201
|
Choi K, Ryu SW, Song S, Choi H, Kang SW, Choi C. Caspase-dependent generation of reactive oxygen species in human astrocytoma cells contributes to resistance to TRAIL-mediated apoptosis. Cell Death Differ 2009; 17:833-45. [PMID: 19876066 DOI: 10.1038/cdd.2009.154] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF family of cytokines, causes apoptosis by caspase activation in various cell types, particularly in transformed cells. Numerous types of tumors are relatively resistant to TRAIL-induced cytotoxicity; however, the reasons for this are not yet fully understood. We report here a new signal transduction pathway involving protein kinase Cdelta (PKCdelta), NADPH oxidase 4 (NOX4) and reactive oxygen species (ROS), that inhibits caspase-dependent cell death induced by TRAIL ligation in human malignant astrocytoma cells. In our experiments, TRAIL ligation-induced generation of intracellular ROS through caspase-dependent proteolytic activation of PKCdelta and subsequent activation of the NOX4 complex. Suppression of intracellular ROS induction using various pharmacological inhibitors or PKCdelta- or NOX4-specific RNA interference enhanced the enzymatic activity of caspase-3 by blocking the oxidative modification of its catalytic cysteine residue, resulting in marked augmentation of TRAIL-mediated cell death. These results collectively indicate that TRAIL-induced activation of PKCdelta and NOX4 can modulate TRAIL-mediated apoptosis by promoting oxidative modification of active caspase-3 in a negative-feedback manner.
Collapse
Affiliation(s)
- K Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
202
|
Wang P, Liu GH, Wu K, Qu J, Huang B, Zhang X, Zhou X, Gerace L, Chen C. Repression of classical nuclear export by S-nitrosylation of CRM1. J Cell Sci 2009; 122:3772-9. [PMID: 19812309 PMCID: PMC2758806 DOI: 10.1242/jcs.057026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2009] [Indexed: 02/06/2023] Open
Abstract
The karyopherin chromosomal region maintenance 1 (CRM1) is the major receptor for classical nuclear protein export. However, little is known about the regulation of CRM1 itself. Here, we report that cellular CRM1 became S-nitrosylated after extensive exposure to endogenous or exogenous nitric oxide (NO). This abrogated the interaction of CRM1 with nuclear export signals (NESs) and repressed classical protein export. Analysis by mass spectrometry and involving the use of S-nitrosylation mimetic mutations indicated that modification at either of two specific cysteines of CRM1 was sufficient to abolish the CRM1-NES association. Moreover, ectopic overexpression of the corresponding S-nitrosylation-resistant CRM1 mutants rescued NO-induced repression of nuclear export. We also found that inactivation of CRM1 by NO facilitated the nuclear accumulation of the antioxidant response transcription factor Nrf2 and transcriptional activation of Nrf2-controlled genes. Together, these data demonstrate that CRM1 is negatively regulated by S-nitrosylation under nitrosative stress. We speculate that this is important for promoting a cytoprotective transcriptional response to nitrosative stress.
Collapse
Affiliation(s)
- Peng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Lievens S, Lemmens I, Tavernier J. Mammalian two-hybrids come of age. Trends Biochem Sci 2009; 34:579-88. [PMID: 19786350 DOI: 10.1016/j.tibs.2009.06.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 12/22/2022]
Abstract
A diverse series of mammalian two-hybrid technologies for the detection of protein-protein interactions have emerged in the past few years, complementing the established yeast two-hybrid approach. Given the mammalian background in which they operate, these assays open new avenues to study the dynamics of mammalian protein interaction networks, i.e. the temporal, spatial and functional modulation of protein-protein associations. In addition, novel assay formats are available that enable high-throughput mammalian two-hybrid applications, facilitating their use in large-scale interactome mapping projects. Finally, as they can be applied in drug discovery and development programs, these techniques also offer exciting new opportunities for biomedical research.
Collapse
Affiliation(s)
- Sam Lievens
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | | | | |
Collapse
|
204
|
S-nitrosylation of stargazin regulates surface expression of AMPA-glutamate neurotransmitter receptors. Proc Natl Acad Sci U S A 2009; 106:16440-5. [PMID: 19805317 DOI: 10.1073/pnas.0908949106] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic plasticity is mediated by changes in the surface expression of AMPA receptors (AMPARs). Stargazin and related transmembrane AMPAR regulatory proteins have emerged as the principal regulators of AMPAR surface expression. Here, we show in heterologous cells and primary neurons that stargazin is physiologically S-nitrosylated, resulting in increased surface expression. S-nitrosylation of stargazin increases binding to the AMPAR subunit GluR1, causing increased surface expression of the AMPAR. NMDAR stimulation, well known to activate neuronal nitric oxide synthase, increases both nitrosylation of stargazin and its binding to AMPAR. Thus, S-nitrosylation of stargazin is a physiologic regulator of AMPAR surface expression.
Collapse
|
205
|
Abstract
S-Nitrosylation, the redox-based modification of Cys thiol side chains by nitric oxide, is a common mechanism in signal transduction. Dysregulated S-nitrosylation contributes to a range of human pathologies. New roles for protein denitrosylation in regulating S-nitrosylation are being revealed. Recently, several denitrosylases - the enzymes that mediate Cys denitrosylation - have been discovered, of which two enzyme systems in particular, the S-nitrosoglutathione reductase and thioredoxin systems, have been shown to be physiologically relevant. These highly conserved enzymes regulate signalling through multiple classes of receptors and influence diverse cellular responses. In addition, they protect from nitrosative stress in microorganisms, mammals and plants, thereby exerting profound effects on host-microbe interactions and innate immunity.
Collapse
|
206
|
Role of Nrf2-mediated heme oxygenase-1 upregulation in adaptive survival response to nitrosative stress. Arch Pharm Res 2009; 32:1163-76. [PMID: 19727608 DOI: 10.1007/s12272-009-1807-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 03/16/2009] [Accepted: 06/25/2009] [Indexed: 12/21/2022]
Abstract
Nitrosative stress caused by reactive nitrogen species such as nitric oxide and peroxynitrite overproduced during inflammation leads to cell death and has been implicated in the pathogenesis of many human ailments. However, relatively mild nitrosative stress may fortify cellular defense capacities, rendering cells tolerant or adaptive to ongoing and subsequent cytotoxic challenges, a phenomenon known as 'preconditioning' or 'hormesis'. One of the key components of cellular stress response is heme oxygenase-1 (HO-1), the rate limiting enzyme in the process of degrading potentially toxic free heme into biliverdin, free iron and carbon monoxide. HO-1 is upregulated by a wide array of stimuli and has antioxidant, anti-inflammatory and other cytoprotective functions. This review is intended to provide readers with a welldocumented account of the research done in the area of cellular adaptive survival response against nitrosative stress with special focus on the role of HO-1 upregulation, especially through activation of the transcription factor, Nrf2.
Collapse
|
207
|
López-Sánchez LM, Muntané J, de la Mata M, Rodríguez-Ariza A. Unraveling the S-nitrosoproteome: tools and strategies. Proteomics 2009; 9:808-18. [PMID: 19160395 DOI: 10.1002/pmic.200800546] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the major tasks to be accomplished in the postgenomic era is the characterization of PTMs in proteins. The S-nitrosation of protein thiols is a redox-based PTM that modulating enzymatic activity, subcellular localization, complex formation, and degradation of proteins, largely contributes to the complexity of cellular proteomes. Although the detection of S-nitrosated proteins is problematical due to the lability of S-nitrosothiols, with the improvement of molecular tools an increasing range of proteins has been shown to undergo S-nitrosation. We here review recent proteomic approaches for the systematic assessment of potential targets for protein S-nitrosation. The development of new analytical methods and strategies over the past several years now allows us to investigate the nitrosoproteome on a global scale.
Collapse
|
208
|
Abstract
The immensity of genes and molecules implicated in gastric carcinogenesis is overwhelming and the relevant importance of some of these molecules is too often unclear. This review serves to bring us up-to-date with the latest findings as well as to look at the larger picture in terms of how to tackle the problem of solving this multi-piece puzzle. In this review, the environmental nurturing of intestinal cancer is discussed, beginning with epidemiology (known causative factors for inducing molecular change), an update of H. pylori research, including the role of inflammation and stem cells in premalignant lesions. The role of E-cadherin in the nature (genotype) of diffuse gastric cancer is highlighted, and finally the ever growing discipline of SNP analysis (including IL1B) is discussed.
Collapse
|
209
|
Jiang ZL, Fletcher NM, Diamond MP, Abu-Soud HM, Saed GM. S-nitrosylation of caspase-3 is the mechanism by which adhesion fibroblasts manifest lower apoptosis. Wound Repair Regen 2009; 17:224-9. [PMID: 19320891 DOI: 10.1111/j.1524-475x.2009.00459.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously found that adhesion fibroblasts exhibit lower apoptosis and higher protein nitration as compared with normal peritoneal fibroblasts. In this study, we sought to determine whether the decreased apoptosis observed in adhesion fibroblasts is caused by lower caspase-3 activity due to an increase in caspase-3 S-nitrosylation. For this study, we have utilized primary cultures of fibroblasts obtained from normal peritoneum and adhesion tissues of the same patient(s). Cells were treated with increasing concentrations of peroxynitrite and cell lysates were immunoprecipitated with anti-caspase-3 polyclonal antibody. The biotinylated proteins were detected using a nitrosylation detection kit. Caspase-3 activity and apoptosis were measured by colorimetric and TUNEL assays, respectively. Our results showed that caspase-3 S-nitrosylation is significantly higher in adhesion fibroblasts as compared with normal peritoneal fibroblasts. This increase in S-nitrosylation resulted in a 30% decrease in caspase-3 activity in adhesion fibroblasts. Peroxynitrite treatment resulted in a dose response increase in caspase-3 S-nitrosylation, leading to a decrease in caspase-3 activity and apoptosis in normal peritoneal fibroblasts. We conclude that S-nitrosylation of caspase-3 is the reason for its decreased activity and subsequent decrease in apoptosis of adhesion fibroblasts. The mechanism by which caspase-3 S-nitrosylation occurs is not fully understood. However, the role of hypoxia in the formation of peroxynitrite via superoxide production may suggest a possible mechanism.
Collapse
Affiliation(s)
- Zhong L Jiang
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
210
|
Thompson CM, Sonawane B, Grafström RC. The ontogeny, distribution, and regulation of alcohol dehydrogenase 3: implications for pulmonary physiology. Drug Metab Dispos 2009; 37:1565-71. [PMID: 19460944 DOI: 10.1124/dmd.109.027904] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Class III alcohol dehydrogenase (ADH3), also termed formaldehyde dehydrogenase or S-nitrosoglutathione reductase, plays a critical role in the enzymatic oxidation of formaldehyde and reduction of nitrosothiols that regulate bronchial tone. Considering reported associations between formaldehyde vapor exposure and childhood asthma risk, and thus potential involvement of ADH3, we reviewed the ontogeny, distribution, and regulation of mammalian ADH3. Recent studies indicate that multiple biological and chemical stimuli influence expression and activity of ADH3, including the feedback regulation of nitrosothiol metabolism. The levels of ADH3 correlate with, and potentially influence, bronchial tone; however, data gaps remain with respect to the expression of ADH3 during postnatal and early childhood development. Consideration of ADH3 function relative to the respiratory effects of formaldehyde, as well as to other chemical and biological exposures that might act in an additive or synergistic manner with formaldehyde, might be critical to gain better insight into the association between formaldehyde exposure and childhood asthma.
Collapse
Affiliation(s)
- Chad M Thompson
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| | | | | |
Collapse
|
211
|
Giovanardi RO, Rhoden EL, Cerski CT, Salvador M, Kalil AN. Pharmacological Preconditioning Using Intraportal Infusion of L-Arginine Protects Against Hepatic Ischemia Reperfusion Injury. J Surg Res 2009; 155:244-53. [DOI: 10.1016/j.jss.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 06/06/2008] [Accepted: 07/02/2008] [Indexed: 02/08/2023]
|
212
|
Umar S, van der Laarse A. Nitric oxide and nitric oxide synthase isoforms in the normal, hypertrophic, and failing heart. Mol Cell Biochem 2009; 333:191-201. [PMID: 19618122 DOI: 10.1007/s11010-009-0219-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/07/2009] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) produced in the heart by nitric oxide synthase (NOS) is a highly reactive signaling molecule and an important modulator of myocardial function. NOS catalyzes the conversion of L: -arginine to L: -citrulline and NO but under particular circumstances reactive oxygen species (ROS) can be formed instead of NO (uncoupling). In the heart, three NOS isoforms are present: neuronal NOS (nNOS, NOS1) and endothelial NOS (eNOS, NOS3) are constitutively present enzymes in distinct subcellular locations within cardiomyocytes, whereas inducible NOS (iNOS, NOS2) is absent in the healthy heart, but its expression is induced by pro-inflammatory mediators. In the tissue, NO has two main effects: (i) NO stimulates the activity of guanylate cyclase, leading to cGMP generation and activation of protein kinase G, and (ii) NO nitrosylates tyrosine and thiol-groups of cysteine in proteins. Upon nitrosylation, proteins may change their properties. Changes in (i) NOS expression and activity, (ii) subcellular compartmentation of NOS activity, and (iii) the occurrence of uncoupling may lead to multiple NO-induced effects, some of which being particularly evident during myocardial overload as occurs during aortic constriction and myocardial infarction. Many of these NO-induced effects are considered to be cardioprotective but particularly if NOS becomes uncoupled, formation of ROS in combination with a low NO bioavailability predisposes for cardiac damage.
Collapse
Affiliation(s)
- Soban Umar
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | |
Collapse
|
213
|
Tsang AH, Chung KK. Oxidative and nitrosative stress in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:643-50. [DOI: 10.1016/j.bbadis.2008.12.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/27/2008] [Accepted: 12/22/2008] [Indexed: 01/08/2023]
|
214
|
Weinberg JB, Chen Y, Jiang N, Beasley BE, Salerno JC, Ghosh DK. Inhibition of nitric oxide synthase by cobalamins and cobinamides. Free Radic Biol Med 2009; 46:1626-32. [PMID: 19328848 PMCID: PMC2745708 DOI: 10.1016/j.freeradbiomed.2009.03.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/18/2009] [Indexed: 11/22/2022]
Abstract
Cobalamins are important cofactors for methionine synthase and methylmalonyl-CoA mutase. Certain corrins also bind nitric oxide (NO), quenching its bioactivity. To determine if corrins would inhibit NO synthase (NOS), we measured their effects on -L-[(14)C]arginine-to-L-[(14)C]citrulline conversion by NOS1, NOS2, and NOS3. Hydroxocobalamin (OH-Cbl), cobinamide, and dicyanocobinamide (CN(2)-Cbi) potently inhibited all isoforms, whereas cyanocobalamin, methylcobalamin, and adenosylcobalamin had much less effect. OH-Cbl and CN(2)-Cbi prevented binding of the oxygen analog carbon monoxide (CO) to the reduced NOS1 and NOS2 heme active site. CN(2)-Cbi did not react directly with NO or CO. Spectral perturbation analysis showed that CN(2)-Cbi interacted directly with the purified NOS1 oxygenase domain. NOS inhibition by corrins was rapid and not reversed by dialysis with L-arginine or tetrahydrobiopterin. Molecular modeling indicated that corrins could access the unusually large heme- and substrate-binding pocket of NOS. Best fits were obtained in the "base-off" conformation of the lower axial dimethylbenzimidazole ligand. CN(2)-Cbi inhibited interferon-gamma-activated Raw264.7 mouse macrophage NO production. We show for the first time that certain corrins directly inhibit NOS, suggesting that these agents (or their derivatives) may have pharmacological utility. Endogenous cobalamins and cobinamides might play important roles in regulating NOS activity under normal and pathological conditions.
Collapse
Affiliation(s)
- J Brice Weinberg
- Division of Hematology-Oncology, Department of Medicine, Duke University and V.A. Medical Centers, Durham, NC 27705, USA.
| | | | | | | | | | | |
Collapse
|
215
|
Riederer IM, Schiffrin M, Kövari E, Bouras C, Riederer BM. Ubiquitination and cysteine nitrosylation during aging and Alzheimer's disease. Brain Res Bull 2009; 80:233-41. [PMID: 19427371 DOI: 10.1016/j.brainresbull.2009.04.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/26/2009] [Accepted: 04/26/2009] [Indexed: 10/20/2022]
Abstract
Protein oxidation and ubiquitination of brain proteins are part of mechanisms that modulate protein function or that inactivate proteins and target misfolded proteins to degradation. In this study, we focused on brain aging and on mechanism involved in neurodegeneration such as events occurring in Alzheimer's disease (AD). The goal was to identify differences in nitrosylated proteins - at cysteine residues, and in the composition of ubiquinated proteins between aging and Alzheimer's samples by using a proteomic approach. A polyclonal anti-S-nitrosyl-cysteine, a mono- and a polyclonal anti-ubiquitin antibody were used for the detection of modified or ubiquitinated proteins in middle-aged and aged human entorhinal autopsy brains tissues of 14 subjects without neurological signs and 8 Alzheimer's patients. Proteins were separated by one- and two-dimensional gel electrophoresis and analyzed by Coomassie blue and immuno-blot staining. We identified that the glial fibrillary acidic and tau proteins are more ubiquitinated in brain tissues of Alzheimer's patients. Furthermore, glial fibrillary proteins were also found in nitrosylated state and further characterized by 2D Western blots and identified. Since reactive astrocytes localized prominently around senile plaques one can speculate that elements of plaques such as beta-amyloid proteins may activate surrounding glial elements and proteins.
Collapse
Affiliation(s)
- Irène M Riederer
- Center for Psychiatric Neuroscience, Proteomics Unit, CHUV, 1008 Prilly-Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
216
|
Medeiros R, Figueiredo CP, Passos GF, Calixto JB. Reduced skin inflammatory response in mice lacking inducible nitric oxide synthase. Biochem Pharmacol 2009; 78:390-5. [PMID: 19409374 DOI: 10.1016/j.bcp.2009.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/10/2009] [Accepted: 04/14/2009] [Indexed: 11/25/2022]
Abstract
The skin is the largest organ in the body and one of its main functions is to protect the body from environmental and endogenous noxious conditions, such as injury, infection and inflammation. The inducible nitric oxide synthase (iNOS) has been implicated as a key component in the inflammatory response. In the present study, we assessed the role of iNOS in the skin inflammation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Mice deficient in iNOS had reduced edema and cellular infiltration in the skin following topical TPA application. Moreover, the genetic blockage of iNOS signaling inhibited the TPA-induced ERK and p38 activation resulting in reduced COX-2 upregulation. Finally, immunohistochemical studies revealed that iNOS knockout mice exhibited marked inhibition of AP-1, CREB and NF-kappaB transcriptional factors activation. Together, these results indicate that TPA induces the activation of several iNOS-dependent intracellular signaling pathways that have a key role in the control of inflammatory response in the skin. Therefore, selective iNOS inhibitors may be potentially relevant tools for cutaneous skin disease drug development.
Collapse
Affiliation(s)
- Rodrigo Medeiros
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
| | | | | | | |
Collapse
|
217
|
Abstract
Several chronic neurodegenerative disorders manifest deposits of misfolded or aggregated proteins. Genetic mutations are the root cause for protein misfolding in rare families, but the majority of patients have sporadic forms possibly related to environmental factors. In some cases, the ubiquitin-proteasome system or molecular chaperones can prevent accumulation of aberrantly folded proteins. Recent studies suggest that generation of excessive nitric oxide (NO) and reactive oxygen species (ROS), in part due to overactivity of the NMDA-subtype of glutamate receptor, can mediate protein misfolding in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced protein misfolding and neurotoxicity. Here, we present evidence suggesting that NO contributes to protein misfolding via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin. We discuss how memantine/NitroMemantine can inhibit excessive NMDA receptor activity to ameliorate NO production, protein misfolding, and neurodegeneration.
Collapse
|
218
|
Aravindan N, Mohan S, Herman TS, Natarajan M. Nitric oxide-mediated inhibition of NFκB regulates hyperthermia-induced apoptosis. J Cell Biochem 2009; 106:999-1009. [DOI: 10.1002/jcb.22079] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
219
|
Lima B, Lam GKW, Xie L, Diesen DL, Villamizar N, Nienaber J, Messina E, Bowles D, Kontos CD, Hare JM, Stamler JS, Rockman HA. Endogenous S-nitrosothiols protect against myocardial injury. Proc Natl Acad Sci U S A 2009; 106:6297-302. [PMID: 19325130 PMCID: PMC2669330 DOI: 10.1073/pnas.0901043106] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Indexed: 11/18/2022] Open
Abstract
Despite substantial evidence that nitric oxide (NO) and/or endogenous S-nitrosothiols (SNOs) exert protective effects in a variety of cardiovascular diseases, the molecular details are largely unknown. Here we show that following left coronary artery ligation, mice with a targeted deletion of the S-nitrosoglutathione reductase gene (GSNOR(-/-)) have reduced myocardial infarct size, preserved ventricular systolic and diastolic function, and maintained tissue oxygenation. These profound physiological effects are associated with increases in myocardial capillary density and S-nitrosylation of the transcription factor hypoxia inducible factor-1alpha (HIF-1alpha) under normoxic conditions. We further show that S-nitrosylated HIF-1alpha binds to the vascular endothelial growth factor (VEGF) gene, thus identifying a role for GSNO in angiogenesis and myocardial protection. These results suggest innovative approaches to modulate angiogenesis and preserve cardiac function.
Collapse
Affiliation(s)
| | | | - Liang Xie
- Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Diana L. Diesen
- Medicine, Duke University Medical Center, Durham, NC 27710; and
| | | | | | | | | | | | - Joshua M. Hare
- Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL 33136
| | | | | |
Collapse
|
220
|
Pei DS, Sun YF, Song YJ. S-nitrosylation of PTEN Invovled in ischemic brain injury in rat hippocampal CA1 region. Neurochem Res 2009; 34:1507-12. [PMID: 19266280 DOI: 10.1007/s11064-009-9938-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 02/18/2009] [Indexed: 12/01/2022]
Abstract
The tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) is not only a protein, but also a lipid phosphatase that can negatively regulate the serine/threonine kinase Akt. It has been reported that PTEN can be regulated by means of phosphorylation. However, whether PTEN can be regulated by another post-translational protein modification (S-nitrosylation) was not fully elucidated. In this study, we investigated the S-nitrosylation of PTEN during transient cerebral ischemia/reperfusion in rat hippocampus. Transient brain ischemia was induced by the four-vessel occlusion in Sprague-Dawley rats. Our data show that S-nitrosylation of PTEN was increased significantly after 12 h of reperfusion compared with sham control. Pretreatment with the inhibitor of nNOS (7-NI) and the inhibitor of iNOS could inhibit PTEN's activity and decrease S-nitrosylation of PTEN. Taken together, these results indicate that nitric oxide could regulate PTEN's activity via S-nitrosylation during transient global ischemia in rat hippocampus.
Collapse
Affiliation(s)
- Dong-Sheng Pei
- Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, 221002 Xuzhou, Jiangsu, People's Republic of China.
| | | | | |
Collapse
|
221
|
Anathy V, Aesif SW, Guala AS, Havermans M, Reynaert NL, Ho YS, Budd RC, Janssen-Heininger YMW. Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas. ACTA ACUST UNITED AC 2009; 184:241-52. [PMID: 19171757 PMCID: PMC2654302 DOI: 10.1083/jcb.200807019] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species (ROS) increase ligation of Fas (CD95), a receptor important for regulation of programmed cell death. Glutathionylation of reactive cysteines represents an oxidative modification that can be reversed by glutaredoxins (Grxs). The goal of this study was to determine whether Fas is redox regulated under physiological conditions. In this study, we demonstrate that stimulation with Fas ligand (FasL) induces S-glutathionylation of Fas at cysteine 294 independently of nicotinamide adenine dinucleotide phosphate reduced oxidase-induced ROS. Instead, Fas is S-glutathionylated after caspase-dependent degradation of Grx1, increasing subsequent caspase activation and apoptosis. Conversely, overexpression of Grx1 attenuates S-glutathionylation of Fas and partially protects against FasL-induced apoptosis. Redox-mediated Fas modification promotes its aggregation and recruitment into lipid rafts and enhances binding of FasL. As a result, death-inducing signaling complex formation is also increased, and subsequent activation of caspase-8 and -3 is augmented. These results define a novel redox-based mechanism to propagate Fas-dependent apoptosis.
Collapse
Affiliation(s)
- Vikas Anathy
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1. Cell Res 2009; 19:449-57. [DOI: 10.1038/cr.2009.19] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
223
|
Murillo-Carretero M, Torroglosa A, Castro C, Villalobo A, Estrada C. S-Nitrosylation of the epidermal growth factor receptor: a regulatory mechanism of receptor tyrosine kinase activity. Free Radic Biol Med 2009; 46:471-9. [PMID: 19056486 DOI: 10.1016/j.freeradbiomed.2008.10.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 10/10/2008] [Accepted: 10/24/2008] [Indexed: 11/17/2022]
Abstract
Nitric oxide (NO) donors inhibit the epidermal growth factor (EGF)-dependent auto(trans)phosphorylation of the EGF receptor (EGFR) in several cell types in which NO exerts antiproliferative effects. We demonstrate in this report that NO inhibits, whereas NO synthase inhibition potentiates, the EGFR tyrosine kinase activity in NO-producing cells, indicating that physiological concentrations of NO were able to regulate the receptor activity. Depletion of intracellular glutathione enhanced the inhibitory effect of the NO donor 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA/NO) on EGFR tyrosine kinase activity, supporting the notion that such inhibition was a consequence of an S-nitrosylation reaction. Addition of DEA/NO to cell lysates resulted in the S-nitrosylation of a large number of proteins including the EGFR, as confirmed by the chemical detection of nitrosothiol groups in the immunoprecipitated receptor. We prepared a set of seven EGFR(C --> S) substitution mutants and demonstrated in transfected cells that the tyrosine kinase activity of the EGFR(C166S) mutant was completely resistant to NO, whereas the EGFR(C305S) mutant was partially resistant. In the presence of EGF, DEA/NO significantly inhibited Akt phosphorylation in cells transfected with wild-type EGFR, but not in those transfected with C166S or C305S mutants. We conclude that the EGFR can be posttranslationally regulated by reversible S-nitrosylation of C166 and C305 in living cells.
Collapse
|
224
|
Forrester MT, Foster MW, Benhar M, Stamler JS. Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med 2009; 46:119-26. [PMID: 18977293 PMCID: PMC3120222 DOI: 10.1016/j.freeradbiomed.2008.09.034] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/18/2008] [Accepted: 09/25/2008] [Indexed: 01/19/2023]
Abstract
Protein S-nitrosylation, the posttranslational modification of cysteine thiols to form S-nitrosothiols, is a principle mechanism of nitric oxide-based signaling. Studies have demonstrated myriad roles for S-nitrosylation in organisms from bacteria to humans, and recent efforts have greatly advanced our scientific understanding of how this redox-based modification is dynamically regulated during physiological and pathophysiological conditions. The focus of this review is the biotin-switch technique (BST), which has become a mainstay assay for detecting S-nitrosylated proteins in complex biological systems. Potential pitfalls and modern adaptations of the BST are discussed, as are future directions for this assay in the burgeoning field of protein S-nitrosylation.
Collapse
Affiliation(s)
- Michael T. Forrester
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710
- Department of Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, 27710
| | - Matthew W. Foster
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710
| | - Moran Benhar
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710
| | - Jonathan S. Stamler
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710
| |
Collapse
|
225
|
Paige JS, Xu G, Stancevic B, Jaffrey SR. Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability. CHEMISTRY & BIOLOGY 2008; 15:1307-16. [PMID: 19101475 PMCID: PMC2628636 DOI: 10.1016/j.chembiol.2008.10.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) regulates protein function by S-nitrosylation of cysteine to form nitrosothiols. Nitrosothiols are highly susceptible to nonenzymatic degradation by cytosolic reducing agents. Here we show that although most protein nitrosothiols are rapidly degraded by cytosolic reductants, a small subset form unusually stable S-nitrosylated proteins. Our findings suggest that stable S-nitrosylation reflects a protein conformation change that shields the nitrosothiol. To identify stable protein nitrosothiols, we developed a proteomic method for profiling S-nitrosylation. We examined the stability of over 100 S-nitrosylated proteins, and identified 10 stable nitrosothiols. These proteins remained S-nitrosylated in cells after NO synthesis was inhibited, unlike most S-nitrosylated proteins. Taken together, our data identify a class of NO targets that form stable nitrosothiols in the cell and are likely to mediate the persistent cellular effects of NO.
Collapse
Affiliation(s)
- Jeremy S Paige
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
226
|
Torta F, Usuelli V, Malgaroli A, Bachi A. Proteomic analysis of protein S-nitrosylation. Proteomics 2008; 8:4484-94. [PMID: 18846506 DOI: 10.1002/pmic.200800089] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) produces covalent PTMs of specific cysteine residues, a process known as S-nitrosylation. This route is dynamically regulated and is one of the major NO signalling pathways known to have strong and dynamic interactions with redox signalling. In agreement with this scenario, binding of NO to key cysteine groups can be linked to a broad range of physiological and pathological cellular events, such as smooth muscle relaxation, neurotransmission and neurodegeneration. The characterization of S-nitrosylated residues and the functional relevance of this protein modification are both essential information needed to understand the action of NO in living organisms. In this review, we focus on recent advances in this field and on state-of-the-art proteomic approaches which are aimed at characterizing the S-nitrosylome in different biological backgrounds.
Collapse
Affiliation(s)
- Federico Torta
- Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | |
Collapse
|
227
|
Takeuchi Y, Fujiwara T, Shimone Y, Miyataka H, Satoh T, Kirk KL, Hori H. Possible involvement of radical intermediates in the inhibition of cysteine proteases by allenyl esters and amides. Bioorg Med Chem Lett 2008; 18:6202-5. [PMID: 18951789 PMCID: PMC2607570 DOI: 10.1016/j.bmcl.2008.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 09/08/2008] [Accepted: 10/01/2008] [Indexed: 11/30/2022]
Abstract
In order to investigate crystallographically the mechanism of inhibition of cysteine protease by alpha-methyl-gamma,gamma-diphenylallenecarboxylic acid ethyl ester 3, a cysteine protease inhibitor having in vivo stability, we synthesized N-(alpha-methyl-gamma,gamma-diphenylallenecarbonyl)-L-phenylalanine ethyl ester 4. Reaction of 4 with thiophenol, the SH group of which has similar pK(a) value to that of cysteine protease, produced oxygen-mediated radical adducts 6 and 7 in ambient air but did not proceed under oxygen-free conditions. Catalytic activities of two thiol enzymes including cathepsin B were also lowered in the absence of oxygen. These results suggest that cysteine protease can act through an oxygen-dependent radical mechanism.
Collapse
Affiliation(s)
- Yoshio Takeuchi
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
228
|
López-Sánchez LM, Corrales FJ, González R, Ferrín G, Muñoz-Castañeda JR, Ranchal I, Hidalgo AB, Briceño J, López-Cillero P, Gómez MA, De La Mata M, Muntané J, Rodríguez-Ariza A. Alteration of S-nitrosothiol homeostasis and targets for protein S-nitrosation in human hepatocytes. Proteomics 2008; 8:4709-4720. [PMID: 18850629 DOI: 10.1002/pmic.200700313] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Indexed: 11/07/2022]
Abstract
The liver is one organ clearly influenced by nitric oxide (NO), and acute and chronic exposure to this substance has been associated with distinct patterns of liver disease. Disruption or deregulation of S-nitrosothiol (SNO) signalling leads to impairment of cellular function and disease, and this study was aimed to identify potential targets for protein S-nitrosation during alteration of SNO homeostasis in human hepatocytes. Cells were treated with S-nitroso-L-cysteine (CSNO), an effective physiological nitrosothiol for delivering NO bioactivity to cells. Treatment with CSNO augmented the levels of S-nitrosoproteins detected both by chemiluminescence and the biotin switch method. CSNO treatment also increased S-nitrosoglutathione reductase (GSNOR) activity that returned SNO content to basal levels. This increased enzymatic activity was related to augmented levels of ADH-5 mRNA, the gene encoding for GSNOR in humans. In addition, the treatment with the SNO also increased cell death. Twenty S-nitrosoproteins were identified in CSNO-treated hepatocytes, including mitochondrial aldehyde dehydrogenase, protein disulphide isomerase, Hsp60, GRP75 and Raf kinase inhibitor protein. The identification in the S-nitrosatable proteome of proteins involved in metabolism, maintenance of cellular homeostasis and signalling points to the relevance of protein S-nitrosation to the physiology and pathophysiology of human hepatocytes.
Collapse
|
229
|
Chang GC, Yu CTR, Tsai CH, Tsai JR, Chen JC, Wu CC, Wu WJ, Hsu SL. An epidermal growth factor inhibitor, Gefitinib, induces apoptosis through a p53-dependent upregulation of pro-apoptotic molecules and downregulation of anti-apoptotic molecules in human lung adenocarcinoma A549 cells. Eur J Pharmacol 2008; 600:37-44. [PMID: 18973751 DOI: 10.1016/j.ejphar.2008.10.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 09/25/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
A selective epidermal growth factor receptor inhibitor, Gefitinib, has been clinically demonstrated to be effective for certain cancer cell types including lung cancer. Our previous study indicated that Gefitinib induced Fas/caspase-dependent apoptosis in human lung adenocarcinoma A549 cells. However, the pathway relaying the signals of Gefitinib-induced cell death has not been fully elucidated. Loss of normal function of p53 facilitates the development of neoplastic lesions and possibly contributes to the development of resistance to chemotherapy. Thus, the current study was designed to examine the role of p53 in Gefitinib-induced apoptosis. Incubation of human lung adenocarcinoma A549 cells with 25 microM Gefitinib resulted in phosphorylation and activation of p53 such as enhanced DNA binding activity, which was accompanied by the upregulation of PUMA (p53 upregulated modulator of apoptosis) and Fas, and downregulation of survivin and XIAP (X-linked inhibitor of apoptosis protein). The Gefitinib-mediated Fas, PUMA, survivin, XIAP regulation and subsequent apoptosis were significantly inhibited in stable p53-shRNA transfectants. Similarly, H1299/p53 cells were more sensitive to Gefitinib compared to H1299 cells in clonogenic survival assay. This event was accompanied by p53 phosphorylation, as well as Fas, PUMA, survivin, and XIAP modulation. Collectively, the results support an important role of p53 in Gefitinib-induced apoptosis in human lung cancer cells. p53 may induce apoptosis through the regulation of apoptotic (Fas and PUMA) and anti-apoptotic (XIAP and survivin) genes. Our studies not only pave a way to the understanding of pharmacological mechanisms of Gefitinib, but also implicate for the necessity to prescreen p53 expression level before clinical application of Gefitinib in human cancer therapy.
Collapse
Affiliation(s)
- Gee-Chen Chang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AHJ, Khoo KH, Meng TC. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem 2008; 283:35265-72. [PMID: 18840608 DOI: 10.1074/jbc.m805287200] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-nitrosylation mediated by cellular nitric oxide (NO) plays a primary role in executing biological functions in cGMP-independent NO signaling. Although S-nitrosylation appears similar to Cys oxidation induced by reactive oxygen species, the molecular mechanism and biological consequence remain unclear. We investigated the structural process of S-nitrosylation of protein-tyrosine phosphatase 1B (PTP1B). We treated PTP1B with various NO donors, including S-nitrosothiol reagents and compound-releasing NO radicals, to produce site-specific Cys S-nitrosylation identified using advanced mass spectrometry (MS) techniques. Quantitative MS showed that the active site Cys-215 was the primary residue susceptible to S-nitrosylation. The crystal structure of NO donor-reacted PTP1B at 2.6 A resolution revealed that the S-NO state at Cys-215 had no discernible irreversibly oxidized forms, whereas other Cys residues remained in their free thiol states. We further demonstrated that S-nitrosylation of the Cys-215 residue protected PTP1B from subsequent H(2)O(2)-induced irreversible oxidation. Increasing the level of cellular NO by pretreating cells with an NO donor or by activating ectopically expressed NO synthase inhibited reactive oxygen species-induced irreversible oxidation of endogenous PTP1B. These findings suggest that S-nitrosylation might prevent PTPs from permanent inactivation caused by oxidative stress.
Collapse
Affiliation(s)
- Yi-Yun Chen
- Institute of Biological Chemistry, National Core Facility for Proteomics Research, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Patra SK, Szyf M. DNA methylation-mediated nucleosome dynamics and oncogenic Ras signaling: insights from FAS, FAS ligand and RASSF1A. FEBS J 2008; 275:5217-35. [PMID: 18803665 DOI: 10.1111/j.1742-4658.2008.06658.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytosine methylation at the 5-carbon position is the only known stable base modification found in the mammalian genome. The organization and modification of chromatin is a key factor in programming gene expression patterns. Recent findings suggest that DNA methylation at the junction of transcription initiation and elongation plays a critical role in suppression of transcription. This effect is mechanistically mediated by the state of chromatin modification. DNA methylation attracts binding of methyl-CpG-binding domain proteins that trigger repression of transcription, whereas DNA demethylation facilitates transcription activation. Understanding the rules that guide differential gene expression, as well as transcription dynamics and transcript abundance, has proven to be a taxing problem for molecular biologists and oncologists alike. The use of novel molecular modeling methods is providing exciting insights into the challenging problem of how methylation mediates chromatin dynamics. New data implicate lipid rafts as the coordinators of signals emanating from the cell membrane and are converging on the mechanisms linking DNA methylation and chromatin dynamics. This review focuses on some of these recent advances and uses lipid-raft-facilitated Ras signaling as a paradigm for understanding DNA methylation, chromatin dynamics and apoptosis.
Collapse
|
232
|
Iyer AKV, Azad N, Wang L, Rojanasakul Y. Role of S-nitrosylation in apoptosis resistance and carcinogenesis. Nitric Oxide 2008; 19:146-51. [PMID: 18474261 PMCID: PMC3226739 DOI: 10.1016/j.niox.2008.04.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) has been widely recognized as a positive regulator of tumorigenesis and cancer progression through its ability to regulate important proteins in various signal transduction pathways. S-Nitrosylation, or covalent attachment of NO to protein sulphydryl groups, has gained prominence as an important mechanism by which NO modulates physiologic and pathologic cellular responses. In this article, we discuss S-nitrosylation of two key apoptosis-regulatory proteins of the intrinsic and extrinsic death pathways, namely B-cell lymphoma-2 (Bcl-2) and FLICE-inhibitory protein (FLIP). These proteins have been shown to be upregulated in a variety of tumors and have been implicated with cancer chemoresistance through dysregulation of apoptosis. S-Nitrosylation of these proteins precludes their ubiquitination and subsequent degradation by the proteasome, thus accentuating their anti-apoptotic effect which is critical in the context of tumorigenic potential and cancer progression. We propose that such post-translational modifications of proteins by NO may be a general mechanism that tumor cells exploit to tilt the scales towards survival and proliferation by evading cell death.
Collapse
Affiliation(s)
- Anand Krishnan V. Iyer
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Neelam Azad
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Liying Wang
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
233
|
|
234
|
|
235
|
Pei DS, Song YJ, Yu HM, Hu WW, Du Y, Zhang GY. Exogenous nitric oxide negatively regulates c-Jun N-terminal kinase activation via inhibiting endogenous NO-induced S-nitrosylation during cerebral ischemia and reperfusion in rat hippocampus. J Neurochem 2008; 106:1952-63. [DOI: 10.1111/j.1471-4159.2008.05531.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
236
|
Ibiza S, Serrador J. The role of nitric oxide in the regulation of adaptive immune responses. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0213-9626(08)70058-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
237
|
Janssen-Heininger YMW, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, van der Vliet A. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 2008; 45:1-17. [PMID: 18423411 PMCID: PMC2453533 DOI: 10.1016/j.freeradbiomed.2008.03.011] [Citation(s) in RCA: 594] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/04/2008] [Accepted: 03/11/2008] [Indexed: 12/15/2022]
Abstract
Oxidants are produced as a by-product of aerobic metabolism, and organisms ranging from prokaryotes to mammals have evolved with an elaborate and redundant complement of antioxidant defenses to confer protection against oxidative insults. Compelling data now exist demonstrating that oxidants are used in physiological settings as signaling molecules with important regulatory functions controlling cell division, migration, contraction, and mediator production. These physiological functions are carried out in an exquisitely regulated and compartmentalized manner by mild oxidants, through subtle oxidative events that involve targeted amino acids in proteins. The precise understanding of the physiological relevance of redox signal transduction has been hampered by the lack of specificity of reagents and the need for chemical derivatization to visualize reversible oxidations. In addition, it is difficult to measure these subtle oxidation events in vivo. This article reviews some of the recent findings that illuminate the significance of redox signaling and exciting future perspectives. We also attempt to highlight some of the current pitfalls and the approaches needed to advance this important area of biochemical and biomedical research.
Collapse
|
238
|
Ando K, Hirao S, Kabe Y, Ogura Y, Sato I, Yamaguchi Y, Wada T, Handa H. A new APE1/Ref-1-dependent pathway leading to reduction of NF-kappaB and AP-1, and activation of their DNA-binding activity. Nucleic Acids Res 2008; 36:4327-36. [PMID: 18586825 PMCID: PMC2490748 DOI: 10.1093/nar/gkn416] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
APE1/Ref-1 is thought to be a multifunctional protein involved in reduction-oxidation (redox) regulation and base excision DNA repair, and is required for early embryonic development in mice. APE1/Ref-1 has redox activity and AP endonuclease activity, and is able to enhance DNA-binding activity of several transcription factors, including NF-kappaB, AP-1 and p53, through reduction of their critical cysteine residues. However, it remains elusive exactly how APE1/Ref-1 carries out its essential functions in vivo. Here, we show that APE1/Ref-1 not only reduces target transcription factors directly but also facilitates their reduction by other reducing molecules such as glutathione or thioredoxin. The new activity of APE1/Ref-1, termed redox chaperone activity, is exerted at concentration significantly lower than that required for its redox activity and is neither dependent on its redox activity nor on its AP endonuclease activity. We also show evidence that redox chaperone activity of APE1/Ref-1 is critical to NF-kappaB-mediated gene expression in human cells and is mediated through its physical association with target transcription factors. Thus, APE1/Ref-1 may play multiple roles in an antioxidative stress response pathway through its different biochemical activities. These findings also provide new insight into the mechanism of intracellular redox regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hiroshi Handa
- *To whom correspondence should be addressed. +81 45 924 5872+81 45 924 5834
| |
Collapse
|
239
|
Abstract
S-Nitrosylation is a ubiquitous signaling process in biological systems. Research regarding this signaling has been hampered, however, by assays that lack sensitivity and specificity. In particular, iodine-based assays for S-nitrosothiols (1) produce nitrosyliodide, a potent nitrosating agent that can be lost to reactions in the biological sample being studied; (2) require pretreatment of biological samples with several reagents that react with proteins, artifactually forming or breaking S-NO bonds before the assay; and (3) are not sensitive or specific for nitrogen oxides in biological samples, reporting a wide range of different concentrations and falsely reporting NO-modified proteins, to be nitrite. These data, therefore, suggest that iodine-based assays should never be used for biological S-nitrosothiols. There are other assays that provide reasonably sensitive and accurate data regarding biological S-nitrosothiols, including assays based on mass spectrometry, spectrophotometry, chemiluminescence, fluorescence, and immunostaining. Each assay, however, has limitations and should be quantitatively complemented by separate assays. Continued improvement in assays will facilitate improved understanding of S-nitrosylation signaling.
Collapse
Affiliation(s)
- Lisa A Palmer
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | |
Collapse
|
240
|
Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout B, Bahar I. Computational insights on the competing effects of nitric oxide in regulating apoptosis. PLoS One 2008; 3:e2249. [PMID: 18509469 PMCID: PMC2386238 DOI: 10.1371/journal.pone.0002249] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 03/02/2008] [Indexed: 01/05/2023] Open
Abstract
Despite the establishment of the important role of nitric oxide (NO) on apoptosis, a molecular-level understanding of the origin of its dichotomous pro- and anti-apoptotic effects has been elusive. We propose a new mathematical model for simulating the effects of nitric oxide (NO) on apoptosis. The new model integrates mitochondria-dependent apoptotic pathways with NO-related reactions, to gain insights into the regulatory effect of the reactive NO species N(2)O(3), non-heme iron nitrosyl species (FeL(n)NO), and peroxynitrite (ONOO(-)). The biochemical pathways of apoptosis coupled with NO-related reactions are described by ordinary differential equations using mass-action kinetics. In the absence of NO, the model predicts either cell survival or apoptosis (a bistable behavior) with shifts in the onset time of apoptotic response depending on the strength of extracellular stimuli. Computations demonstrate that the relative concentrations of anti- and pro-apoptotic reactive NO species, and their interplay with glutathione, determine the net anti- or pro-apoptotic effects at long time points. Interestingly, transient effects on apoptosis are also observed in these simulations, the duration of which may reach up to hours, despite the eventual convergence to an anti-apoptotic state. Our computations point to the importance of precise timing of NO production and external stimulation in determining the eventual pro- or anti-apoptotic role of NO.
Collapse
Affiliation(s)
- Elife Z. Bagci
- Department of Computational Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Genetics, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yoram Vodovotz
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy R. Billiar
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bard Ermentrout
- Department of Mathematics, Arts & Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (IB); (BE)
| | - Ivet Bahar
- Department of Computational Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (IB); (BE)
| |
Collapse
|
241
|
|
242
|
Benhar M, Forrester MT, Hess DT, Stamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 2008; 320:1050-4. [PMID: 18497292 PMCID: PMC2754768 DOI: 10.1126/science.1158265] [Citation(s) in RCA: 441] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nitric oxide acts substantially in cellular signal transduction through stimulus-coupled S-nitrosylation of cysteine residues. The mechanisms that might subserve protein denitrosylation in cellular signaling remain uncharacterized. Our search for denitrosylase activities focused on caspase-3, an exemplar of stimulus-dependent denitrosylation, and identified thioredoxin and thioredoxin reductase in a biochemical screen. In resting human lymphocytes, thioredoxin-1 actively denitrosylated cytosolic caspase-3 and thereby maintained a low steady-state amount of S-nitrosylation. Upon stimulation of Fas, thioredoxin-2 mediated denitrosylation of mitochondria-associated caspase-3, a process required for caspase-3 activation, and promoted apoptosis. Inhibition of thioredoxin-thioredoxin reductases enabled identification of additional substrates subject to endogenous S-nitrosylation. Thus, specific enzymatic mechanisms may regulate basal and stimulus-induced denitrosylation in mammalian cells.
Collapse
Affiliation(s)
- Moran Benhar
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael T. Forrester
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Douglas T. Hess
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jonathan S. Stamler
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
243
|
Nitric oxide-mediated modulation of calcium/calmodulin-dependent protein kinase II. Biochem J 2008; 412:223-31. [DOI: 10.1042/bj20071195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanisms of NO inhibition of CaMK [Ca2+/CaM (calmodulin)-dependent protein kinase] II activity were studied. In rat pituitary tumour GH3 cells, TRH [thyrotrophin (TSH)-releasing hormone]-stimulated phosphorylation of nNOS [neuronal NOS (NO synthase)] at Ser847 was sensitive to an inhibitor of CaMKs, KN-93, and was enhanced by inhibition of nNOS with 7NI (7-nitroindazole). Enzyme activity of CaMKII following in situ treatment with 7NI was also increased. The in vitro activity of CaMKII was inhibited by co-incubation either with nNOS and L-arginine or with NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) and DEA-NONOate [diethylamine-NONOate (diazeniumdiolate)]. Once inhibited by these treatments, CaMKII was observed to undergo full reactivation on the addition of a reducing reagent, DTT (dithiothreitol). In transfected cells expressing CaMKII and nNOS, treatment with the calcium ionophore A23187 further revealed nNOS phosphorylation at Ser847, which was enhanced by 7NI and CaMKII S-nitrosylation. Mutated CaMKII (C6A), in which Cys6 was substituted with an alanine residue, was refractory to 7NI-induced enhancement of nNOS phosphorylation or to CaMKII S-nitrosylation. Furthermore, we could identify Cys6 as a direct target for S-nitrosylation of CaMKII using MS. In addition, treatment with glutamate caused an increase in CaMKII S-nitrosylation in rat hippocampal slices. This glutamate-induced S-nitrosylation was blocked by 7NI. These results suggest that inactivation of CaMKII mediated by S-nitrosylation at Cys6 may contribute to NO-induced neurotoxicity in the brain.
Collapse
|
244
|
Perissinotti LL, Leitus G, Shimon L, Estrin D, Doctorovich F. A unique family of stable and water-soluble S-nitrosothiol complexes. Inorg Chem 2008; 47:4723-33. [PMID: 18465851 DOI: 10.1021/ic7024999] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we present a complete and detailed experimental characterization and theoretical study of a variety of coordinated S-nitrosothiols (RSNOs), such as cysteine derivatives, mercaptosuccinic acid, benzyl thiol, and phenyl thiol. Some of them are extremely unstable and sensitive in free form. Strikingly, in contrast with free S-nitrosothiols, we found that, upon coordination to iridium, they become very stable even in aqueous solutions. The study of these coordinated complexes provides further insight on the elucidation of structural aspects dealing with the nature of the S-N bond in RSNOs, a fact which still remains a matter of controversy.
Collapse
Affiliation(s)
- Laura L Perissinotti
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, (C1428EHA) Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
245
|
Leon L, Jeannin JF, Bettaieb A. Post-translational modifications induced by nitric oxide (NO): implication in cancer cells apoptosis. Nitric Oxide 2008; 19:77-83. [PMID: 18474258 DOI: 10.1016/j.niox.2008.04.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 11/28/2022]
Abstract
Post-translational modifications of proteins can regulate the balance between survival and cell death signals. It is increasingly recognized that nitric oxide (NO) and reactive oxygen species (ROS)-induced post-translational modifications could play a role in cell death. This review provides an introduction of current knowledge of NO proteins modifications promoting or inhibiting cell death with special attention in cancer cells.
Collapse
Affiliation(s)
- Lissbeth Leon
- EPHE, Laboratoire d'immunologie et immunothérapie des cancers, Inserm U866, Dijon, F-21000, France.
| | | | | |
Collapse
|
246
|
NCX 4040, an NO-donating acetylsalicylic acid derivative: efficacy and mechanisms of action in cancer cells. Nitric Oxide 2008; 19:225-36. [PMID: 18472019 DOI: 10.1016/j.niox.2008.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/14/2008] [Accepted: 04/14/2008] [Indexed: 12/12/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have repeatedly shown to be effective in tumor prevention, but important side-effects limit their wide clinical use. Nitric oxide-releasing derivatives (NO-NSAIDs) are a promising class of compounds synthesized by combining a classic NSAID molecule with an NO-releasing moiety to counteract side-effects. These new chemical entities exhibit a significantly higher activity and much lower toxicity with respect to the parental drug. In the present paper, we report the results obtained from in in vitro experimental systems aimed to evaluate the activity and mechanisms of action of the novel NO-releasing aspirin derivative, NCX 4040. The in vitro studies were carried out on a panel of human colon (LoVo, LoVo Dx, WiDr, LRWZ), bladder (HT1376, MCR), and pancreatic (Capan-2, MIA PaCa-2, T3M4) cancer cell lines. With regard to colon cancer, NCX 4040 activity was also investigated in vitro in combination with drugs currently used in clinical practice and was validated in vivo on tumor-bearing mice xenografted with the aforementioned colon cancer cell lines. The in vitro studies showed a high cytotoxic activity of NCX 4040 in all tumor histotypes and demonstrated the pivotal role of the NO component in drug activity. It was also observed that NCX 4040 exerts a pro-apoptotic activity via a mitochondria-dependent pathway. Moreover, the in vivo studies on xenografted mice further confirmed the antitumor efficacy and low toxicity of NCX 4040 in colon cancer and highlighted its role as sensitizing agent of oxaliplatin cytotoxicity.
Collapse
|
247
|
Kirsch M, de Groot H. N-nitrosomelatonin outcompetes S-nitrosocysteine in inhibiting glyceraldehyde 3-phosphate dehydrogenase: first evidence that N-nitrosomelatonin can modify protein function. J Pineal Res 2008; 44:244-9. [PMID: 18339119 DOI: 10.1111/j.1600-079x.2007.00517.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Low-molecular-weight S-nitrosothiols (RSNOs) are well known for their capability to transnitrosate cysteine residues of enzymes thereby altering their catalytic activity. It is unknown, however, whether N-nitrosomelatonin (NOMela) which is highly effective in transnitrosating low-molecular-weight thiols (RSHs) can also alter protein function. In the present study, we report on such a capability with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a target enzyme. Reaction of NOMela with GAPDH resulted in an increase of RSNOs at the expense of RSHs. Somewhat surprisingly, NOMela was about 10-fold more effective than S-nitrosocysteine in inhibiting GAPDH. Vitamin C and glutathione increased the NOMela-dependent inhibition of the enzyme by accelerating the intermediacy of nitroxyl which is also highly effective in nitrosating RSHs. The occurrence of this intermediate during the NOMela-vitamin C reaction was verified by using Mn(III)-tetrakis(1-methyl-4-pyridyl)porphorin pentachloride as nitroxyl scavenger. The NOMela-dependent inactivation of GAPDH was so effective that this reaction can be used to quantify NOMela with high sensitivity.
Collapse
Affiliation(s)
- Michael Kirsch
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany.
| | | |
Collapse
|
248
|
Osipov AN, Borisenko GG, Vladimirov YA. Biological activity of hemoprotein nitrosyl complexes. BIOCHEMISTRY (MOSCOW) 2008; 72:1491-504. [PMID: 18282138 DOI: 10.1134/s0006297907130068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chemical and biological functions of hemoprotein nitrosyl complexes as well as their photolysis products are discussed in this review. Chemical properties of nitric oxide are discussed, and major chemical reactions such as interaction with thiols, free radicals, and transition metals are considered. Specific attention is paid to the generation of hemoprotein nitrosyl complexes. The mechanisms of nitric oxide reactions with hemoglobin and cytochrome c and physicochemical properties of their nitrosyl complexes are discussed. A review of photochemical reactions of nitrosyl complexes with various ligands is given. Finally, we observe physiological effects of visible radiation on hemoprotein nitrosyl complexes: smooth muscle relaxation and reactivation of mitochondrial respiration.
Collapse
Affiliation(s)
- A N Osipov
- Russian State Medical University, ul Ostrovityanova 1, 117997 Moscow, Russia.
| | | | | |
Collapse
|
249
|
Juhaszova M, Wang S, Zorov DB, Nuss HB, Gleichmann M, Mattson MP, Sollott SJ. The identity and regulation of the mitochondrial permeability transition pore: where the known meets the unknown. Ann N Y Acad Sci 2008; 1123:197-212. [PMID: 18375592 DOI: 10.1196/annals.1420.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mitochondrial permeability transition (MPT) pore complex is a key participant in the machinery that controls mitochondrial fate and, consequently, cell fate. The quest for the pore identity has been ongoing for several decades and yet the main structure remains unknown. Established "dogma" proposes that the core of the MPT pore is composed of an association of voltage-dependent anion channel (VDAC) and adenine nucleotide translocase (ANT). Recent genetic knockout experiments contradict this commonly accepted interpretation and provide a basis for substantial revision of the MPT pore identity. There is now sufficient evidence to exclude VDAC and ANT as the main pore structural components. Regarding MPT pore regulation, the role of cyclophilin D is confirmed and ANT may still serve some regulatory function, although the involvement of hexokinase II and creatine kinase remains unresolved. When cell protection signaling pathways are activated, we have found that the Bcl-2 family members relay the signal from glycogen synthase kinase-3 beta onto a target at or in close proximity to the pore. Our experimental findings in intact cardiac myocytes and neurons indicate that the current "dogma" related to the role of Ca2+ in MPT induction requires reevaluation. Emerging evidence suggests that after injury-producing stresses, reactive oxygen species (but not Ca2+) are largely responsible for the pore induction. In this article we discuss the current state of knowledge and provide new data related to the MPT pore structure and regulation.
Collapse
Affiliation(s)
- Magdalena Juhaszova
- Laboratory of Cardiovascular Science, Gerontology Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224-6825, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
Harris LK, McCormick J, Cartwright JE, Whitley GSJ, Dash PR. S-nitrosylation of proteins at the leading edge of migrating trophoblasts by inducible nitric oxide synthase promotes trophoblast invasion. Exp Cell Res 2008; 314:1765-76. [PMID: 18394602 DOI: 10.1016/j.yexcr.2008.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 01/30/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
Nitric oxide regulates many important cellular processes including motility and invasion. Many of its effects are mediated through the modification of specific cysteine residues in target proteins, a process called S-nitrosylation. Here we show that S-nitrosylation of proteins occurs at the leading edge of migrating trophoblasts and can be attributed to the specific enrichment of inducible nitric oxide synthase (iNOS/NOS2) in this region. Localisation of iNOS to the leading edge is co-incidental with a site of extensive actin polymerisation and is only observed in actively migrating cells. In contrast endothelial nitric oxide synthase (eNOS/NOS3) shows distribution that is distinct and non-colocalised with iNOS, suggesting that the protein S-nitrosylation observed at the leading edge is caused only by iNOS and not eNOS. We have identified MMP-9 as a potential target for S-nitrosylation in these cells and demonstrate that it co-localises with iNOS at the leading edge of migrating cells. We further demonstrate that iNOS plays an important role in promoting trophoblast invasion, which is an essential process in the establishment of a successful pregnancy.
Collapse
Affiliation(s)
- Lynda K Harris
- Maternal and Fetal Health Research Centre, Division of Human Development, University of Manchester, St. Mary's Hospital, Manchester, UK
| | | | | | | | | |
Collapse
|