201
|
Bomfim FF, Melão MGG, Gebara RC, Lansac-Tôha FA. Warming alters the metabolic rates and life-history parameters of Ceriodaphnia silvestrii (Cladocera). AN ACAD BRAS CIENC 2022; 94:e20200604. [PMID: 35703690 DOI: 10.1590/0001-3765202220200604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 08/13/2020] [Indexed: 11/22/2022] Open
Abstract
Temperature rise has effects on the metabolic process of organisms, population structure, and ecosystem functioning. Here, we tested the effects of warming on the metabolic rates and life-history parameters of the widespread cladoceran Ceriodaphnia silvestrii. Two scenarios of global warming were established, an increase of 2 °C and an increase of 4 °C; the control temperature was 22°C. Our results showed that warming altered C. silvestrii metabolic rates, by increasing the rates of assimilation and secondary production, and decreasing the rates of filtration and ingestion. Warming also increased C. silvestrii fecundity and the body size of neonates and juveniles, and decreased the embryonic and post-embryonic time of development. C. silvestrii might be an important food resource at intermediary temperature as it had higher assimilation rates, even filtering fewer algae. At the highest temperature, we observed a substantial decrease in assimilation and secondary production, which could be a sign of stress starting. The increase in temperature by global warming will affect the cladocerans' metabolic processes and the population survival, even a small increase (2°C) might induce drastic fluctuations in such processes and affect the carbon and energy availability inside aquatic food-webs.
Collapse
Affiliation(s)
- Francieli F Bomfim
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá (UEM), Núcleo de Pesquisas em Limnologia Ictiologia e Aquicultura (Nupélia), Av. Colombo, 5790, Campus Universitário, 87020-900 Maringá, PR, Brazil
| | - Maria G G Melão
- Universidade Federal de São Carlos (UFSCar), Departamento de Hidrobiologia, Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Renan C Gebara
- Universidade Federal de São Carlos (UFSCar), Departamento de Hidrobiologia, Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Fábio A Lansac-Tôha
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá (UEM), Núcleo de Pesquisas em Limnologia Ictiologia e Aquicultura (Nupélia), Av. Colombo, 5790, Campus Universitário, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
202
|
Isson TT, Zhang S, Lau KV, Rauzi S, Tosca NJ, Penman DE, Planavsky NJ. Marine siliceous ecosystem decline led to sustained anomalous Early Triassic warmth. Nat Commun 2022; 13:3509. [PMID: 35717338 PMCID: PMC9206662 DOI: 10.1038/s41467-022-31128-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
In the wake of rapid CO2 release tied to the emplacement of the Siberian Traps, elevated temperatures were maintained for over five million years during the end-Permian biotic crisis. This protracted recovery defies our current understanding of climate regulation via the silicate weathering feedback, and hints at a fundamentally altered carbon and silica cycle. Here, we propose that the development of widespread marine anoxia and Si-rich conditions, linked to the collapse of the biological silica factory, warming, and increased weathering, was capable of trapping Earth's system within a hyperthermal by enhancing ocean-atmosphere CO2 recycling via authigenic clay formation. While solid-Earth degassing may have acted as a trigger, subsequent biotic feedbacks likely exacerbated and prolonged the environmental crisis. This refined view of the carbon-silica cycle highlights that the ecological success of siliceous organisms exerts a potentially significant influence on Earth's climate regime.
Collapse
Affiliation(s)
- Terry T Isson
- Te Aka Mātuatua, University of Waikato (Tauranga), BOP, Tauranga, New Zealand.
| | - Shuang Zhang
- Department of Oceanography, Texas A&M University, College Station, TX, USA
| | - Kimberly V Lau
- Department of Geosciences and Earth and Environmental Systems Institute, Penn State University, University Park, PA, USA
| | - Sofia Rauzi
- Te Aka Mātuatua, University of Waikato (Tauranga), BOP, Tauranga, New Zealand
| | - Nicholas J Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Donald E Penman
- Department of Geosciences, Utah State University, Logan, UT, USA
| | - Noah J Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
| |
Collapse
|
203
|
Barrett HS, Armstrong JB. Move, migrate, or tolerate: Quantifying three tactics for cold‐water fish coping with warm summers in a large river. Ecosphere 2022. [DOI: 10.1002/ecs2.4095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hannah S. Barrett
- Department of Fisheries Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
| | - Jonathan B. Armstrong
- Department of Fisheries Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
| |
Collapse
|
204
|
Bosch-Belmar M, Giacoletti A, Giommi C, Girons A, Milisenda G, Sarà G. Short-term exposure to concurrent biotic and abiotic stressors may impair farmed molluscs performance. MARINE POLLUTION BULLETIN 2022; 179:113724. [PMID: 35537306 DOI: 10.1016/j.marpolbul.2022.113724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/19/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Global warming, through increasing temperatures, may facilitate the spread and proliferation of outbreak-forming species which may find favourable substrate conditions on artificial aquaculture structures. The presence of stinging organisms (cnidarian hydroids) in the facilities fouling community are a source of pollution that can cause critical problems when in-situ underwater cleaning processes are performed. Multiple stressor experiments were carried out to investigate the cumulative effect on farmed mussels' functional traits when exposed to realistic stressful conditions, including presence of harmful cnidarian cells and environmental conditions of increasing temperature and short-term hypoxia. Exposure to combined stressors significantly altered mussels' performance, causing metabolic depression and low filtering activity, potentially delaying, or inhibiting their recovery ability and ultimately jeopardizing organisms' fitness. Further research on the stressors properties and occurrence is needed to obtain more realistic responses from organisms to minimize climate change impacts and increase ecosystem and marine economic activities resilience to multiple stressors.
Collapse
Affiliation(s)
- Mar Bosch-Belmar
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Palermo, Italy.
| | - Antonio Giacoletti
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Palermo, Italy
| | - Chiara Giommi
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, CRIMAC, Calabria Marine Center, Amendolara, Italy
| | | | - Giacomo Milisenda
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Sicily Marine Center, Palermo, Italy.
| | - Gianluca Sarà
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Palermo, Italy
| |
Collapse
|
205
|
Ruthsatz K, Dausmann KH, Peck MA, Glos J. Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:477-490. [PMID: 35226414 DOI: 10.1002/jez.2582] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Phenotypic plasticity may allow ectotherms with complex life histories such as amphibians to cope with climate-driven changes in their environment. Plasticity in thermal tolerance (i.e., shifts of thermal limits via acclimation to higher temperatures) has been proposed as a mechanism to cope with warming and extreme thermal events. However, thermal tolerance and, hence, acclimation capacity, is known to vary with life stage. Using the common frog (Rana temporaria) as a model species, we measured the capacity to adjust lower (CTmin ) and upper (CTmax ) critical thermal limits at different acclimation temperatures. We calculated the acclimation response ratio as a metric to assess the stage-specific acclimation capacity at each of seven consecutive ontogenetic stages and tested whether acclimation capacity was influenced by body mass and/or age. We further examined how acclimation temperature, body mass, age, and ontogenetic stage influenced CTmin and CTmax . In the temperate population of R. temporaria that we studied, thermal tolerance and acclimation capacity were affected by the ontogenetic stage. However, acclimation capacity at both thermal limits was well below 100% at all life stages tested. The lowest and highest acclimation capacity in thermal limits was observed in young and late larvae, respectively. The relatively low acclimation capacity of young larvae highlights a clear risk of amphibian populations to ongoing climate change. Ignoring stage-specific differences in thermal physiology may drastically underestimate the climate vulnerability of species, which will hamper successful conservation actions.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Zoology, Universität Hamburg, Hamburg, Germany
| | | | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg (Texel), The Netherlands
| | - Julian Glos
- Institute of Zoology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
206
|
Anlauf-Dunn K, Kraskura K, Eliason EJ. Intraspecific variability in thermal tolerance: a case study with coastal cutthroat trout. CONSERVATION PHYSIOLOGY 2022; 10:coac029. [PMID: 35693034 PMCID: PMC9178963 DOI: 10.1093/conphys/coac029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/04/2022] [Accepted: 04/15/2022] [Indexed: 05/24/2023]
Abstract
Fish physiological performance is directly regulated by their thermal environment. Intraspecific comparisons are essential to ascertain the vulnerability of fish populations to climate change and to identify which populations may be more susceptible to extirpation and which may be more resilient to continued warming. In this study, we sought to evaluate how thermal performance varies in coastal cutthroat trout (Oncorhynchus clarki clarki) across four distinct watersheds in OR, USA. Specifically, we measured oxygen consumption rates in trout from the four watersheds with variable hydrologic and thermal regimes, comparing three ecologically relevant temperature treatments (ambient, annual maximum and novel warm). Coastal cutthroat trout displayed considerable intraspecific variability in physiological performance and thermal tolerance across the four watersheds. Thermal tolerance matched the historical experience: the coastal watersheds experiencing warmer ambient temperatures had higher critical thermal tolerance compared with the interior, cooler Willamette watersheds. Physiological performance varied across all four watersheds and there was evidence of a trade-off between high aerobic performance and broad thermal tolerance. Given the evidence of climate regime shifts across the globe, the uncertainty in both the rate and extent of warming and species responses in the near and long term, a more nuanced approach to the management and conservation of native fish species must be considered.
Collapse
Affiliation(s)
- Kara Anlauf-Dunn
- Oregon Department of Fish and Wildlife, 28655
Highway 34, Corvallis, OR 97333, USA
| | - Krista Kraskura
- Department of Ecology, Evolution, and Marine Biology,
University of California Santa Barbara, Santa
Barbara, CA 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution, and Marine Biology,
University of California Santa Barbara, Santa
Barbara, CA 93106, USA
| |
Collapse
|
207
|
Almeida J, Lopes AR, Ribeiro L, Castanho S, Candeias-Mendes A, Pousão-Ferreira P, Faria AM. Effects of exposure to elevated temperature and different food levels on the escape response and metabolism of early life stages of white seabream, Diplodus sargus. CONSERVATION PHYSIOLOGY 2022; 10:coac023. [PMID: 35586725 PMCID: PMC9109722 DOI: 10.1093/conphys/coac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Recent literature suggests that anthropogenic stressors can disrupt ecologically relevant behaviours in fish, such as the ability to escape from predators. Disruption of these behaviours at critical life history transitions, such as the transition from the pelagic environment to the juvenile/adult habitat, may have even greater repercussions. The literature suggests that an increase in temperature can affect fish escape response, as well as metabolism; however, few studies have focused on the acute sensitivity responses and the potential for acclimation through developmental plasticity. Here, we aimed at evaluating the acute and long-term effects of exposure to warming conditions on the escape response and routine metabolic rate (RMR) of early life stages of the white seabream, Diplodus sargus. Additionally, as food availability may modulate the response to warming, we further tested the effects of long-term exposure to high temperature and food shortage, as individual and interacting drivers, on escape response and RMR. Temperature treatments were adjusted to ambient temperature (19°C) and a high temperature (22°C). Feeding treatments were established as high ration and low ration (50% of high ration). Escape response and RMR were measured after the high temperature was reached (acute exposure) and after 4 weeks (prolonged exposure). Acute warming had a significant effect on escape response and generated an upward trend in RMR. In the long term, however, there seems to be an acclimation of the escape response and RMR. Food shortage, interacting with high temperature, led to an increase in latency response and a significant reduction in RMR. The current study provides relevant experimental data on fishes' behavioural and physiological responses to the combined effects of multiple stressors. This knowledge can be incorporated in recruitment models, thereby contributing to fine-tuning of models required for fisheries management and species conservation.
Collapse
Affiliation(s)
- João Almeida
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, 1149-041, Lisbon, Portugal
| | - Ana Rita Lopes
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, 1149-041, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, 8700-194, Lisbon, Portugal
| | - Laura Ribeiro
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Sara Castanho
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Ana Candeias-Mendes
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Pedro Pousão-Ferreira
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Ana M Faria
- Corresponding author: MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisbon, Portugal. Tel: + 351 218 811 700. E-mail:
| |
Collapse
|
208
|
Pousse É, Munroe D, Hart D, Hennen D, Cameron LP, Rheuban JE, Wang ZA, Wikfors GH, Meseck SL. Dynamic energy budget modeling of Atlantic surfclam, Spisula solidissima, under future ocean acidification and warming. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105602. [PMID: 35462229 DOI: 10.1016/j.marenvres.2022.105602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/03/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
A dynamic energy budget (DEB) model integrating pCO2 was used to describe ocean acidification (OA) effects on Atlantic surfclam, Spisula solidissima, bioenergetics. Effects of elevated pCO2 on ingestion and somatic maintenance costs were simulated, validated, and adapted in the DEB model based upon growth and biological rates acquired during a 12-week laboratory experiment. Temperature and pCO2 were projected for the next 100 years following the intergovernmental panel on climate change representative concentration pathways scenarios (2.6, 6.0, and 8.5) and used as forcing variables to project surfclam growth and reproduction. End-of-century water warming and acidification conditions resulted in simulated faster growth for young surfclams and more energy allocated to reproduction until the beginning of the 22nd century when a reduction in maximum shell length and energy allocated to reproduction was observed for the RCP 8.5 scenario.
Collapse
Affiliation(s)
- Émilien Pousse
- National Research Council Post-Doctoral Associate at NOAA NMFS, 212 Rogers Ave, Milford, CT, 06418, USA
| | - Daphne Munroe
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Ave, Port Norris, NJ, 08349, USA
| | - Deborah Hart
- NOAA/NMFS, 166 Water St, Woods Hole, MA, 02543, USA
| | | | - Louise P Cameron
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, McLean 216, MS #08, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Jennie E Rheuban
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, McLean 216, MS #08, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Zhaohui Aleck Wang
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, McLean 216, MS #08, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Gary H Wikfors
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT, 06460, USA
| | - Shannon L Meseck
- NOAA Fisheries Service, Northeast Fisheries Science Center, 212 Rogers Ave, Milford, CT, 06460, USA.
| |
Collapse
|
209
|
Arula T, Simm M, Herkül K, Kotta J, Houde ED. A productivity bottleneck in the Baltic herring (Clupea harengus membras): Early life-history processes and recruitment variability. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105638. [PMID: 35533438 DOI: 10.1016/j.marenvres.2022.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Exogenous anomalies induced by contemporary climate change may severely impact dynamics of early life stages of fish. Here, we modelled how growth rate and abundance of postflexion larvae, and recruitment of Baltic spring-spawning herring (Clupea harengus membras) in the Pärnu Bay, Gulf of Riga (GoR) may respond to shifting climate variables. Higher larval growth rates were aligned with later seasonal emergence of yolk-sac larvae, while lower abundance of postflexion larvae occurred in years of earlier seasonal seawater warming. Cooler temperatures (<16 °C) in spring expanded the optimal thermal window for first-feeding herring larvae, attributable to the absence of early seasonal water temperature warming. Higher recruitment levels emerged in years of seasonally delayed warming and were associated with higher abundance of postflexion larvae. In recent decades, the trend towards earlier warming of the Baltic Sea in spring threatens to create a bottleneck to successful recruitment of herring. The existing paradigm that abundant Baltic herring year-classes occur only in the years following mild winters no longer stands as environmental conditions undergo rapid change. The relative contribution of Pärnu Bay larval nursery areas to recruitment has diminished as the suitable thermal window has been dramatically reduced in recent decades. Evolving thermal dynamics in the GoR have developed relatively recently and in future present a bottleneck for herring production.
Collapse
Affiliation(s)
- T Arula
- Estonian Marine Institute, University of Tartu, Vana-Sauga 28, 80031, Pärnu, Estonia.
| | - M Simm
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618, Tallinn, Estonia
| | - K Herkül
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618, Tallinn, Estonia
| | - J Kotta
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618, Tallinn, Estonia
| | - E D Houde
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, P.O. Box 38, Solomons, MD, 20688, USA
| |
Collapse
|
210
|
Direct effects of elevated dissolved CO 2 can alter the life history of freshwater zooplankton. Sci Rep 2022; 12:6134. [PMID: 35414683 PMCID: PMC9005601 DOI: 10.1038/s41598-022-10094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Dissolved CO2 levels (pCO2) are increasing in lentic freshwaters across the globe. Recent studies have shown that this will impact the nutritional quality of phytoplankton as primary producers. However, the extent to which freshwater zooplankton may also be directly affected remains unclear. We test this in three model species representative of the main functional groups of primary consumers in freshwaters; the water flea Daphnia magna, the seed shrimp Heterocypris incongruens and the rotifer Brachionus calyciflorus. We experimentally exposed individuals to three pCO2 levels (1,500; 25,500 and 83,000 ppm) to monitor changes in life history in response to current, elevated and extreme future pCO2 conditions in ponds and shallow lakes. All species had reduced survival under the extreme pCO2 treatment, but the water flea was most sensitive. Body size and reproduction were reduced at 25,500 ppm in the water flea and the seed shrimp and population growth was delayed in the rotifer. Overall, our results show that direct effects of pCO2 could impact the population dynamics of freshwater zooplankton. By differentially modulating the life history of functional groups of primary consumers, elevated pCO2 has the potential to change the evolutionary trajectories of populations as well as the ecological functioning of freshwater communities.
Collapse
|
211
|
Tang Y, Du X, Sun S, Shi W, Han Y, Zhou W, Zhang J, Teng S, Ren P, Liu G. Circadian Rhythm and Neurotransmitters Are Potential Pathways through Which Ocean Acidification and Warming Affect the Metabolism of Thick-Shell Mussels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4324-4335. [PMID: 35293730 DOI: 10.1021/acs.est.1c06735] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although the impacts of ocean acidification and warming on marine organisms have been increasingly documented, little is known about the affecting mechanism underpinning their interactive impacts on physiological processes such as metabolism. Therefore, the effects of these two stressors on metabolism were investigated in thick-shell mussel Mytilus coruscus in this study. In addition, because metabolism is primarily regulated by circadian rhythm and neurotransmitters, the impacts of acidification and warming on these two regulatory processes were also analyzed. The data obtained demonstrated that the metabolism of mussels (indicated by the clearance rate, oxygen consumption rate, ammonia excretion rate, O:N ratio, ATP content, activity of pyruvate kinase, and expression of metabolism-related genes) were significantly affected by acidification and warming, resulting in a shortage of energy supply (indicated by the in vivo content of ATP). In addition, exposure to acidification and warming led to evident disruption in circadian rhythm (indicated by the heartrate and the expression rhythm of Per2, Cry, and BMAL1) and neurotransmitters (indicated by the activity of acetyl cholinesterase and in vivo contents of ACh, GABA, and DA). These findings suggest that circadian rhythms and neurotransmitters might be potential routes through which acidification and warming interactively affect the metabolism of mussels.
Collapse
Affiliation(s)
- Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiongming Zhang
- Zhejiang Mariculture Research Institute, Wenzhou 325005, P.R. China
| | | | - Peng Ren
- Zhejiang Mariculture Research Institute, Wenzhou 325005, P.R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
212
|
Sandra I, Verri T, Filice M, Barca A, Schiavone R, Gattuso A, Cerra MC. Shaping the cardiac response to hypoxia: NO and its partners in teleost fish. Curr Res Physiol 2022; 5:193-202. [PMID: 35434651 PMCID: PMC9010694 DOI: 10.1016/j.crphys.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
The reduced availability of dissolved oxygen is a common stressor in aquatic habitats that affects the ability of the heart to ensure tissue oxygen supply. Among key signalling molecules activated during cardiac hypoxic stress, nitric oxide (NO) has emerged as a central player involved in the related adaptive responses. Here, we outline the role of the nitrergic control in modulating tolerance and adaptation of teleost heart to hypoxia, as well as major molecular players that participate in the complex NO network. The purpose is to provide a framework in which to depict how the heart deals with limitations in oxygen supply. In this perspective, defining the relational interplay between the multiple (sets of) proteins that, due to the gene duplication events that occurred during the teleost fish evolutive radiation, do operate in parallel with similar functions in the (different) heart (districts) and other body districts under low levels of oxygen supply, represents a next goal of the comparative research in teleost fish cardiac physiology. The flexibility of the teleost heart to O2 limitations is illustrated by using cyprinids as hypoxia tolerance models. Major molecular mediators of the teleost cardiac response are discussed with a focus on the nitrergic system. A comparative analysis of gene duplication highlights conserved targets which may orchestrate the cardiac response to hypoxia.
Collapse
|
213
|
Bruno DO, Barrantes ME, Lattuca ME, Nardi CF, Diaz MV, Wolinski L, Sacristán H, Vanella FA, Fernández DA. Temperature and salinity effects on whole-organism and cellular level stress responses of the sub-Antarctic notothenioid fish Patagonotothen cornucola yolk-sac larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:321-335. [PMID: 35146595 DOI: 10.1007/s10695-022-01057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
This work aimed to evaluate the whole-organism and cellular level responses to different combinations of water temperature and salinity of the notothenioid Patagonotothen cornucola at the end of the yolk-sac larval stage. Egg masses of the species were collected in the wild and then maintained at natural water conditions (4 °C and 30 PSU). Newly hatched larvae were placed in aquaria with different combinations of water temperature (4 °C, 12 °C, and 16 °C) and salinity (15 and 30 PSU) during four days before yolk sac absorption. Larvae exposed to 12 °C grew more in length than those exposed to 16 °C, but yolk volume was more reduced in larvae exposed to 16 °C than those exposed to 4 °C and 30 PSU than of 15 PSU. In addition, a higher proportion of larvae exposed to 12 °C and 15 PSU completely absorbed their yolk. Whereas the more tolerant larvae to high temperatures were those exposed to 16 °C and 30 PSU, lipid peroxidation and protein oxidation were highest at natural and at 12 °C and 30 PSU conditions, respectively. The nutritional status (as standardized DNA/RNA index-sRD -) was low in all cases, even at natural conditions (average sRD ~ 1). Our study suggests that, in the context of climate change, the mortality rate of yolk-sac larvae of P. cornucola would not increase due to temperature or salinity stress. However, indirect effects (such as habitat degradation or changes in food availability) would be critical after complete absorption of the yolk.
Collapse
Affiliation(s)
- Daniel Osvaldo Bruno
- Laboratorio de Ecología, Fisiología Y Evolución de Organismos Acuáticos (LEFyE), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Tierra del Fuego, Ushuaia, Argentina.
- Instituto de Ciencias Polares, Ambiente Y Recursos Naturales, Universidad Nacional de Tierra del Fuego (ICPA-UNTDF), Fuegia Basket 251, V9410CAB, Tierra del Fuego, Ushuaia, Argentina.
| | - María Eugenia Barrantes
- Laboratorio de Ecología, Fisiología Y Evolución de Organismos Acuáticos (LEFyE), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Tierra del Fuego, Ushuaia, Argentina
| | - María Eugenia Lattuca
- Laboratorio de Ecología, Fisiología Y Evolución de Organismos Acuáticos (LEFyE), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Tierra del Fuego, Ushuaia, Argentina
| | - Cristina Fernanda Nardi
- Instituto de Ciencias Polares, Ambiente Y Recursos Naturales, Universidad Nacional de Tierra del Fuego (ICPA-UNTDF), Fuegia Basket 251, V9410CAB, Tierra del Fuego, Ushuaia, Argentina
| | - Marina Vera Diaz
- Instituto de Investigaciones Marinas Y Costeras, Universidad Nacional de Mar del Plata (IIMyC-UNMdP-CONICET), and Instituto Nacional de Investigación Y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo Nº 1, CC 175, B7602HSA, Mar del Plata, Buenos Aires, Argentina
| | - Laura Wolinski
- Laboratorio de Ecología, Fisiología Y Evolución de Organismos Acuáticos (LEFyE), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Tierra del Fuego, Ushuaia, Argentina
| | - Hernán Sacristán
- Laboratorio de Crustáceos Y Ecosistemas Costeros, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Tierra del Fuego, Ushuaia, Argentina
| | - Fabián Alberto Vanella
- Laboratorio de Ecología, Fisiología Y Evolución de Organismos Acuáticos (LEFyE), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Tierra del Fuego, Ushuaia, Argentina
| | - Daniel Alfredo Fernández
- Laboratorio de Ecología, Fisiología Y Evolución de Organismos Acuáticos (LEFyE), Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Tierra del Fuego, Ushuaia, Argentina
- Instituto de Ciencias Polares, Ambiente Y Recursos Naturales, Universidad Nacional de Tierra del Fuego (ICPA-UNTDF), Fuegia Basket 251, V9410CAB, Tierra del Fuego, Ushuaia, Argentina
| |
Collapse
|
214
|
Synergistic effect of long-term feed deprivation and temperature on the cellular physiology of meagre (Argyrosomus regius). J Therm Biol 2022; 105:103207. [DOI: 10.1016/j.jtherbio.2022.103207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
|
215
|
Leonard JN, Skov PV. Capacity for thermal adaptation in Nile tilapia (Oreochromis niloticus): Effects on oxygen uptake and ventilation. J Therm Biol 2022; 105:103206. [DOI: 10.1016/j.jtherbio.2022.103206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
|
216
|
Uszko W, Huss M, Gårdmark A. Smaller species but larger stages: Warming effects on inter- and intraspecific community size structure. Ecology 2022; 103:e3699. [PMID: 35352827 PMCID: PMC9285768 DOI: 10.1002/ecy.3699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Global warming can alter size distributions of animal communities, but the contribution of size shifts within versus between species to such changes remains unknown. In particular, it is unclear if expected body size shrinkage in response to warming, observed at the interspecific level, can be used to infer similar size shifts within species. In this study, we compare warming effects on interspecific (relative species abundance) versus intraspecific (relative stage abundance) size structure of competing consumers by analyzing stage‐structured bioenergetic food web models consisting of one or two consumer species and two resources, parameterized for pelagic plankton. Varying composition and temperature and body size dependencies in these models, we predicted interspecific versus intraspecific size structure across temperature. We found that warming shifted community size structure toward dominance of smaller species, in line with empirical evidence summarized in our review of 136 literature studies. However, this result emerged only given a size–temperature interaction favoring small over large individuals in warm environments. In contrast, the same mechanism caused an intraspecific shift toward dominance of larger (adult) stages, reconciling disparate observations of size responses within and across zooplankton species in the literature. As the empirical evidence for warming‐driven stage shifts is scarce and equivocal, we call for more experimental studies on intraspecific size changes with warming. Understanding the global warming impacts on animal communities requires that we consider and quantify the relative importance of mechanisms concurrently shaping size distributions within and among species.
Collapse
Affiliation(s)
- Wojciech Uszko
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, Öregrund, Sweden
| | - Magnus Huss
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, Öregrund, Sweden
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, Öregrund, Sweden
| |
Collapse
|
217
|
Bethge J, Razafimampiandra JC, Wulff A, Dausmann KH. Seasonal changes in the parasite prevalence of a small Malagasy lemur species (Lepilemur edwardsi). Integr Zool 2022; 18:427-439. [PMID: 35276032 DOI: 10.1111/1749-4877.12647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Parasitic infections can impact the fitness of individuals and can have influence on animals' population dynamics. An individuals' parasite prevalence often changes depending on external or seasonal changes, e.g., rainfall and ambient temperatures, but also on internal changes, e.g., changes in body condition. In this study we aimed to identify the environmental factors that may influence the intestinal parasite and ectoparasite prevalence of the folivorous Malagasy primate species, Lepilemur edwardsi, living in a seasonal dry deciduous forest. Species living in this habitat have to adapt to seasonal changes of ambient temperature, with almost no precipitation during the dry season and hence strong fluctuations of resource availability throughout the year. We sampled the feces and ectoparasites of L. edwardsi throughout the year. Intestinal parasite prevalence increased from the wet to the dry season and was highest in the late dry season, which might be due to the accompanying decrease in diet-quality. Conversely, ectoparasite prevalence decreased in the dry season, presumably due to the prevailing unfavorable environmental conditions for the development of ectoparasites (i.e., mites and ticks). Paired with the higher resting metabolism and stress level of L. edwardsi during the late dry season, it seems that this species may struggle when dry seasons intensify in its habitat. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Janina Bethge
- Institute of Zoology, Functional Ecology, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Jean Claude Razafimampiandra
- Mention Zoologie et Biodiversité Animale, Faculté des Sciences, Université d'Antananarivo, B.P. 906, 101, Antananarivo, Madagascar
| | - Arne Wulff
- Institute of Zoology, Functional Ecology, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Kathrin H Dausmann
- Institute of Zoology, Functional Ecology, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| |
Collapse
|
218
|
Roche DG, Raby GD, Norin T, Ern R, Scheuffele H, Skeeles M, Morgan R, Andreassen AH, Clements JC, Louissaint S, Jutfelt F, Clark TD, Binning SA. Paths towards greater consensus building in experimental biology. J Exp Biol 2022; 225:274263. [PMID: 35258604 DOI: 10.1242/jeb.243559] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In a recent editorial, the Editors-in-Chief of Journal of Experimental Biology argued that consensus building, data sharing, and better integration across disciplines are needed to address the urgent scientific challenges posed by climate change. We agree and expand on the importance of cross-disciplinary integration and transparency to improve consensus building and advance climate change research in experimental biology. We investigated reproducible research practices in experimental biology through a review of open data and analysis code associated with empirical studies on three debated paradigms and for unrelated studies published in leading journals in comparative physiology and behavioural ecology over the last 10 years. Nineteen per cent of studies on the three paradigms had open data, and 3.2% had open code. Similarly, 12.1% of studies in the journals we examined had open data, and 3.1% had open code. Previous research indicates that only 50% of shared datasets are complete and re-usable, suggesting that fewer than 10% of studies in experimental biology have usable open data. Encouragingly, our results indicate that reproducible research practices are increasing over time, with data sharing rates in some journals reaching 75% in recent years. Rigorous empirical research in experimental biology is key to understanding the mechanisms by which climate change affects organisms, and ultimately promotes evidence-based conservation policy and practice. We argue that a greater adoption of open science practices, with a particular focus on FAIR (Findable, Accessible, Interoperable, Re-usable) data and code, represents a much-needed paradigm shift towards improved transparency, cross-disciplinary integration, and consensus building to maximize the contributions of experimental biologists in addressing the impacts of environmental change on living organisms.
Collapse
Affiliation(s)
- Dominique G Roche
- Canadian Centre for Evidence-Based Conservation, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON, Canada, K1S 5B6.,Institut de Biologie, Université de Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Rasmus Ern
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Michael Skeeles
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Rachael Morgan
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Anna H Andreassen
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Jeff C Clements
- Aquaculture and Coastal Ecosystems, Fisheries and Oceans Canada Gulf Region, Moncton, NB, Canada, E1C 9B6
| | - Sarahdghyn Louissaint
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H2V 0B3
| |
Collapse
|
219
|
Lopes J, Coppola F, Soares AMVM, Meucci V, Pretti C, Polese G, Freitas R. How temperature rise will influence the toxic impacts of 17 α-ethinylestradiol in Mytilus galloprovincialis? ENVIRONMENTAL RESEARCH 2022; 204:112279. [PMID: 34699762 DOI: 10.1016/j.envres.2021.112279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/23/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical drugs are Contaminants of Emerging Concern (CECs) and are continuously discharged into the environment. As a result of human and veterinary use, these substances are reaching aquatic coastal systems, with limited information regarding the toxic effects of these compounds towards inhabiting organisms. Among CECs are pharmaceuticals like 17 α-ethinylestradiol (EE2), which is a synthetic hormone with high estrogenic potency. EE2 has been increasingly found in different aquatic systems but few studies addressed its potential toxicity to marine wildlife, in particular to bivalves. Therefore, the aim of the present study was to evaluate the influence of temperature (17 °C-control and 21 °C) on the potential effects of EE2 on the mussel Mytilus galloprovincialis. For this purpose, mussels were exposed to different concentrations of EE2 (5.0; 25.0; 125.0 and 625 ng/L), resembling low to highly polluted sites. Mussels exposed to each concentration were maintained under two temperatures, 17 and 21 °C, which represent actual and predicted warming conditions, respectively. After 28 days, oxidative stress status, metabolism related parameters, neurotoxicity and histopathological alterations were measured. The results obtained clearly showed an interactive effect of increased temperature and EE2, with limited antioxidant and biotransformation capacity when both stressors were acting together, leading to higher cellular damage. The combination of both stressors also enhanced mussels' metabolic capacity and neurotoxic effects. Nevertheless, loss of redox balance was confirmed by the strong decrease of the ratio between reduce glutathione (GSH) and oxidized glutathione (GSSG) in contaminated mussels, regardless the temperature. Histopathological indexes in contaminated mussels were significantly different from the control group, indicating impacts in gills and digestive glands of mussels due to EE2, with higher values observed at 21 °C. Overall, this study demonstrates that of EE2 represents a threat to mussels and predicted warming conditions will enhance the impacts, which in a near future might result in impairments at the population and community levels.
Collapse
Affiliation(s)
- Joel Lopes
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | | | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
220
|
Voet HEE, Van Colen C, Vanaverbeke J. Climate change effects on the ecophysiology and ecological functioning of an offshore wind farm artificial hard substrate community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152194. [PMID: 34890680 DOI: 10.1016/j.scitotenv.2021.152194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
In the effort towards a decarbonised future, the local effects of a proliferating offshore wind farm (OWF) industry add to and interact with the global effects of marine climate change. This study aimed to quantify potential ecophysiological effects of ocean warming and acidification and to estimate and compare the cumulative clearance potential of suspended food items by OWF epifauna under current and future climate conditions. To this end, this study combined ecophysiological responses to ocean warming and acidification of three dominant colonising species on OWF artificial hard substrates (the blue mussel Mytilus edulis, the tube-building amphipod Jassa herdmani and the plumose anemone Metridium senile). In general, mortality, respiration rate and clearance rate increased during 3- to 6-week experimental exposures across all three species, except for M. senile, who exhibited a lower clearance rate in the warmed treatments (+3 °C) and an insensitivity to lowered pH (-0.3 pH units) in terms of survival and respiration rate. Ocean warming and acidification affected growth antagonistically, with elevated temperature being beneficial for M. edulis and lowered pH being beneficial for M. senile. The seawater volume potentially cleared from suspended food particles by this AHS colonising community increased significantly, extending the affected distance around an OWF foundation by 9.2% in a future climate scenario. By using an experimental multi-stressor approach, this study thus demonstrates how ecophysiology underpins functional responses to climate change in these environments, highlighting for the first time the integrated, cascading potential effects of OWFs and climate change on the marine ecosystem.
Collapse
Affiliation(s)
- H E E Voet
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and Management, Vautierstraat 29, Brussels 1000, Belgium; Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - C Van Colen
- Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium
| | - J Vanaverbeke
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and Management, Vautierstraat 29, Brussels 1000, Belgium; Marine Biology Research Group, Department of Biology, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium.
| |
Collapse
|
221
|
Chan SKN, Suresh S, Munday P, Ravasi T, Bernal MA, Schunter C. The alternative splicing landscape of a coral reef fish during a marine heatwave. Ecol Evol 2022; 12:e8738. [PMID: 35342554 PMCID: PMC8933327 DOI: 10.1002/ece3.8738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing is a molecular mechanism that enables a single gene to encode multiple transcripts and proteins by post-transcriptional modification of pre-RNA molecules. Changes in the splicing scheme of genes can lead to modifications of the transcriptome and the proteome. This mechanism can enable organisms to respond to environmental fluctuations. In this study, we investigated patterns of alternative splicing in the liver of the coral reef fish Acanthochromis polyacanthus in response to the 2016 marine heatwave on the Great Barrier Reef. The differentially spliced (DS; n = 40) genes during the onset of the heatwave (i.e., 29.49°C or +1°C from average) were related to essential cellular functions such as the MAPK signaling system, Ca(2+) binding, and homeostasis. With the persistence of the heatwave for a period of one month (February to March), 21 DS genes were detected, suggesting that acute warming during the onset of the heatwave is more influential on alternative splicing than the continued exposure to elevated temperatures. After the heatwave, the water temperature cooled to ~24.96°C, and fish showed differential splicing of genes related to cyto-protection and post-damage recovery (n = 26). Two-thirds of the DS genes detected across the heatwave were also differentially expressed, revealing that the two molecular mechanisms act together in A. polyacanthus to cope with the acute thermal change. This study exemplifies how splicing patterns of a coral reef fish can be modified by marine heatwaves. Alternative splicing could therefore be a potential mechanism to adjust cellular physiological states under thermal stress and aid coral reef fishes in their response to more frequent acute thermal fluctuations in upcoming decades.
Collapse
Affiliation(s)
- Stanley Kin Nok Chan
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Sneha Suresh
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Phillip Munday
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
| | - Moisés A. Bernal
- Department of Biological SciencesCollege of Science and MathematicsAuburn UniversityAuburnAlabamaUSA
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| |
Collapse
|
222
|
Wang P, Laws E, Wang Y, Chen J, Song X, Huang R, Wang T, Yi X, Sun J, Guo X, Liu X, Gao K, Huang B. Elevated pCO 2 changes community structure and function by affecting phytoplankton group-specific mortality. MARINE POLLUTION BULLETIN 2022; 175:113362. [PMID: 35092931 DOI: 10.1016/j.marpolbul.2022.113362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The rise of atmospheric pCO2 has created a number of problems for marine ecosystem. In this study, we initially quantified the effects of elevated pCO2 on the group-specific mortality of phytoplankton in a natural community based on the results of mesocosm experiments. Diatoms dominated the phytoplankton community, and the concentration of chlorophyll a was significantly higher in the high-pCO2 treatment than the low-pCO2 treatment. Phytoplankton mortality (percentage of dead cells) decreased during the exponential growth phase. Although the mortality of dinoflagellates did not differ significantly between the two pCO2 treatments, that of diatoms was lower in the high-pCO2 treatment. Small diatoms dominated the diatom community. Although the mortality of large diatoms did not differ significantly between the two treatments, that of small diatoms was lower in the high-pCO2 treatment. These results suggested that elevated pCO2 might enhance dominance by small diatoms and thereby change the community structure of coastal ecosystems.
Collapse
Affiliation(s)
- Peixuan Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Collage of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Edward Laws
- Department of Environmental Sciences, School of the Coast & Environment, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yongzhi Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Collage of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jixin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Collage of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Xue Song
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Ruiping Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Tifeng Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiangqi Yi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiazhen Sun
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Xianghui Guo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Collage of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China..
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Bangqin Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Collage of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
223
|
Valenza‐Troubat N, Davy M, Storey R, Wylie MJ, Hilario E, Ritchie P, Wellenreuther M. Differential expression analyses reveal extensive transcriptional plasticity induced by temperature in New Zealand silver trevally ( Pseudocaranx georgianus). Evol Appl 2022; 15:237-248. [PMID: 35233245 PMCID: PMC8867707 DOI: 10.1111/eva.13332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Ectotherm species, such as marine fishes, depend on environmental temperature to regulate their vital functions. In finfish aquaculture production, being able to predict physiological responses in growth and other economic traits to temperature is crucial to address challenges inherent in the selection of grow-out locations. This will become an even more significant issue under the various predicted future climate change scenarios. In this study, we used the marine teleost silver trevally (Pseudocaranx georgianus), a species currently being explored as a candidate for aquaculture in New Zealand, as a model to study plasticity in gene expression patterns and growth in response to different temperatures. Using a captive study population, temperature conditions were experimentally manipulated for 1 month to mimic seasonal extremes. Phenotypic differences in growth were measured in 400 individuals, and gene expression patterns of pituitary gland and liver were determined in a subset of 100 individuals. Results showed that growth increased 50% in the warmer compared with the colder condition, suggesting that temperature has a large impact on metabolic activities associated with growth. A total of 265,116,678 single-end RNA sequence reads were aligned to the trevally genome, and 28,416 transcript models were developed (27,887 of these had GenBank accessions, and 17,980 unique gene symbols). Further filtering reduced this set to 8597 gene models. 39 and 238 differentially expressed genes (DEGs) were found in the pituitary gland and the liver, respectively (|log2FC| > 0.26, p-value < 0.05). Of these, 6 DEGs showed a common expression pattern between both tissues, all involved in housekeeping functions. Temperature-modulated growth responses were linked to major pathways affecting metabolism, cell regulation and signalling, previously shown to be important for temperature tolerance in other fish species. An interesting finding of this study was that genes linked to the reproductive system were up-regulated in both tissues in the high treatment, indicating the onset of sexual maturation. Few studies have investigated the thermal plasticity of the gene expression in the main organs of the somatotropic axis simultaneously. Our findings indicate that trevally exhibit substantial growth differences and predictable plastic regulatory responses to different temperature conditions. We identified a set of genes that provide a list of candidates for further investigations for selective breeding objectives and how populations may adapt to increasing temperatures.
Collapse
Affiliation(s)
| | - Marcus Davy
- The New Zealand Institute for Plant and Food Research LimitedTe PukeNew Zealand
| | - Roy Storey
- The New Zealand Institute for Plant and Food Research LimitedTe PukeNew Zealand
| | - Matthew J. Wylie
- The New Zealand Institute for Plant and Food Research LimitedNelsonNew Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research LimitedTe PukeNew Zealand
| | - Peter Ritchie
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research LimitedNelsonNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
224
|
Zhang R, Song P, Li H, Wang R, Li Y, Miao X, Lin L, Ding S. Spatio-temporal characteristics of demersal fish community in the Chukchi and northern Bering Seas: significant distributional records and interannual variations in species composition and biodiversity. Polar Biol 2022. [DOI: 10.1007/s00300-021-02980-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
225
|
Quintana F, Uhart MM, Gallo L, Mattera MB, Rimondi A, Gómez-Laich A. Heat-related massive chick mortality in an Imperial Cormorant Leucocarbo atriceps colony from Patagonia, Argentina. Polar Biol 2022. [DOI: 10.1007/s00300-021-02982-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
226
|
Cao R, Zhang Y, Ju Y, Wang W, Xi C, Liu W, Liu K. Exacerbation of copper pollution toxicity from ocean acidification: A comparative analysis of two bivalve species with distinct sensitivities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118525. [PMID: 34798221 DOI: 10.1016/j.envpol.2021.118525] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
In estuarine ecosystems, bivalves experience large pH fluctuations caused by the anthropogenic elevation of atmospheric CO2 and Cu pollution. This study investigates whether Cu toxicity increases indiscriminately in two bivalve species from different estuarine habitats as a result of elevated Cu bioaccumulation in acidified seawater. This was carried out by evaluating the effects of Cu exposure on two bivalve species (clams and scallops) for 28 d, at a series of gradient pH levels (pH 8.1, 7.8, and 7.6). The results demonstrated an increase in the Cu content in the soft tissues of clams and scallops in acidified seawater. Cu toxicity increased under acidified seawater by affecting the molecular pathways, physiological function, biochemical responses, and health status of clams and scallops. An iTRAQ-based quantitative proteomic analysis showed increased protein turnover, disturbed cytoskeleton and signal transduction pathways, apoptosis, and suppressed energy metabolism pathways in the clams and scallops under joint exposure to ocean acidification and Cu. The integrated biomarker response results suggested that scallops were more sensitive to Cu toxicity and/or ocean acidification than clams. The proteomic results suggested that the increased energy metabolism and suppressed protein turnover rates may contribute to a higher resistivity to ocean acidification in clams than scallops. Overall, this study provides molecular insights into the distinct sensitivities between two bivalve species from different habitats under exposure to ocean acidification and/or Cu. The findings emphasize the aggravating impact of ocean acidification on Cu toxicity in clams and scallops. The results show that ocean acidification and copper pollution may reduce the long-term viability of clams and scallops, and lead to the degradation of estuarine ecosystems.
Collapse
Affiliation(s)
- Ruiwen Cao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Yiling Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuhao Ju
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chenxiang Xi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenlin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kai Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
227
|
Adams OA, Zhang Y, Gilbert MH, Lawrence CS, Snow M, Farrell AP. An unusually high upper thermal acclimation potential for rainbow trout. CONSERVATION PHYSIOLOGY 2022; 10:coab101. [PMID: 35492409 PMCID: PMC9040278 DOI: 10.1093/conphys/coab101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/02/2023]
Abstract
Thermal acclimation, a compensatory physiological response, is central to species survival especially during the current era of global warming. By providing the most comprehensive assessment to date for the cardiorespiratory phenotype of rainbow trout (Oncorhynchus mykiss) at six acclimation temperatures from 15°C to 25°C, we tested the hypothesis that, compared with other strains of rainbow trout, an Australian H-strain of rainbow trout has been selectively inbred to have an unusually high and broad thermal acclimation potential. Using a field setting at the breeding hatchery in Western Australia, thermal performance curves were generated for a warm-adapted H-strain by measuring growth, feed conversion efficiency, specific dynamic action, whole-animal oxygen uptake (ṀO2) during normoxia and hypoxia, the critical maximum temperature and the electrocardiographic response to acute warming. Appreciable growth and aerobic capacity were possible up to 23°C. However, growth fell off drastically at 25°C in concert with increases in the time required to digest a meal, its total oxygen cost and its peak ṀO2. The upper thermal tipping points for appetite and food conversion efficiency corresponded with a decrease in the ability to increase heart rate during warming and an increase in the cost to digest a meal. Also, comparison of upper thermal tipping points provides compelling evidence that limitations to increasing heart rate during acute warming occurred well below the critical thermal maximum (CTmax) and that the faltering ability of the heart to deliver oxygen at different acclimation temperatures is not reliably predicted by CTmax for the H-strain of rainbow trout. We, therefore, reasoned the remarkably high thermal acclimation potential revealed here for the Australian H-strain of rainbow trout reflected the existing genetic variation within the founder Californian population, which was then subjected to selective inbreeding in association with severe heat challenges. This is an encouraging discovery for those with conservation concerns for rainbow trout and other fish species. Indeed, those trying to predict the impact of global warming should more fully consider the possibility that the standing intra-specific genetic variation within a fish species could provide a high thermal acclimation potential, similar to that shown here for rainbow trout.
Collapse
Affiliation(s)
- Olivia A Adams
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yangfan Zhang
- Corresponding author: Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada and Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States
| | - Matthew H Gilbert
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Craig S Lawrence
- Faculty of Science, School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Michael Snow
- Aquatic Life Industries, Perth, Western Australia, Australia
| | - Anthony P Farrell
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
228
|
Influences of Climate Change and Variability on Estuarine Ecosystems: An Impact Study in Selected European, South American and Asian Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010585. [PMID: 35010857 PMCID: PMC8744635 DOI: 10.3390/ijerph19010585] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022]
Abstract
It is well-known that climate change significantly impacts ecosystems (at the macro-level) and individual species (at the micro-level). Among the former, estuaries are the most vulnerable and affected ecosystems. However, despite the strong relations between climate change and estuaries, there is a gap in the literature regarding international studies across different regions investigating the impacts of climate change and variability on estuaries in different geographical zones. This paper addresses this need and reviews the impacts of climate change, variability and extreme weather on estuaries. It emphasises the following: (i) a set of climate parameters governing estuarine hydrology and processes; and (ii) a sample of countries in Asia (Bangladesh), Europe (Portugal) and South America (Uruguay). We reviewed the influences of the climatic drivers of the estuarine hydrology, ecological processes and specific species in estuarine communities across the selected geographical regions, along with an analysis of their long-term implications. The key results from the three estuaries are as following: (i) Hilsa fish, of which the catches contribute to 10% of the total earnings of the fishery sector (1% of GDP), are affected by climate-forced hydrological and productivity changes in the Meghna; (ii) extreme droughts and short-term severe precipitation have driven the long-term abundance and spatial distribution of both fish larvae and juveniles/adults in the Mondego; and (iii) the river inflow and fluctuations increases since the early 1970s have contributed to variations in the salinity, the stratification, the oxygen, nutrient and trophic levels and the spatial pattern for the life stages of planktonic species, fish biomass and captures in the Rio de la Plata. The results suggested that immediate action is needed to reduce the vulnerability of estuaries to climate stressors, mainly the changing river flows, storms and sea-level rise. As a contribution to addressing current problems, we described a set of adaptation strategies to foster climate resilience and adaptive capacity (e.g., early-warning systems, dam management to prevent overflows and adaptive fisheries management). The implications of this paper are two-fold. Firstly, it showcases a variety of problems that estuaries face from changing climate conditions. Secondly, the paper outlines the need for suitable adaptive management strategies to safeguard the integrity of such vital ecosystems.
Collapse
|
229
|
Khurshid A, Inayat R, Tamkeen A, Ul Haq I, Li C, Boamah S, Zhou JJ, Liu C. Antioxidant Enzymes and Heat-Shock Protein Genes of Green Peach Aphid ( Myzus persicae) Under Short-Time Heat Stress. Front Physiol 2022; 12:805509. [PMID: 34975546 PMCID: PMC8718642 DOI: 10.3389/fphys.2021.805509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 01/24/2023] Open
Abstract
The management of insect pests under fluctuating temperatures has become an interesting area of study due to their ability to stimulate defense mechanisms against heat stress. Therefore, understanding insect’s physiological and molecular response to heat stress is of paramount importance for pest management. Aphids are ectothermic organisms capable of surviving in different climatic conditions. This study aimed to determine the effects of short-time heat stress on green peach aphid Myzus persicae under controlled conditions. In this study, short-time heat stress treatments at different temperatures 27, 30, 33, and 36°C with exposure times of 1, 3, 6, and 10 h, respectively, on the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and oxidants, such as malondialdehyde (MDA) and hydrogen peroxide (H2O2), were determined. The results showed that the short-time heat stress significantly increased the content of MDA of M. persicae by 71, 78, 81, and 86% at 36°C for the exposure times of 1, 3, 6, and 10 h, respectively, compared with control. The content of H2O2 increased by 75, 80, 85, and 88% at 36°C for the exposure times of 1, 3, 6, and 10 h, respectively, compared with the control. The SOD, POD, and CAT activities increased by 61, 76, and 77% for 1 h, 72, 83, and 84% for 3 h, 80, 85, and 86% for 6 h, and 87, 87.6, and 88% for 10 h at 36°C, respectively, compared with control. Again, under short-time heat stress, the transcription levels of Hsp22, Hsp23, Hsp27, SOD, POD, and CAT genes were upregulated compared with control. Our results suggest that M. persicae increased the enzymatic antioxidant activity and heat-shock gene expression as one of the defensive mechanisms in response to heat stresses.
Collapse
Affiliation(s)
- Aroosa Khurshid
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Rehan Inayat
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Ansa Tamkeen
- Department of Entomology, Faculty of Agriculture, University of Poonch, Rawalakot, Pakistan
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Chunchun Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Solomon Boamah
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jing-Jiang Zhou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China.,State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
230
|
Baag S, Mandal S. Combined effects of ocean warming and acidification on marine fish and shellfish: A molecule to ecosystem perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149807. [PMID: 34450439 DOI: 10.1016/j.scitotenv.2021.149807] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
It is expected that by 2050 human population will exceed nine billion leading to increased pressure on marine ecosystems. Therefore, it is conjectured various levels of ecosystem functioning starting from individual to population-level, species distribution, food webs and trophic interaction dynamics will be severely jeopardized in coming decades. Ocean warming and acidification are two prime threats to marine biota, yet studies about their cumulative effect on marine fish and shellfishes are still in its infancy. This review assesses existing information regarding the interactive effects of global environmental factors like warming and acidification in the perspective of marine capture fisheries and aquaculture industry. As climate change continues, distribution pattern of species is likely to be altered which will impact fisheries and fishing patterns. Our work is an attempt to compile the existing literatures in the biological perspective of the above-mentioned stressors and accentuate a clear outline of knowledge in this subject. We reviewed studies deciphering the biological consequences of warming and acidification on fish and shellfishes in the light of a molecule to ecosystem perspective. Here, for the first time impacts of these two global environmental drivers are discussed in a holistic manner taking into account growth, survival, behavioural response, prey predator dynamics, calcification, biomineralization, reproduction, physiology, thermal tolerance, molecular level responses as well as immune system and disease susceptibility. We suggest urgent focus on more robust, long term, comprehensive and ecologically realistic studies that will significantly contribute to the understanding of organism's response to climate change for sustainable capture fisheries and aquaculture.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
231
|
Escribano-Álvarez P, Pertierra LR, Martínez B, Chown SL, Olalla-Tárraga MÁ. Half a century of thermal tolerance studies in springtails (Collembola): A review of metrics, spatial and temporal trends. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100023. [PMID: 36003273 PMCID: PMC9387465 DOI: 10.1016/j.cris.2021.100023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Metrics used in thermal tolerance studies in Collembola have diversified over time Cold tolerance has been assessed more often than heat tolerance Fewer data exist for tropical regions, especially for euedaphic and epedaphic organisms Thermal tolerances in Neanuridae are not as well-studied as in the other families
Global changes in soil surface temperatures are altering the abundances and distribution ranges of invertebrate species worldwide, including effects on soil microarthropods such as springtails (Collembola), which are vital for maintaining soil health and providing ecosystem services. Studies of thermal tolerance limits in soil invertebrates have the potential to provide information on demographic responses to climate change and guide assessments of possible impacts on the structure and functioning of ecosystems. Here, we review the state of knowledge of thermal tolerance limits in Collembola. Thermal tolerance metrics have diversified over time, which should be taken into account when conducting large-scale comparative studies. A temporal trend shows that the estimation of ‘Critical Thermal Limits’ (CTL) is becoming more common than investigations of ‘Supercooling Point’ (SCP), despite the latter being the most widely used metric. Indeed, most studies (66%) in Collembola have focused on cold tolerance; fewer have assessed heat tolerance. The majority of thermal tolerance data are from temperate and polar regions, with fewer assessments from tropical and subtropical latitudes. While the hemiedaphic life form represents the majority of records at low latitudes, euedaphic and epedaphic groups remain largely unsampled in these regions compared to the situation in temperate and high latitude regions, where sampling records show a more balanced distribution among the different life forms. Most CTL data are obtained during the warmest period of the year, whereas SCP and ‘Lethal Temperature’ (LT) show more variation in terms of the season when the data were collected. We conclude that more attention should be given to understudied zoogeographical regions across the tropics, as well as certain less-studied clades such as the family Neanuridae, to identify the role of thermal tolerance limits in the redistribution of species under changing climates.
Collapse
Affiliation(s)
- Pablo Escribano-Álvarez
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
- Corresponding author.
| | - Luis R. Pertierra
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
| | - Brezo Martínez
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Miguel Á. Olalla-Tárraga
- Dpto. Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933, Móstoles, Spain
| |
Collapse
|
232
|
Hvas M, Bui S. Energetic costs of ectoparasite infection in Atlantic salmon. J Exp Biol 2021; 225:273811. [PMID: 34931653 DOI: 10.1242/jeb.243300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022]
Abstract
Parasites are widespread in nature where they affect energy budgets of hosts, and depending on the imposed pathogenic severity, this may reduce host fitness. However, the energetic costs of parasite infections are rarely quantified. In this study, we measured metabolic rates in recently seawater adapted Atlantic salmon (Salmo salar) infected with the ectoparasitic copepod Lepeophtheirus salmonis and used an aerobic scope framework to assess the potential ecological impact of this parasite-host interaction. The early chalimus stages of L. salmonis did not affect either standard or maximum metabolic rates. However, the later mobile pre-adult stages caused an increase in both standard and maximum metabolic rate yielding a preserved aerobic scope. Notably, standard metabolic rates were elevated by 26%, presumably caused by increased osmoregulatory burdens and costs of mobilizing immune responses. The positive impact on maximum metabolic rates was unexpected and suggests that fish are able to transiently overcompensate energy production to endure the burden of parasites and thus allow for continuation of normal activities. However, infected fish are known to suffer reduced growth, and this suggests that a trade-off exists in acquisition and assimilation of resources despite of an uncompromised aerobic scope. As such, when assessing impacts of environmental or biotic factors, we suggest that elevated routine costs may be a stronger predictor of reduced fitness than the available aerobic scope. Furthermore, studying effects on parasitized fish in an ecophysiological context deserves more attention, especially considering interacting effects of other stressors in the Anthropocene.
Collapse
Affiliation(s)
- Malthe Hvas
- Animal Welfare Research Group, Institute of Marine Research, Matre, Norway
| | - Samantha Bui
- Animal Welfare Research Group, Institute of Marine Research, Matre, Norway
| |
Collapse
|
233
|
Lin T, You Y, Zeng Z, Chen Y, Hu J, Lin S, Hu Q, Yang F, Wei H. Temperature-Dependent Demography of Thrips hawaiiensis (Thysanoptera: Thripidae): Implications for Prevention and Control. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1455-1465. [PMID: 34918074 DOI: 10.1093/ee/nvab084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 06/14/2023]
Abstract
The Hawaiian flower thrips, Thrips hawaiiensis (Morgan), a common flower-inhabiting thrip, is now a potential pest globally. Effective control of T. hawaiiensis requires information about the effects of temperature on its ontogeny and population growth. In this study, the life history characteristics and demography of T. hawaiiensis were defined at eight temperatures (9-35°C). Additionally, the thermal constant and temperature threshold were estimated by regression analysis. The developmental duration and longevity of T. hawaiiensis decreased with an increase in temperature between 16°C and 32°C; females survived for longer than males at all temperatures. The lower temperature threshold and thermal constant of preadult T. hawaiiensis were 10.5°C and 132.5 degree-days, respectively. The oviposition days of the females gradually decreased from 16°C to 32°C, and net maternity was higher at 20°C than at 16°C, even though the same number of eggs were laid at both temperatures. The mean longevities of the populations were greatest at 20°C; the life expectancy and reproductive value decreased with temperature. The intrinsic rate of increase and finite rate of increase were significantly highest at 20°C, 25°C, and 30°C. Population growth was triggered at 12.3°C, and reached a peak at approximately 27°C when it proliferated to the largest population size. Therefore, the results suggest that although the population of T. hawaiiensis starts to grow at lower temperatures, it adapts to a wide range of temperatures, and these findings facilitate prediction of different stages of damage, population size, and seasonal occurrence of T. hawaiiensis.
Collapse
Affiliation(s)
- Tao Lin
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Yong You
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Zhaohua Zeng
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Yixin Chen
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Jinfeng Hu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Shuo Lin
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Qingling Hu
- College of Environment and Life Science, Weinan Normal University, Weinan, Shaanxi, China
| | - Fenghua Yang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Hui Wei
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| |
Collapse
|
234
|
Scheuffele H, Rubio-Gracia F, Clark TD. Thermal performance curves for aerobic scope in a tropical fish (Lates calcarifer): flexible in amplitude but not breadth. J Exp Biol 2021; 224:273714. [PMID: 34821366 DOI: 10.1242/jeb.243504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022]
Abstract
Aerobic metabolic scope is a popular metric to estimate the capacity for temperature-dependent performance in aquatic animals. Despite this popularity, little is known of the role of temperature acclimation and variability in shaping the breadth and amplitude of the thermal performance curve for aerobic scope. If daily thermal experience can modify the characteristics of the thermal performance curve, interpretations of aerobic scope data from the literature may be misguided. Here, tropical barramundi (Lates calcarifer) were acclimated for ∼4 months to cold (23°C), optimal (29°C) or warm (35°C) conditions, or to a daily temperature cycle between 23 and 35°C (with a mean of 29°C). Measurements of aerobic scope were conducted every 3-4 weeks at three temperatures (23, 29 and 35°C), and growth rates were monitored. Acclimation to constant temperatures caused some changes in aerobic scope at the three measurement temperatures via adjustments in standard and maximum metabolic rates, and growth rates were lower in the 23°C-acclimated group than in all other groups. The metabolic parameters and growth rates of the thermally variable group remained similar to those of the 29°C-acclimated group. Thus, acclimation to a variable temperature regime did not broaden the thermal performance curve for aerobic scope. We propose that thermal performance curves for aerobic scope are more plastic in amplitude than in breadth, and that the metabolic phenotype of at least some fish may be more dependent on the mean daily temperature than on the daily temperature range.
Collapse
Affiliation(s)
- Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | | | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
235
|
Farr ER, Johnson MR, Nelson MW, Hare JA, Morrison WE, Lettrich MD, Vogt B, Meaney C, Howson UA, Auster PJ, Borsuk FA, Brady DC, Cashman MJ, Colarusso P, Grabowski JH, Hawkes JP, Mercaldo-Allen R, Packer DB, Stevenson DK. An assessment of marine, estuarine, and riverine habitat vulnerability to climate change in the Northeast U.S. PLoS One 2021; 16:e0260654. [PMID: 34882701 PMCID: PMC8659346 DOI: 10.1371/journal.pone.0260654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Climate change is impacting the function and distribution of habitats used by marine, coastal, and diadromous species. These impacts often exacerbate the anthropogenic stressors that habitats face, particularly in the coastal environment. We conducted a climate vulnerability assessment of 52 marine, estuarine, and riverine habitats in the Northeast U.S. to develop an ecosystem-scale understanding of the impact of climate change on these habitats. The trait-based assessment considers the overall vulnerability of a habitat to climate change to be a function of two main components, sensitivity and exposure, and relies on a process of expert elicitation. The climate vulnerability ranks ranged from low to very high, with living habitats identified as the most vulnerable. Over half of the habitats examined in this study are expected to be impacted negatively by climate change, while four habitats are expected to have positive effects. Coastal habitats were also identified as highly vulnerable, in part due to the influence of non-climate anthropogenic stressors. The results of this assessment provide regional managers and scientists with a tool to inform habitat conservation, restoration, and research priorities, fisheries and protected species management, and coastal and ocean planning.
Collapse
Affiliation(s)
- Emily R. Farr
- Office of Habitat Conservation, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Michael R. Johnson
- Habitat and Ecosystem Services Division, Greater Atlantic Regional Fisheries Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Gloucester, Massachusetts, United States of America
| | - Mark W. Nelson
- ECS, Under contract to the Office of Science and Technology, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Jonathan A. Hare
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, Massachusetts, United States of America
| | - Wendy E. Morrison
- Office of Sustainable Fisheries, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Matthew D. Lettrich
- ECS, Under contract to the Office of Science and Technology, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Bruce Vogt
- NOAA Chesapeake Bay Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Annapolis, Maryland, United States of America
| | - Christopher Meaney
- Gulf of Maine Coastal Program, U.S. Fish and Wildlife Service, Falmouth, Maine, United States of America
| | - Ursula A. Howson
- Office of Renewable Energy Programs, Bureau of Ocean Energy Management, Sterling, Virginia, United States of America
| | - Peter J. Auster
- Mystic Aquarium & University of Connecticut, Groton, Connecticut, United States of America
| | - Frank A. Borsuk
- Region 3, U.S. Environmental Protection Agency, Wheeling, West Virginia, United States of America
| | - Damian C. Brady
- Darling Marine Center, University of Maine, Walpole, Maine, United States of America
| | - Matthew J. Cashman
- Maryland-Delaware-DC Water Science Center, U.S. Geological Survey, Baltimore, Maryland, United States of America
| | - Phil Colarusso
- Region 1, U.S. Environmental Protection Agency, Boston, Massachusetts, United States of America
| | - Jonathan H. Grabowski
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| | - James P. Hawkes
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Orono, Maine, United States of America
| | - Renee Mercaldo-Allen
- Milford Laboratory, Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Milford, Connecticut, United States of America
| | - David B. Packer
- James J. Howard Marine Sciences Laboratory, Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Highlands, New Jersey, United States of America
| | - David K. Stevenson
- Habitat and Ecosystem Services Division, Greater Atlantic Regional Fisheries Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Gloucester, Massachusetts, United States of America
| |
Collapse
|
236
|
Enriquez‐Urzelai U, Nicieza AG, Montori A, Llorente GA, Urrutia MB. Physiology and acclimation potential are tuned with phenology in larvae of a prolonged breeder amphibian. OIKOS 2021. [DOI: 10.1111/oik.08566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Alfredo G. Nicieza
- Biodiversity Research Inst. (IMIB), Univ. of Oviedo‐Principality of Asturias‐CSIC Oviedo Spain
- Ecology Unit, Dept of Biology of Organisms and Systems, Univ. of Oviedo Oviedo Spain
| | - Albert Montori
- CREAC, Centre de Recerca i Educació Ambiental de Calafell, Calafell Barcelona Spain
| | - Gustavo A. Llorente
- Dept of Evolutionary Biology, Ecology and Environmental Sciences and Inst. de Recerca de la Biodiversitat (IRBIO), Faculty of Biology, Univ. of Barcelona Barcelona Spain
| | - Miren Bego Urrutia
- Depto de Genética, Antropología Física y Fisiología Animal, Univ. del País Vasco/Euskal Herriko Unibertsitatea Bilbao Spain
| |
Collapse
|
237
|
Sunar MC, Kır M. Thermal tolerance of Acartia tonsa: In relation to acclimation temperature and life stage. J Therm Biol 2021; 102:103116. [PMID: 34863480 DOI: 10.1016/j.jtherbio.2021.103116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
The Acartia tonsa, a calanoid copepod species, has high survival and thermal acclimation capacity in aquatic environments characterized by temperature variations. Dynamic and static thermal polygon areas of this species are 495 °C2 and 267 °C2 for nauplii stage, while adult stage has 747 °C2 and 411 °C2 dynamic and static thermal polygon area, respectively. In addition, Acartia tonsa is a copepod species which is more resistant to both high and low lethal temperatures, with its resistance zone of 105 °C2 and 131 °C2 for nauplii and adults, respectively. Acartia tonsa nauplii acclimated to 18 °C, 23 °C and 28 °C have lover and upper thermal limit (CTMin-CTMax) of 6.82-26.15 °C, 8.65-29.49 °C, and 11.70-34.10 °C, respectively. This species in the adult stage has a CTMin-CTMax of 4.47-30.30 °C, 6.35-33.94 °C, and 9.92-35.90 °C at acclimation temperatures mentioned above. Its broad dynamic and static thermal tolerance polygon areas and, accordingly, its significant thermal limits allow Acartia tonsa to survive at warm or cold extremes in their natural environment.
Collapse
Affiliation(s)
- Murat Can Sunar
- Faculty of Fisheries, Mugla Sitki Kocman University, 48000, Kotekli, Mugla, Turkey
| | - Mehmet Kır
- Faculty of Fisheries, Mugla Sitki Kocman University, 48000, Kotekli, Mugla, Turkey.
| |
Collapse
|
238
|
Nagayi JKY, Kisakye JJ, Mwanja MT, Nattabi J, Opio A. Effects of environmental temperature on the growth performance of a tropical
Oreochromis esculentus
(Graham, 1928). Implications for the species conservation. Afr J Ecol 2021. [DOI: 10.1111/aje.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
239
|
Killen SS, Cortese D, Cotgrove L, Jolles JW, Munson A, Ioannou CC. The Potential for Physiological Performance Curves to Shape Environmental Effects on Social Behavior. Front Physiol 2021; 12:754719. [PMID: 34858209 PMCID: PMC8632012 DOI: 10.3389/fphys.2021.754719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
As individual animals are exposed to varying environmental conditions, phenotypic plasticity will occur in a vast array of physiological traits. For example, shifts in factors such as temperature and oxygen availability can affect the energy demand, cardiovascular system, and neuromuscular function of animals that in turn impact individual behavior. Here, we argue that nonlinear changes in the physiological traits and performance of animals across environmental gradients—known as physiological performance curves—may have wide-ranging effects on the behavior of individual social group members and the functioning of animal social groups as a whole. Previous work has demonstrated how variation between individuals can have profound implications for socially living animals, as well as how environmental conditions affect social behavior. However, the importance of variation between individuals in how they respond to changing environmental conditions has so far been largely overlooked in the context of animal social behavior. First, we consider the broad effects that individual variation in performance curves may have on the behavior of socially living animals, including: (1) changes in the rank order of performance capacity among group mates across environments; (2) environment-dependent changes in the amount of among- and within-individual variation, and (3) differences among group members in terms of the environmental optima, the critical environmental limits, and the peak capacity and breadth of performance. We then consider the ecological implications of these effects for a range of socially mediated phenomena, including within-group conflict, within- and among group assortment, collective movement, social foraging, predator-prey interactions and disease and parasite transfer. We end by outlining the type of empirical work required to test the implications for physiological performance curves in social behavior.
Collapse
Affiliation(s)
- Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Daphne Cortese
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lucy Cotgrove
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jolle W Jolles
- Center for Ecological Research and Forestry Applications (CREAF), Campus de Bellaterra (UAB), Barcelona, Spain
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
240
|
He J, Tang X, Pu P, Zhang T, Niu Z, Meng F, Xi L, Ma M, Wu J, Ma M, Chen Q. Influence of High Temperatures and Heat Wave on Thermal Biology, Locomotor Performance, and Antioxidant System of High-Altitude Frog Nanorana pleskei Endemic to Qinghai-Tibet Plateau. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.763191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Investigating how highland amphibians respond to changes in ambient temperature may be of great significance for their fate prediction and effective conservation in the background of global warming. Here, using field individuals as the control group, we investigated the influence of high temperatures (20.5 and 25.5°C) and heat wave (15–26.6°C) on the thermal preference, critical thermal limits, locomotor performance, oxidative stress, and antioxidant enzyme activities in high-altitude frog Nanorana pleskei (3,490 m) endemic to the Qinghai-Tibet Plateau (QTP). After 2 weeks of acclimation to high temperatures and heat wave, the thermal preference (Tpref), critical thermal maximum (CTmax), and range of tolerable temperature significantly increased, while the critical thermal minimum (CTmin) was significantly decreased. The total time of jump to exhaustion significantly decreased, and burst swimming speed significantly increased in frogs acclimated in the high temperature and heat wave groups compared with the field group. In the high temperature group, the level of H2O2 and lipid peroxide (malondialdehyde, MDA), as well as the activities of glutathione peroxidase (GPX), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) significantly increased in the liver or muscle. However, in the heat wave group, the MDA content significantly decreased in the liver, and antioxidants activities decreased in the liver and muscle except for CAT activities that were significantly increased in the liver. These results indicated that N. pleskei could respond to the oxidative stress caused by high temperatures by enhancing the activity of antioxidant enzymes. The heat wave did not appear to cause oxidative damage in N. pleskei, which may be attributed to the fact that they have successfully adapted to the dramatic temperature fluctuations on the QTP.
Collapse
|
241
|
Boyce DG, Petrie B, Frank KT. Fishing, predation, and temperature drive herring decline in a large marine ecosystem. Ecol Evol 2021; 11:18136-18150. [PMID: 35003663 PMCID: PMC8717267 DOI: 10.1002/ece3.8411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
Since 1960, landings of Atlantic herring have been the greatest of any marine species in Canada, surpassing Atlantic cod and accounting for 24% of the total seafood harvested in Atlantic Canada. The Scotian Shelf-Bay of Fundy herring fisheries (NAFO Division 4VWX) is among Canada's oldest and drives this productivity, accounting for up to 75% of the total herring catch in some years. The stocks' productivity and overall health have declined since 1965. Despite management measures to promote recovery implemented since 2003, biomass remains low and is declining. The factors that drive the productivity of 4VWX herring are primarily unresolved, likely impeding the effectiveness of management actions on this stock. We evaluated potential drivers of herring variability by analyzing 52 time-series that describe the temporal and spatial evolution of the 4VWX herring population and the physical, ecological, and anthropogenic factors that could affect them using structural equation models. Variation in herring biomass was best accounted for by the exploitation rate's negative effect and the geographic distribution of fishing and recruitment. Thermal phenology and temperature adversely and egg predation positively impacted the early life stage mortality rate and, ultimately, adult biomass. These findings are broadly relevant to fisheries management, but particularly for 4VWX herring, where the current management approach does not consider their early life stage dynamics or assess them within the ecosystem or climate change contexts.
Collapse
Affiliation(s)
- Daniel G. Boyce
- Ocean Sciences DivisionBedford Institute of OceanographyDartmouthNSCanada
- Biology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Brian Petrie
- Ocean Sciences DivisionBedford Institute of OceanographyDartmouthNSCanada
| | - Kenneth T. Frank
- Ocean Sciences DivisionBedford Institute of OceanographyDartmouthNSCanada
| |
Collapse
|
242
|
Cole VJ, Parker LM, Scanes E, Wright J, Barnett L, Ross PM. Climate change alters shellfish reef communities: A temperate mesocosm experiment. MARINE POLLUTION BULLETIN 2021; 173:113113. [PMID: 34768191 DOI: 10.1016/j.marpolbul.2021.113113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Climate change is expected to cause significant changes to rocky shore diversity. This study used outdoor mesocosms to test the predictions that warming and ocean acidification will alter the responses of native Trichomya hirsuta and introduced Mytilus galloprovincialis mussels, and their associated communities of infauna. Experiments consisted of orthogonal combinations of temperature (ambient 22 °C or elevated 25 °C), pCO2 (ambient 400 μatm or elevated 1000 μatm), mussel species (T. hirsuta or M. galloprovincialis), and mussel configuration (native, introduced, or both), with n = 3 replicates. Elevated pCO2 reduced the growth of T. hirsuta but not that of M. galloprovincialis, and warming and pCO2 influenced the infauna that colonised both species of mussels. There was a reduction in infaunal molluscs and an increase in polychaetes; there was, however, no effect on crustaceans. Results from this study suggest that climate-driven changes from one mussel species to another can significantly influence infaunal communities.
Collapse
Affiliation(s)
- Victoria J Cole
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia.
| | - Laura M Parker
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Climate Change Cluster, University of Technology, Sydney, Ultimo 2007, Australia
| | - John Wright
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Lauren Barnett
- School of Science and Health, Western Sydney University, Penrith South DC 1797, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
243
|
Howe M, Carroll A, Gratton C, Raffa KF. Climate-induced outbreaks in high-elevation pines are driven primarily by immigration of bark beetles from historical hosts. GLOBAL CHANGE BIOLOGY 2021; 27:5786-5805. [PMID: 34428326 DOI: 10.1111/gcb.15861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Warming temperatures are allowing native insect herbivores to expand into regions that previously exceeded their thermal tolerance, encounter new host species, and pose significant threats to native communities. However, the dynamics of these expansions remain poorly understood, particularly in the extent to which outbreaks remain reliant on emigration from historical hosts or are driven by local reproduction within novel hosts in the expanded range. We tested these non-mutually exclusive hypotheses using spatially explicit data on mountain pine beetle (Dendroctonus ponderosae), which historically undergoes intermittent outbreaks in low-elevation lodgepole pine (Pinus contorta), but is now causing severe mortality in a high-elevation endangered species, whitebark pine (Pinus albicaulis). We compiled data from 2000 to 2019 across British Columbia, Canada, at 1-km2 resolution, and analyzed spatiotemporal patterns of beetle infestations, lodgepole pine distributions, expansion into habitats dominated by whitebark pine, and the likelihood of future outbreaks in all pine communities under simulated conditions. Overall, we found strong support for the hypothesis of emigration from the historical host species continuing to be a major driver of outbreaks in the more recently accessed host. First, beetle population pressure was consistently the best predictor of infestation severity in both lodgepole and whitebark pine, and appeared to be mostly unidirectional from lodgepole to whitebark pine. Second, infestations in lodgepole pine were of a longer duration than those in whitebark pine, which appeared too brief to sustain transitions from endemic to eruptive dynamics. Furthermore, resource depletion appears to drive emigration from lodgepole pine, whereas in whitebark pine drought appears to favor establishment of immigrants although bioclimatic factors and stand structure preclude self-sustaining outbreaks. Finally, we project that most pine in British Columbia will be at risk in the event of a new major outbreak. We describe implications for conserving and protecting whitebark pine and to other climate-driven range expansions.
Collapse
Affiliation(s)
- Michael Howe
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Allan Carroll
- Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claudio Gratton
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
244
|
In Vitro Fish Models for the Analysis of Ecotoxins and Temperature Increase in the Context of Global Warming. TOXICS 2021; 9:toxics9110286. [PMID: 34822677 PMCID: PMC8618082 DOI: 10.3390/toxics9110286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023]
Abstract
Rising temperatures can affect fish survival, especially from shallower waters, as temperatures increase faster and more intensively in these areas; thus, species-specific temperature tolerance can be exceeded. Additionally, the amounts of anthropogenic pollutants are higher in coastal waters. Although increasing metabolic activity at higher temperatures could lead to stronger effects of toxins, there are hardly any studies on this topic. Subsequently, the aim was to investigate the response of fish cells upon exposure to industrial solvents (ethanol, isopropanol, dimethyl sulfoxide (DMSO)) in relation to a temperature increase (20 °C and 25 °C). Concerning the 3Rs (the replacement, reduction and refinement of animal experiments), in vitro tests were used for two threatened, vulnerable fish species: maraena whitefish (Coregonus maraena) and Atlantic sturgeon (Acipenser oxyrinchus). Both cell lines exhibited higher proliferation at 25 °C. However, ecotoxicological results indicated significant differences regarding the cell line, toxin, temperature and exposure time. The evolutionarily older fish lineage, Atlantic sturgeon, demonstrated lower mortality rates in the presence of isopropanol and recovered better during long-term ethanol exposure than the maraena whitefish. Atlantic sturgeon cells have higher adaptation potential for these alcohols. In summary, fish species respond very specifically to toxins and changes in temperature, and new ecotoxicological questions arise with increasing water temperatures.
Collapse
|
245
|
Huss M, van Dorst RM, Gårdmark A. Larval fish body growth responses to simultaneous browning and warming. Ecol Evol 2021; 11:15132-15140. [PMID: 34765165 PMCID: PMC8571572 DOI: 10.1002/ece3.8194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022] Open
Abstract
Organisms are facing global climate change and other anthropogenic pressures, but most research on responses to such changes only considers effects of single drivers. Observational studies and physiological experiments suggest temperature increases will lead to faster growth of small fish. Whether this effect of warming holds in more natural food web settings with concurrent changes in other drivers, such as darkening water color ("browning") is, however, unknown. Here, we set up a pelagic mesocosm experiment with large bags in the Baltic Sea archipelago, inoculated with larval Eurasian perch (Perca fluviatilis) and zooplankton prey and varying in temperature and color, to answer the question how simultaneous warming and browning of coastal food webs impact body growth and survival of larval perch. We found that browning decreased body growth and survival of larval perch, whereas warming increased body growth but had no effect on survival. Based on daily fish body growth estimates based on otolith microstructure analysis, and size composition and abundance of available prey, we explain how these results may come about through a combination of physiological responses to warming and lower foraging efficiency in brown waters. We conclude that larval fish responses to climate change thus may depend on the relative rate and extent of both warming and browning, as they may even cancel each other out.
Collapse
Affiliation(s)
- Magnus Huss
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Renee M. van Dorst
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
- Department of Biology and Ecology of FishesLeibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| |
Collapse
|
246
|
Ziegler M, Anton A, Klein SG, Rädecker N, Geraldi NR, Schmidt-Roach S, Saderne V, Mumby PJ, Cziesielski MJ, Martin C, Frölicher TL, Pandolfi JM, Suggett DJ, Aranda M, Duarte CM, Voolstra CR. Integrating environmental variability to broaden the research on coral responses to future ocean conditions. GLOBAL CHANGE BIOLOGY 2021; 27:5532-5546. [PMID: 34391212 DOI: 10.1111/gcb.15840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Our understanding of the response of reef-building corals to changes in their physical environment is largely based on laboratory experiments, analysis of long-term field data, and model projections. Experimental data provide unique insights into how organisms respond to variation of environmental drivers. However, an assessment of how well experimental conditions cover the breadth of environmental conditions and variability where corals live successfully is missing. Here, we compiled and analyzed a globally distributed dataset of in-situ seasonal and diurnal variability of key environmental drivers (temperature, pCO2 , and O2 ) critical for the growth and livelihood of reef-building corals. Using a meta-analysis approach, we compared the variability of environmental conditions assayed in coral experimental studies to current and projected conditions in their natural habitats. We found that annual temperature profiles projected for the end of the 21st century were characterized by distributional shifts in temperatures with warmer winters and longer warm periods in the summer, not just peak temperatures. Furthermore, short-term hourly fluctuations of temperature and pCO2 may regularly expose corals to conditions beyond the projected average increases for the end of the 21st century. Coral reef sites varied in the degree of coupling between temperature, pCO2 , and dissolved O2 , which warrants site-specific, differentiated experimental approaches depending on the local hydrography and influence of biological processes on the carbonate system and O2 availability. Our analysis highlights that a large portion of the natural environmental variability at short and long timescales is underexplored in experimental designs, which may provide a path to extend our understanding on the response of corals to global climate change.
Collapse
Affiliation(s)
- Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Andrea Anton
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Global Change Research Group, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Esporles (Illes Balears), Spain
| | - Shannon G Klein
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Nils Rädecker
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Department of Biology, University of Konstanz, Konstanz, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nathan R Geraldi
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Sebastian Schmidt-Roach
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Vincent Saderne
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
| | - Maha J Cziesielski
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Cecilia Martin
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Thomas L Frölicher
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - John M Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Manuel Aranda
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
247
|
The effect of temperature on growth performance and aerobic metabolic scope in Arctic charr, Salvelinus alpinus (L.). J Therm Biol 2021; 104:103117. [DOI: 10.1016/j.jtherbio.2021.103117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 09/27/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022]
|
248
|
Genetic variation for upper thermal tolerance diminishes within and between populations with increasing acclimation temperature in Atlantic salmon. Heredity (Edinb) 2021; 127:455-466. [PMID: 34446857 PMCID: PMC8551234 DOI: 10.1038/s41437-021-00469-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Populations may counteract lasting temperature changes or recurrent extremes through plasticity or adaptation. However, it remains underexplored how outbreeding, either naturally, unintentionally, or facilitated, may modify a local response potential and whether genotype-by-environment interactions or between-trait correlations can restrict this potential. We quantified population differences and outbreeding effects, within-population genetic variation, and plasticity of these, for thermal performance proxy traits using 32 pedigreed wild, domesticated, and wild-domesticated Atlantic salmon families reared under common-garden conditions. Following exposure to ambient cold (11.6 °C) or ~4° and ~8° warmer summer temperatures, populations differed notably for body length and critical thermal maximum (CTmax) and for thermal plasticity of length, condition, and CTmax, but not for haematocrit. Line-cross analysis suggested mostly additive and some dominant outbreeding effects on means and solely additive outbreeding effects on plasticity. Heritability was detected for all traits. However, with increasing acclimation temperature, differences in CTmax between populations and CTmax heritability diminished, and CTmax breeding values re-ranked. Furthermore, CTmax and body size were negatively correlated at the genetic and phenotypic levels, and there was indirect evidence for a positive correlation between growth potential and thermal performance breadth for growth. Thus, population differences (including those between wild and domesticated populations) in thermal performance and plasticity may present a genetic resource in addition to the within-population genetic variance to facilitate, or impede, thermal adaptation. However, unfavourable genotype-by-environment interactions and negative between-trait correlations may generally hamper joint evolution in response to an increase in average temperature and temporary extremes.
Collapse
|
249
|
Dong YW, Liao ML, Han GD, Somero GN. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol Rev Camb Philos Soc 2021; 97:554-581. [PMID: 34713568 DOI: 10.1111/brv.12811] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Elucidating the physiological mechanisms that underlie thermal stress and discovering how species differ in capacities for phenotypic acclimatization and evolutionary adaptation to this stress is critical for understanding current latitudinal and vertical distribution patterns of species and for predicting their future state in a warming world. Such mechanistic analyses require careful choice of study systems (species and temperature-sensitive traits) and design of laboratory experiments that reflect the complexities of in situ conditions. Here, we critically review a wide range of studies of intertidal molluscs that provide mechanistic accounts of thermal effects across all levels of biological organization - behavioural, organismal, organ level, cellular, molecular, and genomic - and show how temperature-sensitive traits govern distribution patterns and capacities for coping with thermal stress. Comparisons of congeners from different thermal habitats are especially effective means for identifying adaptive variation. We employ these mechanistic analyses to illustrate how species differ in the severity of threats posed by rising temperature. Counterintuitively, we show that some of the most heat-tolerant species may be most threatened by increases in temperatures because of their small thermal safety margins and minimal abilities to acclimatize to higher temperatures. We discuss recent molecular biological and genomic studies that provide critical foundations for understanding the types of evolutionary changes in protein structure, RNA secondary structure, genome content, and gene expression capacities that underlie adaptation to temperature. Duplication of stress-related genes, as found in heat-tolerant molluscs, may provide enhanced capacity for coping with higher temperatures. We propose that the anatomical, behavioural, physiological, and genomic diversity found among intertidal molluscs, which commonly are of critical importance and high abundance in these ecosystems, makes this group of animals a highly appropriate study system for addressing questions about the mechanistic determinants of current and future distribution patterns of intertidal organisms.
Collapse
Affiliation(s)
- Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Guo-Dong Han
- College of Life Science, Yantai University, Yantai, 264005, China
| | - George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, 93950, U.S.A
| |
Collapse
|
250
|
Decreasing Phanerozoic extinction intensity as a consequence of Earth surface oxygenation and metazoan ecophysiology. Proc Natl Acad Sci U S A 2021; 118:2101900118. [PMID: 34607946 DOI: 10.1073/pnas.2101900118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
The decline in background extinction rates of marine animals through geologic time is an established but unexplained feature of the Phanerozoic fossil record. There is also growing consensus that the ocean and atmosphere did not become oxygenated to near-modern levels until the mid-Paleozoic, coinciding with the onset of generally lower extinction rates. Physiological theory provides us with a possible causal link between these two observations-predicting that the synergistic impacts of oxygen and temperature on aerobic respiration would have made marine animals more vulnerable to ocean warming events during periods of limited surface oxygenation. Here, we evaluate the hypothesis that changes in surface oxygenation exerted a first-order control on extinction rates through the Phanerozoic using a combined Earth system and ecophysiological modeling approach. We find that although continental configuration, the efficiency of the biological carbon pump in the ocean, and initial climate state all impact the magnitude of modeled biodiversity loss across simulated warming events, atmospheric oxygen is the dominant predictor of extinction vulnerability, with metabolic habitat viability and global ecophysiotype extinction exhibiting inflection points around 40% of present atmospheric oxygen. Given this is the broad upper limit for estimates of early Paleozoic oxygen levels, our results are consistent with the relative frequency of high-magnitude extinction events (particularly those not included in the canonical big five mass extinctions) early in the Phanerozoic being a direct consequence of limited early Paleozoic oxygenation and temperature-dependent hypoxia responses.
Collapse
|