: 19590579 PMCID: PMC2710535 DOI: 10.1038/embor.2009.105] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 04/09/2009] [Accepted: 04/20/2009] [Indexed: 11/09/2022] Open
Abstract
Yeast has two phosphate-uptake systems that complement each other: the high-affinity transporters (Pho84 and Pho89) are active under phosphate starvation, whereas Pho87 and Pho90 are low-affinity transporters that function when phosphate is abundant. Here, we report new regulatory functions of the amino-terminal SPX domain of Pho87 and Pho90. By studying truncated versions of Pho87 and Pho90, we show that the SPX domain limits the phosphate-uptake velocity, suppresses phosphate efflux and affects the regulation of the phosphate signal transduction pathway. Furthermore, split-ubiquitin assays and co-immunoprecipitation suggest that the SPX domain of both Pho90 and Pho87 interacts physically with the regulatory protein Spl2. This work suggests that the SPX domain inhibits low-affinity phosphate transport through a physical interaction with Spl2.
Collapse
Affiliation(s)
- Hans Caspar Hürlimann
- Institute of Plant Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
204
|
Pinson B, Vaur S, Sagot I, Coulpier F, Lemoine S, Daignan-Fornier B. Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways. Genes Dev 2009; 23:1399-407. [PMID: 19528318 PMCID: PMC2701576 DOI: 10.1101/gad.521809] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/29/2009] [Indexed: 01/04/2023]
Abstract
Cells use strategic metabolites to sense the metabolome and accordingly modulate gene expression. Here, we show that the purine and phosphate pathways are positively regulated by the metabolic intermediate AICAR (5'-phosphoribosyl-5-amino-4-imidazole carboxamide). The transcription factor Pho2p is required for up-regulation of all AICAR-responsive genes. Accordingly, the binding of Pho2p to purine and phosphate pathway gene promoters is enhanced upon AICAR accumulation. In vitro, AICAR binds both Pho2p and Pho4p transcription factors and stimulates the interaction between Pho2p and either Bas1p or Pho4p in vivo. In contrast, SAICAR (succinyl-AICAR) only affects Pho2p-Bas1p interaction and specifically up-regulates purine regulon genes. Together, our data show that Bas1p and Pho4p compete for Pho2p binding, hence leading to the concerted regulation of cellular nucleotide synthesis and phosphate consumption.
Collapse
Affiliation(s)
- Benoît Pinson
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, Bordeaux 33076, France
- CNRS, UMR5095, Bordeaux, 33077 Cedex, France
| | - Sabine Vaur
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, Bordeaux 33076, France
- CNRS, UMR5095, Bordeaux, 33077 Cedex, France
| | - Isabelle Sagot
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, Bordeaux 33076, France
- CNRS, UMR5095, Bordeaux, 33077 Cedex, France
| | - Fanny Coulpier
- IFR36, Plate-forme Transcriptome, École Normale Supérieure, Paris 75230, France
| | - Sophie Lemoine
- IFR36, Plate-forme Transcriptome, École Normale Supérieure, Paris 75230, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, Bordeaux 33076, France
- CNRS, UMR5095, Bordeaux, 33077 Cedex, France
| |
Collapse
|
205
|
Fizikova AY, Padkina MV, Sambuk EV. The absence of cyclin-dependent protein kinase Pho85 affects stability of mitochondrial DNA in yeast Saccharomyces cerevisiae. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409060039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
206
|
Abstract
The inositol polyphosphate family of small, cytosolic molecules has a prominent place in the field of cell signalling, and inositol pyrophosphates are the most recent addition to this large family. First identified in 1993, they have since been found in all eukaryotic organisms studied. The defining feature of inositol pyrophosphates is the presence of the characteristic 'high energy' pyrophosphate group, which immediately attracted interest in them as possible signalling molecules. In addition to their unique 'high energy' pyrophosphate bond, their concentration in the cell is tightly regulated with an extremely rapid turnover. This, together with the history of other inositol polyphosphates, makes it likely that they have an important role in intracellular signalling involving some basic cellular processes. This hypothesis is supported by the surprisingly wide range of cellular functions where inositol pyrophosphates seem to be involved. A seminal finding was that inositol pyrophosphates are able to directly phosphorylate pre-phosphorylated proteins, thereby identifying an entirely new post-translational protein modification, namely serine-pyrophosphorylation. Rapid progress has been made in characterising the metabolism of these molecules in the 15 years since their first identification. However, their detailed signalling role in specific cellular processes and in the context of relevant physiological cues has developed more slowly, particularly in mammalian system. We will discuss inositol pyrophosphates from the cell signalling perspective, analysing how their intracellular concentration is modulated, what their possible molecular mechanisms of action are, together with the physiological consequences of this novel form of signalling.
Collapse
Affiliation(s)
- Adam Burton
- Medical Research Council, Cell Biology Unit, Laboratory for Molecular Cell Biology, Department of Cell and Developmental Biology, University College London, London, UK
| | | | | |
Collapse
|
207
|
Abstract
The diphosphoinositol polyphosphates ("inositol pyrophosphates") are a specialized subgroup of the inositol phosphate signaling family. This review proposes that many of the current data concerning the metabolic turnover and biological effects of the diphosphoinositol polyphosphates are linked by a common theme: these polyphosphates act as metabolic messengers. This review will also discuss the latest proposals concerning possible molecular mechanisms of action of this intriguing class of molecules.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositide Signaling Group, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
208
|
Guzinska K, Varghese R, Vancura A. Role of Plc1p in regulation of Mcm1p-dependent genes. FEMS Microbiol Lett 2009; 295:245-50. [PMID: 19459978 DOI: 10.1111/j.1574-6968.2009.01602.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In budding yeasts, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) and several inositol polyphosphate kinases represent a nuclear pathway for synthesis of inositol polyphosphates (InsPs), which are involved in several aspects of DNA and RNA metabolism, including transcriptional regulation. Plc1p-produced inositol trisphosphate (InsP(3)) is phosphorylated by Ipk2p/Arg82p to yield InsP(4)/InsP(5). Ipk2p/Arg82p is also a component of ArgR-Mcm1p complex that regulates transcription of genes involved in arginine metabolism. The role of Ipk2p/Arg82p in this complex is to stabilize the essential MADS box protein Mcm1p. Consequently, ipk2Delta cells display reduced levels of Mcm1p and attenuated expression of Mcm1p-dependent genes. Because plc1Delta cells display aberrant expression of several groups of genes, including genes involved in stress response, the objective of this study was to determine whether Plc1p also affects expression of Mcm1p-dependent genes. Here we report that not only ipk2Delta, but also plc1Delta cells display decreased expression of Mcm1p-dependent genes. However, Plc1p is not involved in stabilization of Mcm1p and affects transcription of Mcm1p-dependent genes by a different mechanism, probably involving regulation of chromatin remodeling complexes.
Collapse
Affiliation(s)
- Katarzyna Guzinska
- Department of Biological Sciences, St John's University, Queens, NY 11439, USA
| | | | | |
Collapse
|
209
|
Zhang H, Thompson J, Prestwich GD. A scalable synthesis of the IP7 isomer, 5-PP-Ins(1,2,3,4,6)P5. Org Lett 2009; 11:1551-4. [PMID: 19253999 DOI: 10.1021/ol900149x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phosphorylated inositol diphosphates, including the diphosphoinositol pentakisphosphate regioisomers, play critical roles in signal transduction and cellular regulation. In particular, the IP(7) isomer 5-PP-Ins(1,2,3,4,6)P(5) is implicated in a nonenzymatic phosphate transfer converting a protein serine phosphate residue to a serine diphosphate. A scalable, practical new synthesis of 5-PP-Ins(1,2,3,4,6)P(5) is described that also allows access to a variety of IP(7) and IP(8) regioisomers. The identity of the synthetic 5-PP-Ins(1,2,3,4,6)P(5) was validated using IP6K1 to catalyze the conversion of IP(7) + ADP to ATP + IP(6).
Collapse
Affiliation(s)
- Honglu Zhang
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA
| | | | | |
Collapse
|
210
|
Desai P, Guha N, Galdieri L, Hadi S, Vancura A. Plc1p is required for proper chromatin structure and activity of the kinetochore in Saccharomyces cerevisiae by facilitating recruitment of the RSC complex. Mol Genet Genomics 2009; 281:511-23. [PMID: 19205744 DOI: 10.1007/s00438-009-0427-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 01/15/2009] [Indexed: 01/08/2023]
Abstract
High-fidelity chromosome segregation during mitosis requires kinetochores, protein complexes that assemble on centromeric DNA and mediate chromosome attachment to spindle microtubules. In budding yeast, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) is important for function of kinetochores. Deletion of PLC1 results in alterations in chromatin structure of centromeres, reduced binding of microtubules to minichromosomes, and a higher frequency of chromosome loss. The mechanism of Plc1p's involvement in kinetochore activity was not initially obvious; however, a testable hypothesis emerged with the discovery of the role of inositol polyphosphates (InsPs), produced by a Plc1p-dependent pathway, in the regulation of chromatin-remodeling complexes. In addition, the remodels structure of chromatin (RSC) chromatin-remodeling complex was found to associate with kinetochores and to affect centromeric chromatin structure. We report here that Plc1p and InsPs are required for recruitment of the RSC complex to kinetochores, which is important for establishing proper chromatin structure of centromeres and centromere proximal regions. Mutations in PLC1 and components of the RSC complex exhibit strong genetic interactions and display synthetic growth defect, altered nuclear morphology, and higher frequency of minichromosome loss. The results thus provide a mechanistic explanation for the previously elusive role of Plc1p and InsPs in kinetochore function.
Collapse
Affiliation(s)
- Parima Desai
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | | | | | | |
Collapse
|
211
|
Padmanabhan U, Dollins DE, Fridy PC, York JD, Downes CP. Characterization of a selective inhibitor of inositol hexakisphosphate kinases: use in defining biological roles and metabolic relationships of inositol pyrophosphates. J Biol Chem 2009; 284:10571-82. [PMID: 19208622 DOI: 10.1074/jbc.m900752200] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol hexakisphosphate kinases (IP6Ks) phosphorylate inositol hexakisphosphate (InsP(6)) to yield 5-diphosphoinositol pentakisphosphate (5-[PP]-InsP(5) or InsP(7)). In this study, we report the characterization of a selective inhibitor, N(2)-(m-(trifluoromethy)lbenzyl) N(6)-(p-nitrobenzyl)purine (TNP), for these enzymes. TNP dose-dependently and selectively inhibited the activity of IP6K in vitro and inhibited InsP(7) and InsP(8) synthesis in vivo without affecting levels of other inositol phosphates. TNP did not inhibit either human or yeast Vip/PPIP5K, a newly described InsP(6)/InsP(7) 1/3-kinase. Overexpression of IP6K1, -2, or -3 in cells rescued TNP inhibition of InsP(7) synthesis. TNP had no effect on the activity of a large number of protein kinases, suggesting that it is selective for IP6Ks. TNP reversibly reduced InsP(7)/InsP(8) levels. TNP in combination with genetic studies was used to implicate the involvement of two pathways for synthesis of InsP(8) in yeast. TNP induced a fragmented vacuole phenotype in yeast, consistent with inhibition of Kcs1, a Saccharomyces cerevisiae IP6K. In addition, it also inhibited insulin release from Min6 cells in a dose-dependent manner further implicating InsP(7) in this process. TNP thus provides a means of selectively and rapidly modulating cellular InsP(7) levels, providing a new and versatile tool to study the biological function and metabolic relationships of inositol pyrophosphates.
Collapse
Affiliation(s)
- Usha Padmanabhan
- Division of Molecular Physiology, James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
212
|
Nishizawa M, Komai T, Katou Y, Shirahige K, Ito T, Toh-E A. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast. PLoS Biol 2009; 6:2817-30. [PMID: 19108609 PMCID: PMC2605928 DOI: 10.1371/journal.pbio.0060326] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 11/11/2008] [Indexed: 11/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae alters its gene expression profile in response to a change in nutrient availability. The PHO system is a well-studied case in the transcriptional regulation responding to nutritional changes in which a set of genes (PHO genes) is expressed to activate inorganic phosphate (Pi) metabolism for adaptation to Pi starvation. Pi starvation triggers an inhibition of Pho85 kinase, leading to migration of unphosphorylated Pho4 transcriptional activator into the nucleus and enabling expression of PHO genes. When Pi is sufficient, the Pho85 kinase phosphorylates Pho4, thereby excluding it from the nucleus and resulting in repression (i.e., lack of transcription) of PHO genes. The Pho85 kinase has a role in various cellular functions other than regulation of the PHO system in that Pho85 monitors whether environmental conditions are adequate for cell growth and represses inadequate (untimely) responses in these cellular processes. In contrast, Pho4 appears to activate some genes involved in stress response and is required for G1 arrest caused by DNA damage. These facts suggest the antagonistic function of these two players on a more general scale when yeast cells must cope with stress conditions. To explore general involvement of Pho4 in stress response, we tried to identify Pho4-dependent genes by a genome-wide mapping of Pho4 and Rpo21 binding (Rpo21 being the largest subunit of RNA polymerase II) using a yeast tiling array. In the course of this study, we found Pi- and Pho4-regulated intragenic and antisense RNAs that could modulate the Pi signal transduction pathway. Low-Pi signal is transmitted via certain inositol polyphosphate (IP) species (IP7) that are synthesized by Vip1 IP6 kinase. We have shown that Pho4 activates the transcription of antisense and intragenic RNAs in the KCS1 locus to down-regulate the Kcs1 activity, another IP6 kinase, by producing truncated Kcs1 protein via hybrid formation with the KCS1 mRNA and translation of the intragenic RNA, thereby enabling Vip1 to utilize more IP6 to synthesize IP7 functioning in low-Pi signaling. Because Kcs1 also can phosphorylate these IP7 species to synthesize IP8, reduction in Kcs1 activity can ensure accumulation of the IP7 species, leading to further stimulation of low-Pi signaling (i.e., forming a positive feedback loop). We also report that genes apparently not involved in the PHO system are regulated by Pho4 either dependent upon or independent of the Pi conditions, and many of the latter genes are involved in stress response. In S. cerevisiae, a large-scale cDNA analysis and mapping of RNA polymerase II binding using a high-resolution tiling array have identified a large number of antisense RNA species whose functions are yet to be clarified. Here we have shown that nutrient-regulated antisense and intragenic RNAs as well as direct regulation of structural gene transcription function in the response to nutrient availability. Our findings also imply that Pho4 is present in the nucleus even under high-Pi conditions to activate or repress transcription, which challenges our current understanding of Pho4 regulation.
Collapse
Affiliation(s)
- Masafumi Nishizawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
213
|
Reddi AR, Jensen LT, Naranuntarat A, Rosenfeld L, Leung E, Shah R, Culotta VC. The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radic Biol Med 2009; 46:154-62. [PMID: 18973803 PMCID: PMC2707084 DOI: 10.1016/j.freeradbiomed.2008.09.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/15/2008] [Accepted: 09/24/2008] [Indexed: 11/28/2022]
Abstract
In various organisms, high intracellular manganese provides protection against oxidative damage through unknown pathways. Herein we use a genetic approach in Saccharomyces cerevisiae to analyze factors that promote manganese as an antioxidant in cells lacking Cu/Zn superoxide dismutase (sod1 Delta). Unlike certain bacterial systems, oxygen resistance in yeast correlates with high intracellular manganese without a lowering of iron. This manganese for antioxidant protection is provided by the Nramp transporters Smf1p and Smf2p, with Smf1p playing a major role. In fact, loss of manganese transport by Smf1p together with loss of the Pmr1p manganese pump is lethal to sod1 Delta cells despite normal manganese SOD2 activity. Manganese-phosphate complexes are excellent superoxide dismutase mimics in vitro, yet through genetic disruption of phosphate transport and storage, we observed no requirement for phosphate in manganese suppression of oxidative damage. If anything, elevated phosphate correlated with profound oxidative stress in sod1 Delta mutants. The efficacy of manganese as an antioxidant was drastically reduced in cells that hyperaccumulate phosphate without effects on Mn SOD activity. Non-SOD manganese can provide a critical backup for Cu/Zn SOD1, but only under appropriate physiologic conditions.
Collapse
Affiliation(s)
- Amit R. Reddi
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Laran T. Jensen
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Amornrat Naranuntarat
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Leah Rosenfeld
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Edison Leung
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Rishita Shah
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| | - Valeria C. Culotta
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland
| |
Collapse
|
214
|
Lin WY, Lin SI, Chiou TJ. Molecular regulators of phosphate homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1427-38. [PMID: 19168668 DOI: 10.1093/jxb/ern303] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An appropriate cellular phosphate (Pi) concentration is indispensable for essential physiological and biochemical processes. To maintain cellular Pi homeostasis, plants have developed a series of adaptive responses to facilitate external Pi acquisition and to limit Pi consumption and to adjust Pi recycling internally when the Pi supply is inadequate. Over the past decade, significant progress has been made toward understanding such regulation at the molecular level. In this review, the focus is on the molecular regulators that mediate cellular Pi concentrations. The regulators are introduced and organized according to their original identification procedures, by the forward genetic approach of mutant screening or by reverse genetic analysis. These genes are involved in Pi uptake, allocation or remobilization or are upstream regulators, such as transcriptional factors or signalling molecules. In the future, integration of current knowledge and exploration of new technology is expected to offer new insights into molecular mechanisms that maintain Pi homeostasis.
Collapse
Affiliation(s)
- Wei-Yi Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
215
|
Barker CJ, Illies C, Fiume R, Gaboardi GC, Yu J, Berggren PO. Diphosphoinositol pentakisphosphate as a novel mediator of insulin exocytosis. ACTA ACUST UNITED AC 2009; 49:168-73. [DOI: 10.1016/j.advenzreg.2009.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
216
|
Dual functions for the Schizosaccharomyces pombe inositol kinase Ipk1 in nuclear mRNA export and polarized cell growth. EUKARYOTIC CELL 2008; 8:134-46. [PMID: 19047361 DOI: 10.1128/ec.00279-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The inositol 1,3,4,5,6-pentakisphosphate (IP(5)) 2-kinase (Ipk1) catalyzes the production of inositol hexakisphosphate (IP(6)) in eukaryotic cells. Previous studies have shown that IP(6) is required for efficient nuclear mRNA export in the budding yeast Saccharomyces cerevisiae. Here, we report the first functional analysis of ipk1(+) in Schizosaccharomyces pombe. S. pombe Ipk1 (SpIpk1) is unique among Ipk1 orthologues in that it harbors a novel amino (N)-terminal domain with coiled-coil structural motifs similar to those of BAR (Bin-amphiphysin-Rvs) domain proteins. Mutants with ipk1(+) deleted (ipk1Delta) had mRNA export defects as well as pleiotropic defects in polarized growth, cell morphology, endocytosis, and cell separation. The SpIpk1 catalytic carboxy-terminal domain was required to rescue these defects, and the mRNA export block was genetically linked to SpDbp5 function and, likely, IP(6) production. However, the overexpression of the N-terminal domain alone also inhibited these functions in wild-type cells. This revealed a distinct noncatalytic function for the N-terminal domain. To test for connections with other inositol polyphosphates, we also analyzed whether the loss of asp1(+) function, encoding an IP(6) kinase downstream of Ipk1, had an effect on ipk1Delta cells. The asp1Delta mutant alone did not block mRNA export, and its cell morphology, polarized growth, and endocytosis defects were less severe than those of ipk1Delta cells. Moreover, ipk1Delta asp1Delta double mutants had altered inositol polyphosphate levels distinct from those of the ipk1Delta mutant. This suggested novel roles for asp1(+) upstream of ipk1(+). We propose that IP(6) production is a key signaling linchpin for regulating multiple essential cellular processes.
Collapse
|
217
|
Lin H, Fridy PC, Ribeiro AA, Choi JH, Barma DK, Vogel G, Falck JR, Shears SB, York JD, Mayr GW. Structural analysis and detection of biological inositol pyrophosphates reveal that the family of VIP/diphosphoinositol pentakisphosphate kinases are 1/3-kinases. J Biol Chem 2008; 284:1863-72. [PMID: 18981179 DOI: 10.1074/jbc.m805686200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have characterized the positional specificity of the mammalian and yeast VIP/diphosphoinositol pentakisphosphate kinase (PPIP5K) family of inositol phosphate kinases. We deployed a microscale metal dye detection protocol coupled to a high performance liquid chromatography system that was calibrated with synthetic and biologically synthesized standards of inositol pyrophosphates. In addition, we have directly analyzed the structures of biological inositol pyrophosphates using two-dimensional 1H-1H and 1H-31P nuclear magnetic resonance spectroscopy. Using these tools, we have determined that the mammalian and yeast VIP/PPIP5K family phosphorylates the 1/3-position of the inositol ring in vitro and in vivo. For example, the VIP/PPIP5K enzymes convert inositol hexakisphosphate to 1/3-diphosphoinositol pentakisphosphate. The latter compound has not previously been identified in any organism. We have also unequivocally determined that 1/3,5-(PP)2-IP4 is the isomeric structure of the bis-diphosphoinositol tetrakisphosphate that is synthesized by yeasts and mammals, through a collaboration between the inositol hexakisphosphate kinase and VIP/PPIP5K enzymes. These data uncover phylogenetic variability within the crown taxa in the structures of inositol pyrophosphates. For example, in the Dictyostelids, the major bis-diphosphoinositol tetrakisphosphate is 5,6-(PP)2-IP4 ( Laussmann, T., Eujen, R., Weisshuhn, C. M., Thiel, U., Falck, J. R., and Vogel, G. (1996) Biochem. J. 315, 715-725 ). Our study brings us closer to the goal of understanding the structure/function relationships that control specificity in the synthesis and biological actions of inositol pyrophosphates.
Collapse
Affiliation(s)
- Hongying Lin
- Institut für Biochemie und Molekularbiologie I: Zelluläre Signaltransduktion, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Ponnusamy S, Alderson NL, Hama H, Bielawski J, Jiang JC, Bhandari R, Snyder SH, Jazwinski SM, Ogretmen B. Regulation of telomere length by fatty acid elongase 3 in yeast. Involvement of inositol phosphate metabolism and Ku70/80 function. J Biol Chem 2008; 283:27514-27524. [PMID: 18694931 DOI: 10.1074/jbc.m802980200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study, we investigated the roles of very long-chain fatty acid (VLCFA) synthesis by fatty acid elongase 3 (ELO3) in the regulation of telomere length and life span in the yeast Saccharomyces cerevisiae. Loss of VLCFA synthesis via deletion of ELO3 reduced telomere length, and reconstitution of the expression of wild type ELO3, and not by its mutant with decreased catalytic activity, rescued telomere attrition. Further experiments revealed that alterations of phytoceramide seem to be dispensable for telomere shortening in response to loss of ELO3. Interestingly, telomere shortening in elo3Delta cells was almost completely prevented by deletion of IPK2 or KCS1, which are involved in the generation of inositol phosphates (IP4, IP5, and inositol pyrophosphates). Deletion of IPK1, which generates IP6, however, did not affect regulation of telomere length. Further data also suggested that elo3Delta cells exhibit accelerated chronologic aging, and reduced replicative life span compared with wild type cells, and deletion of KCS1 helped recover these biological defects. Importantly, to determine downstream mechanisms, epistasis experiments were performed, and data indicated that ELO3 and YKU70/80 share a common pathway for the regulation of telomere length. More specifically, chromatin immunoprecipitation assays revealed that the telomere binding and protective function of YKu80p in vivo was reduced in elo3Delta cells, whereas its non-homologues end-joining function was not altered. Deletion of KCS1 in elo3Delta cells recovered the telomere binding and protective function of Ku, consistent with the role of KCS1 mutation in the rescue of telomere length attrition. Thus, these findings provide initial evidence of a possible link between Elo3-dependent VLCFA synthesis, and IP metabolism by KCS1 and IPK2 in the regulation of telomeres, which play important physiological roles in the control of senescence and aging, via a mechanism involving alterations of the telomere-binding/protection function of Ku.
Collapse
Affiliation(s)
- Suriyan Ponnusamy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Nathan L Alderson
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hiroko Hama
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - James C Jiang
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Rashna Bhandari
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Solomon H Snyder
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - S Michal Jazwinski
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70118
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
219
|
Choi K, Mollapour E, Choi JH, Shears SB. Cellular energetic status supervises the synthesis of bis-diphosphoinositol tetrakisphosphate independently of AMP-activated protein kinase. Mol Pharmacol 2008; 74:527-36. [PMID: 18460607 DOI: 10.1124/mol.107.044628] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cells aggressively defend adenosine nucleotide homeostasis; intracellular biosensors detect variations in energetic status and communicate with other cellular networks to initiate adaptive responses. Here, we demonstrate some new elements of this communication process, and we show that this networking is compromised by off-target, bioenergetic effects of some popular pharmacological tools. Treatment of cells with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), so as to simulate elevated AMP levels, reduced the synthesis of bis-diphosphoinositol tetrakisphosphate ([PP](2)-InsP(4)), an intracellular signal that phosphorylates proteins in a kinase-independent reaction. This was a selective effect; levels of other inositol phosphates were unaffected by AICAR. By genetically manipulating cellular AMP-activated protein kinase activity, we showed that it did not mediate these effects of AICAR. Instead, we conclude that the simulation of deteriorating adenosine nucleotide balance itself inhibited [PP](2)-InsP(4) synthesis. This conclusion is consistent with our demonstrating that oligomycin elevated cellular [AMP] and selectively inhibited [PP](2)-InsP(4) synthesis without affecting other inositol phosphates. In addition, we report that the shortterm increases in [PP](2)-InsP(4) levels normally seen during hyperosmotic stress were attenuated by 2-(2-chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide (PD184352). The latter is typically considered an exquisitely specific mitogen-activated protein kinase kinase (MEK) inhibitor, but small interfering RNA against MEK or extracellular signal-regulated kinase revealed that this mitogen-activated protein kinase pathway was not involved. Instead, we demonstrate that [PP](2)-InsP(4) synthesis was inhibited by PD184352 through its nonspecific effects on cellular energy balance. Two other MEK inhibitors, 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) and 2'-amino-3'-methoxyflavone (PD98059), had similar off-target effects. We conclude that the levels and hence the signaling strength of [PP](2)-InsP(4) is supervised by cellular adenosine nucleotide balance, signifying a new link between signaling and bioenergetic networks.
Collapse
Affiliation(s)
- Kuicheon Choi
- Inositide Signaling Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
220
|
Yang L, Reece JM, Cho J, Bortner CD, Shears SB. The nucleolus exhibits an osmotically regulated gatekeeping activity that controls the spatial dynamics and functions of nucleolin. J Biol Chem 2008; 283:11823-31. [PMID: 18299322 PMCID: PMC2431058 DOI: 10.1074/jbc.m800308200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/15/2008] [Indexed: 12/17/2022] Open
Abstract
We demonstrate that physiologically relevant perturbations in the osmotic environment rheostatically regulate a gatekeeping function for the nucleolus that controls the spatial dynamics and functions of nucleolin. HeLa cells and U2-OS osteosarcoma cells were osmotically challenged with 100-200 mm sorbitol, and the intranuclear distribution of nucleolin was monitored by confocal microscopy. Nucleolin that normally resides in the innermost fibrillar core of the nucleolus, where it assists rDNA transcription and replication, was expelled within 30 min of sorbitol addition. The nucleolin was transferred into the nucleoplasm, but it distributed there non-uniformly; locally high levels accumulated in 4',6-diamidino-2-phenylindole-negative zones containing euchromatic (transcriptionally active) DNA. Inositol pyrophosphates also responded within 30 min of hyperosmotic stress: levels of bisdiphosphoinositol tetrakisphosphate increased 6-fold, and this was matched by decreased levels of its precursor, diphosphoinositol pentakisphosphate. Such fluctuations in inositol pyrophosphate levels are of considerable interest, because, according to previously published in vitro data, they regulate the degree of phosphorylation of nucleolin through a novel kinase-independent phosphotransferase reaction ( Saiardi, A., Bhandari, A., Resnick, R., Cain, A., Snowman, A. M., and Snyder, S. H. (2004) Science 306, 2101-2105 ). However, by pharmacologically intervening in inositol pyrophosphate metabolism, we found that it did not supervise the osmotically driven switch in the biological activities of nucleolin in vivo.
Collapse
Affiliation(s)
- Ling Yang
- Inositol Signaling Group and
the Molecular Endocrinology Group,
NIEHS, National Institutes of Health, Department of Health and Human Services,
Research Triangle Park, North Carolina 27709 and
Reecent Technologies, LLC, Durham,
North Carolina 27713
| | - Jeff M. Reece
- Inositol Signaling Group and
the Molecular Endocrinology Group,
NIEHS, National Institutes of Health, Department of Health and Human Services,
Research Triangle Park, North Carolina 27709 and
Reecent Technologies, LLC, Durham,
North Carolina 27713
| | - Jaiesoon Cho
- Inositol Signaling Group and
the Molecular Endocrinology Group,
NIEHS, National Institutes of Health, Department of Health and Human Services,
Research Triangle Park, North Carolina 27709 and
Reecent Technologies, LLC, Durham,
North Carolina 27713
| | - Carl D. Bortner
- Inositol Signaling Group and
the Molecular Endocrinology Group,
NIEHS, National Institutes of Health, Department of Health and Human Services,
Research Triangle Park, North Carolina 27709 and
Reecent Technologies, LLC, Durham,
North Carolina 27713
| | - Stephen B. Shears
- Inositol Signaling Group and
the Molecular Endocrinology Group,
NIEHS, National Institutes of Health, Department of Health and Human Services,
Research Triangle Park, North Carolina 27709 and
Reecent Technologies, LLC, Durham,
North Carolina 27713
| |
Collapse
|
221
|
Gauthier S, Coulpier F, Jourdren L, Merle M, Beck S, Konrad M, Daignan-Fornier B, Pinson B. Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Mol Microbiol 2008; 68:1583-94. [PMID: 18433446 DOI: 10.1111/j.1365-2958.2008.06261.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenylate kinase (Adk1p) is a pivotal enzyme in both energetic and adenylic nucleotide metabolisms. In this paper, using a transcriptomic analysis, we show that the lack of Adk1p strongly induced expression of the PHO and ADE genes involved in phosphate utilization and AMP de novo biosynthesis respectively. Isolation and characterization of adk1 point mutants affecting PHO5 expression revealed that all these mutations also severely affected Adk1p catalytic activity, as well as PHO84 and ADE1 transcription. Furthermore, overexpression of distantly related enzymes such as human adenylate kinase or yeast UMP kinase was sufficient to restore regulation. These results demonstrate that adenylate kinase catalytic activity is critical for proper regulation of the PHO and ADE pathways. We also establish that adk1 deletion and purine limitation have similar effects on both adenylic nucleotide pool and PHO84 or ADE17 expression. Finally, we show that, in the adk1 mutant, upregulation of ADE1 depends on synthesis of the previously described effector(s) (S)AICAR ((N-succinyl)-5-aminoimidazol-4-carboxamide ribotide), while upregulation of PHO84 necessitates the Spl2p positive regulator. This work reveals that adenylic nucleotide availability is a key signal used by yeast to co-ordinate phosphate utilization and purine synthesis.
Collapse
Affiliation(s)
- Sébastien Gauthier
- Université Victor Segalen/Bordeaux 2, Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Saccharomyces cerevisiae phospholipase C regulates transcription of Msn2p-dependent stress-responsive genes. EUKARYOTIC CELL 2008; 7:967-79. [PMID: 18375619 DOI: 10.1128/ec.00438-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatidylinositol phosphates are involved in signal transduction, cytoskeletal organization, and membrane trafficking. Inositol polyphosphates, produced from phosphatidylinositol phosphates by the phospholipase C-dependent pathway, regulate chromatin remodeling. We used genome-wide expression analysis to further investigate the roles of Plc1p (phosphoinositide-specific phospholipase C in Saccharomyces cerevisiae) and inositol polyphosphates in transcriptional regulation. Plc1p contributes to the regulation of approximately 2% of yeast genes in cells grown in rich medium. Most of these genes are induced by nutrient limitation and other environmental stresses and are derepressed in plc1 Delta cells. Surprisingly, genes regulated by Plc1p do not correlate with gene sets regulated by Swi/Snf or RSC chromatin remodeling complexes but show correlation with genes controlled by Msn2p. Our results suggest that the increased expression of stress-responsive genes in plc1 Delta cells is mediated by decreased cyclic AMP synthesis and protein kinase A (PKA)-mediated phosphorylation of Msn2p and increased binding of Msn2p to stress-responsive promoters. Accordingly, plc1 Delta cells display other phenotypes characteristic of cells with decreased PKA activity. Our results are consistent with a model in which Plc1p acts together with the membrane receptor Gpr1p and associated G(alpha) protein Gpa2p in a pathway separate from Ras1p/Ras2p and converging on PKA.
Collapse
|
223
|
Parkinson GN, Vines D, Driscoll PC, Djordjevic S. Crystal structures of PI3K-C2alpha PX domain indicate conformational change associated with ligand binding. BMC STRUCTURAL BIOLOGY 2008; 8:13. [PMID: 18312637 PMCID: PMC2292188 DOI: 10.1186/1472-6807-8-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 02/29/2008] [Indexed: 11/15/2022]
Abstract
Background PX domains have specialized protein structures involved in binding of phosphoinositides (PIs). Through binding to the various PIs PX domains provide site-specific membrane signals to modulate the intracellular localisation and biological activity of effector proteins. Several crystal structures of these domains are now available from a variety of proteins. All PX domains contain a canonical core structure with main differences exhibited within the loop regions forming the phosphoinositide binding pockets. It is within these areas that the molecular basis for ligand specificity originates. Results We now report two new structures of PI3K-C2α PX domain that crystallised in a P3121 space group. The two structures, refined to 2.1 Å and 2.5 Å, exhibit significantly different conformations of the phosphoinositide-binding loops. Unexpectedly, in one of the structures, we have detected a putative-ligand trapped in the binding site during the process of protein purification and crystallisation. Conclusion The two structures reported here provide a more complete description of the phosphoinositide binding region compared to the previously reported 2.6 Å crystal structure of human PI3K-C2α PX where this region was highly disordered. The structures enabled us to further analyse PI specificity and to postulate that the observed conformational change could be related to ligand-binding.
Collapse
Affiliation(s)
- Gary N Parkinson
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | | | | | |
Collapse
|
224
|
Gene deletion of inositol hexakisphosphate kinase 1 reveals inositol pyrophosphate regulation of insulin secretion, growth, and spermiogenesis. Proc Natl Acad Sci U S A 2008; 105:2349-53. [PMID: 18268345 DOI: 10.1073/pnas.0712227105] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inositol pyrophosphates, also designated inositol diphosphates, possess high-energy beta-phosphates that can pyrophosphorylate proteins and regulate various cellular processes. They are formed by a family of inositol hexakisphosphate kinases (IP6Ks). We have created mice with a targeted deletion of IP6K1 in which production of inositol pyrophosphates is markedly diminished. Defects in the mutants indicate important roles for IP6K1 and inositol pyrophosphates in several physiological functions. Male mutant mice are sterile with defects in spermiogenesis. Mutant mice are smaller than wild-type despite normal food intake. The mutants display markedly lower circulating insulin.
Collapse
|
225
|
Structure of the Pho85-Pho80 CDK-cyclin complex of the phosphate-responsive signal transduction pathway. Mol Cell 2008; 28:614-23. [PMID: 18042456 DOI: 10.1016/j.molcel.2007.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 08/06/2007] [Accepted: 09/25/2007] [Indexed: 11/20/2022]
Abstract
The ability to sense and respond appropriately to environmental changes is a primary requirement of all living organisms. In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes involved in the regulation of phosphate acquisition from the ambient environment. A signal transduction pathway (the PHO pathway) mediates this response, with Pho85-Pho80 playing a vital role. Here we report the X-ray structure of Pho85-Pho80, a prototypic structure of a CDK-cyclin complex functioning in transcriptional regulation in response to environmental changes. The structure revealed a specific salt link between a Pho85 arginine and a Pho80 aspartate that makes phosphorylation of the Pho85 activation loop dispensable and that maintains a Pho80 loop conformation for possible substrate recognition. It further showed two sites on the Pho80 cyclin for high-affinity binding of the transcription factor substrate (Pho4) and the CDK inhibitor (Pho81) that are markedly distant to each other and the active site.
Collapse
|
226
|
HSP90 regulates cell survival via inositol hexakisphosphate kinase-2. Proc Natl Acad Sci U S A 2008; 105:1134-9. [PMID: 18195352 DOI: 10.1073/pnas.0711168105] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heat-shock proteins (HSPs) are abundant, inducible proteins best known for their ability to maintain the conformation of proteins and to refold damaged proteins. Some HSPs, especially HSP90, can be antiapoptotic and the targets of anticancer drugs. Inositol hexakisphosphate kinase-2 (IP6K2), one of a family of enzymes generating the inositol pyrophosphate IP7 [diphosphoinositol pentakisphosphate (5-PP-IP5)], mediates apoptosis. Increased IP6K2 activity sensitizes cancer cells to stressors, whereas its depletion blocks cell death. We now show that HSP90 physiologically binds IP6K2 and inhibits its catalytic activity. Drugs and selective mutations that abolish HSP90-IP6K2 binding elicit activation of IP6K2, leading to cell death. Thus, the prosurvival actions of HSP90 reflect the inhibition of IP6K2, suggesting that selectively blocking this interaction could provide effective and safer modes of chemotherapy.
Collapse
|
227
|
|
228
|
Weaver CM, Wearne SL. Neuronal firing sensitivity to morphologic and active membrane parameters. PLoS Comput Biol 2007; 4:e11. [PMID: 18208320 PMCID: PMC2211531 DOI: 10.1371/journal.pcbi.0040011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 12/06/2007] [Indexed: 02/02/2023] Open
Abstract
Both the excitability of a neuron's membrane, driven by active ion channels, and dendritic morphology contribute to neuronal firing dynamics, but the relative importance and interactions between these features remain poorly understood. Recent modeling studies have shown that different combinations of active conductances can evoke similar firing patterns, but have neglected how morphology might contribute to homeostasis. Parameterizing the morphology of a cylindrical dendrite, we introduce a novel application of mathematical sensitivity analysis that quantifies how dendritic length, diameter, and surface area influence neuronal firing, and compares these effects directly against those of active parameters. The method was applied to a model of neurons from goldfish Area II. These neurons exhibit, and likely contribute to, persistent activity in eye velocity storage, a simple model of working memory. We introduce sensitivity landscapes, defined by local sensitivity analyses of firing rate and gain to each parameter, performed globally across the parameter space. Principal directions over which sensitivity to all parameters varied most revealed intrinsic currents that most controlled model output. We found domains where different groups of parameters had the highest sensitivities, suggesting that interactions within each group shaped firing behaviors within each specific domain. Application of our method, and its characterization of which models were sensitive to general morphologic features, will lead to advances in understanding how realistic morphology participates in functional homeostasis. Significantly, we can predict which active conductances, and how many of them, will compensate for a given age- or development-related structural change, or will offset a morphologic perturbation resulting from trauma or neurodegenerative disorder, to restore normal function. Our method can be adapted to analyze any computational model. Thus, sensitivity landscapes, and the quantitative predictions they provide, can give new insight into mechanisms of homeostasis in any biological system. Homeostasis is a process that allows a system to maintain a certain level of output over a long time, even though the inputs controlling the output are changing. Recently, studies of neurons and neuronal networks have shown that the “active” parameters that describe the movement of ions across the cell membrane contribute to homeostasis, since these parameters can be combined in different ways to maintain a specific output. There is also evidence that the physical shape (“morphology”) of the neuron may play a role in homeostasis, but this possibility has not been explored in computational models. We have developed a method that uses sensitivity analysis to evaluate how different kinds of parameters, like active and morphologic ones, affect model output. Across a multi-dimensional parameter space, we identified both local and global trends in parameter sensitivities that indicate regions where different parameters, even morphologic ones, contribute strongly to homeostasis. Significantly, the authors used sensitivities to predict which parameters should change, and by how much, to compensate for changes in another parameter to restore normal function. These predictions may prove important to neuronal aging, disease, and trauma research, but the method can be used to analyze any computational model.
Collapse
Affiliation(s)
- Christina M Weaver
- Laboratory of Biomathematics, Mount Sinai School of Medicine, New York, New York, United States of America
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (CMW), (SLW)
| | - Susan L Wearne
- Laboratory of Biomathematics, Mount Sinai School of Medicine, New York, New York, United States of America
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (CMW), (SLW)
| |
Collapse
|
229
|
Abstract
Inositol pyrophosphates were, until recently, without clearly defined functions. Two recent papers in Science have now clearly defined a function for an IP(7) pyrophosphate (inositol hexaphosphate with one pyrophosphate) that is the product of the enzyme encoded by the Vip1 gene in Saccharomyces cerevisiae. This IP(7) with a pyrophosphate tentatively assigned to be on either the 4 or 6 position is a cofactor that is required for inactivating the cyclin-cyclin-dependent kinase complex of Pho80, Pho81, and Pho85. Inhibition of the kinase results in the nuclear translocation of Pho4, which is a transcription factor that promotes expression of genes required for phosphate assimilation under conditions of low phosphate. When grown in low-phosphate media, IP(7) accumulates, which leads to the expression of genes involved in the acquisition of phosphate.
Collapse
Affiliation(s)
- Philip W Majerus
- Division of Hematology, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA.
| |
Collapse
|
230
|
Lee YS, Huang K, Quiocho FA, O'Shea EK. Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol 2007; 4:25-32. [PMID: 18059263 DOI: 10.1038/nchembio.2007.52] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/11/2007] [Indexed: 12/22/2022]
Abstract
When Saccharomyces cerevisiae cells are starved of inorganic phosphate, the Pho80-Pho85 cyclin-cyclin-dependent kinase (CDK) is inactivated by the Pho81 CDK inhibitor (CKI). The regulation of Pho80-Pho85 is distinct from previously characterized mechanisms of CDK regulation: the Pho81 CKI is constitutively associated with Pho80-Pho85, and a small-molecule ligand, inositol heptakisphosphate (IP7), is required for kinase inactivation. We investigated the molecular basis of the IP7- and Pho81-dependent Pho80-Pho85 inactivation using electrophoretic mobility shift assays, enzyme kinetics and fluorescence spectroscopy. We found that IP7 interacts noncovalently with Pho80-Pho85-Pho81 and induces additional interactions between Pho81 and Pho80-Pho85 that prevent substrates from accessing the kinase active site. Using synthetic peptides corresponding to Pho81, we define regions of Pho81 responsible for constitutive Pho80-Pho85 binding and IP7-regulated interaction and inhibition. These findings expand our understanding of the mechanisms of cyclin-CDK regulation and of the biochemical mechanisms of IP7 action.
Collapse
Affiliation(s)
- Young-Sam Lee
- Howard Hughes Medical Institute, Harvard University, Department of Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
231
|
Illies C, Gromada J, Fiume R, Leibiger B, Yu J, Juhl K, Yang SN, Barma DK, Falck JR, Saiardi A, Barker CJ, Berggren PO. Requirement of Inositol Pyrophosphates for Full Exocytotic Capacity in Pancreatic Cells. Science 2007; 318:1299-302. [DOI: 10.1126/science.1146824] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
232
|
Choi JH, Williams J, Cho J, Falck JR, Shears SB. Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J Biol Chem 2007; 282:30763-75. [PMID: 17702752 PMCID: PMC2366029 DOI: 10.1074/jbc.m704655200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian cells utilize multiple signaling mechanisms to protect against the osmotic stress that accompanies plasma membrane ion transport, solute uptake, and turnover of protein and carbohydrates (Schliess, F., and Haussinger, D. (2002) Biol. Chem. 383, 577-583). Recently, osmotic stress was found to increase synthesis of bisdiphosphoinositol tetrakisphosphate ((PP)2-InsP4), a high energy inositol pyrophosphate (Pesesse, X., Choi, K., Zhang, T., and Shears, S. B. (2004) J. Biol. Chem. 279, 43378-43381). Here, we describe the purification from rat brain of a diphosphoinositol pentakisphosphate kinase (PPIP5K) that synthesizes (PP)2-InsP4. Partial amino acid sequence, obtained by mass spectrometry, matched the sequence of a 160-kDa rat protein containing a putative ATP-grasp kinase domain. BLAST searches uncovered two human isoforms (PPIP5K1 (160 kDa) and PPIP5K2 (138 kDa)). Recombinant human PPIP5K1, expressed in Escherichia coli, was found to phosphorylate diphosphoinositol pentakisphosphate (PP-InsP5) to (PP)2-InsP4 (Vmax = 8.3 nmol/mg of protein/min; Km = 0.34 microM). Overexpression in human embryonic kidney cells of either PPIP5K1 or PPIP5K2 substantially increased levels of (PP)2-InsP4, whereas overexpression of a catalytically dead PPIP5K1(D332A) mutant had no effect. PPIP5K1 and PPIP5K2 were more active against PP-InsP5 than InsP6, both in vitro and in vivo. Analysis by confocal immunofluorescence showed PPIP5K1 to be distributed throughout the cytoplasm but excluded from the nucleus. Immunopurification of overexpressed PPIP5K1 from osmotically stressed HEK cells (0.2 M sorbitol; 30 min) revealed a persistent, 3.9 +/- 0.4-fold activation when compared with control cells. PPIP5Ks are likely to be important signaling enzymes.
Collapse
Affiliation(s)
- Jae H Choi
- Inositide Signaling Group Laboratory of Signal Transduction, NIEHS, National Institutes of Health, DHHS, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
233
|
Alcázar-Román AR, Wente SR. Inositol polyphosphates: a new frontier for regulating gene expression. Chromosoma 2007; 117:1-13. [DOI: 10.1007/s00412-007-0126-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
|
234
|
Otto JC, Kelly P, Chiou ST, York JD. Alterations in an inositol phosphate code through synergistic activation of a G protein and inositol phosphate kinases. Proc Natl Acad Sci U S A 2007; 104:15653-8. [PMID: 17895383 PMCID: PMC1994134 DOI: 10.1073/pnas.0705729104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mammals, many cellular stimuli evoke a response through G protein activation of phospholipase C, which results in the lipid-derived production of inositol 1,4,5-trisphosphate (IP(3)). Although it is well established that IP(3) is converted to numerous inositol phosphates (IPs) and pyrophosphates (PP-IPs) through the action of up to six classes of inositol phosphate kinases (IPKs), it is not clear that these metabolites are influenced by G protein signaling. Here we report that activation of Galpha(q) leads to robust stimulation of IP(3) to IP(8) metabolism. To expose flux through these pathways, genetic perturbation was used to alter IP homeostasis. Coupled expression of a constitutively active Galpha(q)QL and one or more IPK gene products synergistically generated dramatic changes in the patterns of intracellular IP messengers. Many distinct IP profiles were observed through the expression of different combinations of IPKs, including changes in previously unappreciated pools of IP(5) and IP(6), two molecules widely viewed as stable metabolites. Our data link the activation of a trimeric G protein to a plethora of metabolites downstream of IP(3) and provide a framework for suggesting that cells possess the machinery to produce an IPK-dependent IP code. We imply, but do not prove, that agonist-induced alterations in such a code would theoretically be capable of enhancing signaling complexity and specificity. The essential roles for IPKs in organism development and cellular adaptation are consistent with our hypothesis that such an IP code may be relevant to signaling pathways.
Collapse
Affiliation(s)
- James C. Otto
- *Howard Hughes Medical Institute
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Patrick Kelly
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Shean-Tai Chiou
- *Howard Hughes Medical Institute
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - John D. York
- *Howard Hughes Medical Institute
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
- To whom all correspondence should be addressed. E-mail:
| |
Collapse
|
235
|
Bhandari R, Saiardi A, Ahmadibeni Y, Snowman AM, Resnick AC, Kristiansen TZ, Molina H, Pandey A, Werner JK, Juluri KR, Xu Y, Prestwich GD, Parang K, Snyder SH. Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc Natl Acad Sci U S A 2007; 104:15305-10. [PMID: 17873058 PMCID: PMC2000531 DOI: 10.1073/pnas.0707338104] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a previous study, we showed that the inositol pyrophosphate diphosphoinositol pentakisphosphate (IP(7)) physiologically phosphorylates mammalian and yeast proteins. We now report that this phosphate transfer reflects pyrophosphorylation. Thus, proteins must be prephosphorylated by ATP to prime them for IP(7) phosphorylation. IP(7) phosphorylates synthetic phosphopeptides but not if their phosphates have been masked by methylation or pyrophosphorylation. Moreover, IP(7) phosphorylated peptides are more acid-labile and more resistant to phosphatases than ATP phosphorylated peptides, indicating a different type of phosphate bond. Pyrophosphorylation may represent a novel mode of signaling to proteins.
Collapse
Affiliation(s)
| | - Adolfo Saiardi
- Medical Research Council (MRC) Cell Biology Unit and Laboratory for Molecular Cell Biology, Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Yousef Ahmadibeni
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881; and
| | | | | | - Troels Z. Kristiansen
- McKusick–Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205
| | - Henrik Molina
- McKusick–Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205
| | - Akhilesh Pandey
- McKusick–Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205
| | | | | | - Yong Xu
- Department of Medicinal Chemistry, University of Utah, 419 Wakara Way,Suite 205, Salt Lake City, UT 84108
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, University of Utah, 419 Wakara Way,Suite 205, Salt Lake City, UT 84108
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881; and
| | - Solomon H. Snyder
- *The Solomon H. Snyder Department of Neuroscience
- Departments of **Pharmacology and Molecular Sciences
- Psychiatry and Behavioral Sciences, and
- To whom correspondence should be addressed at:
725 North Wolfe Street, WBSB 813, Baltimore, MD 21205. E-mail:
| |
Collapse
|
236
|
Huang D, Friesen H, Andrews B. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol Microbiol 2007; 66:303-14. [PMID: 17850263 DOI: 10.1111/j.1365-2958.2007.05914.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pho85 is a multifunctional cyclin-dependent kinase (Cdk) in Saccharomyces cerevisiae that has emerged as an important model for the role of Cdks in both cell cycle control and other processes. Pho85 is targeted to its substrates by 10 different cyclins or Pcls. Three of these Pcls have specific roles in G1 phase of the cell cycle, both in regulating G1-specific gene expression and in controlling polarized growth. Many known substrates of the G1 forms of Pho85 are also phosphorylated by the homologous Cdk Cln-Cdc28, suggesting parallel or overlapping roles. Most of the remaining Pcls function in signalling: Pho85 is generally active when environmental conditions are satisfactory, phosphorylating proteins involved in transcription and other regulatory events to keep the stress response and inappropriate activities turned off. Recently, genetic screens for synthetic lethality and synthetic dosage lethality, and proteomic screens for in vitro Pho85 substrates, have revealed more details about how Pho85 functions to regulate a variety of cellular processes.
Collapse
Affiliation(s)
- Dongqing Huang
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
237
|
Onnebo SMN, Saiardi A. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129:647-9. [PMID: 17512396 DOI: 10.1016/j.cell.2007.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Noncoding RNAs (ncRNA) participate in epigenetic regulation but are poorly understood. Here we characterize the transcriptional landscape of the four human HOX loci at five base pair resolution in 11 anatomic sites and identify 231 HOX ncRNAs that extend known transcribed regions by more than 30 kilobases. HOX ncRNAs are spatially expressed along developmental axes and possess unique sequence motifs, and their expression demarcates broad chromosomal domains of differential histone methylation and RNA polymerase accessibility. We identified a 2.2 kilobase ncRNA residing in the HOXC locus, termed HOTAIR, which represses transcription in trans across 40 kilobases of the HOXD locus. HOTAIR interacts with Polycomb Repressive Complex 2 (PRC2) and is required for PRC2 occupancy and histone H3 lysine-27 trimethylation of HOXD locus. Thus, transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance; these results have broad implications for gene regulation in development and disease states.
Collapse
Affiliation(s)
- Sara Maria Nancy Onnebo
- Medical Research Council (MRC) Cell Biology Unit and Laboratory for Molecular Cell Biology, Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
238
|
Fridy PC, Otto JC, Dollins DE, York JD. Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakisphosphate kinases. J Biol Chem 2007; 282:30754-62. [PMID: 17690096 DOI: 10.1074/jbc.m704656200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotes possess numerous inositol phosphate (IP) and diphosphoinositol phosphate (PP-IPs or inositol pyrophosphates) species that act as chemical codes important for intracellular signaling pathways. Production of IP and PP-IP molecules occurs through several classes of evolutionarily conserved inositol phosphate kinases. Here we report the characterization of a human inositol hexakisphosphate (IP6) and diphosphoinositol pentakisphosphate (PP-IP5 or IP7) kinase with similarity to the yeast enzyme Vip1, a recently identified IP6/IP7 kinase (Mulugu, S., Bai, W., Fridy, P. C., Bastidas, R. J., Otto, J. C., Dollins, D. E., Haystead, T. A., Ribeiro, A. A., and York, J. D. (2007) Science 316, 106-109). Recombinant human VIP1 exhibits in vitro IP6 and IP7 kinase activities and restores IP7 synthesis when expressed in mutant yeast. Expression of human VIP1 in HEK293T cells engineered to produce high levels of IP7 results in dramatic increases in bisdiphosphoinositol tetrakisphosphate (PP2-IP4 or IP8). Northern blot analysis indicates that human VIP1 is expressed in a variety of tissues and is enriched in skeletal muscle, heart, and brain. The subcellular distribution of tagged human VIP1 is indicative of a cytoplasmic non-membrane localization pattern. We also characterized human and mouse VIP2, an additional gene product with nearly 90% similarity to VIP1 in the kinase domain, and observed both IP6 and IP7 kinase activities. Our data demonstrate that human VIP1 and VIP2 function as IP6 and IP7 kinases that act along with the IP6K/Kcs1-class of kinases to convert IP6 to IP8 in mammalian cells, a process that has been found to occur in response to various stimuli and signaling events.
Collapse
Affiliation(s)
- Peter C Fridy
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | |
Collapse
|
239
|
Affiliation(s)
- Robin Irvine
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| |
Collapse
|
240
|
Abstract
Physiologic roles of highly phosphorylated inositol phosphates, including those containing pyrophosphate groups, have been the focus of much recent interest. In the April 6, 2007 issue of Science, two papers (Lee et al., 2007; Mulugu et al., 2007) demonstrate the occurrence of a novel inositol pyrophosphate molecule in yeast and elucidate its role in phosphate homeostasis.
Collapse
Affiliation(s)
- Rashna Bhandari
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
241
|
Mulugu S, Bai W, Fridy PC, Bastidas RJ, Otto JC, Dollins DE, Haystead TA, Ribeiro AA, York JD. A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 2007; 316:106-9. [PMID: 17412958 DOI: 10.1126/science.1139099] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Inositol pyrophosphates are a diverse group of high-energy signaling molecules whose cellular roles remain an active area of study. We report a previously uncharacterized class of inositol pyrophosphate synthase and find it is identical to yeast Vip1 and Asp1 proteins, regulators of actin-related protein-2/3 (ARP 2/3) complexes. Vip1 and Asp1 acted as enzymes that encode inositol hexakisphosphate (IP6) and inositol heptakisphosphate (IP7) kinase activities. Alterations in kinase activity led to defects in cell growth, morphology, and interactions with ARP complex members. The functionality of Asp1 and Vip1 may provide cells with increased signaling capacity through metabolism of IP6.
Collapse
Affiliation(s)
- Sashidhar Mulugu
- Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, DUMC 3813, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|