201
|
Wolf Horrell EM, Boulanger MC, D’Orazio JA. Melanocortin 1 Receptor: Structure, Function, and Regulation. Front Genet 2016; 7:95. [PMID: 27303435 PMCID: PMC4885833 DOI: 10.3389/fgene.2016.00095] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
The melanocortin 1 receptor (MC1R) is a melanocytic Gs protein coupled receptor that regulates skin pigmentation, UV responses, and melanoma risk. It is a highly polymorphic gene, and loss of function correlates with a fair, UV-sensitive, and melanoma-prone phenotype due to defective epidermal melanization and sub-optimal DNA repair. MC1R signaling, achieved through adenylyl cyclase activation and generation of the second messenger cAMP, is hormonally controlled by the positive agonist melanocortin, the negative agonist agouti signaling protein, and the neutral antagonist β-defensin 3. Activation of cAMP signaling up-regulates melanin production and deposition in the epidermis which functions to limit UV penetration into the skin and enhances nucleotide excision repair (NER), the genomic stability pathway responsible for clearing UV photolesions from DNA to avoid mutagenesis. Herein we review MC1R structure and function and summarize our laboratory's findings on the molecular mechanisms by which MC1R signaling impacts NER.
Collapse
Affiliation(s)
- Erin M. Wolf Horrell
- Department of Physiology, University of Kentucky College of MedicineLexington, KY, USA
| | - Mary C. Boulanger
- Markey Cancer Center, University of Kentucky College of MedicineLexington, KY, USA
| | - John A. D’Orazio
- Department of Physiology, University of Kentucky College of MedicineLexington, KY, USA
- Markey Cancer Center, University of Kentucky College of MedicineLexington, KY, USA
- Departments of Pediatrics, Toxicology and Cancer Biology, Physiology, and Pharmacology and Nutritional Sciences, University of Kentucky College of MedicineLexington, KY, USA
| |
Collapse
|
202
|
Dores RM, Liang L, Davis P, Thomas AL, Petko B. 60 YEARS OF POMC: Melanocortin receptors: evolution of ligand selectivity for melanocortin peptides. J Mol Endocrinol 2016; 56:T119-33. [PMID: 26792827 DOI: 10.1530/jme-15-0292] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 01/31/2023]
Abstract
The evolution of the melanocortin receptors (MCRs) is linked to the evolution of adrenocorticotrophic hormone (ACTH), the melanocyte-stimulating hormones (MSHs), and their common precursor pro-opiomelanocortin (POMC). The origin of the MCRs and POMC appears to be grounded in the early radiation of the ancestral protochordates. During the genome duplications that have occurred during the evolution of the chordates, the organization plan for POMC was established, and features that have been retained include, the high conservation of the amino acid sequences of α-MSH and ACTH, and the presence of the HFRW MCR activation motif in all of the melanocortin peptides (i.e. ACTH, α-MSH, β-MSH, γ-MSH, and δ-MSH). For the MCRs, the chordate genome duplication events resulted in the proliferation of paralogous receptor genes, and a divergence in ligand selectivity. While most gnathostome MCRs can be activated by either ACTH or the MSHs, teleost and tetrapod MC2R orthologs can only be activated by ACTH. The appearance of the accessory protein, MRAP1, paralleled the emergence of teleost and tetrapods MC2R ligand selectivity, and the dependence of these orthologs on MRAP1 for trafficking to the plasma membrane. The accessory protein, MRAP2, does not affect MC2R ligand selectivity, but does influence the functionality of MC4R orthologs. In this regard, the roles that these accessory proteins may play in the physiology of the five MCRs (i.e. MC1R, MC2R, MC3R, MC4R, and MC5R) are discussed.
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Liang Liang
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Perry Davis
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Alexa L Thomas
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| | - Bogdana Petko
- Department of Biological SciencesUniversity of Denver, Denver, Colorado, USA
| |
Collapse
|
203
|
Anderson EJP, Çakir I, Carrington SJ, Cone RD, Ghamari-Langroudi M, Gillyard T, Gimenez LE, Litt MJ. 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J Mol Endocrinol 2016; 56:T157-74. [PMID: 26939593 PMCID: PMC5027135 DOI: 10.1530/jme-16-0014] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
The melanocortin peptides derived from pro-opiomelanocortin (POMC) were originally understood in terms of the biological actions of α-melanocyte-stimulating hormone (α-MSH) on pigmentation and adrenocorticotrophic hormone on adrenocortical glucocorticoid production. However, the discovery of POMC mRNA and melanocortin peptides in the CNS generated activities directed at understanding the direct biological actions of melanocortins in the brain. Ultimately, discovery of unique melanocortin receptors expressed in the CNS, the melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors, led to the development of pharmacological tools and genetic models leading to the demonstration that the central melanocortin system plays a critical role in the regulation of energy homeostasis. Indeed, mutations in MC4R are now known to be the most common cause of early onset syndromic obesity, accounting for 2-5% of all cases. This review discusses the history of these discoveries, as well as the latest work attempting to understand the molecular and cellular basis of regulation of feeding and energy homeostasis by the predominant melanocortin peptide in the CNS, α-MSH.
Collapse
Affiliation(s)
- Erica J P Anderson
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Isin Çakir
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sheridan J Carrington
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roger D Cone
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taneisha Gillyard
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA Meharry Medical CollegeDepartment of Neuroscience and Pharmacology, Nashville, Tennessee, USA
| | - Luis E Gimenez
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael J Litt
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
204
|
Gallo-Payet N. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH. J Mol Endocrinol 2016; 56:T135-56. [PMID: 26793988 DOI: 10.1530/jme-15-0257] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 01/27/2023]
Abstract
The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and stress response and is thus the major component of the hypothalamo-pituitary-adrenal axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) and on ACTH receptor properties, the first part of the review covers the role of ACTH in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. The second part summarizes the effects of ACTH on adrenal growth, addressing its role as either a mitogenic or a differentiating factor. We then review the mechanisms involved in steroid secretion, from the classical Cyclic adenosine monophosphate second messenger system to various signaling cascades. We also consider how the interaction between the extracellular matrix and the cytoskeleton may trigger activation of signaling platforms potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we consider the extra-adrenal actions of ACTH, in particular its role in differentiation in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In each section, we endeavor to correlate basic mechanisms of ACTH function with the pathological consequences of ACTH signaling deficiency and of overproduction of ACTH.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
205
|
Takeo M, Lee W, Rabbani P, Sun Q, Hu H, Lim CH, Manga P, Ito M. EdnrB Governs Regenerative Response of Melanocyte Stem Cells by Crosstalk with Wnt Signaling. Cell Rep 2016; 15:1291-302. [PMID: 27134165 DOI: 10.1016/j.celrep.2016.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/01/2016] [Accepted: 03/28/2016] [Indexed: 01/15/2023] Open
Abstract
Delineating the crosstalk between distinct signaling pathways is key to understanding the diverse and dynamic responses of adult stem cells during tissue regeneration. Here, we demonstrate that the Edn/EdnrB signaling pathway can interact with other signaling pathways to elicit distinct stem cell functions during tissue regeneration. EdnrB signaling promotes proliferation and differentiation of melanocyte stem cells (McSCs), dramatically enhancing the regeneration of hair and epidermal melanocytes. This effect is dependent upon active Wnt signaling that is initiated by Wnt ligand secretion from the hair follicle epithelial niche. Further, this Wnt-dependent EdnrB signaling can rescue the defects in melanocyte regeneration caused by Mc1R loss. This suggests that targeting Edn/EdnrB signaling in McSCs can be a therapeutic approach to promote photoprotective-melanocyte regeneration, which may be useful for those with increased risk of skin cancers due to Mc1R variants.
Collapse
Affiliation(s)
- Makoto Takeo
- The Ronald O. Perelman Department of Dermatology and the Department of Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Wendy Lee
- The Ronald O. Perelman Department of Dermatology and the Department of Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Piul Rabbani
- The Ronald O. Perelman Department of Dermatology and the Department of Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Qi Sun
- The Ronald O. Perelman Department of Dermatology and the Department of Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Hai Hu
- The Ronald O. Perelman Department of Dermatology and the Department of Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology and the Department of Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Prashiela Manga
- The Ronald O. Perelman Department of Dermatology and the Department of Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology and the Department of Cell Biology, School of Medicine, New York University, New York, NY 10016, USA.
| |
Collapse
|
206
|
Lensing CJ, Freeman KT, Schnell SM, Adank DN, Speth RC, Haskell-Luevano C. An in Vitro and in Vivo Investigation of Bivalent Ligands That Display Preferential Binding and Functional Activity for Different Melanocortin Receptor Homodimers. J Med Chem 2016; 59:3112-28. [PMID: 26959173 DOI: 10.1021/acs.jmedchem.5b01894] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer's disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts. Unexpectedly, different bivalent ligands showed preferences for particular melanocortin receptor subtypes depending on the linker that connected the binding scaffolds, suggesting structural differences between the various dimer subtypes. Homobivalent compound 12 possessed a functional profile that was unique from its monovalent counterpart providing evidence of the discrete effects of bivalent ligands. Lead compound 7 significantly decreased feeding in mice after intracerebroventricular administration. To the best of our knowledge, this is the first report of a melanocortin bivalent ligand's in vivo physiological effects.
Collapse
Affiliation(s)
- Cody J Lensing
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sathya M Schnell
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Danielle N Adank
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University , Fort Lauderdale, Florida 33328-2018, United States.,Department of Pharmacology and Physiology, Georgetown University , Washington, D.C. 20057, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
207
|
Russo V, Fontanesi L, Scotti E, Tazzoli M, Dall’Olio S, Davoli R. Analysis of melanocortin 1 receptor (MC1R) gene polymorphisms in some cattle breeds: their usefulness and application for breed traceability and authentication ofParmigiano Reggiano cheese. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2007.257] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
208
|
Singh A, Kast J, Dirain MLS, Huang H, Haskell-Luevano C. Synthesis and Structure-Activity Relationships of Substituted Urea Derivatives on Mouse Melanocortin Receptors. ACS Chem Neurosci 2016; 7:196-205. [PMID: 26645732 DOI: 10.1021/acschemneuro.5b00273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The melanocortin system is involved in the regulation of several complex physiological functions. In particular, the melanocortin-3 and -4 receptors (MC3R/MC4R) have been demonstrated to regulate body weight, energy homeostasis, and feeding behavior. Synthetic and endogenous melanocortin agonists have been shown to be anorexigenic in rodent models. Herein, we report synthesis and structure-activity relationship (SAR) studies of 27 nonpeptide small molecule ligands based on an unsymmetrical substituted urea core. Three templates containing key residues from the lead compounds, showing diversity at three positions (R(1), R(2), R(3)), were designed and synthesized. The syntheses were optimized for efficient microwave-assisted chemistry that significantly reduced total syntheses time compared to a previously reported room temperature method. The pharmacological characterization of the compounds on the mouse melanocortin receptors identified compounds 1 and 12 with full agonist activity at the mMC4R, but no activity was observed at the mMC3R when tested up to 100 μM concentrations. The SAR identified compounds possessing aliphatic or saturated cyclic amines at the R(1) position, bulky aromatic groups at the R(2) position, and benzyl group at the R(3) position resulted in mMC4R selectivity over the mMC3R. The small molecule template and SAR knowledge from this series may be helpful in further design of MC3R/MC4R selective small molecule ligands.
Collapse
Affiliation(s)
- Anamika Singh
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Johannes Kast
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Marvin L. S. Dirain
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Huisuo Huang
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Carrie Haskell-Luevano
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
209
|
Barson JR, Leibowitz SF. Hypothalamic neuropeptide signaling in alcohol addiction. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:321-9. [PMID: 25689818 PMCID: PMC4537397 DOI: 10.1016/j.pnpbp.2015.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 11/27/2022]
Abstract
The hypothalamus is now known to regulate alcohol intake in addition to its established role in food intake, in part through neuromodulatory neurochemicals termed neuropeptides. Certain orexigenic neuropeptides act in the hypothalamus to promote alcohol drinking, although they affect different aspects of the drinking response. These neuropeptides, which include galanin, the endogenous opioid enkephalin, and orexin/hypocretin, appear to stimulate alcohol intake not only through mechanisms that promote food intake but also by enhancing reward and reinforcement from alcohol. Moreover, these neuropeptides participate in a positive feedback relationship with alcohol, whereby they are upregulated by alcohol intake to promote even further consumption. They contrast with other orexigenic neuropeptides, such as melanin-concentrating hormone and neuropeptide Y, which promote alcohol intake under limited circumstances, are not consistently stimulated by alcohol, and do not enhance reward. They also contrast with neuropeptides that can be anorexigenic, including the endogenous opioid dynorphin, corticotropin-releasing factor, and melanocortins, which act in the hypothalamus to inhibit alcohol drinking as well as reward and therefore counter the ingestive drive promoted by orexigenic neuropeptides. Thus, while multiple hypothalamic neuropeptides may work together to regulate different aspects of the alcohol drinking response, excessive signaling from orexigenic neuropeptides or inadequate signaling from anorexigenic neuropeptides can therefore allow alcohol drinking to become dysregulated.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA
,Corresponding author at: Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA. Tel.: +1 212 327 8378; fax: +1 212 327 8447
| |
Collapse
|
210
|
Clemson CM, Yost J, Taylor AW. The Role of Alpha-MSH as a Modulator of Ocular Immunobiology Exemplifies Mechanistic Differences between Melanocortins and Steroids. Ocul Immunol Inflamm 2016; 25:179-189. [PMID: 26807874 PMCID: PMC5769144 DOI: 10.3109/09273948.2015.1092560] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanocortins are a highly conserved family of peptides and receptors that includes multiple proopiomelanocortin-derived peptides and five defined melanocortin receptors. The melanocortins have an important role in maintaining immune homeostasis and in suppressing inflammation. Within the healthy eye, the melanocortins have a central role in preventing inflammation and maintaining immune privilege. A central mediator of the anti-inflammatory activity is the non-steroidogenic melanocortin peptide alpha-melanocyte stimulating hormone. In this review we summarize the major findings of melanocortin regulation of ocular immunobiology with particular interest in the ability of melanocortin to induce immune tolerance and cytoprotection. The melanocortins have therapeutic potential because their mechanisms of action in regulating immunity are distinctly different from the actions of steroids.
Collapse
Affiliation(s)
- Christine M Clemson
- a Autoimmune and Rare Diseases , Mallinckrodt Pharmaceuticals , Hayward , CA , USA
| | - John Yost
- a Autoimmune and Rare Diseases , Mallinckrodt Pharmaceuticals , Hayward , CA , USA
| | - Andrew W Taylor
- b Department of Ophthalmology , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
211
|
Mutations in Melanocortin-3 Receptor Gene and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:97-129. [DOI: 10.1016/bs.pmbts.2016.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
212
|
El Ghorayeb N, Bourdeau I, Lacroix A. Role of ACTH and Other Hormones in the Regulation of Aldosterone Production in Primary Aldosteronism. Front Endocrinol (Lausanne) 2016; 7:72. [PMID: 27445975 PMCID: PMC4921457 DOI: 10.3389/fendo.2016.00072] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
The major physiological regulators of aldosterone production from the adrenal zona glomerulosa are potassium and angiotensin II; other acute regulators include adrenocorticotropic hormone (ACTH) and serotonin. Their interactions with G-protein coupled hormone receptors activate cAMP/PKA pathway thereby regulating intracellular calcium flux and CYP11B2 transcription, which is the specific steroidogenic enzyme of aldosterone synthesis. In primary aldosteronism (PA), the increased production of aldosterone and resultant relative hypervolemia inhibits the renin and angiotensin system; aldosterone secretion is mostly independent from the suppressed renin-angiotensin system, but is not autonomous, as it is regulated by a diversity of other ligands of various eutopic or ectopic receptors, in addition to activation of calcium flux resulting from mutations of various ion channels. Among the abnormalities in various hormone receptors, an overexpression of the melanocortin type 2 receptor (MC2R) could be responsible for aldosterone hypersecretion in aldosteronomas. An exaggerated increase in plasma aldosterone concentration (PAC) is found in patients with PA secondary either to unilateral aldosteronomas or bilateral adrenal hyperplasia (BAH) following acute ACTH administration compared to normal individuals. A diurnal increase in PAC in early morning and its suppression by dexamethasone confirms the increased role of endogenous ACTH as an important aldosterone secretagogue in PA. Screening using a combination of dexamethasone and fludrocortisone test reveals a higher prevalence of PA in hypertensive populations compared to the aldosterone to renin ratio. The variable level of MC2R overexpression in each aldosteronomas or in the adjacent zona glomerulosa hyperplasia may explain the inconsistent results of adrenal vein sampling between basal levels and post ACTH administration in the determination of source of aldosterone excess. In the rare cases of glucocorticoid remediable aldosteronism, a chimeric CYP11B2 becomes regulated by ACTH activating its chimeric CYP11B1 promoter of aldosterone synthase in bilateral adrenal fasciculate-like hyperplasia. This review will focus on the role of ACTH on excess aldosterone secretion in PA with particular focus on the aberrant expression of MC2R in comparison with other aberrant ligands and their GPCRs in this frequent pathology.
Collapse
Affiliation(s)
- Nada El Ghorayeb
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Isabelle Bourdeau
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - André Lacroix
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
- *Correspondence: André Lacroix,
| |
Collapse
|
213
|
Dores RM. Hypothesis and Theory: Revisiting Views on the Co-evolution of the Melanocortin Receptors and the Accessory Proteins, MRAP1 and MRAP2. Front Endocrinol (Lausanne) 2016; 7:79. [PMID: 27445982 PMCID: PMC4923161 DOI: 10.3389/fendo.2016.00079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/09/2023] Open
Abstract
The evolution of the melanocortin receptors (MCRs) is closely associated with the evolution of the melanocortin-2 receptor accessory proteins (MRAPs). Recent annotation of the elephant shark genome project revealed the sequence of a putative MRAP1 ortholog. The presence of this sequence in the genome of a cartilaginous fish raises the possibility that the mrap1 and mrap2 genes in the genomes of gnathostome vertebrates were the result of the chordate 2R genome duplication event. The presence of a putative MRAP1 ortholog in a cartilaginous fish genome is perplexing. Recent studies on melanocortin-2 receptor (MC2R) in the genomes of the elephant shark and the Japanese stingray indicate that these MC2R orthologs can be functionally expressed in CHO cells without co-expression of an exogenous mrap1 cDNA. The novel ligand selectivity of these cartilaginous fish MC2R orthologs is discussed. Finally, the origin of the mc2r and mc5r genes is reevaluated. The distinctive primary sequence conservation of MC2R and MC5R is discussed in light of the physiological roles of these two MCR paralogs.
Collapse
Affiliation(s)
- Robert M. Dores
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- *Correspondence: Robert M. Dores,
| |
Collapse
|
214
|
Maben ZJ, Malik S, Jiang LH, Hinkle PM. Dual Topology of the Melanocortin-2 Receptor Accessory Protein Is Stable. Front Endocrinol (Lausanne) 2016; 7:96. [PMID: 27486435 PMCID: PMC4947873 DOI: 10.3389/fendo.2016.00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 01/02/2023] Open
Abstract
Melanocortin 2 receptor accessory protein (MRAP) facilitates trafficking of melanocortin 2 (MC2) receptors and is essential for ACTH binding and signaling. MRAP is a single transmembrane domain protein that forms antiparallel homodimers. These studies ask when MRAP first acquires this dual topology, whether MRAP architecture is static or stable, and whether the accessory protein undergoes rapid turnover. To answer these questions, we developed an approach that capitalizes on the specificity of bacterial biotin ligase, which adds biotin to lysine in a short acceptor peptide sequence; the distinct mobility of MRAP protomers of opposite orientations based on their N-linked glycosylation; and the ease of identifying biotin-labeled proteins. We inserted biotin ligase acceptor peptides at the N- or C-terminal ends of MRAP and expressed the modified proteins in mammalian cells together with either cytoplasmic or endoplasmic reticulum-targeted biotin ligase. MRAP assumed dual topology early in biosynthesis in both CHO and OS3 adrenal cells. Once established, MRAP orientation was stable. Despite its conformational stability, MRAP displayed a half-life of under 2 h in CHO cells. The amount of MRAP was increased by the proteasome inhibitor MG132 and MRAP underwent ubiquitylation on lysine and other amino acids. Nonetheless, when protein synthesis was blocked with cycloheximide, MRAP was rapidly degraded even when MG132 was included and all lysines were replaced by arginines, implicating non-proteasomal degradation pathways. The results show that although MRAP does not change orientations during trafficking, its synthesis and degradation are dynamically regulated.
Collapse
Affiliation(s)
- Zachary J. Maben
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Liyi H. Jiang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Patricia M. Hinkle
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- *Correspondence: Patricia M. Hinkle,
| |
Collapse
|
215
|
Khandekar N, Berning BA, Sainsbury A, Lin S. The role of pancreatic polypeptide in the regulation of energy homeostasis. Mol Cell Endocrinol 2015; 418 Pt 1:33-41. [PMID: 26123585 DOI: 10.1016/j.mce.2015.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/16/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022]
Abstract
Imbalances in normal regulation of food intake can cause obesity and related disorders. Inadequate therapies for such disorders necessitate better understanding of mechanisms that regulate energy homeostasis. Pancreatic polypeptide (PP), a robust anorexigenic hormone, effectively modulates food intake and energy homeostasis, thus potentially aiding anti-obesity therapeutics. Intra-gastric and intra-intestinal infusion of nutrients stimulate PP secretion from the gastrointestinal tract, leading to vagal stimulation that mediates complex actions via the neuropeptide Y4 receptor in arcuate nucleus of the hypothalamus, subsequently activating key hypothalamic nuclei and dorsal vagal complex of the brainstem to influence energy homeostasis and body composition. Novel studies indicate affinity of PP for the relatively underexplored neuropeptide y6 receptor, mediating actions via the suprachiasmatic nucleus and pathways involving vasoactive intestinal polypeptide and insulin like growth factor 1. This review highlights detailed mechanisms by which PP mediates its actions on energy balance through various areas in the brain.
Collapse
Affiliation(s)
- Neeta Khandekar
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Britt A Berning
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Amanda Sainsbury
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Shu Lin
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
216
|
Loram LC, Culp ME, Connolly-Strong EC, Sturgill-Koszycki S. Melanocortin peptides: potential targets in systemic lupus erythematosus. Inflammation 2015; 38:260-71. [PMID: 25323206 PMCID: PMC4312383 DOI: 10.1007/s10753-014-0029-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease resulting in loss of self-tolerance with multiple organs, such as the kidney, skin, joints, and the central nervous system (CNS), being targeted. Numerous immunosuppressant therapies are currently being used for the treatment of SLE, but their clinical utility is somewhat variable because of the clinical heterogeneity. Melanocortins are a family of peptides derived from the common precursor protein pro-opiomelanocortin. These multifunctional peptides activate five subtypes of melanocortin receptors expressed on immune, skin, muscle, bone, and kidney cells and cells within the CNS. Melanocortin peptides have demonstrated a variety of biologic actions including immunomodulation, melanogenesis, and renoprotection. This review aims to introduce the melanocortin system and explore the mechanisms by which they may be beneficial in diseases such as SLE.
Collapse
Affiliation(s)
- Lisa Carole Loram
- Mallinckrodt Pharmaceuticals (formerly Questcor), 26118 Research Road, Hayward, CA, 94545, USA
| | | | | | | |
Collapse
|
217
|
Taler M, Vered I, Globus R, Shbiro L, Weizman A, Weller A, Gil-Ad I. Attenuated Weight Gain with the Novel Analog of Olanzapine Linked to Sarcosinyl Moiety (PGW5) Compared to Olanzapine. J Mol Neurosci 2015; 58:66-73. [DOI: 10.1007/s12031-015-0679-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/03/2015] [Indexed: 11/29/2022]
|
218
|
Olsen NJ, Decker DA, Higgins P, Becker PM, McAloose CA, Benko AL, Kovacs WJ. Direct effects of HP Acthar Gel on human B lymphocyte activation in vitro. Arthritis Res Ther 2015; 17:300. [PMID: 26507974 PMCID: PMC4624189 DOI: 10.1186/s13075-015-0823-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022] Open
Abstract
Introduction Both clinical experience and experimental evidence have suggested that Adrenocorticotropic hormone (ACTH) might directly exert immunomodulatory effects not dependent on adrenal steroidogenesis. Methods The direct effects of H.P. Acthar Gel® (Acthar), a repository preparation containing a porcine ACTH analogue, on human B lymphocyte function were studied in vitro using peripheral blood B cells isolated using anti-CD19 coated magnetic beads and activated by interleukin 4 (IL-4) and CD40 ligand (CD40L). Analysis of expression of messenger RNA (mRNA) encoding activation-induced cytidine deaminase (AICDA) was carried out by quantitative real-time polymerase chain reaction (PCR). Cellular proliferation was assessed by a flow cytometric technique using intracellular staining with carboxyfluorescein succinimidyl ester (CFSE). Immunoglobulin G (IgG) production was measured in cell supernatants using an immunoassay. Results Acthar was found to exert acute, dose-dependent inhibitory effects on IL-4/CD40L–mediated induction of the expression of activation-induced cytidine deaminase (AICDA) after 24 hours, as well as sustained inhibition of B cell proliferation and IgG production during five more days of culture, without deleterious effects on B cell viability. Conclusions These experiments demonstrate that Acthar can exert direct effects on the humoral immune system independent of any role in the regulation of adrenal steroidogenesis. Although the impact of these findings on clinical disease was not evaluated in this study, these data support the therapeutic potential of Acthar for the management of autoimmune diseases characterized by B cell activation and aberrant humoral immune function.
Collapse
Affiliation(s)
- Nancy J Olsen
- Division of Rheumatology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, 17033, PA, USA.
| | - Dima A Decker
- Autoimmune and Rare Diseases Business, Mallinckrodt Pharmaceuticals, 6011 University Boulevard, Ellicott City, 21043, MD, USA.
| | - Paul Higgins
- Autoimmune and Rare Diseases Business, Mallinckrodt Pharmaceuticals, 6011 University Boulevard, Ellicott City, 21043, MD, USA.
| | - Patrice M Becker
- Autoimmune and Rare Diseases Business, Mallinckrodt Pharmaceuticals, 6011 University Boulevard, Ellicott City, 21043, MD, USA.
| | - Carl A McAloose
- Division of Rheumatology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, 17033, PA, USA.
| | - Ann L Benko
- Division of Endocrinology, Diabetes, and Metabolism, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| | - William J Kovacs
- Division of Endocrinology, Diabetes, and Metabolism, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
219
|
Ericson MD, Schnell SM, Freeman KT, Haskell-Luevano C. A fragment of the Escherichia coli ClpB heat-shock protein is a micromolar melanocortin 1 receptor agonist. Bioorg Med Chem Lett 2015; 25:5306-8. [PMID: 26433448 DOI: 10.1016/j.bmcl.2015.09.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 12/01/2022]
Abstract
The melanocortin system consists of five receptor subtypes (MC1-5R), endogenous agonists derived from the proopiomelanocortin gene transcript, and the antagonists agouti and agouti-related protein. The Escherichia coli heat shock protein ClpB has previously been described as an antigen mimetic to the endogenous melanocortin agonist α-MSH. Herein, we investigated if a fragment of the ClpB protein could directly signal through the melanocortin receptors. We synthesized a complementary fragment of the ClpB protein that partially aligned with α-MSH. Pharmacological assessment of this fragment resulted in no antagonist activity at the MC3R or the MC4R and no agonist activity at the MC4R. Partial receptor activation was observed for the MC3R and MC5R at 100 μM concentrations. This fragment was shown to be a full micromolar MC1R agonist and may serve as a template for future research into selective MC1R ligands.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Sathya M Schnell
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Katie T Freeman
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
220
|
Park HK, Chon J, Park HJ, Chung JH, Baik HH. Association between two promoter polymorphisms (rs1893219 and rs1893220) of MC2R gene and intracerebral hemorrhage in Korean population. Neurosci Lett 2015; 602:1-5. [PMID: 26115626 DOI: 10.1016/j.neulet.2015.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 11/26/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis has an important role in the pathogenesis of stroke. We investigated whether single nucleotide polymorphisms (SNPs) of melanocortin 2 receptor (MC2R), also known as adrenocorticotropic hormone (ACTH) receptor, were associated with the development of intracerebral hemorrhage (ICH) in Korean population. Two promoter SNPs [rs1893219 (-853A/G) and rs1893220 (-759G/T)] were genotyped in 145 ICH patients and 331 control subjects using direct sequencing. Multiple logistic regression models were used to determine odds ratios, 95% confidence intervals, and p-values. Two SNPs were associated with the development of ICH (rs1893219, p=0.003 in log-additive model, p=0.023 in dominant model, p=0.002 in recessive model; rs1893220, p=0.005 in log-additive model, p=0.021 in dominant model, p=0.003 in recessive model). The frequencies of the G allele of rs1893219 and the T allele of rs1893220 were decreased in ICH group compared to control group (p=0.003 and p=0.004, respectively). The frequencies of the AG and GT haplotypes comprised of rs1893219 and rs1893220 were also significantly different between the ICH and control groups (p=0.0026 and p=0.0034, respectively). These data suggest that the MC2R gene may contribute to the development of ICH.
Collapse
Affiliation(s)
- Hyun-Kyung Park
- Department of Emergency Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinmann Chon
- Department of Physical Medicine and Rehabilitation, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hae Jeong Park
- Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Joo-Ho Chung
- Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung Hwan Baik
- Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
221
|
Abstract
Human aging is associated with increasing frailty and morbidity which can result in significant disability. Dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis may contribute to aging-related diseases like depression, cognitive deficits, and Alzheimer's disease in some older individuals. In addition to neuro-cognitive dysfunction, it has also been associated with declining physical performance possibly due to sarcopenia. This article reviews the pathophysiology of HPA dysfunction with respect to increased basal adrenocorticotropic hormone (ACTH) and cortisol secretion, decreased glucocorticoid (GC) negative feedback at the level of the paraventricular nucleus (PVN) of the hypothalamus, hippocampus (HC), and prefrontal cortex (PFC), and flattening of diurnal pattern of cortisol release. It is possible that the increased cortisol secretion is secondary to peripheral conversion from cortisone. There is a decline in pregnolone secretion and C-19 steroids (DHEA) with aging. There is a small decrease in aldosterone with aging, but a subset of the older population have a genetic predisposition to develop hyperaldosteronism due to the increased ACTH stimulation. The understanding of the HPA axis and aging remains a complex area with conflicting studies leading to controversial interpretations.
Collapse
Affiliation(s)
- Deepashree Gupta
- Division of Endocrinology, Saint Louis University, Missouri, St. Louis; Divisions of Endocrinology and Geriatric Medicine, Saint Louis University, Missouri, St. Louis
| | | |
Collapse
|
222
|
Rinne P, Ahola-Olli A, Nuutinen S, Koskinen E, Kaipio K, Eerola K, Juonala M, Kähönen M, Lehtimäki T, Raitakari OT, Savontaus E. Deficiency in Melanocortin 1 Receptor Signaling Predisposes to Vascular Endothelial Dysfunction and Increased Arterial Stiffness in Mice and Humans. Arterioscler Thromb Vasc Biol 2015; 35:1678-86. [DOI: 10.1161/atvbaha.114.305064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/16/2015] [Indexed: 12/11/2022]
Abstract
Objective—
The melanocortin 1 receptor (MC1-R) is expressed by vascular endothelial cells and shown to enhance nitric oxide (NO) availability and vasodilator function on pharmacological stimulation. However, the physiological role of MC1-R in the endothelium and its contribution to vascular homeostasis remain unresolved. We investigated whether a lack of functional MC1-R signaling carries a phenotype with predisposition to vascular abnormalities.
Approach and Results—
Recessive yellow mice (MC1R
e/e
), deficient in MC1-R signaling, and their wild-type littermates were studied for morphology and functional characteristics of the aorta. MC1R
e/e
mice showed increased collagen deposition and arterial stiffness accompanied by an elevation in pulse pressure. Contractile capacity and NO-dependent vasodilatation were impaired in the aorta of MC1R
e/e
mice supported by findings of decreased NO availability. These mice also displayed elevated levels of systemic and local cytokines. Exposing the mice to high-sodium diet or acute endotoxemia revealed increased susceptibility to inflammation-driven vascular dysfunction. Finally, we investigated whether a similar phenotype can be found in healthy human subjects carrying variant
MC1-R
alleles known to attenuate receptor function. In a longitudinal analysis of 2001 subjects with genotype and ultrasound data (The Cardiovascular Risk in Young Finns Study), weak MC1-R function was associated with lower flow-mediated dilatation response of the brachial artery and increased carotid artery stiffness.
Conclusions—
The present study demonstrates that deficiency in MC1-R signaling is associated with increased arterial stiffness and impairment in endothelium-dependent vasodilatation, suggesting a physiological role for MC1-R in the regulation of arterial tone.
Collapse
Affiliation(s)
- Petteri Rinne
- From the Department of Pharmacology, Drug Development and Pharmaceutics (P.R., S.N., E.K., K.E.,E.S.), the Research Centre of Applied and Preventive Cardiovascular Medicine (A.A-O., O.T.R.), and Department of Pathology (K.K), University of Turku, Turku, Finland; Division of Medicine (M.J.), Department of Clinical Physiology and Nuclear Medicine (O.T.R), and the Unit of Clinical Pharmacology (E.S.), Turku University Hospital, Turku, Finland; Department of Clinical Physiology, University of Tampere
| | - Ari Ahola-Olli
- From the Department of Pharmacology, Drug Development and Pharmaceutics (P.R., S.N., E.K., K.E.,E.S.), the Research Centre of Applied and Preventive Cardiovascular Medicine (A.A-O., O.T.R.), and Department of Pathology (K.K), University of Turku, Turku, Finland; Division of Medicine (M.J.), Department of Clinical Physiology and Nuclear Medicine (O.T.R), and the Unit of Clinical Pharmacology (E.S.), Turku University Hospital, Turku, Finland; Department of Clinical Physiology, University of Tampere
| | - Salla Nuutinen
- From the Department of Pharmacology, Drug Development and Pharmaceutics (P.R., S.N., E.K., K.E.,E.S.), the Research Centre of Applied and Preventive Cardiovascular Medicine (A.A-O., O.T.R.), and Department of Pathology (K.K), University of Turku, Turku, Finland; Division of Medicine (M.J.), Department of Clinical Physiology and Nuclear Medicine (O.T.R), and the Unit of Clinical Pharmacology (E.S.), Turku University Hospital, Turku, Finland; Department of Clinical Physiology, University of Tampere
| | - Emilia Koskinen
- From the Department of Pharmacology, Drug Development and Pharmaceutics (P.R., S.N., E.K., K.E.,E.S.), the Research Centre of Applied and Preventive Cardiovascular Medicine (A.A-O., O.T.R.), and Department of Pathology (K.K), University of Turku, Turku, Finland; Division of Medicine (M.J.), Department of Clinical Physiology and Nuclear Medicine (O.T.R), and the Unit of Clinical Pharmacology (E.S.), Turku University Hospital, Turku, Finland; Department of Clinical Physiology, University of Tampere
| | - Katja Kaipio
- From the Department of Pharmacology, Drug Development and Pharmaceutics (P.R., S.N., E.K., K.E.,E.S.), the Research Centre of Applied and Preventive Cardiovascular Medicine (A.A-O., O.T.R.), and Department of Pathology (K.K), University of Turku, Turku, Finland; Division of Medicine (M.J.), Department of Clinical Physiology and Nuclear Medicine (O.T.R), and the Unit of Clinical Pharmacology (E.S.), Turku University Hospital, Turku, Finland; Department of Clinical Physiology, University of Tampere
| | - Kim Eerola
- From the Department of Pharmacology, Drug Development and Pharmaceutics (P.R., S.N., E.K., K.E.,E.S.), the Research Centre of Applied and Preventive Cardiovascular Medicine (A.A-O., O.T.R.), and Department of Pathology (K.K), University of Turku, Turku, Finland; Division of Medicine (M.J.), Department of Clinical Physiology and Nuclear Medicine (O.T.R), and the Unit of Clinical Pharmacology (E.S.), Turku University Hospital, Turku, Finland; Department of Clinical Physiology, University of Tampere
| | - Markus Juonala
- From the Department of Pharmacology, Drug Development and Pharmaceutics (P.R., S.N., E.K., K.E.,E.S.), the Research Centre of Applied and Preventive Cardiovascular Medicine (A.A-O., O.T.R.), and Department of Pathology (K.K), University of Turku, Turku, Finland; Division of Medicine (M.J.), Department of Clinical Physiology and Nuclear Medicine (O.T.R), and the Unit of Clinical Pharmacology (E.S.), Turku University Hospital, Turku, Finland; Department of Clinical Physiology, University of Tampere
| | - Mika Kähönen
- From the Department of Pharmacology, Drug Development and Pharmaceutics (P.R., S.N., E.K., K.E.,E.S.), the Research Centre of Applied and Preventive Cardiovascular Medicine (A.A-O., O.T.R.), and Department of Pathology (K.K), University of Turku, Turku, Finland; Division of Medicine (M.J.), Department of Clinical Physiology and Nuclear Medicine (O.T.R), and the Unit of Clinical Pharmacology (E.S.), Turku University Hospital, Turku, Finland; Department of Clinical Physiology, University of Tampere
| | - Terho Lehtimäki
- From the Department of Pharmacology, Drug Development and Pharmaceutics (P.R., S.N., E.K., K.E.,E.S.), the Research Centre of Applied and Preventive Cardiovascular Medicine (A.A-O., O.T.R.), and Department of Pathology (K.K), University of Turku, Turku, Finland; Division of Medicine (M.J.), Department of Clinical Physiology and Nuclear Medicine (O.T.R), and the Unit of Clinical Pharmacology (E.S.), Turku University Hospital, Turku, Finland; Department of Clinical Physiology, University of Tampere
| | - Olli T. Raitakari
- From the Department of Pharmacology, Drug Development and Pharmaceutics (P.R., S.N., E.K., K.E.,E.S.), the Research Centre of Applied and Preventive Cardiovascular Medicine (A.A-O., O.T.R.), and Department of Pathology (K.K), University of Turku, Turku, Finland; Division of Medicine (M.J.), Department of Clinical Physiology and Nuclear Medicine (O.T.R), and the Unit of Clinical Pharmacology (E.S.), Turku University Hospital, Turku, Finland; Department of Clinical Physiology, University of Tampere
| | - Eriika Savontaus
- From the Department of Pharmacology, Drug Development and Pharmaceutics (P.R., S.N., E.K., K.E.,E.S.), the Research Centre of Applied and Preventive Cardiovascular Medicine (A.A-O., O.T.R.), and Department of Pathology (K.K), University of Turku, Turku, Finland; Division of Medicine (M.J.), Department of Clinical Physiology and Nuclear Medicine (O.T.R), and the Unit of Clinical Pharmacology (E.S.), Turku University Hospital, Turku, Finland; Department of Clinical Physiology, University of Tampere
| |
Collapse
|
223
|
Dattilo M, Neuman I, Muñoz M, Maloberti P, Cornejo Maciel F. OxeR1 regulates angiotensin II and cAMP-stimulated steroid production in human H295R adrenocortical cells. Mol Cell Endocrinol 2015; 408:38-44. [PMID: 25657046 DOI: 10.1016/j.mce.2015.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/13/2023]
Abstract
Hormone-regulated steroidogenesis and StAR protein induction involve the action of lipoxygenated products. The products of 5-lipoxygenase act on inflammation and immunity by stimulation of a membrane receptor called OxeR1. The presence of OxeR1 in other systems has not been described up to date and little is known about its mechanism of action and other functions. In this context, the aim of this study was the identification and characterization of OxeR1 as a mediator of cAMP-dependent and independent pathways. Overexpression of OxeR1 in MA-10 Leydig cells increased cAMP-dependent progesterone production. Angiotensin II and cAMP stimulation of adrenocortical human H295R cells produced an increase in StAR protein induction and steroidogenesis in cells overexpressing OxeR1 as compared to mock-transfected cells. Additionally, activation of OxeR1 caused a time-dependent increase in ERK1/2 phosphorylation. In summary, membrane receptor OxeR1 is involved in StAR protein induction and activation of steroidogenesis triggered by cAMP or angiotensin II, acting, at least in part, through ERK1/2 activation.
Collapse
Affiliation(s)
- Melina Dattilo
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Isabel Neuman
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Mariana Muñoz
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Paula Maloberti
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Fabiana Cornejo Maciel
- INBIOMED - UBA/CONICET, Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
224
|
Dores RM, Garcia Y. Views on the co-evolution of the melanocortin-2 receptor, MRAPs, and the hypothalamus/pituitary/adrenal-interrenal axis. Mol Cell Endocrinol 2015; 408:12-22. [PMID: 25573240 DOI: 10.1016/j.mce.2014.12.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/26/2014] [Accepted: 12/27/2014] [Indexed: 12/30/2022]
Abstract
A critical regulatory component of the hypothalamus/pituitary/adrenal axis (HPA) in mammals, reptiles and birds, and in the hypothalamus/pituitary/interrenal (HPI) axis of amphibians and teleosts (modern bony fishes) is the strict ligand selectivity of the melanocortin-2 receptor (MC2R). Tetrapod and teleost MC2R orthologs can only be activated by the anterior pituitary hormone, ACTH, but not by any of the MSH-sized ligands coded in POMC. In addition, both tetrapod and teleost MC2R orthologs require co-expression with the accessory protein, MRAP. However, the MC2R ortholog of the elephant shark, a cartilaginous fish, can be activated by either ACTH or the MSH-sized ligands, and the elephant shark MC2R ortholog does not require co-expression with an MRAP for activation. Given these observations, this review will provide a scenario for the co-evolution of MC2R and MRAP, based on the assumption that the obligate interaction between MC2R and MRAP evolved during the early radiation of the ancestral bony fishes.
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA.
| | - Yesenia Garcia
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
225
|
Mountjoy KG. Pro-Opiomelanocortin (POMC) Neurones, POMC-Derived Peptides, Melanocortin Receptors and Obesity: How Understanding of this System has Changed Over the Last Decade. J Neuroendocrinol 2015; 27:406-18. [PMID: 25872650 DOI: 10.1111/jne.12285] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022]
Abstract
Following the cloning of the melanocortin receptor and agouti protein genes, a model was developed for the central melanocortin system with respect to the regulation of energy and glucose homeostasis. This model comprised leptin regulation of melanocortin peptides and agouti-related peptide (AgRP) produced from central pro-opiomelanocortin (POMC) and AgRP neurones, respectively, as well as AgRP competitive antagonism of melanocortin peptides activating melanocortin 4 receptor (MC4R) to Gαs and the cAMP signalling pathway. In the last decade, there have been paradigm shifts in our understanding of the central melanocortin system as a result of the application of advanced new technologies, including Cre-LoxP transgenic mouse technology, pharmacogenetics and optogenetics. During this period, our understanding of G protein coupled receptor signal transduction has also dramatically changed, such that these receptors are now known to exist in the plasma membrane oscillating between various inactive and active conformational states, and the active states signal through G protein-dependent and G protein-independent pathways. The present review focuses on evidence obtained over the past decade that has changed our understanding of POMC gene expression and regulation in the central nervous system, POMC and AgRP neuronal circuitry, neuroanatomical functions of melanocortin receptors, melanocortin 3 receptor (MC3R) and MC4R, and signal transduction through MC3R and MC4R.
Collapse
Affiliation(s)
- K G Mountjoy
- Departments of Physiology and Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
226
|
Singh A, Tala SR, Flores V, Freeman K, Haskell-Luevano C. Synthesis and Pharmacology of α/β(3)-Peptides Based on the Melanocortin Agonist Ac-His-dPhe-Arg-Trp-NH2 Sequence. ACS Med Chem Lett 2015; 6:568-72. [PMID: 26005535 DOI: 10.1021/acsmedchemlett.5b00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023] Open
Abstract
The melanocortin-3 and -4 receptors are expressed in the brain and play key roles in regulating feeding behavior, metabolism, and energy homeostasis. In the present study, incorporation of β(3)-amino acids into a melanocortin tetrapeptide template was investigated. Four linear α/β(3)-hybrid tetrapeptides were designed with the modifications at the Phe, Arg, and Trp residues in the agonist sequence Ac-His-dPhe-Arg-Trp-NH2. The most potent mouse melanocortin-4 receptor (mMC4R) agonist, Ac-His-dPhe-Arg-β(3)hTrp-NH2 (8) showed 35-fold selectivity versus the mMC3R. The study presented here has identified a new template with heterogeneous backbone for designing potent and selective melanocortin receptor ligands.
Collapse
Affiliation(s)
- Anamika Singh
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Srinivasa R. Tala
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Viktor Flores
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Katie Freeman
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
227
|
Ericson MD, Wilczynski A, Sorensen NB, Xiang Z, Haskell-Luevano C. Discovery of a β-Hairpin Octapeptide, c[Pro-Arg-Phe-Phe-Dap-Ala-Phe-DPro], Mimetic of Agouti-Related Protein(87-132) [AGRP(87-132)] with Equipotent Mouse Melanocortin-4 Receptor (mMC4R) Antagonist Pharmacology. J Med Chem 2015; 58:4638-47. [PMID: 25898270 DOI: 10.1021/acs.jmedchem.5b00184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agouti-related protein (AGRP) is a potent orexigenic peptide that antagonizes the melanocortin-3 and -4 receptors (MC3R and MC4R). While the C-terminal domain of AGRP, AGRP(87-132), is equipotent to the full-length peptide, further truncation decreases potency at the MC3R and MC4R. Herein, we report AGRP-derived peptides designed to mimic the active β-hairpin secondary structure that contains the hypothesized Arg-Phe-Phe pharmacophore. The most potent scaffold, c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-DPro], comprised the hexa-peptide β-hairpin loop from AGRP cyclized through a DPro-Pro motif. A 20 compound library was synthesized from this scaffold for further structure-activity relationship studies. The most potent peptide from this library was an asparagine to diaminopropionic acid substitution that possessed sub-nanomolar antagonist activity at the mMC4R and was greater than 160-fold selective for the mMC4R versus the mMC3R. The reported ligands may serve as probes to characterize the melanocortin receptors in vivo and leads in the development of novel therapeutics.
Collapse
Affiliation(s)
- Mark D Ericson
- †Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andrzej Wilczynski
- ‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Nicholas B Sorensen
- ‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Zhimin Xiang
- ‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Carrie Haskell-Luevano
- †Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
228
|
Simamura E, Arikawa T, Ikeda T, Shimada H, Shoji H, Masuta H, Nakajima Y, Otani H, Yonekura H, Hatta T. Melanocortins contribute to sequential differentiation and enucleation of human erythroblasts via melanocortin receptors 1, 2 and 5. PLoS One 2015; 10:e0123232. [PMID: 25860801 PMCID: PMC4393082 DOI: 10.1371/journal.pone.0123232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/17/2015] [Indexed: 11/30/2022] Open
Abstract
In this study, we showed that adrenocorticotropic hormone (ACTH) promoted erythroblast differentiation and increased the enucleation ratio of erythroblasts. Because ACTH was contained in hematopoietic medium as contamination, the ratio decreased by the addition of anti-ACTH antibody (Ab). Addition of neutralizing Abs (nAbs) for melanocortin receptors (MCRs) caused erythroblast accumulation at specific stages, i.e., the addition of anti-MC2R nAb led to erythroblast accumulation at the basophilic stage (baso-E), the addition of anti-MC1R nAb caused accumulation at the polychromatic stage (poly-E), and the addition of anti-MC5R nAb caused accumulation at the orthochromatic stage (ortho-E). During erythroblast differentiation, ERK, STAT5, and AKT were consecutively phosphorylated by erythropoietin (EPO). ERK, STAT5, and AKT phosphorylation was inhibited by blocking MC2R, MC1R, and MC5R, respectively. Finally, the phosphorylation of myosin light chain 2, which is essential for the formation of contractile actomyosin rings, was inhibited by anti-MC5R nAb. Taken together, our study suggests that MC2R and MC1R signals are consecutively required for the regulation of EPO signal transduction in erythroblast differentiation, and that MC5R signal transduction is required to induce enucleation. Thus, melanocortin induces proliferation and differentiation at baso-E, and polarization and formation of an actomyosin contractile ring at ortho-E are required for enucleation.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/antagonists & inhibitors
- Adrenocorticotropic Hormone/metabolism
- Antibodies, Neutralizing
- Cell Differentiation/physiology
- Cells, Cultured
- Erythroblasts/cytology
- Erythroblasts/metabolism
- Erythropoiesis/physiology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Melanocortins/metabolism
- Models, Biological
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Melanocortin, Type 1/antagonists & inhibitors
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 1/metabolism
- Receptor, Melanocortin, Type 2/antagonists & inhibitors
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptors, Melanocortin/antagonists & inhibitors
- Receptors, Melanocortin/genetics
- Receptors, Melanocortin/metabolism
- STAT5 Transcription Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Eriko Simamura
- Department of Anatomy, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa 920–0293, Japan
| | - Tomohiro Arikawa
- Department of Biology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa 920–0293, Japan
| | - Takayuki Ikeda
- Department of Biochemistry, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa 920–0293, Japan
| | - Hiroki Shimada
- Department of Anatomy, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa 920–0293, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa 920–0293, Japan
| | - Hiroko Masuta
- Department of Anatomy, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa 920–0293, Japan
| | - Yuriko Nakajima
- Department of Anatomy, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa 920–0293, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo 693–8601, Japan
| | - Hideto Yonekura
- Department of Biochemistry, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa 920–0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa 920–0293, Japan
- * E-mail:
| |
Collapse
|
229
|
Gibbison B, Spiga F, Walker JJ, Russell GM, Stevenson K, Kershaw Y, Zhao Z, Henley D, Angelini GD, Lightman SL. Dynamic pituitary-adrenal interactions in response to cardiac surgery. Crit Care Med 2015; 43:791-800. [PMID: 25517478 PMCID: PMC4359905 DOI: 10.1097/ccm.0000000000000773] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To characterize the dynamics of the pituitary-adrenal interaction during the course of coronary artery bypass grafting both on and off pump. Since our data pointed to a major change in adrenal responsiveness to adrenocorticotropic hormone, we used a reverse translation approach to investigate the molecular mechanisms underlying this change in a rat model of critical illness. DESIGN CLINICAL STUDIES Prospective observational study. ANIMAL STUDIES Controlled experimental study. SETTING CLINICAL STUDIES Cardiac surgery operating rooms and critical care units. ANIMAL STUDIES University research laboratory. SUBJECTS CLINICAL STUDIES Twenty, male patients. ANIMAL STUDIES Adult, male Sprague-Dawley rats. INTERVENTIONS CLINICAL STUDIES Coronary artery bypass graft-both on and off pump. ANIMAL STUDIES Injection of either lipopolysaccharide or saline (controls) via a jugular vein cannula. MEASUREMENTS AND MAIN RESULTS CLINICAL STUDIES Blood samples were taken for 24 hours from placement of the first venous access. Cortisol and adrenocorticotropic hormone were measured every 10 and 60 minutes, respectively, and corticosteroid-binding globulin was measured at the beginning and end of the 24-hour period and at the end of operation. There was an initial rise in both levels of adrenocorticotropic hormone and cortisol to supranormal values at around the end of surgery. Adrenocorticotropic hormone levels then returned toward preoperative values. Ultradian pulsatility of both adrenocorticotropic hormone and cortisol was maintained throughout the perioperative period in all individuals. The sensitivity of the adrenal gland to adrenocorticotropic hormone increased markedly at around 8 hours after surgery maintaining very high levels of cortisol in the face of "basal" levels of adrenocorticotropic hormone. This sensitivity began to return toward preoperative values at the end of the 24-hour sampling period. ANIMAL STUDIES Adult, male Sprague-Dawley rats were given either lipopolysaccharide or sterile saline via a jugular vein cannula. Hourly blood samples were subsequently collected for adrenocorticotropic hormone and corticosterone measurement. Rats were killed 6 hours after the injection, and the adrenal glands were collected for measurement of steroidogenic acute regulatory protein, steroidogenic factor 1, and dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 messenger RNAs and protein using real-time quantitative polymerase chain reaction and Western immunoblotting, respectively. Adrenal levels of the adrenocorticotropic hormone receptor (melanocortin type 2 receptor) messenger RNA and its accessory protein (melanocortin type 2 receptor accessory protein) were also measured by real-time quantitative polymerase chain reaction. In response to lipopolysaccharide, rats showed a pattern of adrenocorticotropic hormone and corticosterone that was similar to patients undergoing coronary artery bypass grafting. We were also able to demonstrate increased intra-adrenal corticosterone levels and an increase in steroidogenic acute regulatory protein, steroidogenic factor 1, and melanocortin type 2 receptor accessory protein messenger RNAs and steroidogenic acute regulatory protein, and a reduction in dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 and melanocortin type 2 receptor messenger RNAs, 6 hours after lipopolysaccharide injection. CONCLUSIONS Severe inflammatory stimuli activate the hypothalamic-pituitary-adrenal axis resulting in increased steroidogenic activity in the adrenal cortex and an elevation of cortisol levels in the blood. Following coronary artery bypass grafting, there is a massive increase in both adrenocorticotropic hormone and cortisol secretion. Despite a subsequent fall of adrenocorticotropic hormone to basal levels, cortisol remains elevated and coordinated adrenocorticotropic hormone-cortisol pulsatility is maintained. This suggested that there is an increase in adrenal sensitivity to adrenocorticotropic hormone, which we confirmed in our animal model of immune activation of the hypothalamic-pituitary-adrenal axis. Using this model, we were able to show that this increased adrenal sensitivity results from changes in the regulation of both stimulatory and inhibitory intra-adrenal signaling pathways. Increased understanding of the dynamics of normal hypothalamic-pituitary-adrenal responses to major surgery will provide us with a more rational approach to glucocorticoid therapy in critically ill patients.
Collapse
Affiliation(s)
- Ben Gibbison
- Department of Cardiac Anesthesia, Bristol Heart Institute, Bristol, UK
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Jamie J Walker
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK
| | - Georgina M Russell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Kirsty Stevenson
- Department of Clinical Biochemistry, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Yvonne Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Zidong Zhao
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - David Henley
- Department of Endocrinology, Sir Charles Gairdner Hospital. Perth, WA. Australia
- Faculty of Medicine, Dentistry and Health Sciences. University of Western Australia, Crawley, WA, Australia
| | - Gianni D Angelini
- Department of Cardiac Surgery, Bristol Heart Institute, Bristol, UK
- National Heart and Lung Institute, Imperial College, London. UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| |
Collapse
|
230
|
|
231
|
Rodrigues AR, Almeida H, Gouveia AM. Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cell Mol Life Sci 2015; 72:1331-45. [PMID: 25504085 PMCID: PMC11113477 DOI: 10.1007/s00018-014-1800-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
The melanocortin system is composed by the agonists adrenocorticotropic hormone and α, β and γ-melanocyte-stimulating hormone, and two naturally occurring antagonists, agouti and agouti-related protein. These ligands act by interaction with a family of five melanocortin receptors (MCRs), assisted by MCRs accessory proteins (MRAPs). MCRs stimulation activates different signaling pathways that mediate a diverse array of physiological processes, including pigmentation, energy metabolism, inflammation and exocrine secretion. This review focuses on the regulatory mechanisms of MCRs signaling, highlighting the differences among the five receptors. MCRs signal through G-dependent and independent mechanisms and their functional coupling to agonists at the cell surface is regulated by interacting proteins, namely MRAPs and β-arrestins. The knowledge of the distinct modulation pattern of MCRs signaling and function may be helpful for the future design of novel drugs able to combine specificity, safety and effectiveness in the course of their therapeutic use.
Collapse
Affiliation(s)
- Adriana R Rodrigues
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal,
| | | | | |
Collapse
|
232
|
Enyeart JJ, Enyeart JA. Adrenal fasciculata cells express T-type and rapidly and slowly activating L-type Ca2+ channels that regulate cortisol secretion. Am J Physiol Cell Physiol 2015; 308:C899-918. [PMID: 25788571 DOI: 10.1152/ajpcell.00002.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/17/2015] [Indexed: 11/22/2022]
Abstract
In whole cell patch-clamp recordings, we characterized the L-type Ca(2+) currents in bovine adrenal zona fasciculata (AZF) cells and explored their role, along with the role of T-type channels, in ACTH- and angiotensin II (ANG II)-stimulated cortisol secretion. Two distinct dihydropyridine-sensitive L-type currents were identified, both of which were activated at relatively hyperpolarized potentials. One activated with rapid kinetics and, in conjunction with Northern blotting and PCR, was determined to be Cav1.3. The other, expressed in approximately one-half of AZF cells, activated with extremely slow voltage-dependent kinetics and combined properties not previously reported for an L-type Ca(2+) channel. The T-type Ca(2+) channel antagonist 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2) inhibited Cav3.2 current in these cells, as well as ACTH- and ANG II-stimulated cortisol secretion, at concentrations that did not affect L-type currents. In contrast, nifedipine specifically inhibited L-type currents and cortisol secretion, but less effectively than TTA-P2. Diphenylbutylpiperidine Ca(2+) antagonists, including pimozide, penfluridol, and fluspirilene, and the dihydropyridine niguldipine blocked Cav3.2 and L-type currents and inhibited ACTH-stimulated cortisol secretion with similar potency. This study shows that bovine AZF cells express three Ca(2+) channels, the voltage-dependent gating and kinetics of which could orchestrate complex mechanisms linking peptide hormone receptors to cortisol secretion through action potentials or sustained depolarization. The function of the novel, slowly activating L-type channel is of particular interest in this respect. Regardless, the well-correlated selective inhibition of T- and L-type currents and ACTH- and ANG II-stimulated cortisol secretion by TTA-P2 and nifedipine establish the critical importance of these channels in AZF cell physiology.
Collapse
Affiliation(s)
- John J Enyeart
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Judith A Enyeart
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
233
|
A novel culture system to induce melanin synthesis by three-dimensional spheroid culture. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0415-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
234
|
Yun JH, Kim M, Kim K, Lee D, Jung Y, Oh D, Ko YJ, Cho AE, Cho HS, Lee W. Solution structure of the transmembrane 2 domain of the human melanocortin-4 receptor in sodium dodecyl sulfate (SDS) micelles and the functional implication of the D90N mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1294-302. [PMID: 25753114 DOI: 10.1016/j.bbamem.2015.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/03/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
The melanocortin receptors (MCRs) are members of the G protein-coupled receptor (GPCR) 1 superfamily with seven transmembrane (TM) domains. Among them, the melanocortin-4 receptor (MC4R) subtype has been highlighted recently by genetic studies in obese humans. In particular, in a patient with severe early-onset obesity, a novel heterozygous mutation in the MC4R gene was found in an exchange of Asp to Asn in the 90th amino acid residue located in the TM 2 domain (MC4RD90N). Mutations in the MC4R gene are the most frequent monogenic causes of severe obesity and are described as heterozygous with loss of function. We determine solution structures of the TM 2 domain of MC4R (MC4RTM2) and compared secondary structure of Asp90 mutant (MC4RTM2-D90N) in a micelle environment by nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that MC4RTM2 forms a long α-helix with a kink at Gly98. Interestingly, the structure of MC4RTM2-D90N is similar to that of MC4RTM2 based on data from CD and NMR spectrum. However, the thermal stability and homogeneity of MC4RD90N is quite different from those of MC4R. The structure from molecular modeling suggests that Asp90(2.50) plays a key role in allosteric sodium ion binding. Our data suggest that the sodium ion interaction of Asp90(2.50) in the allosteric pocket of MC4R is essential to its function, explaining the loss of function of the MC4RD90N mutant.
Collapse
Affiliation(s)
- Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Minsup Kim
- Department of Bioinformatics, Korea University, Sejong 136-701, Republic of Korea
| | - Kuglae Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Dongju Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Youngjin Jung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Daeseok Oh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Yoon-Joo Ko
- National Center for Inter-University Research Facilities, Seoul National University, Seoul 151-747, Republic of Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong 136-701, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
235
|
Qi X, Yamada H, Corrie LW, Ji Y, Bauzo RM, Alexander JC, Bruijnzeel AW. A critical role for the melanocortin 4 receptor in stress-induced relapse to nicotine seeking in rats. Addict Biol 2015; 20:324-35. [PMID: 24612112 DOI: 10.1111/adb.12129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tobacco addiction is characterized by a lack of control over smoking and relapse after periods of abstinence. Smoking cessation leads to a dysphoric state that contributes to relapse to smoking. After the acute withdrawal phase, exposure to stressors increases the risk for relapse. Blockade of melanocortin 4 (MC4 ) receptors has anxiolytic and antidepressant-like effects in animal models. The aim of these studies was to investigate the role of MC4 receptors in the dysphoria associated with nicotine withdrawal and stress-induced reinstatement of nicotine seeking. To study stress-induced reinstatement, rats self-administered nicotine for 16 days and then nicotine seeking was extinguished by substituting saline for nicotine. Nicotine seeking was reinstated by intermittent footshock stress. The intracranial self-stimulation (ICSS) procedure was used to assess the negative mood state associated with nicotine withdrawal. Elevations in the ICSS thresholds are indicative of a dysphoric state. The selective MC4 receptor antagonists HS014 and HS024 prevented stress-induced reinstatement of extinguished nicotine seeking. Drug doses that prevented stress-induced relapse did not affect responding for food pellets, which indicates that the drugs did not induce sedation or motor impairments. In the ICSS experiments, the nicotinic acetylcholine receptor antagonist mecamylamine elevated the ICSS thresholds of the nicotine-dependent rats. Pre-treatment with HS014 or HS024 did not prevent the elevations in ICSS thresholds. These studies indicate that MC4 receptors play a critical role in stress-induced reinstatement of nicotine seeking, but these receptors may not play a role in the dysphoria associated with acute nicotine withdrawal.
Collapse
Affiliation(s)
- Xiaoli Qi
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Hidetaka Yamada
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Lu W. Corrie
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Yue Ji
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Rayna M. Bauzo
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Jon C. Alexander
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| | - Adrie W. Bruijnzeel
- Department of Psychiatry; McKnight Brain Institute; University of Florida; Gainesville FL USA
| |
Collapse
|
236
|
Doering SR, Todorovic A, Haskell-Luevano C. Melanocortin antagonist tetrapeptides with minimal agonist activity at the mouse melanocortin-3 receptor. ACS Med Chem Lett 2015; 6:123-7. [PMID: 25699138 PMCID: PMC4329596 DOI: 10.1021/ml500340z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/28/2014] [Indexed: 11/28/2022] Open
Abstract
The melanocortin system regulates many important functions in the body. There are five melanocortin G protein-coupled receptor subtypes known to date. Herein, we report a structure-activity relationship (SAR) study of a tetrapeptide lead discovered through a double substitution strategy at the melanocortin core His-Phe-Arg-Trp sequence. Several compounds were identified with micromolar agonist activity at the mouse melanocortin-1 (mMC1R) and mouse melanocortin-5 receptor (mMC5R) subtypes, weak antagonist activity at the mouse melanocortin-3 receptor (mMC3R), and potent antagonist activity at the mouse melanocortin-4 receptor (mMC4R). Two compounds (2 and 3) were nanomolar mMC4R antagonists with no mMC3R antagonist activity observed. Additionally, we identified three tetrapeptide MC3R antagonists (1, 6, and 7) that possess minimal mMC3R agonist activity only at 100 μM, not commonly observed for mMC3R/mMC4R antagonists. These novel molecular templates have the potential as molecular probes to better differentiate the roles of the centrally expressed MC3 and MC4 receptors.
Collapse
Affiliation(s)
- Skye R. Doering
- Department
of Medicinal Chemistry, University of Minnesota, Twin Cities, Minnesota 55455, United States
| | - Aleksandar Todorovic
- Department
of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Carrie Haskell-Luevano
- Department
of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Department
of Medicinal Chemistry, University of Minnesota, Twin Cities, Minnesota 55455, United States
| |
Collapse
|
237
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
238
|
Sessler DI. Red hair and anesthetic requirement. Can J Anaesth 2015; 62:333-7. [PMID: 25634807 DOI: 10.1007/s12630-015-0325-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/01/2022] Open
Affiliation(s)
- Daniel I Sessler
- Michael Cudahy Professor and Chair, Department of Outcomes Research, Cleveland Clinic, 9500 Euclid Ave - P77, Cleveland, OH, 44195, USA,
| |
Collapse
|
239
|
Yang Y, Mishra V, Crasto CJ, Chen M, Dimmitt R, Harmon CM. Third transmembrane domain of the adrenocorticotropic receptor is critical for ligand selectivity and potency. J Biol Chem 2015; 290:7685-92. [PMID: 25605722 DOI: 10.1074/jbc.m114.596122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ACTH receptor, known as the melanocortin-2 receptor (MC2R), plays an important role in regulating and maintaining adrenocortical function. MC2R is a subtype of the melanocortin receptor (MCR) family and has unique characteristics among MCRs. Endogenous ACTH is the only endogenous agonist for MC2R, whereas the melanocortin peptides α-, β-, and γ-melanocyte-stimulating hormone and ACTH are full agonists for all other MCRs. In this study, we examined the molecular basis of MC2R responsible for ligand selectivity using ACTH analogs and MC2R mutagenesis. Our results indicate that substitution of Phe(7) with D-Phe or D-naphthylalanine (D-Nal(2')) in ACTH(1-24) caused a significant decrease in ligand binding affinity and potency. Substitution of Phe(7) with D-Nal(2') in ACTH(1-24) did not switch the ligand from agonist to antagonist at MC2R, which was observed in MC3R and MC4R. Substitution of Phe(7) with D-Phe(7) in ACTH(1-17) resulted in the loss of ligand binding and activity. Molecular analysis of MC2R indicated that only mutation of the third transmembrane domain of MC2R resulted in a decrease in D-Phe ACTH binding affinity and potency. Our results suggest that Phe(7) in ACTH plays an important role in ligand selectivity and that the third transmembrane domain of MC2R is crucial for ACTH selectivity and potency.
Collapse
Affiliation(s)
- Yingkui Yang
- From the Department of Surgery, State University of New York at Buffalo, Buffalo, New York 14203 and
| | | | | | - Min Chen
- From the Department of Surgery, State University of New York at Buffalo, Buffalo, New York 14203 and
| | - Reed Dimmitt
- Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35233
| | - Carroll M Harmon
- From the Department of Surgery, State University of New York at Buffalo, Buffalo, New York 14203 and
| |
Collapse
|
240
|
The alpaca melanocortin 1 receptor: gene mutations, transcripts, and relative levels of expression in ventral skin biopsies. ScientificWorldJournal 2015; 2015:265751. [PMID: 25685836 PMCID: PMC4313674 DOI: 10.1155/2015/265751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 11/30/2022] Open
Abstract
The objectives of the present study were to characterize the MC1R gene, its transcripts and the single nucleotide polymorphisms (SNPs) associated with coat color in alpaca. Full length cDNA amplification revealed the presence of two transcripts, named as F1 and F2, differing only in the length of their 5′-terminal untranslated region (UTR) sequences and presenting a color specific expression. Whereas the F1 transcript was common to white and colored (black and brown) alpaca phenotypes, the shorter F2 transcript was specific to white alpaca. Further sequencing of the MC1R gene in white and colored alpaca identified a total of twelve SNPs; among those nine (four silent mutations (c.126C>A, c.354T>C, c.618G>A, and c.933G>A); five missense mutations (c.82A>G, c.92C>T, c.259A>G, c.376A>G, and c.901C>T)) were observed in coding region and three in the 3′UTR. A 4 bp deletion (c.224 227del) was also identified in the coding region. Molecular segregation analysis uncovered that the combinatory mutations in the MC1R locus could cause eumelanin and pheomelanin synthesis in alpaca. Overall, our data refine what is known about the MC1R gene and provides additional information on its role in alpaca pigmentation.
Collapse
|
241
|
Yun JH, Kim K, Jung Y, Park JH, Cho HS, Lee W. Co-expression of human agouti-related protein enhances expression and stability of human melanocortin-4 receptor. Biochem Biophys Res Commun 2015; 456:116-21. [PMID: 25446108 DOI: 10.1016/j.bbrc.2014.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling proteins, and they are considered major targets of approximately half of all therapeutic agents. Human melanocortin-4 receptor (hMC4R) plays an important role in the control of energy homeostasis, and its mutants are directly related to severe human obesity. Here, we describe optimized protocols for the high-yield expression and purification of hMC4R that will accelerate structural study. Truncations of the N- and C-termini of hMC4R with T4 lysozyme (T4L) insertion increase the solubility as well as stability of the protein. Strikingly, co-expression of human mini-agouti-related protein (mini-AgRP) in Spodoptera frugiperda (Sf9) cells enables excellent stability of hMC4R. The protein yield in the human mini-AgRP co-expression system is increased by about 3-4 times compared to that of hMC4R alone. Data from analytical size exclusion chromatography (aSEC) and thermostability assay show that hMC4R becomes homogeneous and stable with a melting temperature of 58°C in the presence of human mini-AgRP.
Collapse
Affiliation(s)
- Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kuglae Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Youngjin Jung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jae-Hyun Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
242
|
Liang L, Schmid K, Sandhu N, Angleson JK, Vijayan MM, Dores RM. Structure/function studies on the activation of the rainbow trout melanocortin-2 receptor. Gen Comp Endocrinol 2015; 210:145-51. [PMID: 24709361 DOI: 10.1016/j.ygcen.2014.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
Functional expression of the rainbow trout (rt) melanocortin-2 receptor (MC2R) in CHO cells requires co-expression with a teleost melanocortin-2 receptor accessory protein (MRAP) such as zebrafish (zf) MRAP. Transiently transfected rtMC2R/zfMRAP1 CHO cells were used to evaluate the efficacy of alanine substituted analogs of hACTH(1-24) in three motifs in the ligand: H(6)F(7)R(8)W(9), G(10)K(11)P(12)V(13)G(14), and K(15)K(16)R(17)R(18)P(19). Alanine substitution at all positions in each motif either completely blocked activation of the receptor (H(6)F(7)R(8)W(9) and K(15)K(16)R(17)R(18)P(19)) or resulted in just over 400 fold increase in EC50 value (G(10)K(11)P(12)V(13)G(14)). Single alanine substitutions in the H(6)F(7)R(8)W(9) motif indicated that substitution at either W(9) or R(8) resulted in a much larger increase in EC50 values as compared to substitutions at either F(7) or W(9). Alanine substitution at either K(15)K(16) or R(17)R(18)P(19) in the K(15)K(16)R(17)R(18)P(19) motif resulted in a statistically equivalent increase in EC50 value of at least 600 fold. Finally, alanine substitutions in the G(10)K(11)P(12)V(13)G(14) motif resulted in increases in EC50 values presumably as a result of altering the secondary structure of the ligand. However, truncated analogs of hACTH(1-24) in which either G(10)G(14) (ACTH(1-22), or K(11)P(12)V(13) (ACTH(1-21) were removed had no stimulatory activity. Finally, some of the hACTH(1-24) analogs were tested using rainbow trout head kidney pieces in vitro to confirm whether the response to analogs seen with the transient transfected rtMC2R CHO cells was similar to that of trout interrenal cells. The results of these alanine substitution analog studies are used to construct a multistep hypothetical model for the activation of teleost and tetrapod MC2Rs to account for the unique ligand selectivity of this receptor.
Collapse
Affiliation(s)
- Liang Liang
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Kristin Schmid
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Navdeep Sandhu
- University of Calgary, Department of Biological Sciences, Calgary, Canada
| | - Joseph K Angleson
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | | | - Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA.
| |
Collapse
|
243
|
Chang HS, Won ES, Lee HY, Ham BJ, Kim YG, Lee MS. The association of proopiomelanocortin polymorphisms with the risk of major depressive disorder and the response to antidepressants via interactions with stressful life events. J Neural Transm (Vienna) 2014; 122:59-68. [PMID: 25448875 DOI: 10.1007/s00702-014-1333-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/05/2014] [Indexed: 11/30/2022]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is among the most consistent neuroendocrine abnormalities in major depressive disorder (MDD). The peptide adrenocorticotropin hormone (ACTH) mediates HPA axis function during stress and is encoded by the proopiomelanocortin (POMC) gene polycistronically. After screening 39 POMC polymorphisms, we evaluated the association of polymorphisms with susceptibility to MDD in 145 MDD patients and 193 normal subjects; in patients, we also evaluated the response to treatment with antidepressants. Additionally, we investigated the role of gene-environment interaction between POMC haplotypes and stressful life events (SLE) in the treatment response. Although genotypes and haplotypes were not significantly associated with the risk of MDD, non-remitters were more likely to carry haplotype 1 (ht1) and to have no ht2 than were remitters (corrected P = 0.010-0.035). Although observations were limited in patients without SLE, a significant haplotype-SLE interaction was observed (P = 0.020). Additionally, at 1, 2, and 8 weeks of treatment, the 21-item Hamilton Depression Rating scores of MDD subjects with POMC ht2 were significantly (P = 0.003-0.044) lower than those of patients with ht1 in subjects those did not experience SLE. MDD subjects possessing POMC ht2 achieved remission significantly (P = 0.013; survival analysis) faster than patients with ht1. This study suggests that POMC haplotypes, via an interaction with SLE, are associated with antidepressant treatment outcomes in MDD patients. Regarding SLE, haplotypes of the POMC gene could be useful markers for predicting the response to antidepressant treatment in MDD patients.
Collapse
Affiliation(s)
- Hun Soo Chang
- Department of Medical Bioscience, Graduated School, Soonchunhyang University, Bucheon, 420-767, Republic of Korea
| | | | | | | | | | | |
Collapse
|
244
|
Han SK, Kim YG, Kang HC, Huh JR, Kim JY, Baek NI, Lee DK, Lee DG. Oleanolic acid from Fragaria ananassa calyx leads to inhibition of α-MSH-induced melanogenesis in B16-F10 melanoma cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13765-014-4225-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
245
|
Testa C, Scrima M, Grimaldi M, D'Ursi AM, Dirain ML, Lubin-Germain N, Singh A, Haskell-Luevano C, Chorev M, Rovero P, Papini AM. 1,4-disubstituted-[1,2,3]triazolyl-containing analogues of MT-II: design, synthesis, conformational analysis, and biological activity. J Med Chem 2014; 57:9424-34. [PMID: 25347033 PMCID: PMC4255721 DOI: 10.1021/jm501027w] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Side chain-to-side chain cyclizations
represent a strategy to select
a family of bioactive conformations by reducing the entropy and enhancing
the stabilization of functional ligand-induced receptor conformations.
This structural manipulation contributes to increased target specificity,
enhanced biological potency, improved pharmacokinetic properties,
increased functional potency, and lowered metabolic susceptibility.
The CuI-catalyzed azide–alkyne 1,3-dipolar Huisgen’s
cycloaddition, the prototypic click reaction, presents a promising
opportunity to develop a new paradigm for an orthogonal bioorganic
and intramolecular side chain-to-side chain cyclization. In fact,
the proteolytic stable 1,4- or 4,1-disubstituted [1,2,3]triazolyl
moiety is isosteric with the peptide bond and can function as a surrogate
of the classical side chain-to-side chain lactam forming bridge. Herein
we report the design, synthesis, conformational analysis, and functional
biological activity of a series of i-to-i+5 1,4- and 4,1-disubstituted
[1,2,3]triazole-bridged cyclopeptides derived from MT-II, the homodetic
Asp5 to Lys10 side chain-to-side chain bridged
heptapeptide, an extensively studied agonist of melanocortin receptors.
Collapse
Affiliation(s)
- Chiara Testa
- Laboratoire SOSCO & PeptLab@UCP, EA4505, University of Cergy-Pontoise , 5 mail Gay-Lussac, Neuville sur Oise, F-95031 Cergy-Pontoise Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Haddadeen C, Lai C, Cho SY, Healy E. Variants of the melanocortin-1 receptor: do they matter clinically? Exp Dermatol 2014; 24:5-9. [DOI: 10.1111/exd.12540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Ciara Haddadeen
- Dermatopharmacology; Sir Henry Wellcome Laboratories; Faculty of Medicine; University of Southampton; Southampton UK
- Dermatology; University Hospital Southampton NHS Foundation Trust; Southampton UK
| | - Chester Lai
- Dermatopharmacology; Sir Henry Wellcome Laboratories; Faculty of Medicine; University of Southampton; Southampton UK
- Dermatology; University Hospital Southampton NHS Foundation Trust; Southampton UK
| | - Shin-Young Cho
- Dermatopharmacology; Sir Henry Wellcome Laboratories; Faculty of Medicine; University of Southampton; Southampton UK
- Dermatology; University Hospital Southampton NHS Foundation Trust; Southampton UK
| | - Eugene Healy
- Dermatopharmacology; Sir Henry Wellcome Laboratories; Faculty of Medicine; University of Southampton; Southampton UK
- Dermatology; University Hospital Southampton NHS Foundation Trust; Southampton UK
| |
Collapse
|
247
|
Nasti TH, Timares L. MC1R, eumelanin and pheomelanin: their role in determining the susceptibility to skin cancer. Photochem Photobiol 2014; 91:188-200. [PMID: 25155575 DOI: 10.1111/php.12335] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 08/17/2014] [Indexed: 12/16/2022]
Abstract
Skin pigmentation is due to the accumulation of two types of melanin granules in the keratinocytes. Besides being the most potent blocker of ultraviolet radiation, the role of melanin in photoprotection is complex. This is because one type of melanin called eumelanin is UV absorbent, whereas the other, pheomelanin, is photounstable and may even promote carcinogenesis. Skin hyperpigmentation may be caused by stress or exposure to sunlight, which stimulates the release of α-melanocyte stimulating hormone (α-MSH) from damaged keratinocytes. Melanocortin 1 receptor (MC1R) is a key signaling molecule on melanocytes that responds to α-MSH by inducing expression of enzymes responsible for eumelanin synthesis. Persons with red hair have mutations in the MC1R causing its inactivation; this leads to a paucity of eumelanin production and makes red-heads more susceptible to skin cancer. Apart from its effects on melanin production, the α-MSH/MC1R signaling is also a potent anti-inflammatory pathway and has been shown to promote antimelanoma immunity. This review will focus on the role of MC1R in terms of its regulation of melanogenesis and influence on the immune system with respect to skin cancer susceptibility.
Collapse
Affiliation(s)
- Tahseen H Nasti
- The Department of Dermatology, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | | |
Collapse
|
248
|
Singh A, Dirain ML, Wilczynski A, Chen C, Gosnell BA, Levine AS, Edison AS, Haskell-Luevano C. Synthesis, biophysical, and pharmacological evaluation of the melanocortin agonist AST3-88: modifications of peptide backbone at Trp 7 position lead to a potent, selective, and stable ligand of the melanocortin 4 receptor (MC4R). ACS Chem Neurosci 2014; 5:1020-31. [PMID: 25141170 PMCID: PMC4198065 DOI: 10.1021/cn5000953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
![]()
The
melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors are
expressed in the brain and are implicated in the regulation of food
intake and energy homeostasis. The endogenous agonist ligands for
these receptors (α-, β-, γ-MSH and ACTH) are linear
peptides with limited receptor subtype selectivity and metabolic stability,
thus minimizing their use as probes to characterize the overlapping
pharmacological and physiological functions of the melanocortin receptor
subtypes. In the present study, an engineered template, in which the
peptide backbone was modified by a heterocyclic reverse turn mimetic
at the Trp7 residue, was synthesized using solid phase
peptide synthesis and characterized by a β-galactosidase cAMP
based reporter gene assay. The functional assay identified a ∼5
nM mouse MC4R agonist (AST3-88) with more than 50-fold selectivity
over the mMC3R. Biophysical studies (2D 1H NMR spectroscopy
and molecular dynamics) of AST3-88 identified a type VIII β-turn
secondary structure spanning the pharmacophore domain stabilized by
the intramolecular interactions between the side chains of the His
and Trp residues. Enzymatic studies of AST3-88 revealed enhanced stability
of AST3-88 over the α-MSH endogenous peptide in rat serum. Upon
central administration of AST3-88 into rats, a decreased food intake
response was observed. This is the first study to probe the in vivo
physiological activity of this engineered peptide-heterocycle template.
These findings advance the present knowledge of pharmacophore design
for potent, selective, and metabolically stable melanocortin ligands.
Collapse
Affiliation(s)
- Anamika Singh
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | | | | - Carrie Haskell-Luevano
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
249
|
Fridmanis D, Petrovska R, Pjanova D, Schiöth HB, Klovins J. Replacement of short segments within transmembrane domains of MC2R disrupts retention signal. J Mol Endocrinol 2014; 53:201-15. [PMID: 25074265 DOI: 10.1530/jme-14-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The proteolysis of the pro-opiomelanocortin precursor results in the formation of melanocortins (MCs), a group of peptides that share the conserved -H-F-R-W- sequence, which acts as a pharmacophore for five subtypes of MC receptors (MCRs). MC type 2 receptor (MC2R; also known as ACTHR) is the most specialized of all the MCRs. It is predominantly expressed in the adrenal cortex and specifically binds ACTH. Unlike other MCRs, it requires melanocortin receptor accessory protein 1 (MRAP) for formation of active receptor and for its transport to the cell membrane. The molecular mechanisms underlying this specificity remain poorly understood. In this study, we used directed mutagenesis to investigate the role of various short MC2R sequence segments in receptor membrane trafficking and specific activation upon stimulation with ligands. The strategy of the study was to replace two to five amino acid residues within one MC2R segment with the corresponding residues of MC4R. In total, 20 recombinant receptors C-terminally fused to enhanced green fluorescent protein were generated and their membrane trafficking efficiencies and cAMP response upon stimulation with α-MSH and ACTH(1-24) were estimated during their stand-alone expression and coexpression with MRAP. Our results indicate that both the motif that determines the ligand-recognition specificity and the intracellular retention signal are formed by a specific extracellular structure, which is supported by the correct alignment of the transmembrane domains. Our results also indicate that the aromatic-residue-rich segment of the second extracellular loop is involved in the effects mediated by the second ACTH pharmacophore (-K-K-R-R-).
Collapse
Affiliation(s)
- Davids Fridmanis
- Latvian Biomedical Research and Study CentreRatsupites 1, LV-1067 Riga, LatviaDepartment of NeuroscienceUppsala University, BMC, PO Box 593, SE751 24 Uppsala, Sweden
| | - Ramona Petrovska
- Latvian Biomedical Research and Study CentreRatsupites 1, LV-1067 Riga, LatviaDepartment of NeuroscienceUppsala University, BMC, PO Box 593, SE751 24 Uppsala, Sweden
| | - Dace Pjanova
- Latvian Biomedical Research and Study CentreRatsupites 1, LV-1067 Riga, LatviaDepartment of NeuroscienceUppsala University, BMC, PO Box 593, SE751 24 Uppsala, Sweden
| | - Helgi B Schiöth
- Latvian Biomedical Research and Study CentreRatsupites 1, LV-1067 Riga, LatviaDepartment of NeuroscienceUppsala University, BMC, PO Box 593, SE751 24 Uppsala, Sweden
| | - Janis Klovins
- Latvian Biomedical Research and Study CentreRatsupites 1, LV-1067 Riga, LatviaDepartment of NeuroscienceUppsala University, BMC, PO Box 593, SE751 24 Uppsala, Sweden
| |
Collapse
|
250
|
Agulleiro MJ, Cortés R, Leal E, Ríos D, Sánchez E, Cerdá-Reverter JM. Characterization, tissue distribution and regulation by fasting of the agouti family of peptides in the sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2014; 205:251-9. [PMID: 24561275 DOI: 10.1016/j.ygcen.2014.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 01/11/2023]
Abstract
The melanocortin system is one of the most complex hormonal systems in vertebrates. Atypically, the signaling of melanocortin receptors is regulated by the binding of endogenous antagonists, named agouti-signaling protein (ASIP) and agouti-related protein (AGRP). Teleost specific genome duplication (TSGD) rendered new gene copies in teleost fish and up to four different genes of the agouti family of peptides have been characterized. In this paper, molecular cloning was used to characterize mRNA of the agouti family of peptides in sea bass. Four different genes were identified: AGRP1, ASIP1, AGRP2 and ASIP2. The AGRP1 gene is mainly expressed in the brain whereas ASIP1 is mainly expressed in the ventral skin. Both ASIP2 and AGRP2 are expressed in the brain and the pineal gland but also in some peripheral tissues. Immunocytochemical studies demonstrated that AGRP1 is exclusively expressed within the lateral tuberal nucleus, the homologue of the mammalian arcuate nucleus in fish. Long-term fasting (8-29 days) increased the hypothalamic expression of AGRP1 but depressed AGRP2 expression (15-29 days). In contrast, the hypothalamic expression of ASIP2 was upregulated during short-term fasting suggesting that this peptide could be involved in the short term regulation of food intake in the sea bass.
Collapse
Affiliation(s)
- Maria Josep Agulleiro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Raúl Cortés
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Esther Leal
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Diana Ríos
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Elisa Sánchez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - José Miguel Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|