201
|
Krawczyk E, Hong SH, Galli S, Trinh E, Wietlisbach L, Misiukiewicz SF, Tilan JU, Chen YS, Schlegel R, Kitlinska J. Murine neuroblastoma cell lines developed by conditional reprogramming preserve heterogeneous phenotypes observed in vivo. J Transl Med 2020; 100:38-51. [PMID: 31409888 PMCID: PMC6920526 DOI: 10.1038/s41374-019-0297-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric tumor of the peripheral nervous system. Treatment of the disease represents an unsolved clinical problem, as survival of patients with aggressive form of NB remains below 50%. Despite recent identification of numerous potential therapeutic targets, clinical trials validating them are challenging due to the rarity of the disease and its high patient-to-patient heterogeneity. Hence, there is a need for the accurate preclinical models that would allow testing novel therapeutic approaches and prioritizing the clinical studies, preferentially in personalized way. Here, we propose using conditional reprogramming (CR) technology for rapid development of primary NB cell cultures that could become a new model for such tests. This newly established method allowed for indefinite propagation of normal and tumor cells of epithelial origin in an undifferentiated state by their culture in the presence of Rho-associated kinase (ROCK) inhibitor, Y-27632, and irradiated mouse feeder cells. Using a modification of this approach, we isolated cell lines from tumors arising in the TH-MYCN murine transgenic model of NB (CR-NB). The cells were positive for neuronal markers, including Phox2B and peripherin and consisted of two distinct populations: mesenchymal and adrenergic expressing corresponding markers of their specific lineage. This heterogeneity of the CR-NB cells mimicked the different tumor cell phenotypes in TH-MYCN tumor tissues. The CR-NB cells preserved anchorage-independent growth capability and were successfully passaged, frozen and biobanked. Further studies are required to determine the utility of this method for isolation of human NB cultures, which can become a novel model for basic, translational, and clinical research, including individualized drug testing.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington DC, USA.
| | - Sung-Hyeok Hong
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Susana Galli
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Emily Trinh
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Larissa Wietlisbach
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Sara F. Misiukiewicz
- Human Science Department, School of Nursing and Health Studies, Georgetown University Medical Center, Washington DC
| | - Jason U. Tilan
- Human Science Department, School of Nursing and Health Studies, Georgetown University Medical Center, Washington DC
| | - You-Shin Chen
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| | - Richard Schlegel
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington DC
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC
| |
Collapse
|
202
|
Loef EJ, Brooks AES, Lorenz N, Birch NP, Dunbar PR. Neuroserpin regulates human T cell-T cell interactions and proliferation through inhibition of tissue plasminogen activator. J Leukoc Biol 2020; 107:145-158. [PMID: 31667914 DOI: 10.1002/jlb.2a1019-098rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 01/01/2023] Open
Abstract
T cells play a key role in mounting an adaptive immune response. T cells are activated upon recognition of cognate Ag presented by an APC. Subsequently, T cells adhere to other activated T cells to form activation clusters, which lead to directed secretion of cytokines between communicating cells. T cell activation clusters have been implicated in regulating activation, proliferation, and memory formation in T cells. We previously reported the expression of the protease inhibitor neuroserpin by human T cells and showed that expression and intracellular localization is regulated following T cell activation. To gain a better understanding of neuroserpin in the proteolytic environment postactivation we assessed its role in human T cell clustering and proliferation. Neuroserpin knockdown increased T cell proliferation and cluster formation following T cell activation. This increased cluster formation was dependent on the proteases tissue plasminogen activator (tPA) and plasmin. Furthermore, neuroserpin knockdown or plasmin treatment of T cells increased the cleavage of annexin A2, a known plasmin target that regulates the actin cytoskeleton. Live cell imaging of activated T cells further indicated a role of the actin cytoskeleton in T cell clustering. The inhibition of actin regulators myosin ATPase and Rho-associated protein kinase signaling completely reversed the neuroserpin knockdown-induced effects. The results presented in this study reveal a novel role for neuroserpin and the proteolytic environment in the regulation of T cell activation biology.
Collapse
Affiliation(s)
- Evert Jan Loef
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Natalie Lorenz
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research and Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
203
|
Chen J, Ananthanarayanan B, Springer KS, Wolf KJ, Sheyman SM, Tran VD, Kumar S. Suppression of LIM Kinase 1 and LIM Kinase 2 Limits Glioblastoma Invasion. Cancer Res 2020; 80:69-78. [PMID: 31641031 PMCID: PMC6942638 DOI: 10.1158/0008-5472.can-19-1237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/18/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
The aggressive brain tumor glioblastoma (GBM) is characterized by rapid cellular infiltration of brain tissue, raising the possibility that disease progression could potentially be slowed by disrupting the machinery of cell migration. The LIM kinase isoforms LIMK1 and LIMK2 (LIMK1/2) play important roles in cell polarization, migration, and invasion and are markedly upregulated in GBM and many other infiltrative cancers. Yet, it remains unclear whether LIMK suppression could serve as a viable basis for combating GBM infiltration. In this study, we investigated effects of LIMK1/2 suppression on GBM invasion by combining GBM culture models, engineered invasion paradigms, and mouse xenograft models. While knockdown of either LIMK1 or LIMK2 only minimally influenced invasion in culture, simultaneous knockdown of both isoforms strongly reduced the invasive motility of continuous culture models and human GBM tumor-initiating cells (TIC) in both Boyden chamber and 3D hyaluronic acid spheroid invasion assays. Furthermore, LIMK1/2 functionally regulated cell invasiveness, in part, by disrupting polarized cell motility under confinement and cell chemotaxis. In an orthotopic xenograft model, TICs stably transduced with LIMK1/2 shRNA were implanted intracranially in immunocompromised mice. Tumors derived from LIMK1/2 knockdown TICs were substantially smaller and showed delayed growth kinetics and more distinct margins than tumors derived from control TICs. Overall, LIMK1/2 suppression increased mean survival time by 30%. These findings indicate that LIMK1/2 strongly regulate GBM invasive motility and tumor progression and support further exploration of LIMK1/2 as druggable targets. SIGNIFICANCE: Targeting the actin-binding proteins LIMK1 and LIMK2 significantly diminishes glioblastoma invasion and spread, suggesting the potential value of these proteins as therapeutic targets.
Collapse
Affiliation(s)
- Joseph Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | | | - Kelsey S Springer
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Kayla J Wolf
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California
| | - Sharon M Sheyman
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Vivien D Tran
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, California.
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California
| |
Collapse
|
204
|
Tharasanit T, Tiptanavattana N, Oravetdilok K, Tuangsintanakul T, Sirithanyakul P, Tanvetthayanont P. Optimal concentration of Rho-associated coiled-coil kinase (ROCK) inhibitor improved sperm membrane functionality and fertilizing ability of cryopreserved-thawed feline sperm. Theriogenology 2019; 144:27-32. [PMID: 31887653 DOI: 10.1016/j.theriogenology.2019.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 11/26/2022]
Abstract
Sperm cryopreservation induces irreversible loss of viability and fertilizing ability. This study aimed at examining the effects of Rho-associated, coiled-coil kinase (ROCK) inhibitor on quality of frozen-thawed feline sperm. Ejaculated semen from individual cats (n = 6) was examined for the expression of LIMK1 and LIMK2 mediated ROCK cascade. The effects of ROCK inhibitor during cooling and cryopreservation on sperm quality and fertilizing ability were also examined. Feline sperm were treated with different concentrations of ROCK inhibitor (10, 20 and 40 μM) during cooling at 4 °C and cryopreservation. Sperm cooled and conventionally cryopreserved without ROCK inhibitor (0 μM) served as a control group. The ROCK cascade was confirmed in feline sperm as they expressed mRNA of LIMK1 and LIMK2 genes. Cryopreservation significantly reduced sperm quality in terms of viability (91.63 ± 3.96 vs. 60.11 ± 8.93), progressive motility (91.67 ± 3.54 vs. 46.67 ± 8.66) and acrosome integrity (93.49 ± 3.64 vs. 63.81 ± 5.31) for fresh and frozen-thawed sperm, respectively (p < 0.05). The positive effects of ROCK inhibitor on sperm quality were pronounced at 1 and 3 h post-thaw. ROCK inhibitor at 10 μM significantly improved sperm motility and membrane functionality compared to those observed in a control group (0 μM) (p < 0.05). In vitro fertilization revealed that supplement ROCK inhibitor at 10 μM during cryopreservation significantly improved in vitro fertilizing ability of the frozen-thawed sperm (p < 0.05). However, it did not subsequently increase morula and blastocyst rates (p > 0.05). Increased concentrations of ROCK inhibitor to 20 and 40 μM did not further improve the quality of frozen-thawed sperm. In conclusion, an optimal concentration (10 μM) of the ROCK inhibitor added into cooling medium could improve post-thaw sperm quality.
Collapse
Affiliation(s)
- Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; The Research and Development Center for Livestock Production Technology, The Faculty of Veterinary Science, Chulalongkorn University, 10330, Thailand.
| | - Narong Tiptanavattana
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Krittin Oravetdilok
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tiraporn Tuangsintanakul
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pisit Sirithanyakul
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Potsawat Tanvetthayanont
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
205
|
Wang L, Wu S, Cao G, Fan Y, Dunne N, Li X. Biomechanical studies on biomaterial degradation and co-cultured cells: mechanisms, potential applications, challenges and prospects. J Mater Chem B 2019; 7:7439-7459. [PMID: 31539007 DOI: 10.1039/c9tb01539f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Biomechanics contains a wide variety of research fields related to biology and mechanics. Actually, to better study or develop a tissue-engineered system, it is now widely recognized that there is no complete nor meaningful study without considering biomechanical factors and the cell response or adaptation to biomechanics. In that respect, this review will focus on not only the influence of biomechanics in biomaterial degradation and co-cultured cells, based on current major frontier research findings, but also the challenges and prospects in biomechanical research. Particularly, through the elaboration of certain typical forces affecting biomaterial degradation and celluar functions, this paper tries to reveal the possible mechanisms, and thus provide ideas on how to design or optimize co-culture systems and apply external forces for proper cell and tissue engineering. Furthermore, while emphasizing the importance of the mechanical control of the cell phenotype and fate, it is expected that these achievements can pave the way to materials-based therapies for different pathological conditions, including diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Shuai Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
206
|
Ulker P, Özen N, Abduleyeva G, Köksoy S, Yaraş N, Basralı F. Rho-kinase is a negative regulator of red blood cell eNOS under basal conditions. Clin Hemorheol Microcirc 2019; 72:407-419. [PMID: 30909198 DOI: 10.3233/ch-190578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rho-kinase, an effector of the small GTPase RhoA, is known to be a novel inhibitory regulator of eNOS in endothelial cells under basal conditions and disease states. However, although RBC possesses active RhoA/Rho-kinase pathway, Rho-kinase mediated eNOS regulation has not been investigated in RBC, so far. OBJECTIVE The aim of the present study is to investigate whether eNOS activity is regulated by Rho-kinase under basal conditions and to evaluate whether inhibition of this enzyme causes eNOS activation and intracellular NO production in RBC. METHODS RBC packeds were isolated from healthy volunteers and resuspended in Hepes solution at a hematocrit of 0.01 l/l. Intracellular NO and Ca+2 levels and eNOS activation measured by flow cytometry in response to Rho-kinase inhibitors, fasudil and Y-27632, in the absence and presence of NOS, and PI3K inhibitors. RESULTS Rho-kinase inhibitors fasudil and Y-27632 found to increase intracellular NO concentrations. These inhibitors also cause enhancement of intracellular Ca+2 and serine 1177 phosphorylated eNOS levels. Besides, although these responses have shown to be suppressed by NOS enzyme, PI3K inhibition had no effect on this mechanism. CONCLUSIONS The results of the present study demonstrated that RBC eNOS enzyme activity is regulated by inhibitory Rho-kinase pathway under basal conditions and inhibition of this pathway enhances the activity of eNOS in RBC. This activation is mediated by both intracellular Ca+2 and Serine 1177 phosphorylated eNOS increment, with no contribution of AKT activation, in RBC. The mechanism we described here gives first evidences about Rho-kinase mediated eNOS regulation in RBC under basal conditions. This pathway could also be more important under disease states.
Collapse
|
207
|
Klebe D, Tibrewal M, Sharma DR, Vanaparthy R, Krishna S, Varghese M, Cheng B, Mouton PR, Velíšková J, Dobrenis K, Hof PR, Ballabh P. Reduced Hippocampal Dendrite Branching, Spine Density and Neurocognitive Function in Premature Rabbits, and Reversal with Estrogen or TrkB Agonist Treatment. Cereb Cortex 2019; 29:4932-4947. [PMID: 30877788 PMCID: PMC6918929 DOI: 10.1093/cercor/bhz033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/16/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
Preterm-born children suffer from neurological and behavioral disorders. Herein, we hypothesized that premature birth and non-maternal care of preterm newborns might disrupt neurobehavioral function, hippocampal dendritic arborization, and dendritic spine density. Additionally, we assessed whether 17β-estradiol (E2) replacement or the TrkB receptor agonist, 7,8-dihydroxyflavone (DHF), would reverse compromised dendritic development and cognitive function in preterm newborns. These hypotheses were tested by comparing preterm (E28.5) rabbit kits cared and gavage-fed by laboratory personnel and term-kits reared and breast-fed by their mother doe at an equivalent postconceptional age. Neurobehavioral tests showed that both premature-birth and formula-feeding with non-maternal care led to increased anxiety behavior, poor social interaction, and lack of novelty preference compared with term-kits. Dendritic branching and number of total or mushroom dendritic spines were reduced in the CA1 field of preterm-kits compared with term controls. While CDC42 and Rac1/2/3 expression levels were lower, RhoA-activity was higher in preterm-kits compared with term controls. Both E2 and DHF treatment reversed prematurity-induced reduction in spine density, reduced total RhoA-GTPase levels, and enhanced cognitive function. Hence, prematurity and non-maternal care result in cognitive deficits, and reduced dendritic arbors and spines in CA1. E2 replacement or DHF treatment might reverse changes in dendritic spines and improve neurodevelopment in premature infants.
Collapse
Affiliation(s)
- Damon Klebe
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx NY, USA
| | - Mahima Tibrewal
- Department of Pediatrics, New York Medical College, Valhalla NY, USA
| | - Deep R Sharma
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx NY, USA
| | - Rachna Vanaparthy
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx NY, USA
| | - Sunil Krishna
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx NY, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Bokun Cheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx NY, USA
| | - Peter R Mouton
- Department of Pathology and Cell Biology, College of Medicine, University of South Florida, Tampa FL, USA
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, Neurology, and Obstetrics & Gynecology, New York Medical College, Valhalla NY, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx NY, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx NY, USA
| |
Collapse
|
208
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
209
|
Georgess D, Padmanaban V, Sirka OK, Coutinho K, Choi A, Frid G, Neumann NM, Inoue T, Ewald AJ. Twist1-Induced Epithelial Dissemination Requires Prkd1 Signaling. Cancer Res 2019; 80:204-218. [PMID: 31676574 DOI: 10.1158/0008-5472.can-18-3241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Dissemination is an essential early step in metastasis but its molecular basis remains incompletely understood. To define the essential targetable effectors of this process, we developed a 3D mammary epithelial culture model, in which dissemination is induced by overexpression of the transcription factor Twist1. Transcriptomic analysis and ChIP-PCR together demonstrated that protein kinase D1 (Prkd1) is a direct transcriptional target of Twist1 and is not expressed in the normal mammary epithelium. Pharmacologic and genetic inhibition of Prkd1 in the Twist1-induced dissemination model demonstrated that Prkd1 was required for cells to initiate extracellular matrix (ECM)-directed protrusions, release from the epithelium, and migrate through the ECM. Antibody-based protein profiling revealed that Prkd1 induced broad phosphorylation changes, including an inactivating phosphorylation of β-catenin and two microtubule depolymerizing phosphorylations of Tau, potentially explaining the release of cell-cell contacts and persistent activation of Prkd1. In patients with breast cancer, TWIST1 and PRKD1 expression correlated with metastatic recurrence, particularly in basal breast cancer. Prkd1 knockdown was sufficient to block dissemination of both murine and human mammary tumor organoids. Finally, Prkd1 knockdown in vivo blocked primary tumor invasion and distant metastasis in a mouse model of basal breast cancer. Collectively, these data identify Prkd1 as a novel and targetable signaling node downstream of Twist1 that is required for epithelial invasion and dissemination. SIGNIFICANCE: Twist1 is a known regulator of metastatic cell behaviors but not directly targetable. This study provides a molecular explanation for how Twist1-induced dissemination works and demonstrates that it can be targeted. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/2/204/F1.large.jpg.
Collapse
Affiliation(s)
- Dan Georgess
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Veena Padmanaban
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Orit Katarina Sirka
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kester Coutinho
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alex Choi
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gabriela Frid
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Neil M Neumann
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew J Ewald
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cancer Invasion and Metastasis Program, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
210
|
Dupraz S, Hilton BJ, Husch A, Santos TE, Coles CH, Stern S, Brakebusch C, Bradke F. RhoA Controls Axon Extension Independent of Specification in the Developing Brain. Curr Biol 2019; 29:3874-3886.e9. [PMID: 31679934 DOI: 10.1016/j.cub.2019.09.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
Abstract
The specification of an axon and its subsequent outgrowth are key steps during neuronal polarization, a prerequisite to wire the brain. The Rho-guanosine triphosphatase (GTPase) RhoA is believed to be a central player in these processes. However, its physiological role has remained undefined. Here, genetic loss- and gain-of-function experiments combined with time-lapse microscopy, cell culture, and in vivo analysis show that RhoA is not involved in axon specification but confines the initiation of neuronal polarization and axon outgrowth during development. Biochemical analysis and super-resolution microscopy together with molecular and pharmacological manipulations reveal that RhoA restrains axon growth by activating myosin-II-mediated actin arc formation in the growth cone to prevent microtubules from protruding toward the leading edge. Through this mechanism, RhoA regulates the duration of axon growth and pause phases, thus controlling the tightly timed extension of developing axons. Thereby, this work unravels physiologically relevant players coordinating actin-microtubule interactions during axon growth.
Collapse
Affiliation(s)
- Sebastian Dupraz
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Brett J Hilton
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Andreas Husch
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Telma E Santos
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Charlotte H Coles
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Sina Stern
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Cord Brakebusch
- Biotech Research & Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Frank Bradke
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany.
| |
Collapse
|
211
|
Arp2/3-Branched Actin Maintains an Active Pool of GTP-RhoA and Controls RhoA Abundance. Cells 2019; 8:cells8101264. [PMID: 31623230 PMCID: PMC6830327 DOI: 10.3390/cells8101264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/23/2023] Open
Abstract
Small GTPases regulate cytoskeletal dynamics, cell motility, and division under precise spatiotemporal control. Different small GTPases exhibit cross talks to exert feedback response or to act in concert during signal transduction. However, whether and how specific cytoskeletal components' feedback to upstream signaling factors remains largely elusive. Here, we report an intriguing finding that disruption of the Arp2/3-branched actin specifically reduces RhoA activity but upregulates its total protein abundance. We further dissect the mechanisms underlying these circumstances and identify the altered cortactin/p190RhoGAP interaction and weakened CCM2/Smurf1 binding to be involved in GTP-RhoA reduction and total RhoA increase, respectively. Moreover, we find that cytokinesis defects induced by Arp2/3 inhibition can be rescued by activating RhoA. Our study reveals an intricate feedback from the actin cytoskeleton to the small GTPase. Our work highlights the role of Arp2/3-branched actin in signal transduction aside from its function in serving as critical cytoskeletal components to maintain cell morphology and motility.
Collapse
|
212
|
Wang W, Halasz E, Townes-Anderson E. Actin Dynamics, Regulated by RhoA-LIMK-Cofilin Signaling, Mediates Rod Photoreceptor Axonal Retraction After Retinal Injury. Invest Ophthalmol Vis Sci 2019; 60:2274-2285. [PMID: 31112612 PMCID: PMC6530517 DOI: 10.1167/iovs.18-26077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose Retraction of the axon terminals of rod photoreceptors after retinal detachment breaks the first synapse in the visual pathway, resulting in visual impairment. Previous work showed that the mechanism of axonal retraction involves RhoA signaling and its downstream effector LIM Kinase (LIMK) activation. We examined the response of the downstream component cofilin, a direct binding protein of actin filaments, as well as the regulation by RhoA-LIMK-Cofilin signaling of actin assembly/disassembly, in the presynaptic ribbon terminal of injured rod cells. Methods Injury was produced by retinal detachment or rod cell isolation. Detached porcine retina was probed for levels and localization of phosphorylated cofilin with Western blots and confocal microscopy, whereas rod cell cultures of dissociated salamander retina were examined for filamentous actin assembly/disassembly with a barbed end assay and phalloidin staining. Results A detachment increased phosphorylation of cofilin in retinal explants; phosphorylation occurred in rod terminals in sections of detached retina. Isolation of rod cells resulted in axon retraction accompanied by an increase in actin barbed ends and a decrease in net filament labeling. All changes were significantly reduced by either Rho kinase (ROCK) or LIMK inhibition, using Y27632 or BMS-5, respectively. Cytochalasin D also reduced retraction and stabilized filaments in isolated rod cells. Conclusions These results indicate that actin depolymerization via activation of RhoA downstream kinases and cofilin contributes to axon retraction. Preventing depolymerization, in addition to actomyosin contraction, may stabilize ribbon synapses after trauma.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - Eva Halasz
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - Ellen Townes-Anderson
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| |
Collapse
|
213
|
da Silva B, Irving BK, Polson ES, Droop A, Griffiths HBS, Mathew RK, Stead LF, Marrison J, Williams C, Williams J, Short SC, Scarcia M, O'Toole PJ, Allison SJ, Mavria G, Wurdak H. Chemically induced neurite-like outgrowth reveals a multicellular network function in patient-derived glioblastoma cells. J Cell Sci 2019; 132:jcs.228452. [PMID: 31515278 DOI: 10.1242/jcs.228452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor stem cells and malignant multicellular networks have been separately implicated in the therapeutic resistance of glioblastoma multiforme (GBM), the most aggressive type of brain cancer in adults. Here, we show that small-molecule inhibition of RHO-associated serine/threonine kinase proteins (ROCKi) significantly promoted the outgrowth of neurite-like cell projections in cultures of heterogeneous patient-derived GBM stem-like cells. These projections formed de novo-induced cellular network (iNet) 'webs', which regressed after withdrawal of ROCKi. Connected cells within the iNet web exhibited long range Ca2+ signal transmission, and significant lysosomal and mitochondrial trafficking. In contrast to their less-connected vehicle control counterparts, iNet cells remained viable and proliferative after high-dose radiation. These findings demonstrate a link between ROCKi-regulated cell projection dynamics and the formation of radiation-resistant multicellular networks. Our study identifies means to reversibly induce iNet webs ex vivo, and may thereby accelerate future studies into the biology of GBM cellular networks.
Collapse
Affiliation(s)
| | | | - Euan S Polson
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Alastair Droop
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, LS2 9JT, UK
| | - Hollie B S Griffiths
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Ryan K Mathew
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Department of Neurosurgery, Leeds General Infirmary, Leeds, LS1 3EX, UK
| | - Lucy F Stead
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Joanne Marrison
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Courtney Williams
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | | | - Susan C Short
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Peter J O'Toole
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Simon J Allison
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Georgia Mavria
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Heiko Wurdak
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
214
|
Vabres P, Sorlin A, Kholmanskikh SS, Demeer B, St-Onge J, Duffourd Y, Kuentz P, Courcet JB, Carmignac V, Garret P, Bessis D, Boute O, Bron A, Captier G, Carmi E, Devauchelle B, Geneviève D, Gondry-Jouet C, Guibaud L, Lafon A, Mathieu-Dramard M, Thevenon J, Dobyns WB, Bernard G, Polubothu S, Faravelli F, Kinsler VA, Thauvin C, Faivre L, Ross ME, Rivière JB. Postzygotic inactivating mutations of RHOA cause a mosaic neuroectodermal syndrome. Nat Genet 2019; 51:1438-1441. [PMID: 31570889 PMCID: PMC6858542 DOI: 10.1038/s41588-019-0498-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/15/2019] [Indexed: 01/12/2023]
Abstract
Hypopigmentation along Blaschko's lines is a hallmark of a poorly defined group of mosaic syndromes whose genetic causes are unknown. Here we show that postzygotic inactivating mutations of RHOA cause a neuroectodermal syndrome combining linear hypopigmentation, alopecia, apparently asymptomatic leukoencephalopathy, and facial, ocular, dental and acral anomalies. Our findings pave the way toward elucidating the etiology of pigmentary mosaicism and highlight the role of RHOA in human development and disease.
Collapse
Affiliation(s)
- Pierre Vabres
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France.
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France.
- Centre de Référence MAGEC, Service de Dermatologie, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France.
| | - Arthur Sorlin
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
- Centre de Référence MAGEC, Service de Dermatologie, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
- Service de Pédiatrie 1 et de Génétique Médicale, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Stanislav S Kholmanskikh
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Bénédicte Demeer
- Unité de Génétique Médicale et Oncogénétique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
- EA CHIMERE-7516, Université Picardie Jules Verne, Amiens, France
| | - Judith St-Onge
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Yannis Duffourd
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
| | - Paul Kuentz
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
- Génétique Biologique Histologie, Centre Hospitalier Régional Universitaire de Besançon, Besançon, France
| | - Jean-Benoît Courcet
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
- Service de Pédiatrie 1 et de Génétique Médicale, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Virginie Carmignac
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
- Centre de Référence MAGEC, Service de Dermatologie, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Philippine Garret
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
| | - Didier Bessis
- Département de Dermatologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Odile Boute
- Service de Génétique Clinique, Centre Hospitalier Universitaire Lille, Lille, France
| | - Alain Bron
- Service d'Ophtalmologie, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Guillaume Captier
- Service de Chirurgie Orthopédique et plastique Pédiatrique, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Bernard Devauchelle
- EA CHIMERE-7516, Université Picardie Jules Verne, Amiens, France
- Département de Chirurgie Maxillo-Faciale et Stomatologie, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - David Geneviève
- Département de Génétique Médicale, Maladies rares et Médecine Personnalisée, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Catherine Gondry-Jouet
- Départment de Radiologie, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Laurent Guibaud
- Service d'Imagerie Pédiatrique et Fœtale, Hôpital Femme-Mère-Enfant Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Arnaud Lafon
- Service d'Odontologie-Stomatologie, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Michèle Mathieu-Dramard
- Unité de Génétique Médicale et Oncogénétique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Julien Thevenon
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
- Service de Pédiatrie 1 et de Génétique Médicale, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Geneviève Bernard
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Departments of Neurology and Neurosurgery, and Pediatrics McGill University, Montreal, Quebec, Canada
- Department of Medical Genetics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | - Christel Thauvin
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
- Service de Pédiatrie 1 et de Génétique Médicale, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - Laurence Faivre
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
- Service de Pédiatrie 1 et de Génétique Médicale, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jean-Baptiste Rivière
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France.
- UMR Inserm 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France.
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
215
|
Stanley A, Heo SJ, Mauck RL, Mourkioti F, Shore EM. Elevated BMP and Mechanical Signaling Through YAP1/RhoA Poises FOP Mesenchymal Progenitors for Osteogenesis. J Bone Miner Res 2019; 34:1894-1909. [PMID: 31107558 PMCID: PMC7209824 DOI: 10.1002/jbmr.3760] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by the formation of extraskeletal bone, or heterotopic ossification (HO), in soft connective tissues such as skeletal muscle. All familial and sporadic cases with a classic clinical presentation of FOP carry a gain-of-function mutation (R206H; c.617 G > A) in ACVR1, a cell surface receptor that mediates bone morphogenetic protein (BMP) signaling. The BMP signaling pathway is recognized for its chondro/osteogenic-induction potential, and HO in FOP patients forms ectopic but qualitatively normal endochondral bone tissue through misdirected cell fate decisions by tissue-resident mesenchymal stem cells. In addition to biochemical ligand-receptor signaling, mechanical cues from the physical environment are transduced to activate intracellular signaling, a process known as mechanotransduction, and can influence cell fates. Utilizing an established mesenchymal stem cell model of mouse embryonic fibroblasts (MEFs) from the Acvr1R206H/+ mouse model that mimics the human disease, we demonstrated that activation of the mechanotransductive effectors Rho/ROCK and YAP1 are increased in Acvr1R206H/+ cells. We show that on softer substrates, a condition associated with low mechanical signaling, the morphology of Acvr1R206H/+ cells is similar to the morphology of control Acvr1+/+ cells on stiffer substrates, a condition that activates mechanotransduction. We further determined that Acvr1R206H/+ cells are poised for osteogenic differentiation, expressing increased levels of chondro/osteogenic markers compared with Acvr1+/+ cells. We also identified increased YAP1 nuclear localization in Acvr1R206H/+ cells, which can be rescued by either BMP inhibition or Rho antagonism. Our results establish RhoA and YAP1 signaling as modulators of mechanotransduction in FOP and suggest that aberrant mechanical signals, combined with and as a result of the increased BMP pathway signaling through mutant ACVR1, lead to misinterpretation of the cellular microenvironment and a heightened sensitivity to mechanical stimuli that promotes commitment of Acvr1R206H/+ progenitor cells to chondro/osteogenic lineages.
Collapse
Affiliation(s)
- Alexandra Stanley
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Su-jin Heo
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA
- Penn Institute for Regenerative Medicine, Musculoskeletal Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Departments of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Penn Institute for Regenerative Medicine, Musculoskeletal Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eileen M. Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Penn Institute for Regenerative Medicine, Musculoskeletal Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
216
|
Eliyahu E, Tirosh O, Dobesova M, Nachshon A, Schwartz M, Stern-Ginossar N. Rho-Associated Coiled-Coil Kinase 1 Translocates to the Nucleus and Inhibits Human Cytomegalovirus Propagation. J Virol 2019; 93:e00453-19. [PMID: 31292242 PMCID: PMC6744247 DOI: 10.1128/jvi.00453-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/29/2019] [Indexed: 01/04/2023] Open
Abstract
Rho-associated coiled-coil kinase (ROCK) protein is a central kinase that regulates numerous cellular functions, including cellular polarity, motility, proliferation, and apoptosis. Here, we demonstrate that ROCK has antiviral properties, and inhibition of its activity results in enhanced propagation of human cytomegalovirus (HCMV). We show that during HCMV infection, ROCK1 translocates to the nucleus and concentrates in the nucleolus, where it colocalizes with the stress-related chaperone heat shock cognate 71-kDa protein (Hsc70). Gene expression measurements show that inhibition of ROCK activity does not seem to affect the cellular stress response. We demonstrate that inhibition of myosin, one of the central targets of ROCK, also increases HCMV propagation, implying that the antiviral activity of ROCK might be mediated by activation of the actomyosin network. Finally, we demonstrate that inhibition of ROCK results in increased levels of the tegument protein UL32 and of viral DNA in the cytoplasm, suggesting ROCK activity hinders the efficient egress of HCMV particles out of the nucleus. Altogether, our findings illustrate ROCK activity restricts HCMV propagation and suggest this inhibitory effect may be mediated by suppression of capsid egress out of the nucleus.IMPORTANCE ROCK is a central kinase in cells that regulates numerous cellular functions, including cellular polarity, motility, proliferation, and apoptosis. Here we reveal a novel antiviral activity of ROCK during infection with HCMV, a prevalent pathogen infecting most of the population worldwide. We reveal ROCK1 is translocated to the nucleus, where it mainly localizes to the nucleolus. Our findings suggest that ROCK's antiviral activity may be related to activation of the actomyosin network and inhibition of capsid egress out of the nucleus.
Collapse
Affiliation(s)
- Erez Eliyahu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Osnat Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Martina Dobesova
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
217
|
Sakaguchi T, Takefuji M, Wettschureck N, Hamaguchi T, Amano M, Kato K, Tsuda T, Eguchi S, Ishihama S, Mori Y, Yura Y, Yoshida T, Unno K, Okumura T, Ishii H, Shimizu Y, Bando YK, Ohashi K, Ouchi N, Enomoto A, Offermanns S, Kaibuchi K, Murohara T. Protein Kinase N Promotes Stress-Induced Cardiac Dysfunction Through Phosphorylation of Myocardin-Related Transcription Factor A and Disruption of Its Interaction With Actin. Circulation 2019; 140:1737-1752. [PMID: 31564129 DOI: 10.1161/circulationaha.119.041019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure is a complex syndrome that results from structural or functional impairment of ventricular filling or blood ejection. Protein phosphorylation is a major and essential intracellular mechanism that mediates various cellular processes in cardiomyocytes in response to extracellular and intracellular signals. The RHOA-associated protein kinase (ROCK/Rho-kinase), an effector regulated by the small GTPase RHOA, causes pathological phosphorylation of proteins, resulting in cardiovascular diseases. RHOA also activates protein kinase N (PKN); however, the role of PKN in cardiovascular diseases remains unclear. METHODS To explore the role of PKNs in heart failure, we generated tamoxifen-inducible, cardiomyocyte-specific PKN1- and PKN2-knockout mice by intercrossing the αMHC-CreERT2 line with Pkn1flox/flox and Pkn2flox/flox mice and applied a mouse model of transverse aortic constriction- and angiotensin II-induced heart failure. To identify a novel substrate of PKNs, we incubated GST-tagged myocardin-related transcription factor A (MRTFA) with recombinant GST-PKN-catalytic domain or GST-ROCK-catalytic domain in the presence of radiolabeled ATP and detected radioactive GST-MRTFA as phosphorylated MRTFA. RESULTS We demonstrated that RHOA activates 2 members of the PKN family of proteins, PKN1 and PKN2, in cardiomyocytes of mice with cardiac dysfunction. Cardiomyocyte-specific deletion of the genes encoding Pkn1 and Pkn2 (cmc-PKN1/2 DKO) did not affect basal heart function but protected mice from pressure overload- and angiotensin II-induced cardiac dysfunction. Furthermore, we identified MRTFA as a novel substrate of PKN1 and PKN2 and found that MRTFA phosphorylation by PKN was considerably more effective than that by ROCK in vitro. We confirmed that endogenous MRTFA phosphorylation in the heart was induced by pressure overload- and angiotensin II-induced cardiac dysfunction in wild-type mice, whereas cmc-PKN1/2 DKO mice suppressed transverse aortic constriction- and angiotensin II-induced phosphorylation of MRTFA. Although RHOA-mediated actin polymerization accelerated MRTFA-induced gene transcription, PKN1 and PKN2 inhibited the interaction of MRTFA with globular actin by phosphorylating MRTFA, causing increased serum response factor-mediated expression of cardiac hypertrophy- and fibrosis-associated genes. CONCLUSIONS Our results indicate that PKN1 and PKN2 activation causes cardiac dysfunction and is involved in the transition to heart failure, thus providing unique targets for therapeutic intervention for heart failure.
Collapse
Affiliation(s)
- Teruhiro Sakaguchi
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Mikito Takefuji
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (N.W., S.O.)
| | - Tomonari Hamaguchi
- Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Mutsuki Amano
- Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Katsuhiro Kato
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Takuma Tsuda
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Shunsuke Eguchi
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Sohta Ishihama
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yu Mori
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yoshimitsu Yura
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan.,Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Tatsuya Yoshida
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Kazumasa Unno
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Takahiro Okumura
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Hideki Ishii
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yuuki Shimizu
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yasuko K Bando
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Koji Ohashi
- Molecular Medicine and Cardiology (K.O., N.O.), Nagoya University School of Medicine, Japan
| | - Noriyuki Ouchi
- Molecular Medicine and Cardiology (K.O., N.O.), Nagoya University School of Medicine, Japan
| | - Atsushi Enomoto
- Pathology (A.E.), Nagoya University School of Medicine, Japan
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (N.W., S.O.)
| | - Kozo Kaibuchi
- Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Toyoaki Murohara
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| |
Collapse
|
218
|
Zeng Y, Cao Y, Liu L, Zhao J, Zhang T, Xiao L, Jia M, Tian Q, Yu H, Chen S, Cai Y. SEPT9_i1 regulates human breast cancer cell motility through cytoskeletal and RhoA/FAK signaling pathway regulation. Cell Death Dis 2019; 10:720. [PMID: 31558699 PMCID: PMC6763430 DOI: 10.1038/s41419-019-1947-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023]
Abstract
Increasing cell mobility is the basis of tumor invasion and metastasis, and is therefore a therapeutic target for preventing the spread of many types of cancer. Septins are a family of cytoskeletal proteins with GTPase activity, and play a role in many important cellular functions, including cell migration. SEPT9 isoform 1 protein (SEPT9_i1) has been associated with breast tumor development and the enhancement of cell migration; however, the exact mechanism of how SEPT9_i1 might affect breast cancer progression remains to be elucidated. Here, we report that the expression of SEPT9_i1 positively correlated with paxillin, and both were significantly upregulated in invasive breast cancer tissues of patients with lymph node metastases. Lentivirus-mediated shRNA knockdown of SEPT9 in MCF-7 cells diminished tumor cell migration, focal adhesion (FA) maturation and the expression of β-actin, β-tubulin, Cdc42, RhoA, and Rac, whereas overexpression of SEPT9_i1 in SEPT9-knockdown MCF-7 cells promoted cell migration, FA maturation and relevant protein expression. Furthermore, overexpression of SEPT9_i1 in MCF-7 cells markedly increased FAK/Src/paxillin signaling, at least in part through RhoA/ROCK1 upstream activation. Transcriptome profiling suggested that SEPT9_i1 may directly affect “Focal adhesion” and “Regulation of actin cytoskeleton” signaling mechanisms. Finally, overexpression of SEPT9_i1 markedly enhanced lung metastases in vivo 6 weeks after tumor inoculation. These findings suggest that a mechanism of Septin-9-induced aberrant cancer cell migration is through cytoskeletal regulation and FA modulation, and encourages the use of SEPT9 as novel therapeutic target in the prevention of tumor metastasis.
Collapse
Affiliation(s)
- Yongqiu Zeng
- Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, Sichuan, China. .,Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| | - Yang Cao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Lan Liu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiao Zhao
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ting Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Lifan Xiao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Man Jia
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Tian
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Yu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shaokun Chen
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yansen Cai
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
219
|
Duong KHM, Chun KH. Regulation of glucose transport by RhoA in 3T3-L1 adipocytes and L6 myoblasts. Biochem Biophys Res Commun 2019; 519:880-886. [PMID: 31561853 DOI: 10.1016/j.bbrc.2019.09.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
RhoA is a key player in actin cytoskeleton reorganization and exerts most of its effect through the RhoA-ROCKs signaling pathway. Although recent studies have stressed the roles of ROCKs as regulators of glucose metabolism, little is known of the roles played by RhoA, the upstream regulators of ROCKs and other isotypes of Rho small-GTPases. This study was undertaken to determine whether Rho isotypes modulate glucose transport and insulin signaling in insulin-sensitive cell models, that is, 3T3-L1 adipocytes and L6 myoblasts. Glucose uptake assays showed that RhoA knockdown using siRNA reduced insulin-stimulated glucose transport in both cell types, whereas knockdown of RhoB or RhoC did not. Furthermore, RhoA overexpression increased insulin-stimulated glucose transport. Interestingly, the insulin-stimulated PI3K-Akt signaling pathway was unaffected under RhoA-depleted or -overexpressed conditions, which suggested RhoA might regulate glucose transport via an Akt-independent pathway. Interestingly, an immunoblot assay of signaling molecules related to actin-myosin cytoskeletal remodeling showed that unlike RhoA or RhoC, RhoA regulated ERM phosphorylation. Our results suggest that RhoA, but not RhoB or RhoC, mediates glucose transport by regulating the vesicle trafficking machinery in an Akt-independent manner.
Collapse
Affiliation(s)
- Khue Ha Minh Duong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| |
Collapse
|
220
|
Hinton EA, Li DC, Allen AG, Gourley SL. Social Isolation in Adolescence Disrupts Cortical Development and Goal-Dependent Decision-Making in Adulthood, Despite Social Reintegration. eNeuro 2019; 6:ENEURO.0318-19.2019. [PMID: 31527057 PMCID: PMC6757188 DOI: 10.1523/eneuro.0318-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
The social environment influences neurodevelopment. Investigations using rodents to study this phenomenon commonly isolate subjects, then assess neurobehavioral consequences while animals are still isolated. This approach precludes one from dissociating the effects of on-going versus prior isolation, hindering our complete understanding of the consequences of social experience during particular developmental periods. Here, we socially isolated adolescent mice from postnatal day (P)31 to P60, then re-housed them into social groups. We tested their ability to select actions based on expected outcomes using multiple reinforcer devaluation and instrumental contingency degradation techniques. Social isolation in adolescence (but not adulthood) weakened instrumental response updating, causing mice to defer to habit-like behaviors. Habit biases were associated with glucocorticoid insufficiency in adolescence, oligodendrocyte marker loss throughout cortico-striatal regions, and dendritic spine and synaptic marker excess in the adult orbitofrontal cortex (OFC). Artificial, chemogenetic stimulation of the ventrolateral OFC in typical, healthy mice recapitulated response biases following isolation, causing habit-like behaviors. Meanwhile, correcting dendritic architecture by inhibiting the cytoskeletal regulatory protein ROCK remedied instrumental response updating defects in socially isolated mice. Our findings suggest that adolescence is a critical period during which social experience optimizes one's ability to seek and attain goals later in life. Age-typical dendritic spine elimination appears to be an essential factor, and in its absence, organisms may defer to habit-based behaviors.
Collapse
Affiliation(s)
- Elizabeth A Hinton
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, 30329
- Center for Translational and Social Neuroscience, Emory University, Atlanta, GA, 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
- Department of Pediatrics, Emory University, Atlanta, GA, 30329
- Department of Psychiatry, Emory University, Atlanta, GA, 30329
| | - Dan C Li
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, 30329
- Center for Translational and Social Neuroscience, Emory University, Atlanta, GA, 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
- Department of Pediatrics, Emory University, Atlanta, GA, 30329
- Department of Psychiatry, Emory University, Atlanta, GA, 30329
| | - Aylet G Allen
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
- Department of Pediatrics, Emory University, Atlanta, GA, 30329
| | - Shannon L Gourley
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, 30329
- Center for Translational and Social Neuroscience, Emory University, Atlanta, GA, 30329
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
- Department of Pediatrics, Emory University, Atlanta, GA, 30329
- Department of Psychiatry, Emory University, Atlanta, GA, 30329
| |
Collapse
|
221
|
Boucher E, Goldin-Blais L, Basiren Q, Mandato CA. Actin dynamics and myosin contractility during plasma membrane repair and restoration: Does one ring really heal them all? CURRENT TOPICS IN MEMBRANES 2019; 84:17-41. [PMID: 31610862 DOI: 10.1016/bs.ctm.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In order to survive daily insults, cells have evolved various mechanisms that detect, stabilize and repair damages done to their plasma membrane and cytoskeletal structures. Damage to the PM endangers wounded cells by exposing them to uncontrolled exchanges with the extracellular milieu. The processes and molecular machinery enabling PM repair are therefore at the center of the bulk of the investigations into single-cell repair program. Wounds are repaired by dynamically remodeling the composition and shape of the injured area through exocytosis-mediated release of intracellular membrane components to the wounded area, endocytosis-mediated removal of the injured area, or the shedding of the injury. The wound healing program of Xenopus oocytes and early Drosophila embryos is by contrast, mostly characterized by the rapid formation of a large membrane patch over the wound that eventually fuse with the plasma membrane which restores plasma membrane continuity and lead to the shedding of patch material into the extracellular space. Formation and contraction of actomyosin ring restores normal plasma membrane composition and organizes cytoskeletal repairs. The extend of the contributions of the cytoskeleton to the wound healing program of somatic cells have comparatively received little attention. This review offers a survey of the current knowledge on how actin dynamics, myosin-based contraction and other cytoskeletal structures affects PM and cortical cytoskeleton repair of somatic cells.
Collapse
Affiliation(s)
- Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Laurence Goldin-Blais
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Quentin Basiren
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
222
|
Burat B, Faucher Q, Čechová P, Arnion H, Di Meo F, Sauvage F, Marquet P, Essig M. Cyclosporine A inhibits MRTF-SRF signaling through Na +/K + ATPase inhibition and actin remodeling. FASEB Bioadv 2019; 1:561-578. [PMID: 32123851 PMCID: PMC6996406 DOI: 10.1096/fba.2019-00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 03/22/2019] [Accepted: 07/25/2019] [Indexed: 01/07/2023] Open
Abstract
Calcineurin inhibitors (CNI) are the pillars of immunosuppression in transplantation. However, they display a potent nephrotoxicity whose mechanisms remained widely unsolved. We used an untargeted quantitative proteomic approach (iTRAQ technology) to highlight new targets of CNI in renal proximal tubular cells (RPTCs). CNI-treated RPTCs proteome displayed an over-representation of actin-binding proteins with a CNI-specific expression profile. Cyclosporine A (CsA) induced F-actin remodeling and depolymerization, decreased F-actin-stabilizing, polymerization-promoting cofilin (CFL) oligomers, and inhibited the G-actin-regulated serum response factor (SRF) pathway. Inhibition of CFL canonical phosphorylation pathway reproduced CsA effects; however, S3-R, an analogue of the phosphorylation site of CFL prevented the effects of CsA which suggests that CsA acted independently from the canonical CFL regulation. CFL is known to be regulated by the Na+/K+-ATPase. Molecular docking calculations identified two inhibiting sites of CsA on Na+/K+-ATPase and a 23% decrease in Na+/K+-ATPase activity of RPTCs was observed with CsA. Ouabain, a specific inhibitor of Na+/K+-ATPase also reproduced CsA effects on actin organization and SRF activity. Altogether, these results described a new original pathway explaining CsA nephrotoxicity.
Collapse
Affiliation(s)
- Bastien Burat
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Quentin Faucher
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Petra Čechová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
| | - Hélène Arnion
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Florent Di Meo
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - François‐Ludovic Sauvage
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Pierre Marquet
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
- Department of Pharmacology and ToxicologyLimoges University HospitalLimogesFrance
| | - Marie Essig
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| |
Collapse
|
223
|
Bowes C, Redd M, Yousfi M, Tauzin M, Murayama E, Herbomel P. Coronin 1A depletion restores the nuclear stability and viability of Aip1/Wdr1-deficient neutrophils. J Cell Biol 2019; 218:3258-3271. [PMID: 31471458 PMCID: PMC6781450 DOI: 10.1083/jcb.201901024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Bowes et al. show that in zebrafish embryos deficient in the cofilin cofactor AIP1/Wdr1, neutrophils display F-actin as cytoplasmic aggregates, spatially uncoupled from active myosin, then undergo a progressive unwinding of their nucleus followed by eruptive cell death. This adverse phenotype is fully rescued by depletion of another cofilin cofactor, coronin 1A. Actin dynamics is central for cells, and especially for the fast-moving leukocytes. The severing of actin filaments is mainly achieved by cofilin, assisted by Aip1/Wdr1 and coronins. We found that in Wdr1-deficient zebrafish embryos, neutrophils display F-actin cytoplasmic aggregates and a complete spatial uncoupling of phospho-myosin from F-actin. They then undergo an unprecedented gradual disorganization of their nucleus followed by eruptive cell death. Their cofilin is mostly unphosphorylated and associated with F-actin, thus likely outcompeting myosin for F-actin binding. Myosin inhibition reproduces in WT embryos the nuclear instability and eruptive death of neutrophils seen in Wdr1-deficient embryos. Strikingly, depletion of the main coronin of leukocytes, coronin 1A, fully restores the cortical location of F-actin, nuclear integrity, viability, and mobility of Wdr1-deficient neutrophils in vivo. Our study points to an essential role of actomyosin contractility in maintaining the integrity of the nucleus of neutrophils and a new twist in the interplay of cofilin, Wdr1, and coronin in regulating F-actin dynamics.
Collapse
Affiliation(s)
- Charnese Bowes
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Michael Redd
- University of Utah, Huntsman Cancer Institute, Salt Lake City, UT
| | - Malika Yousfi
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Muriel Tauzin
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Emi Murayama
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France.,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris, France .,Centre National de la Recherche Scientifique, UMR3738, Paris, France
| |
Collapse
|
224
|
The Cytoskeleton of the Retinal Pigment Epithelium: from Normal Aging to Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:ijms20143578. [PMID: 31336621 PMCID: PMC6678077 DOI: 10.3390/ijms20143578] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a unique epithelium, with major roles which are essential in the visual cycle and homeostasis of the outer retina. The RPE is a monolayer of polygonal and pigmented cells strategically placed between the neuroretina and Bruch membrane, adjacent to the fenestrated capillaries of the choriocapillaris. It shows strong apical (towards photoreceptors) to basal/basolateral (towards Bruch membrane) polarization. Multiple functions are bound to a complex structure of highly organized and polarized intracellular components: the cytoskeleton. A strong connection between the intracellular cytoskeleton and extracellular matrix is indispensable to maintaining the function of the RPE and thus, the photoreceptors. Impairments of these intracellular structures and the regular architecture they maintain often result in a disrupted cytoskeleton, which can be found in many retinal diseases, including age-related macular degeneration (AMD). This review article will give an overview of current knowledge on the molecules and proteins involved in cytoskeleton formation in cells, including RPE and how the cytoskeleton is affected under stress conditions—especially in AMD.
Collapse
|
225
|
Wong LW, Tann JY, Ibanez CF, Sajikumar S. The p75 Neurotrophin Receptor Is an Essential Mediator of Impairments in Hippocampal-Dependent Associative Plasticity and Memory Induced by Sleep Deprivation. J Neurosci 2019; 39:5452-5465. [PMID: 31085607 PMCID: PMC6616296 DOI: 10.1523/jneurosci.2876-18.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023] Open
Abstract
Sleep deprivation (SD) interferes with hippocampal structural and functional plasticity, formation of long-term memory and cognitive function. The molecular mechanisms underlying these effects are incompletely understood. Here, we show that SD impaired synaptic tagging and capture and behavioral tagging, two major mechanisms of associative learning and memory. Strikingly, mutant male mice lacking the p75 neurotrophin receptor (p75NTR) were resistant to the detrimental effects of SD on hippocampal plasticity at both cellular and behavioral levels. Mechanistically, SD increased p75NTR expression and its interaction with phosphodiesterase. p75NTR deletion preserved hippocampal structural and functional plasticity by preventing SD-mediated effects on hippocampal cAMP-CREB-BDNF, cAMP-PKA-LIMK1-cofilin, and RhoA-ROCK2 pathways. Our study identifies p75NTR as an important mediator of hippocampal structural and functional changes associated with SD, and suggests that targeting p75NTR could be a promising strategy to limit the memory and cognitive deficits that accompany sleep loss.SIGNIFICANCE STATEMENT The lack of sufficient sleep is a major health concern in today's world. Sleep deprivation (SD) affects cognitive functions such as memory. We have investigated how associative memory mechanisms, synaptic tagging and capture (STC), was impaired in SD mice at cellular and behavioral level. Interestingly, mutant male mice that lacked the p75 neurotrophin receptor (p75NTR) were seen to be resistant to the SD-induced impairments in hippocampal synaptic plasticity and STC. Additionally, we elucidated the molecular pathways responsible for this rescue of plasticity in the mutant mice. Our study has thus identified p75NTR as a promising target to limit the cognitive deficits associated with SD.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
| | - Jason Y Tann
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
| | - Carlos F Ibanez
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm S-17177, Sweden
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore,
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, and
| |
Collapse
|
226
|
Burridge K, Monaghan-Benson E, Graham DM. Mechanotransduction: from the cell surface to the nucleus via RhoA. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180229. [PMID: 31431179 PMCID: PMC6627015 DOI: 10.1098/rstb.2018.0229] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cells respond and adapt to their physical environments and to the mechanical forces that they experience. The translation of physical forces into biochemical signalling pathways is known as mechanotransduction. In this review, we focus on two aspects of mechanotransduction. First, we consider how forces exerted on cell adhesion molecules at the cell surface regulate the RhoA signalling pathway by controlling the activities of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). In the second part of the review, we discuss how the nucleus contributes to mechanotransduction as a physical structure connected to the cytoskeleton. We focus on recent studies that have either severed the connections between the nucleus and the cytoskeleton, or that have entirely removed the nucleus from cells. These actions reduce the levels of active RhoA, thereby altering the mechanical properties of cells and decreasing their ability to generate tension and respond to external mechanical forces. This article is part of a discussion meeting issue ‘Forces in cancer: interdisciplinary approaches in tumour mechanobiology’.
Collapse
Affiliation(s)
- Keith Burridge
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth Monaghan-Benson
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David M Graham
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
227
|
Shakhov AS, Dugina VB, Alieva IB. Structural Features of Actin Cytoskeleton Required for Endotheliocyte Barrier Function. BIOCHEMISTRY (MOSCOW) 2019; 84:358-369. [PMID: 31228927 DOI: 10.1134/s0006297919040035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytoplasmic actin structures are essential components of the eukaryotic cytoskeleton. According to the classic concepts, actin structures perform contractile and motor functions, ensuring the possibility of cell shape changes during cell spreading, polarization, and movement both in vitro and in vivo, from the early embryogenesis stages and throughout the life of a multicellular organism. Intracellular organization of actin structures, their biochemical composition, and dynamic properties play a key role in the realization of specific cellular and tissue functions and vary in different cell types. This paper is a review of recent studies on the organization and properties of actin structures in endotheliocytes, interaction of these structures with other cytoskeletal components and elements involved in cell adhesion, as well as their role in the functional activity of endothelial cells.
Collapse
Affiliation(s)
- A S Shakhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - V B Dugina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I B Alieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
228
|
Pharmacological inhibition of LIM kinase pathway impairs platelets functionality and facilitates thrombolysis. Exp Cell Res 2019; 382:111458. [PMID: 31185194 DOI: 10.1016/j.yexcr.2019.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 11/22/2022]
Abstract
Actin is highly abundant in platelets, and its function is dependent on its structure. Actin filaments (F-actin) are dynamic structures involved in many cellular processes including platelet shape changes and adhesion. The actin cytoskeleton is tightly regulated by actin-binding proteins, which include members of the actin depolymerising factor (ADF)/cofilin family. LIM kinase (LIMK) and its phosphatase slingshot (SSH-1L) regulate actin dynamics by controlling the binding affinity of ADF/cofilin towards actin. We hypothesised that the inhibition of LIMK activity may prevent the changes in platelet shape and their function during activation by controlling the dynamics of F-actin. Our results demonstrate that in platelet, inhibition of LIMK by small LIMK inhibitors controls the level of filamentous actin leading to decreased platelet adhesion and aggregation. These findings encourage further studies on controlling platelet function via the cytoskeleton.
Collapse
|
229
|
Ap 4A Regulates Directional Mobility and Antigen Presentation in Dendritic Cells. iScience 2019; 16:524-534. [PMID: 31254530 PMCID: PMC6595237 DOI: 10.1016/j.isci.2019.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/25/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
The significance of intracellular Ap4A levels over immune activity of dendritic cells (DCs) has been studied in Nudt2fl/fl/CD11c-cre mice. The transgenic mice have been generated by crossing floxed NUDT2 gene mice with DC marker CD11c recombinase (cre) mice. The DCs derived from these mice have higher levels of Ap4A (≈30-fold) compared with those derived from Nudt2+/+ mice. Interestingly, the elevated Ap4A in DCs has led them to possess higher motility and lower directional variability. In addition, the DCs are able to enhance immune protection indicated by the higher cross-presentation of antigen and priming of CD8+ OT-I T cells. Overall, the study denotes prominent impact of Ap4A over the functionality of DCs. The Nudt2fl/fl/CD11c-cre mice could serve as a useful tool to study the influence of Ap4A in the critical immune mechanisms of DCs. DCs of Nudt2fl/fl/CD11c-cre mice exhibit low directional variability and high motility DCs elevate proliferation of OVA-specific T cell receptor transgenic CD8+ T cells The escalation of Ap4A levels in DCs could enhance their immune protective activity Mice can serve as useful functional tool to study the role of Ap4A in various cells
Collapse
|
230
|
Hakanen J, Ruiz-Reig N, Tissir F. Linking Cell Polarity to Cortical Development and Malformations. Front Cell Neurosci 2019; 13:244. [PMID: 31213986 PMCID: PMC6558068 DOI: 10.3389/fncel.2019.00244] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
Cell polarity refers to the asymmetric distribution of signaling molecules, cellular organelles, and cytoskeleton in a cell. Neural progenitors and neurons are highly polarized cells in which the cell membrane and cytoplasmic components are compartmentalized into distinct functional domains in response to internal and external cues that coordinate polarity and behavior during development and disease. In neural progenitor cells, polarity has a prominent impact on cell shape and coordinate several processes such as adhesion, division, and fate determination. Polarity also accompanies a neuron from the beginning until the end of its life. It is essential for development and later functionality of neuronal circuitries. During development, polarity governs transitions between multipolar and bipolar during migration of postmitotic neurons, and directs the specification and directional growth of axons. Once reaching final positions in cortical layers, neurons form dendrites which become compartmentalized to ensure proper establishment of neuronal connections and signaling. Changes in neuronal polarity induce signaling cascades that regulate cytoskeletal changes, as well as mRNA, protein, and vesicle trafficking, required for synapses to form and function. Hence, defects in establishing and maintaining cell polarity are associated with several neural disorders such as microcephaly, lissencephaly, schizophrenia, autism, and epilepsy. In this review we summarize the role of polarity genes in cortical development and emphasize the relationship between polarity dysfunctions and cortical malformations.
Collapse
Affiliation(s)
- Janne Hakanen
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| |
Collapse
|
231
|
Fei X, Wang J, Chen C, Ding B, Fu X, Chen W, Wang C, Xu R. Eupatilin inhibits glioma proliferation, migration, and invasion by arresting cell cycle at G1/S phase and disrupting the cytoskeletal structure. Cancer Manag Res 2019; 11:4781-4796. [PMID: 31213900 PMCID: PMC6539175 DOI: 10.2147/cmar.s207257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Eupatilin is a pharmacologically active flavonoid extracted from Asteraceae argyi that has been identified as having antitumor effects. Gliomas are the most common intracranial malignant tumors and are associated with high mortality and a poor postoperative prognosis. There are few studies on the therapeutic effects of eupatilin on glioma. Therefore, we explored the efficacy and the underlying molecular mechanism of eupatilin on glioma. Methods: The effect of eupatilin on cell proliferation and viability was detected using Cell Counting Kit-8 assays. Cell migration was analyzed with a scratch wound healing assay and invasion was analyzed using transwell assays. Results: We found that eupatilin significantly inhibits the viability and proliferation of glioma cells by arresting the cell cycle at the G1/S phase. In addition, eupatilin disrupts the structure of the cytoskeleton and affects F-actin depolymerization via the “P-LIMK”/cofilin pathway, thereby inhibiting the migration of glioma. We also found that eupatilin inhibits the invasion of gliomas. The underlying mechanism may be related to the destruction of epithelial–mesenchymal transition, with eupatilin also affecting the RECK/matrix metalloproteinase pathway. However, we did not observe the proapoptotic effect of eupatilin on glioma, which is inconsistent with other studies. Finally, we observed a significant inhibitory effect of eupatilin on U87MG glioma in xenograft nude mice. Conclusion: Eupatilin inhibits the viability and proliferation of glioma cells, attenuates the migration and invasion, and inhibits tumor growth in vivo, but does not promote apoptosis. Therefore, due to the poor clinical efficacy of drug treatment of glioma and high drug resistance, the emergence of eupatilin brings a new dawn for glioma patients.
Collapse
Affiliation(s)
- Xiaowei Fei
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China.,Department of Physiology, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Ji Wang
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Chen Chen
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Boyun Ding
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Xiaojun Fu
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Wenjing Chen
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Chongwu Wang
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| | - Ruxiang Xu
- Institute of Neurosurgery, Affiliated Bayi Brain Hospital, General Army Hospital, Beijing 10000, People's Republic of China
| |
Collapse
|
232
|
Møller LLV, Klip A, Sylow L. Rho GTPases-Emerging Regulators of Glucose Homeostasis and Metabolic Health. Cells 2019; 8:E434. [PMID: 31075957 PMCID: PMC6562660 DOI: 10.3390/cells8050434] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Rho guanosine triphosphatases (GTPases) are key regulators in a number of cellular functions, including actin cytoskeleton remodeling and vesicle traffic. Traditionally, Rho GTPases are studied because of their function in cell migration and cancer, while their roles in metabolism are less documented. However, emerging evidence implicates Rho GTPases as regulators of processes of crucial importance for maintaining metabolic homeostasis. Thus, the time is now ripe for reviewing Rho GTPases in the context of metabolic health. Rho GTPase-mediated key processes include the release of insulin from pancreatic β cells, glucose uptake into skeletal muscle and adipose tissue, and muscle mass regulation. Through the current review, we cast light on the important roles of Rho GTPases in skeletal muscle, adipose tissue, and the pancreas and discuss the proposed mechanisms by which Rho GTPases act to regulate glucose metabolism in health and disease. We also describe challenges and goals for future research.
Collapse
Affiliation(s)
- Lisbeth Liliendal Valbjørn Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark.
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark.
| |
Collapse
|
233
|
Gotoh L, Yamada M, Hattori K, Sasayama D, Noda T, Yoshida S, Kunugi H, Yamada M. Lysophosphatidic acid levels in cerebrospinal fluid and plasma samples in patients with major depressive disorder. Heliyon 2019; 5:e01699. [PMID: 31193411 PMCID: PMC6526395 DOI: 10.1016/j.heliyon.2019.e01699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is the most common psychiatric disorders. However, a biochemical marker has yet to be established for clinical purposes. It is proposed that lysophosphatidic acid (LPA, 1-acyl-2-sn-glycerol-3-phosphoate) plays some important roles in emotional regulation of experimental animals. Therefore, in this study, we measured LPA levels using enzyme-linked immunosorbent assays of cerebrospinal fluid (CSF) and plasma samples from patients with MDD. The participants were 52 patients and 49 normal healthy controls for CSF study, and 47 patients and 44 controls for plasma study. We used the Japanese version of the GRID Hamilton Depression Rating Scale (17-item version) for the assessment of depressive symptoms. We found no associations between LPA levels (CSF or plasma) and either diagnosis or severity of MDD, or with psychotropic medication. In conclusion, our data suggest that LPA levels likely would not serve as a practical biomarker of MDD.
Collapse
Affiliation(s)
- Leo Gotoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
- Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takamasa Noda
- National Center of Neurology and Psychiatry Hospital, Tokyo, 187-8551, Japan
| | - Sumiko Yoshida
- National Center of Neurology and Psychiatry Hospital, Tokyo, 187-8551, Japan
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
| |
Collapse
|
234
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
235
|
Ye X, Qiu Y, Gao Y, Wan D, Zhu H. A Subtle Network Mediating Axon Guidance: Intrinsic Dynamic Structure of Growth Cone, Attractive and Repulsive Molecular Cues, and the Intermediate Role of Signaling Pathways. Neural Plast 2019; 2019:1719829. [PMID: 31097955 PMCID: PMC6487106 DOI: 10.1155/2019/1719829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 01/01/2023] Open
Abstract
A fundamental feature of both early nervous system development and axon regeneration is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. In the navigation process where the nerves grow toward their targets, the growth cones, which locate at the tips of axons, sense the environment surrounding them, including varies of attractive or repulsive molecular cues, then make directional decisions to adjust their navigation journey. The turning ability of a growth cone largely depends on its highly dynamic skeleton, where actin filaments and microtubules play a very important role in its motility. In this review, we summarize some possible mechanisms underlying growth cone motility, relevant molecular cues, and signaling pathways in axon guidance of previous studies and discuss some questions regarding directions for further studies.
Collapse
Affiliation(s)
- Xiyue Ye
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yan Qiu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Yuqing Gao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China
- Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
236
|
Screening of a neuronal cell model of tau pathology for therapeutic compounds. Neurobiol Aging 2019; 76:24-34. [DOI: 10.1016/j.neurobiolaging.2018.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022]
|
237
|
Shapiro LP, Kietzman HW, Guo J, Rainnie DG, Gourley SL. Rho-kinase inhibition has antidepressant-like efficacy and expedites dendritic spine pruning in adolescent mice. Neurobiol Dis 2019; 124:520-530. [PMID: 30593834 PMCID: PMC6365018 DOI: 10.1016/j.nbd.2018.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/15/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Adolescence represents a critical period of neurodevelopment, defined by structural and synaptic pruning within the prefrontal cortex. While characteristic of typical development, this structural instability may open a window of vulnerability to developing neuropsychiatric disorders, including depression. Thus, therapeutic interventions that support or expedite neural remodeling in adolescence may be advantageous. Here, we inhibited the neuronally-expressed cytoskeletal regulatory factor Rho-kinase (ROCK), focusing primarily on the clinically-viable ROCK inhibitor fasudil. ROCK inhibition had rapid antidepressant-like effects in adolescent mice, and its efficacy was comparable to ketamine and fluoxetine. It also modified levels of the antidepressant-related signaling factors, tropomyosin/tyrosine receptor kinase B and Akt, as well as the postsynaptic marker PSD-95, in the ventromedial prefrontal cortex (vmPFC). Meanwhile, adolescent-typical dendritic spine pruning on excitatory pyramidal neurons in the vmPFC was expedited. Further, vmPFC-specific shRNA-mediated reduction of ROCK2, the dominant ROCK isoform in the brain, had antidepressant-like consequences. We cautiously suggest that ROCK inhibitors may have therapeutic potential for adolescent-onset depression.
Collapse
Affiliation(s)
- Lauren P Shapiro
- Molecular and Systems Pharmacology, Emory University, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Henry W Kietzman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States
| | - Jidong Guo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, United States
| | - Donald G Rainnie
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, United States
| | - Shannon L Gourley
- Molecular and Systems Pharmacology, Emory University, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States; Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
238
|
Liu JL, Li J, Xu JJ, Xiao F, Cui PL, Qiao ZG, Chen XD, Tao WD, Zhang XL. MiR-144 Inhibits Tumor Growth and Metastasis in Osteosarcoma via Dual-suppressing RhoA/ROCK1 Signaling Pathway. Mol Pharmacol 2019; 95:451-461. [PMID: 30674565 DOI: 10.1124/mol.118.114207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/12/2019] [Indexed: 12/15/2022] Open
Abstract
Several microRNAs (miRNAs) have been found expressed differentially in osteosarcoma (OS), so they may function in the onset and progression of OS. In this study, we found that miR-144 significantly suppresses osteosarcoma cell proliferation, migration, and invasion ability in vitro and inhibited tumor growth and metastasis in vivo. Mechanically, we demonstrated that Ras homolog family member A (RhoA) and its pivotal downstream effector Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1) were direct targets of miR-144. Moreover, the negative correlation between down-regulated miR-144 and up-regulated ROCK1/RhoA was verified in both OS cell lines and clinical patients' specimens. Functionally, RhoA with or without ROCK1 co-overexpression resulted a rescue phenotype on miR-144 inhibited cell growth, migration, and invasion abilities whereas individual overexpression of ROCK1 had no statistical significance compared with controls in miR-144-transfected SAOS2 and U2-OS cells. Taken together, this study demonstrates that miR-144 inhibited tumor growth and metastasis in OS via dual-suppressing of RhoA and ROCK1, which could be a new therapeutic approach for the treatment of OS.
Collapse
Affiliation(s)
- Jin Long Liu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM) (J.L.L., J.J.X., F.X., P.L.C., X.D.C., W.D.T., X.L.Z.); Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (J.L.); Surgical Department, Kunshan Traditional Medicine Hospital (W.D.T.); and Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (Z.G.Q.), Shanghai, People's Republic of China
| | - Jing Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM) (J.L.L., J.J.X., F.X., P.L.C., X.D.C., W.D.T., X.L.Z.); Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (J.L.); Surgical Department, Kunshan Traditional Medicine Hospital (W.D.T.); and Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (Z.G.Q.), Shanghai, People's Republic of China
| | - Jia Jia Xu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM) (J.L.L., J.J.X., F.X., P.L.C., X.D.C., W.D.T., X.L.Z.); Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (J.L.); Surgical Department, Kunshan Traditional Medicine Hospital (W.D.T.); and Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (Z.G.Q.), Shanghai, People's Republic of China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM) (J.L.L., J.J.X., F.X., P.L.C., X.D.C., W.D.T., X.L.Z.); Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (J.L.); Surgical Department, Kunshan Traditional Medicine Hospital (W.D.T.); and Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (Z.G.Q.), Shanghai, People's Republic of China
| | - Peng Lei Cui
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM) (J.L.L., J.J.X., F.X., P.L.C., X.D.C., W.D.T., X.L.Z.); Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (J.L.); Surgical Department, Kunshan Traditional Medicine Hospital (W.D.T.); and Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (Z.G.Q.), Shanghai, People's Republic of China
| | - Zhi Guang Qiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM) (J.L.L., J.J.X., F.X., P.L.C., X.D.C., W.D.T., X.L.Z.); Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (J.L.); Surgical Department, Kunshan Traditional Medicine Hospital (W.D.T.); and Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (Z.G.Q.), Shanghai, People's Republic of China
| | - Xiao Dong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM) (J.L.L., J.J.X., F.X., P.L.C., X.D.C., W.D.T., X.L.Z.); Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (J.L.); Surgical Department, Kunshan Traditional Medicine Hospital (W.D.T.); and Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (Z.G.Q.), Shanghai, People's Republic of China
| | - Wei Dong Tao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM) (J.L.L., J.J.X., F.X., P.L.C., X.D.C., W.D.T., X.L.Z.); Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (J.L.); Surgical Department, Kunshan Traditional Medicine Hospital (W.D.T.); and Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (Z.G.Q.), Shanghai, People's Republic of China
| | - Xiao Ling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM) (J.L.L., J.J.X., F.X., P.L.C., X.D.C., W.D.T., X.L.Z.); Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (J.L.); Surgical Department, Kunshan Traditional Medicine Hospital (W.D.T.); and Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (Z.G.Q.), Shanghai, People's Republic of China
| |
Collapse
|
239
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
240
|
Koumangoye R, Omer S, Delpire E. A dileucine motif in the COOH-terminal domain of NKCC1 targets the cotransporter to the plasma membrane. Am J Physiol Cell Physiol 2019; 316:C545-C558. [PMID: 30865516 DOI: 10.1152/ajpcell.00023.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Na+-K+-2Cl- cotransporter-1 (NKCC1) mediates the electroneutral transport of Na+, K+, and Cl- and is normally localized to the basolateral membrane of polarized epithelial cells. We recently reported the first known solute carrier family 12 member 2 ( SLC12A2) mutation (we call NKCC1-DFX) that causes epithelial dysfunction in an undiagnosed disease program case. The heterozygous mutation leads to truncation of the COOH-terminal tail of the cotransporter, resulting in both mutant and wild-type cotransporters being mistrafficked to the apical membrane of polarized epithelial cells. Here we demonstrate by using consecutive truncations and site-directed mutagenesis of the COOH-terminal domain of NKCC1 that truncation of NKCC1 COOH domain uncouples the cotransporter from the lateral membrane. We identify a dileucine motif that, when mutated, leads to cotransporter accumulation in the cytoplasm and mistrafficking to the apical/subapical region of epithelial cells, thereby recapitulating the phenotype observed with the patient mutation. We show that truncation deletion and LL substitution mutants are trafficked out of the endoplasmic reticulum and trans-Golgi network but accumulate in early and late endosomes where they are degraded.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Salma Omer
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine , Nashville, Tennessee
| |
Collapse
|
241
|
Shi J, Surma M, Yang Y, Wei L. Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging. FASEB J 2019; 33:7348-7362. [PMID: 30848941 DOI: 10.1096/fj.201802510r] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, we investigated the pathophysiological impact of Rho-associated coiled-coil-containing protein kinase (ROCK)1 and ROCK2 double deletion vs. single deletion on cardiac remodeling. Utilizing a cardiomyocyte-specific and tamoxifen-inducible MerCreMer recombinase (MCM), 3 mouse lines (MCM/ROCK1fl/fl/ROCK2fl/fl, MCM/ROCK1fl/fl, and MCM/ROCK2fl/fl) were generated. As early as 5 d after inducible deletion, the double ROCK knockout hearts exhibited reduced phosphorylation of myosin light chain (MLC) and focal adhesion kinase (FAK), supporting a role for ROCK activity in regulating the nonsarcomeric cytoskeleton. Moreover, the autophagy marker microtubule-associated proteins 1A-1B light chain 3B was increased in the double ROCK knockout, and these early molecular features persisted throughout aging. Mechanistically, the double ROCK knockout promoted age-associated or starvation-induced autophagy concomitant with reduced protein kinase B (AKT), mammalian target of rapamycin (mTOR), Unc-51-like kinase signaling, and cardiac fibrosis. In contrast, ROCK2 knockout hearts showed increased phosphorylated (p)-MLC and p-FAK levels, which were mostly attributable to a compensatory ROCK1 overactivation. Autophagy was inhibited at the baseline accompanying increased mTOR activity, leading to increased cardiac fibrosis in the ROCK2 knockout hearts. Finally, the loss of ROCK1 had no significant effect on p-MLC and p-FAK levels, mTOR signaling, or autophagy at baseline. In summary, deletions of ROCK isoforms in cardiomyocytes have different, even opposite, effects on endogenous ROCK activity and the MLC/FAK/AKT/mTOR signaling pathway, which is involved in autophagy and fibrosis of the heart.-Shi, J., Surma, M., Yang, Y., Wei, L. Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Michelle Surma
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Yang Yang
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Cardiovascular Surgery, Xiangya Hospital, Central South University School of Medicine, Changsha, China; and
| | - Lei Wei
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
242
|
Flentje A, Kalsi R, Monahan TS. Small GTPases and Their Role in Vascular Disease. Int J Mol Sci 2019; 20:ijms20040917. [PMID: 30791562 PMCID: PMC6413073 DOI: 10.3390/ijms20040917] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Over eighty million people in the United States have cardiovascular disease that can affect the heart causing myocardial infarction; the carotid arteries causing stroke; and the lower extremities leading to amputation. The treatment for end-stage cardiovascular disease is surgical—either endovascular therapy with balloons and stents—or open reconstruction to reestablish blood flow. All interventions damage or destroy the protective inner lining of the blood vessel—the endothelium. An intact endothelium is essential to provide a protective; antithrombotic lining of a blood vessel. Currently; there are no agents used in the clinical setting that promote reendothelialization. This process requires migration of endothelial cells to the denuded vessel; proliferation of endothelial cells on the denuded vessel surface; and the reconstitution of the tight adherence junctions responsible for the formation of an impermeable surface. These processes are all regulated in part and are dependent on small GTPases. As important as the small GTPases are for reendothelialization, dysregulation of these molecules can result in various vascular pathologies including aneurysm formation, atherosclerosis, diabetes, angiogenesis, and hypertension. A better understanding of the role of small GTPases in endothelial cell migration is essential to the development for novel agents to treat vascular disease.
Collapse
Affiliation(s)
- Alison Flentje
- Division of Vascular Surgery, Department of Surgery, University of Maryland School of Medicine, 22 South Greene Street, Suite S10B00, Baltimore, MD 21201, USA.
| | - Richa Kalsi
- Division of Vascular Surgery, Department of Surgery, University of Maryland School of Medicine, 22 South Greene Street, Suite S10B00, Baltimore, MD 21201, USA.
| | - Thomas S Monahan
- Division of Vascular Surgery, Department of Surgery, University of Maryland School of Medicine, 22 South Greene Street, Suite S10B00, Baltimore, MD 21201, USA.
| |
Collapse
|
243
|
Phospho-substrate profiling of Epac-dependent protein kinase C activity. Mol Cell Biochem 2019; 456:167-178. [PMID: 30739223 DOI: 10.1007/s11010-019-03502-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Exchange protein directly activated by cAMP (Epac) and protein kinase A are effectors for cAMP with distinct actions and regulatory mechanisms. Epac is a Rap guanine nucleotide exchange factor that activates Rap1; protein kinase C (PKC) is a major downstream target of Epac-Rap1 signaling that has been implicated in a variety of pathophysiological processes, including cardiac hypertrophy, cancer, and nociceptor sensitization leading to chronic pain. Despite the implication of both Epac and PKC in these processes, few downstream targets of Epac-PKC signaling have been identified. This study characterized the regulation of PKC activity downstream of Epac activation. Using an antibody that recognizes phospho-serine residues within the consensus sequence phosphorylated by PKC, we analyzed the 1-dimensional banding profile of PKC substrate protein phosphorylation from the Neuro2A mouse neuroblastoma cell line. Activation of Epac either indirectly by prostaglandin PGE2, or directly by 8-pCPT-2-O-Me-cAMP-AM (8pCpt), produced distinct PKC phospho-substrate protein bands that were suppressed by co-administration of the Epac inhibitor ESI09. Different PKC isoforms contributed to the induction of individual phospho-substrate bands, as determined using isoform-selective PKC inhibitors. Moreover, the banding profile after Epac activation was altered by disruption of the cytoskeleton, suggesting that the orchestration of Epac-dependent PKC signaling is regulated in part by interactions with the cytoskeleton. The approach described here provides an effective means to characterize Epac-dependent PKC activity.
Collapse
|
244
|
Loers G, Liao Y, Hu C, Xue W, Shen H, Zhao W, Schachner M. Identification and characterization of synthetic chondroitin-4-sulfate binding peptides in neuronal functions. Sci Rep 2019; 9:1064. [PMID: 30705359 PMCID: PMC6355858 DOI: 10.1038/s41598-018-37685-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/28/2018] [Indexed: 02/05/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs), up-regulated in and around the glial scar after mammalian spinal cord injury, have been suggested to be key inhibitory molecules for functional recovery by impeding axonal regrowth/sprouting and synaptic rearrangements. CSPG-mediated inhibition is mainly associated with the glycosaminoglycan chains of CSPGs, and chondroitin-4-sulfate (C4S) is the predominant sulfated structure that regulates axonal guidance and growth in the adult nervous system. With the aim to find molecules that neutralize the inhibitory functions of C4S, we screened a phage display library for peptides binding to C4S. From the phage clones binding to C4S we selected three peptides for further analysis. We observed that these peptides bind to C4S, but not chondroitin-6-sulfate, heparin sulfate or dermatan sulfate, in a concentration-dependent and saturable manner, whereas the scrambled peptides showed highly reduced or no binding to C4S. The C4S-binding peptides, but not their scrambled counterparts, when added to cultures of mouse cerebellar neurons and human neuroblastoma cells, neutralized the inhibitory functions of the C4S- and CSPG-coated substrate on cell adhesion, neuronal migration and neurite outgrowth. These results indicate that the C4S-binding peptides neutralize several inhibitory functions of CSPGs, suggesting that they may be beneficial in repairing mammalian nervous system injuries.
Collapse
Affiliation(s)
- Gabriele Loers
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Yonghong Liao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Chengliang Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Weikang Xue
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Huifan Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China.
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China.
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
245
|
Parascandolo A, Laukkanen MO. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal 2019; 30:443-486. [PMID: 29478325 PMCID: PMC6393772 DOI: 10.1089/ars.2017.7268] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34+ cell differentiation in thyroid, colon, lung, breast, and hematological cancers. CRITICAL ISSUES Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. FUTURE DIRECTIONS The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies.
Collapse
|
246
|
Penchev VR, Chang YT, Begum A, Ewachiw T, Gocke C, Li J, McMillan RH, Wang Q, Anders R, Marchionni L, Maitra A, Uren A, Rasheed Z, Matsui W. Ezrin Promotes Stem Cell Properties in Pancreatic Ductal Adenocarcinoma. Mol Cancer Res 2019; 17:929-936. [PMID: 30655325 DOI: 10.1158/1541-7786.mcr-18-0367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 10/09/2018] [Accepted: 01/08/2019] [Indexed: 01/25/2023]
Abstract
Self-renewal maintains the long-term clonogenic growth that is required for cancer relapse and progression, but the cellular processes regulating this property are not fully understood. In many diseases, self-renewal is enhanced in cancer stem cells (CSC), and in pancreatic ductal adenocarcinoma (PDAC), CSCs are characterized by the surface expression of CD44. In addition to cell adhesion, CD44 impacts cell shape and morphology by modulating the actin cytoskeleton via Ezrin, a member of the Ezrin/Radixin/Moesin (ERM) family of linker proteins. We examined the expression of Ezrin in PDAC cells and found higher levels of both total and activated Ezrin in CSCs compared with bulk tumor cells. We also found that the knockdown of Ezrin in PDAC cells decreased clonogenic growth, self-renewal, cell migration, and CSC frequency in vitro as well as tumor initiation in vivo. These effects were associated with cytoskeletal changes that are similar to those occurring during the differentiation of normal stem cells, and the inhibition of actin remodeling reversed the impact of Ezrin loss. Finally, targeting Ezrin using a small-molecule inhibitor limited the self-renewal of clinically derived low-passage PDAC xenografts. Our findings demonstrate that Ezrin modulates CSCs properties and may represent a novel target for the treatment of PDAC. IMPLICATIONS: Our findings demonstrate that Ezrin modulates CSCs' properties and may represent a novel target for the treatment of PDAC.
Collapse
Affiliation(s)
- Vesselin R Penchev
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yu-Tai Chang
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Asma Begum
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theodore Ewachiw
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christian Gocke
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joey Li
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ross H McMillan
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qiuju Wang
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luigi Marchionni
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anirban Maitra
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Aykut Uren
- Department of Oncology, Lombardy Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Zeshaan Rasheed
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William Matsui
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
247
|
Li J, Yin W, Jing Y, Kang D, Yang L, Cheng J, Yu Z, Peng Z, Li X, Wen Y, Sun X, Ren B, Liu C. The Coordination Between B Cell Receptor Signaling and the Actin Cytoskeleton During B Cell Activation. Front Immunol 2019; 9:3096. [PMID: 30687315 PMCID: PMC6333714 DOI: 10.3389/fimmu.2018.03096] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/13/2018] [Indexed: 01/27/2023] Open
Abstract
B-cell activation plays a crucial part in the immune system and is initiated via interaction between the B cell receptor (BCR) and specific antigens. In recent years with the help of modern imaging techniques, it was found that the cortical actin cytoskeleton changes dramatically during B-cell activation. In this review, we discuss how actin-cytoskeleton reorganization regulates BCR signaling in different stages of B-cell activation, specifically when stimulated by antigens, and also how this reorganization is mediated by BCR signaling molecules. Abnormal BCR signaling is associated with the progression of lymphoma and immunological diseases including autoimmune disorders, and recent studies have proved that impaired actin cytoskeleton can devastate the normal activation of B cells. Therefore, to figure out the coordination between the actin cytoskeleton and BCR signaling may reveal an underlying mechanism of B-cell activation, which has potential for new treatments for B-cell associated diseases.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukai Jing
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cheng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Yu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zican Peng
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingbo Li
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wen
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xizi Sun
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boxu Ren
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
248
|
Lee JH, Kim DH, Lee HH, Kim HW. Role of nuclear mechanosensitivity in determining cellular responses to forces and biomaterials. Biomaterials 2019; 197:60-71. [PMID: 30641265 DOI: 10.1016/j.biomaterials.2019.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/25/2018] [Accepted: 01/05/2019] [Indexed: 01/17/2023]
Abstract
Tissue engineers use biomaterials or apply forces to alter cell behaviors and cure damaged/diseased tissues. The external physical cues perceived by cells are transduced intracellularly along the mechanosensitive machineries, including subcellular adhesion molecules and cytoskeletons. The signals are further channeled to a nucleus through the physical links of nucleoskeleton and cytoskeleton or the biochemical translocation of transcription factors. Thus, the external cues are thought to affect directly or indirectly the nucleus and the genetic transcriptional process, ultimately determining cell fate. Here we communicate the importance of such mechanotransductory processes in cell and tissue engineering where external forces- or biomaterials-related physical cues essentially regulate cellular behaviors, with an emphasis on the mechanosensing and signaling along the road to a nucleus.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 20841, South Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
249
|
Abstract
Neuronal connectivity in the cortex is determined by the laminar positioning of neurons. An important determinant of laminar positioning is likely to be the control of leading process behavior during migration, maintaining their tips directed toward the pia. In this study, we provide evidence that pial bone morphogenetic protein (Bmp) signaling regulates cortical neuronal migration during cortical layer formation. Specific disruption of pial Bmp ligands impaired the positioning of early-born neurons in the deep layer; further, cell-autonomous inhibition of Smad4, a core nuclear factor mediating Bmp signaling, in the cortical radial glial cells or postmitotic cortical neurons also produced neuronal migration defects that blurred the cortical layers. We found that leading processes were abnormal and that this was accompanied by excess dephosphorylated cofilin-1, an actin-severing protein, in Smad4 mutant neurons. This suggested that regulation of cofilin-1 might transduce Bmp signaling in the migrating neurons. Ectopic expression of a phosphorylation-defective form of cofilin-1 in the late-born wild-type neurons led them to stall in the deep layer, similar to the Smad4 mutant neurons. Expression of a phosphomimetic variant of cofilin-1 in the Smad4 mutant neurons rescued the migration defects. This suggests that cofilin-1 activity underlies Bmp-mediated cortical neuronal migration. This study shows that cofilin-1 mediates pial Bmp signaling during the positioning of cortical neurons and the formation of cortical layers.
Collapse
Affiliation(s)
- Youngshik Choe
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Korea Brain Research Institute, Dong-gu, Daegu, Korea
| | - Samuel J Pleasure
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.,Department of Neuroscience, University of California, San Francisco, San Francisco, CA, USA.,Department of Developmental Stem Cell Biology, University of California, San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
250
|
LIMK2-1, a new isoform of human LIMK2, regulates actin cytoskeleton remodeling via a different signaling pathway than that of its two homologs, LIMK2a and LIMK2b. Biochem J 2018; 475:3745-3761. [DOI: 10.1042/bcj20170961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022]
Abstract
LIMK1 and LIMK2 (LIMKs, LIM kinases) are kinases that play a crucial role in cytoskeleton dynamics by independently regulating both actin filament and microtubule remodeling. LIMK1 and, more recently, LIMK2 have been shown to be involved in cancer development and metastasis, resistance of cancer cells to microtubule-targeted treatments, neurological diseases, and viral infection. LIMKs have thus recently emerged as new therapeutic targets. Databanks describe three isoforms of human LIMK2: LIMK2a, LIMK2b, and LIMK2-1. Evidence suggests that they may not have completely overlapping functions. We biochemically characterized the three isoforms to better delineate their potential roles, focusing on LIMK2-1, which has only been described at the mRNA level in a single study. LIMK2-1 has a protein phosphatase 1 (PP1) inhibitory domain at its C-terminus which its two counterparts do not. We showed that the LIMK2-1 protein is indeed synthesized. LIMK2-1 does not phosphorylate cofilin, the canonical substrate of LIMKs, although it has kinase activity and promotes actin stress fiber formation. Instead, it interacts with PP1 and partially inhibits its activity towards cofilin. Our data suggest that LIMK2-1 regulates actin cytoskeleton dynamics by preventing PP1-mediated cofilin dephosphorylation, rather than by directly phosphorylating cofilin as its two counterparts, LIMK2a and LIMK2b. This specificity may allow for tight regulation of the phospho-cofilin pool, determining the fate of the cell.
Collapse
|