201
|
Zhao S, Chi L, Chen H. CEGA: a method for inferring natural selection by comparative population genomic analysis across species. Genome Biol 2023; 24:219. [PMID: 37789379 PMCID: PMC10548728 DOI: 10.1186/s13059-023-03068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
We developed maximum likelihood method for detecting positive selection or balancing selection using multilocus or genomic polymorphism and divergence data from two species. The method is especially useful for investigating natural selection in noncoding regions. Simulations demonstrate that the method outperforms existing methods in detecting both positive and balancing selection. We apply the method to population genomic data from human and chimpanzee. The list of genes identified under selection in the noncoding regions is prominently enriched in pathways related to the brain and nervous system. Therefore, our method will serve as a useful tool for comparative population genomic analysis.
Collapse
Affiliation(s)
- Shilei Zhao
- CAS Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- School of Future Technology, College of Life Sciences and Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianjiang Chi
- CAS Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Hua Chen
- CAS Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- School of Future Technology, College of Life Sciences and Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
202
|
Banaj N, Vecchio D, Piras F, De Rossi P, Bustillo J, Ciufolini S, Dazzan P, Di Forti M, Dickie EW, Ford JM, Fuentes-Claramonte P, Gruber O, Guerrero-Pedraza A, Hamilton HK, Howells FM, Kraemer B, Lawrie SM, Mathalon DH, Murray R, Pomarol-Clotet E, Potkin SG, Preda A, Radua J, Richter A, Salvador R, Sawa A, Scheffler F, Sim K, Spaniel F, Stein DJ, Temmingh HS, Thomopoulos SI, Tomecek D, Uhlmann A, Voineskos A, Yang K, Jahanshad N, Thompson PM, Van Erp TGM, Turner JA, Spalletta G, Piras F. Cortical morphology in patients with the deficit and non-deficit syndrome of schizophrenia: a worldwide meta- and mega-analyses. Mol Psychiatry 2023; 28:4363-4373. [PMID: 37644174 PMCID: PMC10827665 DOI: 10.1038/s41380-023-02221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Converging evidence suggests that schizophrenia (SZ) with primary, enduring negative symptoms (i.e., Deficit SZ (DSZ)) represents a distinct entity within the SZ spectrum while the neurobiological underpinnings remain undetermined. In the largest dataset of DSZ and Non-Deficit (NDSZ), we conducted a meta-analysis of data from 1560 individuals (168 DSZ, 373 NDSZ, 1019 Healthy Controls (HC)) and a mega-analysis of a subsampled data from 944 individuals (115 DSZ, 254 NDSZ, 575 HC) collected across 9 worldwide research centers of the ENIGMA SZ Working Group (8 in the mega-analysis), to clarify whether they differ in terms of cortical morphology. In the meta-analysis, sites computed effect sizes for differences in cortical thickness and surface area between SZ and control groups using a harmonized pipeline. In the mega-analysis, cortical values of individuals with schizophrenia and control participants were analyzed across sites using mixed-model ANCOVAs. The meta-analysis of cortical thickness showed a converging pattern of widespread thinner cortex in fronto-parietal regions of the left hemisphere in both DSZ and NDSZ, when compared to HC. However, DSZ have more pronounced thickness abnormalities than NDSZ, mostly involving the right fronto-parietal cortices. As for surface area, NDSZ showed differences in fronto-parietal-temporo-occipital cortices as compared to HC, and in temporo-occipital cortices as compared to DSZ. Although DSZ and NDSZ show widespread overlapping regions of thinner cortex as compared to HC, cortical thinning seems to better typify DSZ, being more extensive and bilateral, while surface area alterations are more evident in NDSZ. Our findings demonstrate for the first time that DSZ and NDSZ are characterized by different neuroimaging phenotypes, supporting a nosological distinction between DSZ and NDSZ and point toward the separate disease hypothesis.
Collapse
Affiliation(s)
- Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Daniela Vecchio
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Pietro De Rossi
- Child and Adolescence Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Juan Bustillo
- Psichiatry and Neuroscience, University of New Mexico, Albuquerque, NM, USA
| | - Simone Ciufolini
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Marta Di Forti
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Erin W Dickie
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Kimel Family Lab, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Judith M Ford
- San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Paola Fuentes-Claramonte
- FIMDAG Sisters Hospitallers Research Foundation, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Baden-Wuerttemberg, Germany
| | | | - Holly K Hamilton
- San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Fleur M Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Bernd Kraemer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Baden-Wuerttemberg, Germany
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburg, EH10 5HF, UK
| | - Daniel H Mathalon
- San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Robin Murray
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neurology, King's College London, London, UK
| | - Edith Pomarol-Clotet
- FIMDAG Sisters Hospitallers Research Foundation, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Steven G Potkin
- Department of Psychiatry, University of California Irvine, Newfoundland, NJ, NJ 07435, USA
| | - Adrian Preda
- Psychiatry and Human Behavior, University of California Irvine, Orange, CA, 92868, USA
| | - Joaquim Radua
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Imaging of mood- and anxiety-related disorders (IMARD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Medicina, University of Barcelona, Barcelona, 08036, Spain
| | - Anja Richter
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Baden-Wuerttemberg, Germany
| | - Raymond Salvador
- FIMDAG Sisters Hospitallers Research Foundation, Barcelona, Spain
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Freda Scheffler
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Brain Behavior Unit, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kang Sim
- West Region, Institute of Mental Health, National Healthcare Group, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Filip Spaniel
- CARE, National Institute of Mental Health, Klecany, Czech Republic
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Henk S Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, Western Cape, South Africa
- Department of Psychiatry and Mental Health, Valkenberg Psychiatric Hospital, Cape Town, Western Cape, South Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - David Tomecek
- CARE, National Institute of Mental Health, Klecany, Czech Republic
| | - Anne Uhlmann
- Department of child and adolescent psychiatry, TU Dresden, Dresden, Saxony, Germany
| | - Aristotle Voineskos
- Center for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Toronto, ON, Canada
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Theo G M Van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
203
|
Kirschner M, Paquola C, Khundrakpam BS, Vainik U, Bhutani N, Hodzic-Santor B, Georgiadis F, Al-Sharif NB, Misic B, Bernhardt BC, Evans AC, Dagher A. Schizophrenia Polygenic Risk During Typical Development Reflects Multiscale Cortical Organization. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1083-1093. [PMID: 37881579 PMCID: PMC10593879 DOI: 10.1016/j.bpsgos.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022] Open
Abstract
Background Schizophrenia is widely recognized as a neurodevelopmental disorder. Abnormal cortical development in otherwise typically developing children and adolescents may be revealed using polygenic risk scores for schizophrenia (PRS-SCZ). Methods We assessed PRS-SCZ and cortical morphometry in typically developing children and adolescents (3-21 years, 46.8% female) using whole-genome genotyping and T1-weighted magnetic resonance imaging (n = 390) from the PING (Pediatric Imaging, Neurocognition, and Genetics) cohort. We contextualized the findings using 1) age-matched transcriptomics, 2) histologically defined cytoarchitectural types and functionally defined networks, and 3) case-control differences of schizophrenia and other major psychiatric disorders derived from meta-analytic data of 6 ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) working groups, including a total of 12,876 patients and 15,670 control participants. Results Higher PRS-SCZ was associated with greater cortical thickness, which was most prominent in areas with heightened gene expression of dendrites and synapses. PRS-SCZ-related increases in vertexwise cortical thickness were mainly distributed in association cortical areas, particularly the ventral attention network, while relatively sparing koniocortical type cortex (i.e., primary sensory areas). The large-scale pattern of cortical thickness increases related to PRS-SCZ mirrored the pattern of cortical thinning in schizophrenia and mood-related psychiatric disorders derived from the ENIGMA consortium. Age group models illustrate a possible trajectory from PRS-SCZ-associated cortical thickness increases in early childhood toward thinning in late adolescence, with the latter resembling the adult brain phenotype of schizophrenia. Conclusions Collectively, combining imaging genetics with multiscale mapping, our work provides novel insight into how genetic risk for schizophrenia affects the cortex early in life.
Collapse
Affiliation(s)
- Matthias Kirschner
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Casey Paquola
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
| | | | - Uku Vainik
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
- Institute of Psychology, Faculty of Social Sciences, Tartu, Estonia
| | - Neha Bhutani
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | | | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Noor B. Al-Sharif
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Boris C. Bernhardt
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Alan C. Evans
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| |
Collapse
|
204
|
Guo X, Wang S, Lin X, Wang Z, Dou Y, Cao Y, Zhang Y, Luo X, Kang L, Yu T, Wang Z, Tan Y, Gao S, Zheng H, Zhao F, Wang H, Wang K, Xie F, Chen W, Luo X. A novel risk variant block across introns 36-45 of CACNA1C for schizophrenia: a cohort-wise replication and cerebral region-wide validation study. Psychiatr Genet 2023; 33:182-190. [PMID: 37706495 PMCID: PMC10502955 DOI: 10.1097/ypg.0000000000000344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
OBJECTIVES Numerous genome-wide association studies have identified CACNA1C as one of the top risk genes for schizophrenia. As a necessary post-genome-wide association study (GWAS) follow-up, here, we focused on this risk gene, carefully investigated its novel risk variants for schizophrenia, and explored their potential functions. METHODS We analyzed four independent samples (including three European and one African-American) comprising 5648 cases and 6936 healthy subjects to identify replicable single nucleotide polymorphism-schizophrenia associations. The potential regulatory effects of schizophrenia-risk alleles on CACNA1C mRNA expression in 16 brain regions (n = 348), gray matter volumes (GMVs) of five subcortical structures (n = 34 431), and surface areas and thickness of 34 cortical regions (n = 36 936) were also examined. RESULTS A novel 17-variant block across introns 36-45 of CACNA1C was significantly associated with schizophrenia in the same effect direction across at least two independent samples (1.8 × 10-4 ≤ P ≤ 0.049). Most risk variants within this block showed significant associations with CACNA1C mRNA expression (1.6 × 10-3 ≤ P ≤ 0.050), GMVs of subcortical structures (0.016 ≤ P ≤ 0.048), cortical surface areas (0.010 ≤ P ≤ 0.050), and thickness (0.004 ≤ P ≤ 0.050) in multiple brain regions. CONCLUSION We have identified a novel and functional risk variant block at CACNA1C for schizophrenia, providing further evidence for the important role of this gene in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Shibin Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Provincial Cancer Hospital, the Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, China
| | - Zuxing Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yikai Dou
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuping Cao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin, China
| | - Xinqun Luo
- Department of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Diseases of Tibet Autonomous Region, Xizang Minzu University School of Medicine, Xiangyang, Shaanxi 712082, China
| | - Ting Yu
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing, China
| | - Shenshen Gao
- Shanghai Shenkang Hospital Development Center established the Clinical Research and Development Center of Shanghai Municipal Hospitals, Shanghai, China
| | - Hangxiao Zheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Fen Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Huifen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Fan Xie
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Wenzhong Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Xingguang Luo
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
205
|
Gao X, Wei T, Xu S, Sun W, Zhang B, Li C, Sui R, Fei N, Li Y, Xu W, Han D. Sleep disorders causally affect the brain cortical structure: A Mendelian randomization study. Sleep Med 2023; 110:243-253. [PMID: 37657176 DOI: 10.1016/j.sleep.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 08/13/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND s: Previous studies have reported that patients with sleep disorders have altered brain cortical structures. However, the causality has not been determined. We performed a two-sample Mendelian randomization (MR) to reveal the causal effect of sleep disorders on brain cortical structure. METHODS We included as exposures 11 phenotypes of sleep disorders including subjective and objective sleep duration, insomnia symptom and poor sleep efficiency, daytime sleepiness (narcolepsy)/napping, morning/evening preference, and four sleep breathing related traits from nine European-descent genome-wide association studies (GWASs). Further, outcome variables were provided by ENIGMA Consortium GWAS for full brain and 34 region-specific cortical thickness (TH) and surface area (SA) of grey matter. Inverse-variance weighted (IVW) was used as the primary estimate whereas alternative MR methods were implemented as sensitivity analysis approaches to ensure results robustness. RESULTS At the global level, both self-reported or accelerometer-measured shorter sleep duration decreases the thickness of full brain both derived from self-reported data (βIVW = 0.03 mm, standard error (SE) = 0.02, P = 0.038; βIVW = 0.02 mm, SE = 0.01, P = 0.010). At the functional level, there were 66 associations of suggestive evidence of causality. Notably, one robust evidence after multiple testing correction (1518 tests) suggests the without global weighted SA of superior parietal lobule was influenced significantly by sleep efficiency (βIVW = -285.28 mm2, SE = 68.59, P = 3.2 × 10-5). CONCLUSIONS We found significant evidence that shorter sleep duration, as estimated by self-reported interview and accelerometer measurements, was causally associated with atrophy in the entire human brain.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, People's Republic of China
| | - Shenglong Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, People's Republic of China
| | - Bowen Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Cancan Li
- Department of Epidemiology and Health Statistics, School of Public Halth, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rongcui Sui
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Nanxi Fei
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Yanru Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China.
| | - Wen Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Demin Han
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China.
| |
Collapse
|
206
|
Shi R, Xiang S, Jia T, Robbins TW, Kang J, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Sahakian BJ, Feng J. Structural neurodevelopment at the individual level - a life-course investigation using ABCD, IMAGEN and UK Biobank data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.20.23295841. [PMID: 37790416 PMCID: PMC10543061 DOI: 10.1101/2023.09.20.23295841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Adolescents exhibit remarkable heterogeneity in the structural architecture of brain development. However, due to the lack of large-scale longitudinal neuroimaging studies, existing research has largely focused on population averages and the neurobiological basis underlying individual heterogeneity remains poorly understood. Using structural magnetic resonance imaging from the IMAGEN cohort (n=1,543), we show that adolescents can be clustered into three groups defined by distinct developmental patterns of whole-brain gray matter volume (GMV). Genetic and epigenetic determinants of group clustering and long-term impacts of neurodevelopment in mid-to-late adulthood were investigated using data from the ABCD, IMAGEN and UK Biobank cohorts. Group 1, characterized by continuously decreasing GMV, showed generally the best neurocognitive performances during adolescence. Compared to Group 1, Group 2 exhibited a slower rate of GMV decrease and worsened neurocognitive development, which was associated with epigenetic changes and greater environmental burden. Further, Group 3 showed increasing GMV and delayed neurocognitive development during adolescence due to a genetic variation, while these disadvantages were attenuated in mid-to-late adulthood. In summary, our study revealed novel clusters of adolescent structural neurodevelopment and suggested that genetically-predicted delayed neurodevelopment has limited long-term effects on mental well-being and socio-economic outcomes later in life. Our results could inform future research on policy interventions aimed at reducing the financial and emotional burden of mental illness.
Collapse
|
207
|
Stabile AM, Pistilli A, Mariangela R, Rende M, Bartolini D, Di Sante G. New Challenges for Anatomists in the Era of Omics. Diagnostics (Basel) 2023; 13:2963. [PMID: 37761332 PMCID: PMC10529314 DOI: 10.3390/diagnostics13182963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Anatomic studies have traditionally relied on macroscopic, microscopic, and histological techniques to investigate the structure of tissues and organs. Anatomic studies are essential in many fields, including medicine, biology, and veterinary science. Advances in technology, such as imaging techniques and molecular biology, continue to provide new insights into the anatomy of living organisms. Therefore, anatomy remains an active and important area in the scientific field. The consolidation in recent years of some omics technologies such as genomics, transcriptomics, proteomics, and metabolomics allows for a more complete and detailed understanding of the structure and function of cells, tissues, and organs. These have been joined more recently by "omics" such as radiomics, pathomics, and connectomics, supported by computer-assisted technologies such as neural networks, 3D bioprinting, and artificial intelligence. All these new tools, although some are still in the early stages of development, have the potential to strongly contribute to the macroscopic and microscopic characterization in medicine. For anatomists, it is time to hitch a ride and get on board omics technologies to sail to new frontiers and to explore novel scenarios in anatomy.
Collapse
Affiliation(s)
- Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Ruggirello Mariangela
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Desirée Bartolini
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| |
Collapse
|
208
|
Mou J, Zheng T, Long Z, Mei L, Wang Y, Yuan Y, Guo X, Yang H, Gong Q, Qiu L. Sex differences of brain cortical structure in major depressive disorder. PSYCHORADIOLOGY 2023; 3:kkad014. [PMID: 38666130 PMCID: PMC10939343 DOI: 10.1093/psyrad/kkad014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 04/28/2024]
Abstract
Background Major depressive disorder (MDD) has different clinical presentations in males and females. However, the neuroanatomical mechanisms underlying these sex differences are not fully understood. Objective The purpose of present study was to explore the sex differences in brain cortical thickness (CT) and surface area (SA) of MDD and the relationship between these differences and clinical manifestations in different gender. Methods High-resolution T1-weighted images were acquired from 61 patients with MDD and 61 healthy controls (36 females and 25 males, both). The sex differences in CT and SA were obtained using the FreeSurfer software and compared between every two groups by post hoc test. Spearman correlation analysis was also performed to explore the relationships between these regions and clinical characteristics. Results In male patients with MDD, the CT of the right precentral was thinner compared to female patients, although this did not survive Bonferroni correction. The SA of several regions, including right superior frontal, medial orbitofrontal gyrus, inferior frontal gyrus triangle, superior temporal, middle temporal, lateral occipital gyrus, and inferior parietal lobule in female patients with MDD was smaller than that in male patients (P < 0.01 after Bonferroni correction). In female patients, the SA of the right superior temporal (r = 0.438, P = 0.008), middle temporal (r = 0.340, P = 0.043), and lateral occipital gyrus (r = 0.372, P = 0.025) were positively correlated with illness duration. Conclusion The current study provides evidence of sex differences in CT and SA in patients with MDD, which may improve our understanding of the sex-specific neuroanatomical changes in the development of MDD.
Collapse
Affiliation(s)
- Jingping Mou
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Radiology, the First People's Hospital of Yibin, Yibin 644000, China
| | - Ting Zheng
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Lan Mei
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
| | - Yuting Wang
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yizhi Yuan
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
| | - Xin Guo
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Hongli Yang
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lihua Qiu
- Department of Radiology, the Second People's Hospital of Yibin, Yibin 644000, China
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Research Center of Neuroimaging big data, the Second People's Hospital of Yibin,Yibin 644000, China
| |
Collapse
|
209
|
Wang Z, Lin X, Luo X, Xiao J, Zhang Y, Xu J, Wang S, Zhao F, Wang H, Zheng H, Zhang W, Lin C, Tan Z, Cao L, Wang Z, Tan Y, Chen W, Cao Y, Guo X, Pittenger C, Luo X. Pleiotropic Association of CACNA1C Variants With Neuropsychiatric Disorders. Schizophr Bull 2023; 49:1174-1184. [PMID: 37306960 PMCID: PMC10483336 DOI: 10.1093/schbul/sbad073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neuropsychiatric disorders are highly heritable and have overlapping genetic underpinnings. Single nucleotide polymorphisms (SNPs) in the gene CACNA1C have been associated with several neuropsychiatric disorders, across multiple genome-wide association studies. METHOD A total of 70,711 subjects from 37 independent cohorts with 13 different neuropsychiatric disorders were meta-analyzed to identify overlap of disorder-associated SNPs within CACNA1C. The differential expression of CACNA1C mRNA in five independent postmortem brain cohorts was examined. Finally, the associations of disease-sharing risk alleles with total intracranial volume (ICV), gray matter volumes (GMVs) of subcortical structures, cortical surface area (SA), and average cortical thickness (TH) were tested. RESULTS Eighteen SNPs within CACNA1C were nominally associated with more than one neuropsychiatric disorder (P < .05); the associations shared among schizophrenia, bipolar disorder, and alcohol use disorder survived false discovery rate correction (five SNPs with P < 7.3 × 10-4 and q < 0.05). CACNA1C mRNA was differentially expressed in brains from individuals with schizophrenia, bipolar disorder, and Parkinson's disease, relative to controls (three SNPs with P < .01). Risk alleles shared by schizophrenia, bipolar disorder, substance dependence, and Parkinson's disease were significantly associated with ICV, GMVs, SA, or TH (one SNP with P ≤ 7.1 × 10-3 and q < 0.05). CONCLUSION Integrating multiple levels of analyses, we identified CACNA1C variants associated with multiple psychiatric disorders, and schizophrenia and bipolar disorder were most strongly implicated. CACNA1C variants may contribute to shared risk and pathophysiology in these conditions.
Collapse
Affiliation(s)
- Zuxing Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Provincial Cancer Hospital, the Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, China
| | - Xinqun Luo
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Jun Xiao
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin 300180, China
| | - Jianying Xu
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong 519000, China
| | - Shibin Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Fen Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Huifen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Hangxiao Zheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Wei Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Chen Lin
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Zewen Tan
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Wenzhong Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Yuping Cao
- Department of Psychiatry, Second Xiangya Hospital, Central South University; China National Clinical Research Center on Mental Disorders, China National Technology Institute on Mental Disorders, Changsha, Hunan 410011, China
| | - Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, US
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, US
| | - Xingguang Luo
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| |
Collapse
|
210
|
Yu G, Liu Z, Wu X, Becker B, Zhang K, Fan H, Peng S, Kuang N, Kang J, Dong G, Zhao XM, Schumann G, Feng J, Sahakian BJ, Robbins TW, Palaniyappan L, Zhang J. Common and disorder-specific cortical thickness alterations in internalizing, externalizing and thought disorders during early adolescence: an Adolescent Brain and Cognitive Development study. J Psychiatry Neurosci 2023; 48:E345-E356. [PMID: 37673436 PMCID: PMC10495167 DOI: 10.1503/jpn.220202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/13/2023] [Accepted: 05/17/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A growing body of neuroimaging studies has reported common neural abnormalities among mental disorders in adults. However, it is unclear whether the distinct disorder-specific mechanisms operate during adolescence despite the overlap among disorders. METHODS We studied a large cohort of more than 11 000 preadolescent (age 9-10 yr) children from the Adolescent Brain and Cognitive Development cohort. We adopted a regrouping approach to compare cortical thickness (CT) alterations and longitudinal changes between healthy controls (n = 4041) and externalizing (n = 1182), internalizing (n = 1959) and thought disorder (n = 347) groups. Genome-wide association study (GWAS) was performed on regional CT across 4468 unrelated European youth. RESULTS Youth with externalizing or internalizing disorders exhibited increased regional CT compared with controls. Externalizing (p = 8 × 10-4, Cohen d = 0.10) and internalizing disorders (p = 2 × 10-3, Cohen d = 0.08) shared thicker CT in the left pars opercularis. The somatosensory and the primary auditory cortex were uniquely affected in externalizing disorders, whereas the primary motor cortex and higher-order visual association areas were uniquely affected in internalizing disorders. Only youth with externalizing disorders showed decelerated cortical thinning from age 10-12 years. The GWAS found 59 genome-wide significant associated genetic variants across these regions. Cortical thickness in common regions was associated with glutamatergic neurons, while internalizing-specific regional CT was associated with astrocytes, oligodendrocyte progenitor cells and GABAergic neurons. LIMITATIONS The sample size of the GWAS was relatively small. CONCLUSION Our study provides strong evidence for the presence of specificity in CT, developmental trajectories and underlying genetic underpinnings among externalizing and internalizing disorders during early adolescence. Our results support the neurobiological validity of the regrouping approach that could supplement the use of a dimensional approach in future clinical practice.
Collapse
Affiliation(s)
- Gechang Yu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Zhaowen Liu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Xinran Wu
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Benjamin Becker
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Kai Zhang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Huaxin Fan
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Songjun Peng
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Nanyu Kuang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jujiao Kang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Guiying Dong
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Xing-Ming Zhao
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Gunter Schumann
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jianfeng Feng
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Barbara J Sahakian
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Trevor W Robbins
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Lena Palaniyappan
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| | - Jie Zhang
- From the Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China (Yu, Wu, Fan, Peng, Kuang, Kang, Dong, Zhao, Feng, Sahakian, Robbins, Zhang); the Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, China (Yu, Wu, Fan, Peng, Kuang, Feng, Zhang); the Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Mass., USA (Liu); the Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA (Liu); the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Mass., USA (Liu); the Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China (Becker); the School of Computer Science and Technology, East China Normal University, Shanghai, China (Zhang); the Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China (Kang); the MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China (Dong, Zhao); the Zhangjiang Fudan International Innovation Center, Shanghai, China (Zhao); the PONS Centre Shanghai, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China (Schumann); the PONS Centre Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany (Feng); the Shanghai Center for Mathematical Sciences, Shanghai, China (Feng); the Department of Computer Science, University of Warwick, Coventry, UK (Feng); the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (Feng); the Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China (Feng); the Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK (Sahakian); the Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK (Robbins); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada (Palaniyappan); the Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robarts Research Institute, Western University, London, Ont., Canada (Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont., Canada (Palaniyappan)
| |
Collapse
|
211
|
Baranger DAA, Paul SE, Hatoum AS, Bogdan R. Alcohol use and grey matter structure: Disentangling predispositional and causal contributions in human studies. Addict Biol 2023; 28:e13327. [PMID: 37644894 PMCID: PMC10502907 DOI: 10.1111/adb.13327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Alcohol use is a growing global health concern and economic burden. Alcohol involvement (i.e., initiation, use, problematic use, alcohol use disorder) has been reliably associated with broad spectrum grey matter differences in cross-sectional studies. These findings have been largely interpreted as reflecting alcohol-induced atrophy. However, emerging data suggest that brain structure differences also represent pre-existing vulnerability factors for alcohol involvement. Here, we review evidence from human studies with designs (i.e., family-based, genomic, longitudinal) that allow them to assess the plausibility that these correlates reflect predispositional risk factors and/or causal consequences of alcohol involvement. These studies provide convergent evidence that grey matter correlates of alcohol involvement largely reflect predisposing risk factors, with some evidence for potential alcohol-induced atrophy. These conclusions highlight the importance of study designs that can provide causal clues to cross-sectional observations. An integrative model may best account for these data, in which predisposition to alcohol use affects brain development, effects which may then be compounded by the neurotoxic consequences of heavy alcohol use.
Collapse
Affiliation(s)
- David A A Baranger
- Department of Psychiatry, Washington University St. Louis Medical School, St. Louis, Missouri, USA
| | - Sarah E Paul
- Department of Psychological & Brain Sciences, Washington University St. Louis, St. Louis, Missouri, USA
| | - Alexander S Hatoum
- Department of Psychological & Brain Sciences, Washington University St. Louis, St. Louis, Missouri, USA
- Artificial Intelligence and the Internet of Things in Medicine Institute, Washington University St. Louis Medical School, St. Louis, Missouri, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
212
|
Aygün N, Krupa O, Mory J, Le B, Valone J, Liang D, Love MI, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555019. [PMID: 37693528 PMCID: PMC10491258 DOI: 10.1101/2023.08.30.555019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk post-mortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA-editing and alternative polyadenylation (APA), within a cell-type-specific population of human neural progenitors and neurons. More RNA-editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting genetically mediated post-transcriptional regulation during brain development lead to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead contact
| |
Collapse
|
213
|
Warrier V, Stauffer EM, Huang QQ, Wigdor EM, Slob EAW, Seidlitz J, Ronan L, Valk SL, Mallard TT, Grotzinger AD, Romero-Garcia R, Baron-Cohen S, Geschwind DH, Lancaster MA, Murray GK, Gandal MJ, Alexander-Bloch A, Won H, Martin HC, Bullmore ET, Bethlehem RAI. Genetic insights into human cortical organization and development through genome-wide analyses of 2,347 neuroimaging phenotypes. Nat Genet 2023; 55:1483-1493. [PMID: 37592024 PMCID: PMC10600728 DOI: 10.1038/s41588-023-01475-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Our understanding of the genetics of the human cerebral cortex is limited both in terms of the diversity and the anatomical granularity of brain structural phenotypes. Here we conducted a genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance imaging-derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions in 36,663 individuals and identified 4,349 experiment-wide significant loci. These phenotypes include cortical thickness, surface area, gray matter volume, measures of folding, neurite density and water diffusion. We identified four genetic latent structures and causal relationships between surface area and some measures of cortical folding. These latent structures partly relate to different underlying gene expression trajectories during development and are enriched for different cell types. We also identified differential enrichment for neurodevelopmental and constrained genes and demonstrate that common genetic variants associated with cortical expansion are associated with cephalic disorders. Finally, we identified complex interphenotype and inter-regional genetic relationships among the 13 phenotypes, reflecting the developmental differences among them. Together, these analyses identify distinct genetic organizational principles of the cortex and their correlates with neurodevelopment.
Collapse
Affiliation(s)
- Varun Warrier
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | | | | | - Eric A W Slob
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa Ronan
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Andrew D Grotzinger
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Dpto. de Fisiología Médica y Biofísica, Seville, Spain
| | - Simon Baron-Cohen
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, University of California, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Jane and TerrySemel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Institute of Precision Health, University of California, Los Angeles, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Trust, Cambridge, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Michael J Gandal
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyejung Won
- Department of Genetics and the Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Trust, Cambridge, UK
| | - Richard A I Bethlehem
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
214
|
Wang H, Makowski C, Zhang Y, Qi A, Kaufmann T, Smeland OB, Fiecas M, Yang J, Visscher PM, Chen CH. Chromosomal inversion polymorphisms shape human brain morphology. Cell Rep 2023; 42:112896. [PMID: 37505983 PMCID: PMC10508191 DOI: 10.1016/j.celrep.2023.112896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The impact of chromosomal inversions on human brain morphology remains underexplored. We studied 35 common inversions classified from genotypes of 33,018 adults with European ancestry. The inversions at 2p22.3, 16p11.2, and 17q21.31 reach genome-wide significance, followed by 8p23.1 and 6p21.33, in their association with cortical and subcortical morphology. The 17q21.31, 8p23.1, and 16p11.2 regions comprise the LRRC37, OR7E, and NPIP duplicated gene families. We find the 17q21.31 MAPT inversion region, known for harboring neurological risk, to be the most salient locus among common variants for shaping and patterning the cortex. Overall, we observe the inverted orientations decreasing brain size, with the exception that the 2p22.3 inversion is associated with increased subcortical volume and the 8p23.1 inversion is associated with increased motor cortex. These significant inversions are in the genomic hotspots of neuropsychiatric loci. Our findings are generalizable to 3,472 children and demonstrate inversions as essential genetic variation to understand human brain phenotypes.
Collapse
Affiliation(s)
- Hao Wang
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Anna Qi
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA
| | - Tobias Kaufmann
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
215
|
Campbell ML, Dalvie S, Shadrin A, van der Meer D, O'Connell K, Frei O, Andreassen OA, Stein DJ, Rokicki J. Distributed genetic effects of the corpus callosum subregions suggest links to neuropsychiatric disorders and related traits. Acta Neuropsychiatr 2023; 37:e23. [PMID: 37612147 PMCID: PMC10891296 DOI: 10.1017/neu.2023.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
BACKGROUND The corpus callosum (CC) is a brain structure with a high heritability and potential role in psychiatric disorders. However, the genetic architecture of the CC and the genetic link with psychiatric disorders remain largely unclear. We investigated the genetic architectures of the volume of the CC and its subregions and the genetic overlap with psychiatric disorders. METHODS We applied multivariate genome-wide association study (GWAS) to genetic and T1-weighted magnetic resonance imaging (MRI) data of 40,894 individuals from the UK Biobank, aiming to boost genetic discovery and to assess the pleiotropic effects across volumes of the five subregions of the CC (posterior, mid-posterior, central, mid-anterior and anterior) obtained by FreeSurfer 7.1. Multivariate GWAS was run combining all subregions, co-varying for relevant variables. Gene-set enrichment analyses were performed using MAGMA. Linkage disequilibrium score regression (LDSC) was used to determine Single nucleotide polymorphism (SNP)-based heritability of total CC volume and volumes of its subregions as well as their genetic correlations with relevant psychiatric traits. RESULTS We identified 70 independent loci with distributed effects across the five subregions of the CC (p < 5 × 10-8). Additionally, we identified 33 significant loci in the anterior subregion, 23 in the mid-anterior, 29 in the central, 7 in the mid-posterior and 56 in the posterior subregion. Gene-set analysis revealed 156 significant genes contributing to volume of the CC subregions (p < 2.6 × 10-6). LDSC estimated the heritability of CC to (h2SNP = 0.38, SE = 0.03) and subregions ranging from 0.22 (SE = 0.02) to 0.37 (SE = 0.03). We found significant genetic correlations of total CC volume with bipolar disorder (BD, rg = -0.09, SE = 0.03; p = 5.9 × 10-3) and drinks consumed per week (rg = -0.09, SE = 0.02; p = 4.8 × 10-4), and volume of the mid-anterior subregion with BD (rg = -0.12, SE = 0.02; p = 2.5 × 10-4), major depressive disorder (MDD) (rg = -0.12, SE = 0.04; p = 3.6 × 10-3), drinks consumed per week (rg = -0.13, SE = 0.04; p = 1.8 × 10-3) and cannabis use (rg = -0.09, SE = 0.03; p = 8.4 × 10-3). CONCLUSIONS Our results demonstrate that the CC has a polygenic architecture implicating multiple genes and show that CC subregion volumes are heritable. We found that distinct genetic factors are involved in the development of anterior and posterior subregions, consistent with their divergent functional specialisation. Significant genetic correlation between volumes of the CC and BD, drinks per week, MDD and cannabis consumption subregion volumes with psychiatric traits is noteworthy and deserving of further investigation.
Collapse
Affiliation(s)
- Megan L Campbell
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- Global Initiative for Neuropsychiatric Genetics Education in Research (GINGER), Harvard, T.H. Chan School of Public Health, Boston, MA, USA
| | - Shareefa Dalvie
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alexey Shadrin
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Kevin O'Connell
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Oleksander Frei
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Jaroslav Rokicki
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry (SIFER), Oslo University Hospital, Oslo, Norway
| |
Collapse
|
216
|
Huang Y, Wu Z, Li T, Wang X, Wang Y, Xing L, Zhu H, Lin W, Wang L, Guo L, Gilmore JH, Li G. Mapping Genetic Topography of Cortical Thickness and Surface Area in Neonatal Brains. J Neurosci 2023; 43:6010-6020. [PMID: 37369585 PMCID: PMC10451118 DOI: 10.1523/jneurosci.1841-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Adult twin neuroimaging studies have revealed that cortical thickness (CT) and surface area (SA) are differentially influenced by genetic information, leading to their spatially distinct genetic patterning and topography. However, the postnatal origins of the genetic topography of CT and SA remain unclear, given the dramatic cortical development from neonates to adults. To fill this critical gap, this study unprecedentedly explored how genetic information differentially regulates the spatial topography of CT and SA in the neonatal brain by leveraging brain magnetic resonance (MR) images from 202 twin neonates with minimal influence by the complicated postnatal environmental factors. We capitalized on infant-dedicated computational tools and a data-driven spectral clustering method to parcellate the cerebral cortex into a set of distinct regions purely according to the genetic correlation of cortical vertices in terms of CT and SA, respectively, and accordingly created the first genetically informed cortical parcellation maps of neonatal brains. Both genetic parcellation maps exhibit bilaterally symmetric and hierarchical patterns, but distinct spatial layouts. For CT, regions with closer genetic relationships demonstrate an anterior-posterior (A-P) division, while for SA, regions with greater genetic proximity are typically within the same lobe. Certain genetically informed regions exhibit strong similarities between neonates and adults, with the most striking similarities in the medial surface in terms of SA, despite their overall substantial differences in genetic parcellation maps. These results greatly advance our understanding of the development of genetic influences on the spatial patterning of cortical morphology.SIGNIFICANCE STATEMENT Genetic influences on cortical thickness (CT) and surface area (SA) are complex and could evolve throughout the lifespan. However, studies revealing distinct genetic topography of CT and SA have been limited to adults. Using brain structural magnetic resonance (MR) images of twins, we unprecedentedly discovered the distinct genetically-informed parcellation maps of CT and SA in neonatal brains, respectively. Each genetic parcellation map comprises a distinct spatial layout of cortical regions, where vertices within the same region share high genetic correlation. These genetic parcellation maps of CT and SA of neonates largely differ from those of adults, despite their highly remarkable similarities in the medial cortex of SA. These discoveries provide important insights into the genetic organization of the early cerebral cortex development.
Collapse
Affiliation(s)
- Ying Huang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Tengfei Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516
| | - Ya Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Lei Xing
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| |
Collapse
|
217
|
Flynn BI, Javan EM, Lin E, Trutner Z, Koenig K, Anighoro KO, Kun E, Gupta A, Singh T, Jayakumar P, Narasimhan VM. Deep learning based phenotyping of medical images improves power for gene discovery of complex disease. NPJ Digit Med 2023; 6:155. [PMID: 37604895 PMCID: PMC10442423 DOI: 10.1038/s41746-023-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Electronic health records are often incomplete, reducing the power of genetic association studies. For some diseases, such as knee osteoarthritis where the routine course of diagnosis involves an X-ray, image-based phenotyping offers an alternate and unbiased way to ascertain disease cases. We investigated this by training a deep-learning model to ascertain knee osteoarthritis cases from knee DXA scans that achieved clinician-level performance. Using our model, we identified 1931 (178%) more cases than currently diagnosed in the health record. Individuals diagnosed as cases by our model had higher rates of self-reported knee pain, for longer durations and with increased severity compared to control individuals. We trained another deep-learning model to measure the knee joint space width, a quantitative phenotype linked to knee osteoarthritis severity. In performing genetic association analysis, we found that use of a quantitative measure improved the number of genome-wide significant loci we discovered by an order of magnitude compared with our binary model of cases and controls despite the two phenotypes being highly genetically correlated. In addition we discovered associations between our quantitative measure of knee osteoarthritis and increased risk of adult fractures- a leading cause of injury-related death in older individuals-, illustrating the capability of image-based phenotyping to reveal epidemiological associations not captured in the electronic health record. For diseases with radiographic diagnosis, our results demonstrate the potential for using deep learning to phenotype at biobank scale, improving power for both genetic and epidemiological association analysis.
Collapse
Affiliation(s)
- Brianna I Flynn
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
| | - Emily M Javan
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Eugenia Lin
- Department of Surgery and Perioperative Care, Dell Medical School, Austin, TX, USA
| | - Zoe Trutner
- Department of Surgery and Perioperative Care, Dell Medical School, Austin, TX, USA
| | - Karl Koenig
- Department of Surgery and Perioperative Care, Dell Medical School, Austin, TX, USA
| | - Kenoma O Anighoro
- Department of Surgery and Perioperative Care, Dell Medical School, Austin, TX, USA
| | - Eucharist Kun
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Alaukik Gupta
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Tarjinder Singh
- The Department of Psychiatry at Columbia University Irving Medical Center, New York, NY, USA
- The New York Genome Center, New York, NY, USA
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Prakash Jayakumar
- Department of Surgery and Perioperative Care, Dell Medical School, Austin, TX, USA.
| | - Vagheesh M Narasimhan
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
- Department of Statistics and Data Science, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
218
|
Chen Y, Lyu S, Xiao W, Yi S, Liu P, Liu J. Sleep Traits Causally Affect the Brain Cortical Structure: A Mendelian Randomization Study. Biomedicines 2023; 11:2296. [PMID: 37626792 PMCID: PMC10452307 DOI: 10.3390/biomedicines11082296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Background: Brain imaging results in sleep deprived patients showed structural changes in the cerebral cortex; however, the reasons for this phenomenon need to be further explored. Methods: This MR study evaluated causal associations between morningness, ease of getting up, insomnia, long sleep, short sleep, and the cortex structure. Results: At the functional level, morningness increased the surface area (SA) of cuneus with global weighted (beta(b) (95% CI): 32.63 (10.35, 54.90), p = 0.004). Short sleep increased SA of the lateral occipital with global weighted (b (95% CI): 394.37(107.89, 680.85), p = 0.007. Short sleep reduced cortical thickness (TH) of paracentral with global weighted (OR (95% CI): -0.11 (-0.19, -0.03), p = 0.006). Short sleep reduced TH of parahippocampal with global weighted (b (95% CI): -0.25 (-0.42, -0.07), p = 0.006). No pleiotropy was detected. However, none of the Bonferroni-corrected p values of the causal relationship between cortical structure and the five types of sleep traits met the threshold. Conclusions: Our results potentially show evidence of a higher risk association between neuropsychiatric disorders and not only paracentral and parahippocampal brain areas atrophy, but also an increase in the middle temporal zone. Our findings shed light on the associations of cortical structure with the occurrence of five types of sleep traits.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.C.); (S.L.); (S.Y.); (P.L.)
| | - Shiyi Lyu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.C.); (S.L.); (S.Y.); (P.L.)
| | - Wang Xiao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Sijie Yi
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.C.); (S.L.); (S.Y.); (P.L.)
| | - Ping Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.C.); (S.L.); (S.Y.); (P.L.)
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.C.); (S.L.); (S.Y.); (P.L.)
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha 410011, China
| |
Collapse
|
219
|
Logue MW, Dasgupta S, Farrer LA. Genetics of Alzheimer's Disease in the African American Population. J Clin Med 2023; 12:5189. [PMID: 37629231 PMCID: PMC10455208 DOI: 10.3390/jcm12165189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Black/African American (AA) individuals have a higher risk of Alzheimer's disease (AD) than White non-Hispanic persons of European ancestry (EUR) for reasons that may include economic disparities, cardiovascular health, quality of education, and biases in the methods used to diagnose AD. AD is also heritable, and some of the differences in risk may be due to genetics. Many AD-associated variants have been identified by candidate gene studies, genome-wide association studies (GWAS), and genome-sequencing studies. However, most of these studies have been performed using EUR cohorts. In this paper, we review the genetics of AD and AD-related traits in AA individuals. Importantly, studies of genetic risk factors in AA cohorts can elucidate the molecular mechanisms underlying AD risk in AA and other populations. In fact, such studies are essential to enable reliable precision medicine approaches in persons with considerable African ancestry. Furthermore, genetic studies of AA cohorts allow exploration of the ways the impact of genes can vary by ancestry, culture, and economic and environmental disparities. They have yielded important gains in our knowledge of AD genetics, and increasing AA individual representation within genetic studies should remain a priority for inclusive genetic study design.
Collapse
Affiliation(s)
- Mark W. Logue
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA 02130, USA;
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Shoumita Dasgupta
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Medical Sciences and Education, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
220
|
Klingenberg B, Guloksuz S, Pries LK, Cinar O, Menne-Lothmann C, Decoster J, van Winkel R, Collip D, Delespaul P, De Hert M, Derom C, Thiery E, Jacobs N, Wichers M, Lin BD, Luykx J, van Os J, Rutten BPF. Gene-environment interaction study on the polygenic risk score for neuroticism, childhood adversity, and parental bonding. PERSONALITY NEUROSCIENCE 2023; 6:e5. [PMID: 38107775 PMCID: PMC10725776 DOI: 10.1017/pen.2023.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 12/19/2023]
Abstract
The present study examines whether neuroticism is predicted by genetic vulnerability, summarized as polygenic risk score for neuroticism (PRSN), in interaction with bullying, parental bonding, and childhood adversity. Data were derived from a general population adolescent and young adult twin cohort. The final sample consisted of 202 monozygotic and 436 dizygotic twins and 319 twin pairs. The Short Eysenck Personality questionnaire was used to measure neuroticism. PRSN was trained on the results from the Genetics of Personality Consortium (GPC) and United Kingdom Biobank (UKB) cohorts, yielding two different PRSN. Multilevel mixed-effects models were used to analyze the main and interacting associations of PRSN, childhood adversity, bullying, and parental bonding style with neuroticism. We found no evidence of gene-environment correlation. PRSN thresholds of .005 and .2 were chosen, based on GPC and UKB datasets, respectively. After correction for confounders, all the individual variables were associated with the expression of neuroticism: both PRSN from GPC and UKB, childhood adversity, maternal bonding, paternal bonding, and bullying in primary school and secondary school. However, the results indicated no evidence for gene-environment interaction in this cohort. These results suggest that genetic vulnerability on the one hand and negative life events (childhood adversity and bullying) and positive life events (optimal parental bonding) on the other represent noninteracting pathways to neuroticism.
Collapse
Affiliation(s)
- Boris Klingenberg
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
- Department of Psychiatry, Yale School of medicine, USA
| | - Lotta-Katrin Pries
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
| | - Ozan Cinar
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
| | - Claudia Menne-Lothmann
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
| | - Jeroen Decoster
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
- University Psychiatric Centre, KU Leuven, Belgium
| | - Ruud van Winkel
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
- University Psychiatric Centre, KU Leuven, Belgium
| | - Dina Collip
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
| | - Philippe Delespaul
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
| | - Marc De Hert
- University Psychiatric Centre, KU Leuven, Belgium
- Antwerp Health Law and Ethics Chair, AHLEC University Antwerpen, Antwerp, Belgium
| | - Catherine Derom
- Centre of Human Genetics, University Hospitals Leuven, Belgium
- Department of Obstetrics and Gynaecology, Ghent University Hospitals, Belgium
| | - Evert Thiery
- Department of Neurology, Ghent University Hospitals, Belgium
| | - Nele Jacobs
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
- Faculty of Psychology and Educational Sciences, Open University of the Netherlands, The Netherlands
| | - Marieke Wichers
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, The Netherlands
- The Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), The Netherlands
| | - Bochao D. Lin
- Brain Centre Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Jurjen Luykx
- Brain Centre Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Center Utrecht, The Netherlands
- King’s College London, King’s Health Partners, Department of Psychosis Studies, Institute of Psychiatry, UK
| | - Bart P. F. Rutten
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, The Netherlands
| |
Collapse
|
221
|
Rahayel S, Tremblay C, Vo A, Misic B, Lehéricy S, Arnulf I, Vidailhet M, Corvol JC, Gagnon JF, Postuma RB, Montplaisir J, Lewis S, Matar E, Ehgoetz Martens K, Borghammer P, Knudsen K, Hansen AK, Monchi O, Gan-Or Z, Dagher A, for the Alzheimer’s Disease Neuroimaging Initiative. Mitochondrial function-associated genes underlie cortical atrophy in prodromal synucleinopathies. Brain 2023; 146:3301-3318. [PMID: 36826230 PMCID: PMC10393413 DOI: 10.1093/brain/awad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/12/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Isolated rapid eye movement sleep behaviour disorder (iRBD) is a sleep disorder characterized by the loss of rapid eye movement sleep muscle atonia and the appearance of abnormal movements and vocalizations during rapid eye movement sleep. It is a strong marker of incipient synucleinopathy such as dementia with Lewy bodies and Parkinson's disease. Patients with iRBD already show brain changes that are reminiscent of manifest synucleinopathies including brain atrophy. However, the mechanisms underlying the development of this atrophy remain poorly understood. In this study, we performed cutting-edge imaging transcriptomics and comprehensive spatial mapping analyses in a multicentric cohort of 171 polysomnography-confirmed iRBD patients [67.7 ± 6.6 (49-87) years; 83% men] and 238 healthy controls [66.6 ± 7.9 (41-88) years; 77% men] with T1-weighted MRI to investigate the gene expression and connectivity patterns associated with changes in cortical thickness and surface area in iRBD. Partial least squares regression was performed to identify the gene expression patterns underlying cortical changes in iRBD. Gene set enrichment analysis and virtual histology were then done to assess the biological processes, cellular components, human disease gene terms, and cell types enriched in these gene expression patterns. We then used structural and functional neighbourhood analyses to assess whether the atrophy patterns in iRBD were constrained by the brain's structural and functional connectome. Moreover, we used comprehensive spatial mapping analyses to assess the specific neurotransmitter systems, functional networks, cytoarchitectonic classes, and cognitive brain systems associated with cortical changes in iRBD. All comparisons were tested against null models that preserved spatial autocorrelation between brain regions and compared to Alzheimer's disease to assess the specificity of findings to synucleinopathies. We found that genes involved in mitochondrial function and macroautophagy were the strongest contributors to the cortical thinning occurring in iRBD. Moreover, we demonstrated that cortical thinning was constrained by the brain's structural and functional connectome and that it mapped onto specific networks involved in motor and planning functions. In contrast with cortical thickness, changes in cortical surface area were related to distinct genes, namely genes involved in the inflammatory response, and to different spatial mapping patterns. The gene expression and connectivity patterns associated with iRBD were all distinct from those observed in Alzheimer's disease. In summary, this study demonstrates that the development of brain atrophy in synucleinopathies is constrained by specific genes and networks.
Collapse
Affiliation(s)
- Shady Rahayel
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Canada
| | - Christina Tremblay
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| | - Andrew Vo
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| | - Bratislav Misic
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
| | - Stéphane Lehéricy
- Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Sorbonne Université, Paris 75013, France
| | - Isabelle Arnulf
- Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Sorbonne Université, Paris 75013, France
| | - Marie Vidailhet
- Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Sorbonne Université, Paris 75013, France
| | - Jean-Christophe Corvol
- Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Sorbonne Université, Paris 75013, France
| | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Canada
- Department of Psychology, University of Quebec in Montreal, Montreal H2X 3P2, Canada
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal H3W 1W5, Canada
| | - Ronald B Postuma
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Canada
- Department of Neurology, Montreal General Hospital, Montreal H3G 1A4, Canada
| | - Jacques Montplaisir
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal H4J 1C5, Canada
- Department of Psychiatry, University of Montreal, Montreal H3T 1J4, Canada
| | - Simon Lewis
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia
| | - Elie Matar
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia
| | - Kaylena Ehgoetz Martens
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown NSW 2050, Australia
- Department of Kinesiology, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus DK-8200, Denmark
| | - Oury Monchi
- Research Centre, Institut universitaire de gériatrie de Montréal, Montreal H3W 1W5, Canada
- Department of Radiology, Radio-Oncology, and Nuclear Medicine, University of Montreal, Montreal H3T 1A4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal H3A 1A1, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal H3A 1A1, Canada
- Department of Human Genetics, McGill University, Montreal H3A 0C7, Canada
| | - Alain Dagher
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal H3A 1A1, Canada
| | | |
Collapse
|
222
|
He S, Peng Y, Chen X, Ou Y. Causality between inflammatory bowel disease and the cerebral cortex: insights from Mendelian randomization and integrated bioinformatics analysis. Front Immunol 2023; 14:1175873. [PMID: 37588593 PMCID: PMC10425804 DOI: 10.3389/fimmu.2023.1175873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Background Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is a chronic, progressive, and recurrent intestinal condition that poses a significant global health burden. The high prevalence of neuropsychiatric comorbidities in IBD necessitates the development of targeted management strategies. Methods Leveraging genetic data from genome-wide association studies and Immunochip genotype analyses of nearly 150,000 individuals, we conducted a two-sample Mendelian randomization study to elucidate the driving force of IBD, UC, and CD on cortical reshaping. Genetic variants mediating the causality were collected to disclose the biological pathways linking intestinal inflammation to brain dysfunction. Results Here, 115, 69, and 98 instrumental variables genetically predicted IBD, UC, and CD. We found that CD significantly decreased the surface area of the temporal pole gyrus (β = -0.946 mm2, P = 0.005, false discovery rate-P = 0.085). Additionally, we identified suggestive variations in cortical surface area and thickness induced by exposure across eight functional gyri. The top 10 variant-matched genes were STAT3, FOS, NFKB1, JAK2, STAT4, TYK2, SMAD3, IL12B, MYC, and CCL2, which are interconnected in the interaction network and play a role in inflammatory and immune processes. Conclusion We explore the causality between intestinal inflammation and altered cortical morphology. It is likely that neuroinflammation-induced damage, impaired neurological function, and persistent nociceptive input lead to morphological changes in the cerebral cortex, which may trigger neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shubei He
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of the People's Liberation Army, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Peng
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of the People's Liberation Army, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaofang Chen
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of the People's Liberation Army, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Ou
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
223
|
Chen W, Feng J, Guo J, Dong S, Li R, Ngo JCK, Wang C, Ma Y, Dong Z. Obesity causally influencing brain cortical structure: a Mendelian randomization study. Cereb Cortex 2023; 33:9409-9416. [PMID: 37328935 DOI: 10.1093/cercor/bhad214] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Obesity may lead to cognitive impairment and psychiatric disorders, which are associated with alterations in the brain cortical structure. However, the exact causality remains inconclusive. We aimed to conduct two-sample Mendelian randomization (MR) analysis to identify the causal associations of obesity [body mass index (BMI), waist-hip ratio (WHR), and waist-hip ratio adjusted for BMI ((WHRadjBMI)) and brain cortical structure (cortical thickness and cortical surface area). Inverse-variance weighted (IVW) method was used as the main analysis, whereas a series of sensitivity analyses were employed to assess heterogeneity and pleiotropy. The main MR results showed that higher BMI significantly increased the cortical surface area of the transverse temporal (β = 5.13 mm2, 95% confidence interval [CI]: 2.55-7.71, P = 9.9 × 10-5); higher WHR significantly decreased cortical surface area of the inferior temporal (β = -38.60, 95% CI: -56.67- -20.54, P = 1.2 × 10-5), but significantly increased cortical surface area of the isthmus cingulate (β = 14.25, 95% CI: 6.97-21.54, P = 1.2 × 10-4). No significant evidence of pleiotropy was found in the MR analyses. This study supports that obesity has a causal effect on the brain cortical structure. Further studies are warranted to understand the clinical outcomes caused by these effects.
Collapse
Affiliation(s)
- Wenhui Chen
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jia Feng
- Department of Cellular Biology, Jinan University, Institute of Biomedicine, Guangzhou 510632, China
| | - Jie Guo
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Shiliang Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Rufeng Li
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jacky C K Ngo
- School of Life Sciences, The Chinese University of Hong Kong., Shatin 518712, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yi Ma
- Department of Cellular Biology, Jinan University, Institute of Biomedicine, Guangzhou 510632, China
- Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou 510632, China
- The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiyong Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
224
|
Yang F, Liu R, He S, Ruan S, He B, Li J, Pan L. Being a morning man has causal effects on the cerebral cortex: a Mendelian randomization study. Front Neurosci 2023; 17:1222551. [PMID: 37547136 PMCID: PMC10400340 DOI: 10.3389/fnins.2023.1222551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Numerous studies have suggested a connection between circadian rhythm and neurological disorders with cognitive and consciousness impairments in humans, yet little evidence stands for a causal relationship between circadian rhythm and the brain cortex. Methods The top 10,000 morningness-related single-nucleotide polymorphisms of the Genome-wide association study (GWAS) summary statistics were used to filter the instrumental variables. GWAS summary statistics from the ENIGMA Consortium were used to assess the causal relationship between morningness and variates like cortical thickness (TH) or surficial area (SA) on the brain cortex. The inverse-variance weighted (IVW) and weighted median (WM) were used as the major estimates whereas MR-Egger, MR Pleiotropy RESidual Sum and Outlier, leave-one-out analysis, and funnel-plot were used for heterogeneity and pleiotropy detecting. Results Regionally, morningness decreased SA of the rostral middle frontal gyrus with genomic control (IVW: β = -24.916 mm, 95% CI: -47.342 mm to -2.490 mm, p = 0.029. WM: β = -33.208 mm, 95% CI: -61.933 mm to -4.483 mm, p = 0.023. MR Egger: β < 0) and without genomic control (IVW: β = -24.581 mm, 95% CI: -47.552 mm to -1.609 mm, p = 0.036. WM: β = -32.310 mm, 95% CI: -60.717 mm to -3.902 mm, p = 0.026. MR Egger: β < 0) on a nominal significance, with no heterogeneity or no outliers. Conclusions and implications Circadian rhythm causally affects the rostral middle frontal gyrus; this sheds new light on the potential use of MRI in disease diagnosis, revealing the significance of circadian rhythm on the progression of disease, and might also suggest a fresh therapeutic approach for disorders related to the rostral middle frontal gyrus-related.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, China
- Department of Anesthesiology, Central Hospital of Shaoyang, Shaoyang, Hunan Province, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi Province, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, Guangxi Province, China
- Guangxi Engineering Research Center for Tissue and Organ Injury and Repair Medicine, Nanning, Guangxi Province, China
| | - Ru Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, China
| | - Sheng He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, China
- Department of Anesthesiology, The First Affiliated Hospital of Southern China University, Hengyang, China
| | - Sijie Ruan
- Department of Anesthesiology, Central Hospital of Shaoyang, Shaoyang, Hunan Province, China
| | - Binghua He
- Department of Anesthesiology, Central Hospital of Shaoyang, Shaoyang, Hunan Province, China
| | - Junda Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi Province, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, Guangxi Province, China
- Guangxi Engineering Research Center for Tissue and Organ Injury and Repair Medicine, Nanning, Guangxi Province, China
| |
Collapse
|
225
|
Ding P, Xu R. Causal association of COVID-19 with brain structure changes: Findings from a non-overlapping 2-sample Mendelian randomization study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.16.23292735. [PMID: 37502838 PMCID: PMC10371182 DOI: 10.1101/2023.07.16.23292735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Recent cohort studies suggested that SARS-CoV-2 infection is associated with changes in brain structure. However, the potential causal relationship remains unclear. We performed a two-sample Mendelian randomization analysis to determine whether genetic susceptibility of COVID-19 is causally associated with changes in cortical and subcortical areas of the brain. This 2-sample MR (Mendelian Randomization) study is an instrumental variable analysis of data from the COVID-19 Host Genetics Initiative (HGI) meta-analyses round 5 excluding UK Biobank participants (COVID-19 infection, N=1,348,701; COVID-19 severity, N=1,557,411), the Enhancing NeuroImaging Genetics through Meta Analysis (ENIGMA) Global and regional cortical measures, N=33,709; combined hemispheric subcortical volumes, N=38,851), and UK Biobank (left/right subcortical volumes, N=19,629). A replication analysis was performed on summary statistics from different COVID-19 GWAS study (COVID-19 infection, N=80,932; COVID-19 severity, N=72,733). We found that the genetic susceptibility of COVID-19 was not significantly associated with changes in brain structures, including cortical and subcortical brain structure. Similar results were observed for different (1) MR estimates, (2) COVID-19 GWAS summary statistics, and (3) definitions of COVID-19 infection and severity. This study suggests that the genetic susceptibility of COVID-19 is not causally associated with changes in cortical and subcortical brain structure.
Collapse
|
226
|
Cui LB, Wang XY, Fu YF, Liu XF, Wei Y, Zhao SW, Gu YW, Fan JW, Wu WJ, Gong H, Lin BD, Yin H, Guan F, Chang X. Transcriptional level of inflammation markers associates with short-term brain structural changes in first-episode schizophrenia. BMC Med 2023; 21:250. [PMID: 37424013 PMCID: PMC10332052 DOI: 10.1186/s12916-023-02963-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Inflammation has been implicated in the pathology of schizophrenia and may cause neuronal cell death and dendrite loss. Neuroimaging studies have highlighted longitudinal brain structural changes in patients with schizophrenia, yet it is unclear whether this is related to inflammation. We aim to address this question, by relating brain structural changes with the transcriptional profile of inflammation markers in the early stage of schizophrenia. METHODS Thirty-eight patients with first-episode schizophrenia and 51 healthy controls were included. High-resolution T1-weighted magnetic resonance imaging (MRI) and clinical assessments were performed at baseline and 2 ~ 6 months follow-up for all subjects. Changes in the brain structure were analyzed using surface-based morphological analysis and correlated with the expression of immune cells-related gene sets of interest reported by previous reviews. Transcriptional data were retrieved from the Allen Human Brain Atlas. Furthermore, we examined the brain structural changes and peripheral inflammation markers in association with behavioral symptoms and cognitive functioning in patients. RESULTS Patients exhibited accelerated cortical thickness decrease in the left frontal cortices, less decrease or an increase in the superior parietal lobule and right lateral occipital lobe, and increased volume in the bilateral pallidum, compared with controls. Changes in cortical thickness correlated with the transcriptional level of monocyte across cortical regions in patients (r = 0.54, p < 0.01), but not in controls (r = - 0.05, p = 0.76). In addition, cortical thickness change in the left superior parietal lobule positively correlated with changes in digital span-backward test scores in patients. CONCLUSIONS Patients with schizophrenia exhibit regional-specific cortical thickness changes in the prefrontal and parietooccipital cortices, which is related to their cognitive impairment. Inflammation may be an important factor contributing to cortical thinning in first-episode schizophrenia. Our findings suggest that the immunity-brain-behavior association may play a crucial role in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Long-Biao Cui
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi'an, China.
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China.
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Xian-Yang Wang
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Xiao-Fan Liu
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Shu-Wan Zhao
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Yue-Wen Gu
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing-Wen Fan
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hengfen Gong
- School of Medicine, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, China
| | - Bochao Danae Lin
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hong Yin
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
227
|
Carrión-Castillo A, Paz-Alonso PM, Carreiras M. Brain structure, phenotypic and genetic correlates of reading performance. Nat Hum Behav 2023; 7:1120-1134. [PMID: 37037991 DOI: 10.1038/s41562-023-01583-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/08/2023] [Indexed: 04/12/2023]
Abstract
Reading is an evolutionarily recent development that recruits and tunes brain circuitry connecting primary- and language-processing regions. We investigated whether metrics of the brain's physical structure correlate with reading performance and whether genetic variants affect this relationship. To this aim, we used the Adolescent Brain Cognitive Development dataset (n = 9,013) of 9-10-year-olds and focused on 150 measures of cortical surface area (CSA) and thickness. Our results reveal that reading performance is associated with nine measures of brain structure including relevant regions of the reading network. Furthermore, we show that this relationship is partially mediated by genetic factors for two of these measures: the CSA of the entire left hemisphere and, specifically, of the left superior temporal gyrus CSA. These effects emphasize the complex and subtle interplay between genes, brain and reading, which is a partly heritable polygenic skill that relies on a distributed network.
Collapse
Affiliation(s)
| | - Pedro M Paz-Alonso
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Manuel Carreiras
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- University of the Basque Country, Bilbao, Spain.
| |
Collapse
|
228
|
Slapø NB, Jørgensen KN, Elvsåshagen T, Nerland S, Roelfs D, Valstad M, Timpe CMF, Richard G, Beck D, Sæther LS, Frogner Werner MC, Lagerberg TV, Andreassen OA, Melle I, Agartz I, Westlye LT, Moberget T, Jönsson EG. Relationship between function and structure in the visual cortex in healthy individuals and in patients with severe mental disorders. Psychiatry Res Neuroimaging 2023; 332:111633. [PMID: 37028226 DOI: 10.1016/j.pscychresns.2023.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
Patients with schizophrenia spectrum disorders (SCZspect) and bipolar disorders (BD) show impaired function in the primary visual cortex (V1), indicated by altered visual evoked potential (VEP). While the neural substrate for altered VEP in these patients remains elusive, altered V1 structure may play a role. One previous study found a positive relationship between the amplitude of the P100 component of the VEP and V1 surface area, but not V1 thickness, in a small sample of healthy individuals. Here, we aimed to replicate these findings in a larger healthy control (HC) sample (n = 307) and to examine the same relationship in patients with SCZspect (n = 30) or BD (n = 45). We also compared the mean P100 amplitude, V1 surface area and V1 thickness between controls and patients and found no significant group differences. In HC only, we found a significant positive P100-V1 surface area association, while there were no significant P100-V1 thickness relationships in HC, SCZspect or BD. Together, our results confirm previous findings of a positive P100-V1 surface area association in HC, whereas larger patient samples are needed to further clarify the function-structure relationship in V1 in SCZspect and BD.
Collapse
Affiliation(s)
- Nora Berz Slapø
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway.
| | - Kjetil Nordbø Jørgensen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Norway
| | - Stener Nerland
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Daniel Roelfs
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Mathias Valstad
- Department of Mental Disorders, Norwegian Institute of Public Health, Norway
| | - Clara M F Timpe
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | | | - Dani Beck
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | | | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway
| | - Ingrid Melle
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University hospital, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Lars T Westlye
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Torgeir Moberget
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Behavioral Sciences, Faculty of Health Sciences, Oslo Metropolitan University, OsloMet, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
229
|
Ni P, Zhou C, Liang S, Jiang Y, Liu D, Shao Z, Noh H, Zhao L, Tian Y, Zhang C, Wei J, Li X, Yu H, Ni R, Yu X, Qi X, Zhang Y, Ma X, Deng W, Guo W, Wang Q, Sham PC, Chung S, Li T. YBX1-Mediated DNA Methylation-Dependent SHANK3 Expression in PBMCs and Developing Cortical Interneurons in Schizophrenia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300455. [PMID: 37211699 PMCID: PMC10369273 DOI: 10.1002/advs.202300455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Indexed: 05/23/2023]
Abstract
Schizophrenia (SCZ) is a severe psychiatric and neurodevelopmental disorder. The pathological process of SCZ starts early during development, way before the first onset of psychotic symptoms. DNA methylation plays an important role in regulating gene expression and dysregulated DNA methylation is involved in the pathogenesis of various diseases. The methylated DNA immunoprecipitation-chip (MeDIP-chip) is performed to investigate genome-wide DNA methylation dysregulation in peripheral blood mononuclear cells (PBMCs) of patients with first-episode SCZ (FES). Results show that the SHANK3 promoter is hypermethylated, and this hypermethylation (HyperM) is negatively correlated with the cortical surface area in the left inferior temporal cortex and positively correlated with the negative symptom subscores in FES. The transcription factor YBX1 is further found to bind to the HyperM region of SHANK3 promoter in induced pluripotent stem cells (iPSCs)-derived cortical interneurons (cINs) but not glutamatergic neurons. Furthermore, a direct and positive regulatory effect of YBX1 on the expression of SHANK3 is confirmed in cINs using shRNAs. In summary, the dysregulated SHANK3 expression in cINs suggests the potential role of DNA methylation in the neuropathological mechanism underlying SCZ. The results also suggest that HyperM of SHANK3 in PBMCs can serve as a potential peripheral biomarker of SCZ.
Collapse
Affiliation(s)
- Peiyan Ni
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Chuqing Zhou
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Sugai Liang
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Youhui Jiang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Dongxin Liu
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Zhicheng Shao
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
| | - Haneul Noh
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Liansheng Zhao
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yang Tian
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Chengcheng Zhang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Jinxue Wei
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xiaojing Li
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Hua Yu
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Rongjun Ni
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xueli Yu
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Xueyu Qi
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Yamin Zhang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xiaohong Ma
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Wei Deng
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Wanjun Guo
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Qiang Wang
- The Mental Health Center and Psychiatric LaboratoryState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Pak C. Sham
- Department of PsychiatryLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong, SAR999077China
- Centre for PanorOmic SciencesThe University of Hong KongHong Kong, SAR999077China
| | - Sangmi Chung
- Department of PsychiatryMcLean Hospital/Harvard Medical SchoolBelmontMA02478USA
- Department of Cell Biology and AnatomyNew York Medical CollegeValhallaNY10595USA
| | - Tao Li
- Department of NeurobiologyAffiliated Mental Health Center & Hangzhou Seventh People's HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
230
|
Ciochetti NP, Lugli-Moraes B, da Silva BS, Rovaris DL. Genome-wide association studies: utility and limitations for research in physiology. J Physiol 2023; 601:2771-2799. [PMID: 37208942 PMCID: PMC10527550 DOI: 10.1113/jp284241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
Physiological systems are subject to interindividual variation encoded by genetics. Genome-wide association studies (GWAS) operate by surveying thousands of genetic variants from a substantial number of individuals and assessing their association to a trait of interest, be it a physiological variable, a molecular phenotype (e.g. gene expression), or even a disease or condition. Through a myriad of methods, GWAS downstream analyses then explore the functional consequences of each variant and attempt to ascertain a causal relationship to the phenotype of interest, as well as to delve into its links to other traits. This type of investigation allows mechanistic insights into physiological functions, pathological disturbances and shared biological processes between traits (i.e. pleiotropy). An exciting example is the discovery of a new thyroid hormone transporter (SLC17A4) and hormone metabolising enzyme (AADAT) from a GWAS on free thyroxine levels. Therefore, GWAS have substantially contributed with insights into physiology and have been shown to be useful in unveiling the genetic control underlying complex traits and pathological conditions; they will continue to do so with global collaborations and advances in genotyping technology. Finally, the increasing number of trans-ancestry GWAS and initiatives to include ancestry diversity in genomics will boost the power for discoveries, making them also applicable to non-European populations.
Collapse
Affiliation(s)
- Nicolas Pereira Ciochetti
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
| | - Beatriz Lugli-Moraes
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
| | - Bruna Santos da Silva
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
- Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diego Luiz Rovaris
- Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
231
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
232
|
Roe JM, Vidal-Pineiro D, Amlien IK, Pan M, Sneve MH, Thiebaut de Schotten M, Friedrich P, Sha Z, Francks C, Eilertsen EM, Wang Y, Walhovd KB, Fjell AM, Westerhausen R. Tracing the development and lifespan change of population-level structural asymmetry in the cerebral cortex. eLife 2023; 12:e84685. [PMID: 37335613 PMCID: PMC10368427 DOI: 10.7554/elife.84685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Cortical asymmetry is a ubiquitous feature of brain organization that is subtly altered in some neurodevelopmental disorders, yet we lack knowledge of how its development proceeds across life in health. Achieving consensus on the precise cortical asymmetries in humans is necessary to uncover the developmental timing of asymmetry and the extent to which it arises through genetic and later influences in childhood. Here, we delineate population-level asymmetry in cortical thickness and surface area vertex-wise in seven datasets and chart asymmetry trajectories longitudinally across life (4-89 years; observations = 3937; 70% longitudinal). We find replicable asymmetry interrelationships, heritability maps, and test asymmetry associations in large-scale data. Cortical asymmetry was robust across datasets. Whereas areal asymmetry is predominantly stable across life, thickness asymmetry grows in childhood and peaks in early adulthood. Areal asymmetry is low-moderately heritable (max h2SNP ~19%) and correlates phenotypically and genetically in specific regions, indicating coordinated development of asymmetries partly through genes. In contrast, thickness asymmetry is globally interrelated across the cortex in a pattern suggesting highly left-lateralized individuals tend towards left-lateralization also in population-level right-asymmetric regions (and vice versa), and exhibits low or absent heritability. We find less areal asymmetry in the most consistently lateralized region in humans associates with subtly lower cognitive ability, and confirm small handedness and sex effects. Results suggest areal asymmetry is developmentally stable and arises early in life through genetic but mainly subject-specific stochastic effects, whereas childhood developmental growth shapes thickness asymmetry and may lead to directional variability of global thickness lateralization in the population.
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Didac Vidal-Pineiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Mengyu Pan
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of BordeauxBordeauxFrance
- Brian Connectivity and Behaviour Laboratory, Sorbonne UniversityParisFrance
| | - Patrick Friedrich
- Institute of Neuroscience and Medicine, Research Centre JülichJülichGermany
| | - Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for PsycholinguisticsNijmegenNetherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for PsycholinguisticsNijmegenNetherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenNetherlands
- Department of Human Genetics, Radboud University Medical CenterNijmegenNetherlands
| | - Espen M Eilertsen
- PROMENTA Research Center, Department of Psychology, University of OsloOsloNorway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
- Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of OsloOsloNorway
- Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - René Westerhausen
- Section for Cognitive and Clinical Neuroscience, Department of Psychology, University of OsloOsloNorway
| |
Collapse
|
233
|
Miller AP, Gizer IR. Neurogenetic and multi-omic sources of overlap among sensation seeking, alcohol consumption, and alcohol use disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.30.23290733. [PMID: 37333128 PMCID: PMC10274973 DOI: 10.1101/2023.05.30.23290733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Sensation seeking is bidirectionally associated with levels of alcohol consumption in both adult and adolescent samples and shared neurobiological and genetic influences may in part explain this association. Links between sensation seeking and alcohol use disorder (AUD) may primarily manifest via increased alcohol consumption rather than through direct effects on increasing problems and consequences. Here the overlap between sensation seeking, alcohol consumption, and AUD was examined using multivariate modeling approaches for genome-wide association study (GWAS) summary statistics in conjunction with neurobiologically-informed analyses at multiple levels of investigation. Meta-analytic and genomic structural equation modeling (GenomicSEM) approaches were used to conduct GWAS of sensation seeking, alcohol consumption, and AUD. Resulting summary statistics were used in downstream analyses to examine shared brain tissue enrichment of heritability and genome-wide evidence of overlap (e.g., stratified GenomicSEM, RRHO, genetic correlations with neuroimaging phenotypes) and to identify genomic regions likely contributing to observed genetic overlap across traits (e.g., HMAGMA, LAVA). Across approaches, results supported shared neurogenetic architecture between sensation seeking and alcohol consumption characterized by overlapping enrichment of genes expressed in midbrain and striatal tissues and variants associated with increased cortical surface area. Alcohol consumption and AUD evidenced overlap in relation to variants associated with decreased frontocortical thickness. Finally, genetic mediation models provided evidence of alcohol consumption mediating associations between sensation seeking and AUD. This study extends previous research by examining critical sources of neurogenetic and multi-omic overlap among sensation seeking, alcohol consumption, and AUD which may underlie observed phenotypic associations.
Collapse
Affiliation(s)
- Alex P. Miller
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
234
|
Bledsoe X, Gamazon ER. A Transcriptomic Atlas of the Human Brain Reveals Genetically Determined Aspects of Neuropsychiatric Health. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.10.23287072. [PMID: 36993467 PMCID: PMC10055455 DOI: 10.1101/2023.03.10.23287072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Imaging features associated with neuropsychiatric traits can provide valuable insights into underlying pathophysiology. Using data from the UK biobank, we perform tissue-specific TWAS on over 3,500 neuroimaging phenotypes to generate a publicly accessible resource detailing the neurophysiologic consequences of gene expression. As a comprehensive catalog of neuroendophenotypes, this resource represents a powerful neurologic gene prioritization schema that can improve our understanding of brain function, development, and disease. We show that our approach generates reproducible results in internal and external replication datasets. Notably, genetically determined expression alone is shown here to enable high-fidelity reconstruction of brain structure and organization. We demonstrate complementary benefits of cross-tissue and single-tissue analyses towards an integrated neurobiology and provide evidence that gene expression outside the central nervous system provides unique insights into brain health. As an application, we show that over 40% of genes previously associated with schizophrenia in the largest GWAS meta-analysis causally affect neuroimaging phenotypes noted to be altered in schizophrenic patients.
Collapse
Affiliation(s)
- Xavier Bledsoe
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Eric R Gamazon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
235
|
Zhao B, Li T, Fan Z, Yang Y, Shu J, Yang X, Wang X, Luo T, Tang J, Xiong D, Wu Z, Li B, Chen J, Shan Y, Tomlinson C, Zhu Z, Li Y, Stein JL, Zhu H. Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images. Science 2023; 380:abn6598. [PMID: 37262162 PMCID: PMC11987082 DOI: 10.1126/science.abn6598] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/11/2023] [Indexed: 06/03/2023]
Abstract
Cardiovascular health interacts with cognitive and mental health in complex ways, yet little is known about the phenotypic and genetic links of heart-brain systems. We quantified heart-brain connections using multiorgan magnetic resonance imaging (MRI) data from more than 40,000 subjects. Heart MRI traits displayed numerous association patterns with brain gray matter morphometry, white matter microstructure, and functional networks. We identified 80 associated genomic loci (P < 6.09 × 10-10) for heart MRI traits, which shared genetic influences with cardiovascular and brain diseases. Genetic correlations were observed between heart MRI traits and brain-related traits and disorders. Mendelian randomization suggests that heart conditions may causally contribute to brain disorders. Our results advance a multiorgan perspective on human health by revealing heart-brain connections and shared genetic influences.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Shu
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaochen Yang
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiarui Tang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Xiong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhenyi Wu
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Bingxuan Li
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chalmer Tomlinson
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
236
|
Xu J, Liu N, Polemiti E, Garcia-Mondragon L, Tang J, Liu X, Lett T, Yu L, Nöthen MM, Feng J, Yu C, Marquand A, Schumann G. Effects of urban living environments on mental health in adults. Nat Med 2023; 29:1456-1467. [PMID: 37322117 PMCID: PMC10287556 DOI: 10.1038/s41591-023-02365-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/25/2023] [Indexed: 06/17/2023]
Abstract
Urban-living individuals are exposed to many environmental factors that may combine and interact to influence mental health. While individual factors of an urban environment have been investigated in isolation, no attempt has been made to model how complex, real-life exposure to living in the city relates to brain and mental health, and how this is moderated by genetic factors. Using the data of 156,075 participants from the UK Biobank, we carried out sparse canonical correlation analyses to investigate the relationships between urban environments and psychiatric symptoms. We found an environmental profile of social deprivation, air pollution, street network and urban land-use density that was positively correlated with an affective symptom group (r = 0.22, Pperm < 0.001), mediated by brain volume differences consistent with reward processing, and moderated by genes enriched for stress response, including CRHR1, explaining 2.01% of the variance in brain volume differences. Protective factors such as greenness and generous destination accessibility were negatively correlated with an anxiety symptom group (r = 0.10, Pperm < 0.001), mediated by brain regions necessary for emotion regulation and moderated by EXD3, explaining 1.65% of the variance. The third urban environmental profile was correlated with an emotional instability symptom group (r = 0.03, Pperm < 0.001). Our findings suggest that different environmental profiles of urban living may influence specific psychiatric symptom groups through distinct neurobiological pathways.
Collapse
Grants
- R01 DA049238 NIDA NIH HHS
- European Union-funded Horizon Europe project ‘environMENTAL’ (101057429 to G.S.), the Horizon 2020 funded ERC Advanced Grant ‘STRATIFY’ (695313 to G.S.), the Human Brain Project (HBP SGA3, 945539 to G.S.), the National Institute of Health (NIH) (R01DA049238 to G.S.), the German Research Foundation (DFG) (COPE; 675346 to G.S.), the National Natural Science Foundation of China (82150710554 to G.S.),the Chinese National High-end Foreign Expert Recruitment Plan to G.S. and the Alexander von Humboldt Foundation to G.S.
- the National Natural Science Foundation of China (82001797 to J.X.),Tianjin Applied Basic Research Diversified Investment Foundation (21JCYBJC01360 to J.X.), Tianjin Health Technology Project (TJWJ2021QN002 to J.X.), Science&Technology Development Fund of Tianjin Education Commission for Higher Education (2019KJ195 to J.X.)
- National Natural Science Foundation of China (82202093)
- National Key R&D Program of China (2022YFE0209400), Tsinghua University Initiative Scientific Research Program (2021Z11GHX002), the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (EarthLab)
- National Natural Science Foundation of China (82030053);National Key Research and Development Program of China (2018YFC1314301)
Collapse
Affiliation(s)
- Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
| | - Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Elli Polemiti
- Centre for Population Neuroscience and Stratified Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Centre for Population Neuroscience and Stratified Medicine (PONS), Charite Mental Health, Department of Psychiatry and Neurosciences, CCM, Charite Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jie Tang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Xiaoxuan Liu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tristram Lett
- Centre for Population Neuroscience and Stratified Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Centre for Population Neuroscience and Stratified Medicine (PONS), Charite Mental Health, Department of Psychiatry and Neurosciences, CCM, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Le Yu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, People's Republic of China
- Department of Earth System Science, Ministry of Education Ecological Field Station for East Asian Migratory Birds, Tsinghua University, Beijing, People's Republic of China
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Andre Marquand
- Predictive Clinical Neuroscience Group at the Donders Institute, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, People's Republic of China.
- Centre for Population Neuroscience and Stratified Medicine (PONS), Charite Mental Health, Department of Psychiatry and Neurosciences, CCM, Charite Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
237
|
Genç E, Metzen D, Fraenz C, Schlüter C, Voelkle MC, Arning L, Streit F, Nguyen HP, Güntürkün O, Ocklenburg S, Kumsta R. Structural architecture and brain network efficiency link polygenic scores to intelligence. Hum Brain Mapp 2023; 44:3359-3376. [PMID: 37013679 PMCID: PMC10171514 DOI: 10.1002/hbm.26286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 04/05/2023] Open
Abstract
Intelligence is highly heritable. Genome-wide association studies (GWAS) have shown that thousands of alleles contribute to variation in intelligence with small effect sizes. Polygenic scores (PGS), which combine these effects into one genetic summary measure, are increasingly used to investigate polygenic effects in independent samples. Whereas PGS explain a considerable amount of variance in intelligence, it is largely unknown how brain structure and function mediate this relationship. Here, we show that individuals with higher PGS for educational attainment and intelligence had higher scores on cognitive tests, larger surface area, and more efficient fiber connectivity derived by graph theory. Fiber network efficiency as well as the surface of brain areas partly located in parieto-frontal regions were found to mediate the relationship between PGS and cognitive performance. These findings are a crucial step forward in decoding the neurogenetic underpinnings of intelligence, as they identify specific regional networks that link polygenic predisposition to intelligence.
Collapse
Affiliation(s)
- Erhan Genç
- Department of Psychology and NeuroscienceLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Dorothea Metzen
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of PsychologyRuhr University BochumBochumGermany
| | - Christoph Fraenz
- Department of Psychology and NeuroscienceLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Caroline Schlüter
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of PsychologyRuhr University BochumBochumGermany
| | - Manuel C. Voelkle
- Psychological Research Methods Department of PsychologyHumboldt UniversityBerlinGermany
| | - Larissa Arning
- Department of Human Genetics, Faculty of MedicineRuhr University BochumBochumGermany
| | - Fabian Streit
- Department Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Faculty of MedicineRuhr University BochumBochumGermany
| | - Onur Güntürkün
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of PsychologyRuhr University BochumBochumGermany
| | - Sebastian Ocklenburg
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of PsychologyRuhr University BochumBochumGermany
- Department of PsychologyMedical School HamburgHamburgGermany
- ICAN Institute for Cognitive and Affective NeuroscienceMedical School HamburgHamburgGermany
| | - Robert Kumsta
- Genetic Psychology, Faculty of PsychologyRuhr University BochumBochumGermany
- Department of Behavioural and Cognitive Sciences, Laboratory for Stress and Gene‐Environment InterplayUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
238
|
Beck D, Ferschmann L, MacSweeney N, Norbom LB, Wiker T, Aksnes E, Karl V, Dégeilh F, Holm M, Mills KL, Andreassen OA, Agartz I, Westlye LT, von Soest T, Tamnes CK. Puberty differentially predicts brain maturation in male and female youth: A longitudinal ABCD Study. Dev Cogn Neurosci 2023; 61:101261. [PMID: 37295068 PMCID: PMC10311153 DOI: 10.1016/j.dcn.2023.101261] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023] Open
Abstract
Research has demonstrated associations between pubertal development and brain maturation. However, existing studies have been limited by small samples, cross-sectional designs, and inconclusive findings regarding directionality of effects and sex differences. We examined the longitudinal temporal coupling of puberty status assessed using the Pubertal Development Scale (PDS) and magnetic resonance imaging (MRI)-based grey and white matter brain structure. Our sample consisted of 8896 children and adolescents at baseline (mean age = 9.9) and 6099 at follow-up (mean age = 11.9) from the Adolescent Brain and Cognitive Development (ABCD) Study cohort. Applying multigroup Bivariate Latent Change Score (BLCS) models, we found that baseline PDS predicted the rate of change in cortical thickness among females and rate of change in cortical surface area for both males and females. We also found a correlation between baseline PDS and surface area and co-occurring changes over time in males. Diffusion tensor imaging (DTI) analyses revealed correlated change between PDS and fractional anisotropy (FA) for both males and females, but no significant associations for mean diffusivity (MD). Our results suggest that pubertal status predicts cortical maturation, and that the strength of the associations differ between sex. Further research spanning the entire duration of puberty is needed to understand the extent and contribution of pubertal development on the youth brain.
Collapse
Affiliation(s)
- Dani Beck
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway.
| | - Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway
| | - Niamh MacSweeney
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Linn B Norbom
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway
| | - Thea Wiker
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway
| | - Eira Aksnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway
| | - Valerie Karl
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway
| | - Fanny Dégeilh
- Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, EMPENN - ERL U 1228, Rennes, France
| | - Madelene Holm
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Kathryn L Mills
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Tilmann von Soest
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway
| | - Christian K Tamnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway
| |
Collapse
|
239
|
Fürtjes AE, Arathimos R, Coleman JRI, Cole JH, Cox SR, Deary IJ, de la Fuente J, Madole JW, Tucker‐Drob EM, Ritchie SJ. General dimensions of human brain morphometry inferred from genome-wide association data. Hum Brain Mapp 2023; 44:3311-3323. [PMID: 36987996 PMCID: PMC10171533 DOI: 10.1002/hbm.26283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/01/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding the neurodegenerative mechanisms underlying cognitive decline in the general population may facilitate early detection of adverse health outcomes in late life. This study investigates genetic links between brain morphometry, ageing and cognitive ability. We develop Genomic Principal Components Analysis (Genomic PCA) to model general dimensions of brain-wide morphometry at the level of their underlying genetic architecture. Genomic PCA is applied to genome-wide association data for 83 brain-wide volumes (36,778 UK Biobank participants) and we extract genomic principal components (PCs) to capture global dimensions of genetic covariance across brain regions (unlike ancestral PCs that index genetic similarity between participants). Using linkage disequilibrium score regression, we estimate genetic overlap between those general brain dimensions and cognitive ageing. The first genetic PCs underlying the morphometric organisation of 83 brain-wide regions accounted for substantial genetic variance (R2 = 40%) with the pattern of component loadings corresponding closely to those obtained from phenotypic analyses. Genetically more central regions to overall brain structure - specifically frontal and parietal volumes thought to be part of the central executive network - tended to be somewhat more susceptible towards age (r = -0.27). We demonstrate the moderate genetic overlap between the first PC underlying each of several structural brain networks and general cognitive ability (rg = 0.17-0.21), which was not specific to a particular subset of the canonical networks examined. We provide a multivariate framework integrating covariance across multiple brain regions and the genome, revealing moderate shared genetic etiology between brain-wide morphometry and cognitive ageing.
Collapse
Affiliation(s)
- Anna E. Fürtjes
- Social, Genetic and Developmental Psychiatry (SGDP) CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonSE5 8AFUK
| | - Ryan Arathimos
- Social, Genetic and Developmental Psychiatry (SGDP) CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonSE5 8AFUK
- National Institutes for Health Research Maudsley Biomedical Research CentreSouth London and Maudsley NHS TrustLondonSE5 8AFUK
| | - Jonathan R. I. Coleman
- Social, Genetic and Developmental Psychiatry (SGDP) CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonSE5 8AFUK
- National Institutes for Health Research Maudsley Biomedical Research CentreSouth London and Maudsley NHS TrustLondonSE5 8AFUK
| | - James H. Cole
- Department of NeuroimageingInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonSE5 8AFUK
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonWC1V 6LJUK
- Dementia Research CentreInstitute of Neurology, University College LondonLondonWC1N 3BGUK
| | - Simon R. Cox
- Department of PsychologyThe University of EdinburghEdinburghEH8 9JZUK
- Lothian Birth CohortsUniversity of EdinburghEdinburghEH8 9JZUK
| | - Ian J. Deary
- Department of PsychologyThe University of EdinburghEdinburghEH8 9JZUK
- Lothian Birth CohortsUniversity of EdinburghEdinburghEH8 9JZUK
| | - Javier de la Fuente
- Department of PsychologyUniversity of Texas at AustinAustinTexas78712‐1043USA
- Population Research Center and Center on Ageing and Population SciencesUniversity of Texas at AustinAustinTexas78712‐1043USA
| | - James W. Madole
- Department of PsychologyUniversity of Texas at AustinAustinTexas78712‐1043USA
| | - Elliot M. Tucker‐Drob
- Department of PsychologyUniversity of Texas at AustinAustinTexas78712‐1043USA
- Population Research Center and Center on Ageing and Population SciencesUniversity of Texas at AustinAustinTexas78712‐1043USA
| | - Stuart J. Ritchie
- Social, Genetic and Developmental Psychiatry (SGDP) CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonSE5 8AFUK
| |
Collapse
|
240
|
Chen L, Zhao S, Wang Y, Niu X, Zhang B, Li X, Peng D. Genetic Insights into Obesity and Brain: Combine Mendelian Randomization Study and Gene Expression Analysis. Brain Sci 2023; 13:892. [PMID: 37371369 PMCID: PMC10295948 DOI: 10.3390/brainsci13060892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
As a major public-health concern, obesity is imposing an increasing social burden around the world. The link between obesity and brain-health problems has been reported, but controversy remains. To investigate the relationship among obesity, brain-structure changes and diseases, a two-stage analysis was performed. At first, we used the Mendelian-randomization (MR) approach to identify the causal relationship between obesity and cerebral structure. Obesity-related data were retrieved from the Genetic Investigation of ANthropometric Traits (GIANT) consortium and the UK Biobank, whereas the cortical morphological data were from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium. Further, we extracted region-specific expressed genes according to the Allen Human Brian Atlas (AHBA) and carried out a series of bioinformatics analyses to find the potential mechanism of obesity and diseases. In the univariable MR, a higher body mass index (BMI) or larger visceral adipose tissue (VAT) was associated with a smaller global cortical thickness (pBMI = 0.006, pVAT = 1.34 × 10-4). Regional associations were found between obesity and specific gyrus regions, mainly in the fusiform gyrus and inferior parietal gyrus. Multivariable MR results showed that a greater body fat percentage was linked to a smaller fusiform-gyrus thickness (p = 0.029) and precuneus surface area (p = 0.035). As for the gene analysis, region-related genes were enriched to several neurobiological processes, such as compound transport, neuropeptide-signaling pathway, and neuroactive ligand-receptor interaction. These genes contained a strong relationship with some neuropsychiatric diseases, such as Alzheimer's disease, epilepsy, and other disorders. Our results reveal a causal relationship between obesity and brain abnormalities and suggest a pathway from obesity to brain-structure abnormalities to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Leian Chen
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Shaokun Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Xiaoqian Niu
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Bin Zhang
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| |
Collapse
|
241
|
Ou YN, Ge YJ, Wu BS, Zhang Y, Jiang YC, Kuo K, Yang L, Tan L, Feng JF, Cheng W, Yu JT. The genetic architecture of fornix white matter microstructure and their involvement in neuropsychiatric disorders. Transl Psychiatry 2023; 13:180. [PMID: 37236919 DOI: 10.1038/s41398-023-02475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The fornix is a white matter bundle located in the center of the hippocampaldiencephalic limbic circuit that controls memory and executive functions, yet its genetic architectures and involvement in brain disorders remain largely unknown. We carried out a genome-wide association analysis of 30,832 UK Biobank individuals of the six fornix diffusion magnetic resonance imaging (dMRI) traits. The post-GWAS analysis allowed us to identify causal genetic variants in phenotypes at the single nucleotide polymorphisms (SNP), locus, and gene levels, as well as genetic overlap with brain health-related traits. We further generalized our GWAS in adolescent brain cognitive development (ABCD) cohort. The GWAS identified 63 independent significant variants within 20 genomic loci associated (P < 8.33 × 10-9) with the six fornix dMRI traits. Geminin coiled-coil domain containing (GMNC) and NUAK family SNF1-like kinase 1 (NUAK1) gene were highlighted, which were found in UKB and replicated in ABCD. The heritability of the six traits ranged from 10% to 27%. Gene mapping strategies identified 213 genes, where 11 were supported by all of four methods. Gene-based analyses revealed pathways relating to cell development and differentiation, with astrocytes found to be significantly enriched. Pleiotropy analyses with eight neurological and psychiatric disorders revealed shared variants, especially with schizophrenia under the conjFDR threshold of 0.05. These findings advance our understanding of the complex genetic architectures of fornix and their relevance in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yi-Jun Ge
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yu-Chao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Kevin Kuo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
242
|
Xu S, Liu Y, Wang Q, Liu F, Xu F, Liu Y. Mendelian randomization study reveals a causal relationship between coronary artery disease and cognitive impairment. Front Cardiovasc Med 2023; 10:1150432. [PMID: 37288257 PMCID: PMC10242088 DOI: 10.3389/fcvm.2023.1150432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Background Growing evidence suggests that Coronary artery disease (CAD) is associated with cognitive impairment. However, these results from observational studies was not entirely consistent, with some detecting no such association. And it is necessary to explore the causal relationship between CAD and cognitive impairment. Objective We aimed to explore the potential causal relationship between CAD and cognitive impairment by using bidirectional two-sample mendelian randomization (MR) analyses. Methods Instrument variants were extracted according to strict selection criteria. And we used publicly available summary-level GWAS data. Five different methods of MR [random-effect inverse-variance weighted (IVW), MR Egger, weighted median, weighted mode and Wald ratio] were used to explore the causal relationship between CAD and cognitive impairment. Results There was little evidence to support a causal effect of CAD on cognitive impairment in the forward MR analysis. In the reverse MR analyses, We detect causal effects of fluid intelligence score (IVW: β = -0.12, 95% CI of -0.18 to -0.06, P = 6.8 × 10-5), cognitive performance (IVW: β = -0.18, 95% CI of -0.28 to -0.08, P = 5.8 × 10-4) and dementia with lewy bodies (IVW: OR = 1.07, 95% CI of 1.04-1.10, P = 1.1 × 10-5) on CAD. Conclusion This MR analysis provides evidence of a causal association between cognitive impairment and CAD. Our findings highlight the importance of screening for coronary heart disease in patients of cognitive impairment, which might provide new insight into the prevention of CAD. Moreover, our study provides clues for risk factor identification and early prediction of CAD.
Collapse
Affiliation(s)
- Shihan Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Wang
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fenglan Liu
- Graduate School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengqin Xu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
243
|
Akeret K, Weller M, Krayenbühl N. The anatomy of neuroepithelial tumours. Brain 2023:7171408. [PMID: 37201913 PMCID: PMC10393414 DOI: 10.1093/brain/awad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
Many neurological conditions conceal specific anatomical patterns. Their study contributes to the understanding of disease biology and to tailored diagnostics and therapy. Neuroepithelial tumours exhibit distinct anatomical phenotypes and spatiotemporal dynamics that differ from those of other brain tumours. Brain metastases display a preference for the cortico-subcortical boundaries of watershed areas and have a predominantly spherical growth. Primary CNS lymphomas localize to the white matter and generally invade along fibre tracts. In neuroepithelial tumours, topographic probability mapping and unsupervised topological clustering have identified an inherent radial anatomy and adherence to ventriculopial configurations of specific hierarchical orders. Spatiotemporal probability and multivariate survival analyses have identified a temporal and prognostic sequence underlying the anatomical phenotypes of neuroepithelial tumours. Gradual neuroepithelial de-differentiation and declining prognosis follow (i) an expansion into higher order radial units; (ii) a subventricular spread; and (iii) the presence of mesenchymal patterns (expansion along white matter tracts, leptomeningeal or perivascular invasion, CSF spread). While different pathophysiological hypotheses have been proposed, the cellular and molecular mechanisms dictating this anatomical behaviour remain largely unknown. Here we adopt an ontogenetic approach towards the understanding of neuroepithelial tumour anatomy. Contemporary perception of histo- and morphogenetic processes during neurodevelopment permit us to conceptualize the architecture of the brain into hierarchically organized radial units. The anatomical phenotypes in neuroepithelial tumours and their temporal and prognostic sequences share remarkable similarities with the ontogenetic organization of the brain and the anatomical specifications that occur during neurodevelopment. This macroscopic coherence is reinforced by cellular and molecular observations that the initiation of various neuroepithelial tumours, their intratumoural hierarchy and tumour progression are associated with the aberrant reactivation of surprisingly normal ontogenetic programs. Generalizable topological phenotypes could provide the basis for an anatomical refinement of the current classification of neuroepithelial tumours. In addition, we have proposed a staging system for adult-type diffuse gliomas that is based on the prognostically critical steps along the sequence of anatomical tumour progression. Considering the parallels in anatomical behaviour between different neuroepithelial tumours, analogous staging systems may be implemented for other neuroepithelial tumour types and subtypes. Both the anatomical stage of a neuroepithelial tumour and the spatial configuration of its hosting radial unit harbour the potential to stratify treatment decisions at diagnosis and during follow-up. More data on specific neuroepithelial tumour types and subtypes are needed to increase the anatomical granularity in their classification and to determine the clinical impact of stage-adapted and anatomically tailored therapy and surveillance.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Niklaus Krayenbühl
- Division of Paediatric Neurosurgery, University Children's Hospital, 8032 Zurich, Switzerland
| |
Collapse
|
244
|
Yu Y, Yan R, Tian X. The more the neuroticism, the more the susceptibility to Alzheimer's disease. What inspiration can neuroticism provide? IBRAIN 2023; 9:231-235. [PMID: 37786550 PMCID: PMC10529344 DOI: 10.1002/ibra.12102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 10/04/2023]
Abstract
Study of neuroticism can provide important insights. Before the inclusion of neuroticism in the study of Alzheimer's disease (AD), clinical and scientific researchers used relatively fixed models to treat AD, such as prescribing fixed doses of drugs and fixed research strategies. However, taking neuroticism into account affects drug use, the direction of scientific research, and even the mental health of the population, which translates into more immediate economic benefits.
Collapse
Affiliation(s)
- Yifan Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- West China School of MedicineSichuan UniversityChengduSichuanChina
| | - Ruitong Yan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- West China School of MedicineSichuan UniversityChengduSichuanChina
| | - Xiaohe Tian
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- West China School of MedicineSichuan UniversityChengduSichuanChina
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
245
|
Lee Y, Park JY, Lee JJ, Gim J, Do AR, Jo J, Park J, Kim K, Park K, Jin H, Choi KY, Kang S, Kim H, Kim S, Moon SH, Farrer LA, Lee KH, Won S. Heritability of cognitive abilities and regional brain structures in middle-aged to elderly East Asians. Cereb Cortex 2023; 33:6051-6062. [PMID: 36642501 PMCID: PMC10183741 DOI: 10.1093/cercor/bhac483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 01/17/2023] Open
Abstract
This study examined the single-nucleotide polymorphism heritability and genetic correlations of cognitive abilities and brain structural measures (regional subcortical volume and cortical thickness) in middle-aged and elderly East Asians (Korean) from the Gwangju Alzheimer's and Related Dementias cohort study. Significant heritability was found in memory function, caudate volume, thickness of the entorhinal cortices, pars opercularis, superior frontal gyri, and transverse temporal gyri. There were 3 significant genetic correlations between (i) the caudate volume and the thickness of the entorhinal cortices, (ii) the thickness of the superior frontal gyri and pars opercularis, and (iii) the thickness of the superior frontal and transverse temporal gyri. This is the first study to describe the heritability and genetic correlations of cognitive and neuroanatomical traits in middle-aged to elderly East Asians. Our results support the previous findings showing that genetic factors play a substantial role in the cognitive and neuroanatomical traits in middle to advanced age. Moreover, by demonstrating shared genetic effects on different brain regions, it gives us a genetic insight into understanding cognitive and brain changes with age, such as aging-related cognitive decline, cortical atrophy, and neural compensation.
Collapse
Affiliation(s)
- Younghwa Lee
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jun Young Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jang Jae Lee
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Jungsoo Gim
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Ah Ra Do
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Jinyeon Jo
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Juhong Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kangjin Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Sarang Kang
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
| | - Hoowon Kim
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Neurology, Chosun University Hospital, Gwangju, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Seoul, Korea
| | - Lindsay A Farrer
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Kun Ho Lee
- Gwangju Alzheimer’s Disease & Related Dementia Cohort Research Center, Chosun University, Gwangju, Korea
- Department of Biomedical Science, Chosun University, Gwangju, Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu, Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
- RexSoft Inc., Seoul, Korea
| |
Collapse
|
246
|
Seyedsalehi A, Warrier V, Bethlehem RAI, Perry BI, Burgess S, Murray GK. Educational attainment, structural brain reserve and Alzheimer's disease: a Mendelian randomization analysis. Brain 2023; 146:2059-2074. [PMID: 36310536 PMCID: PMC10151197 DOI: 10.1093/brain/awac392] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
Higher educational attainment is observationally associated with lower risk of Alzheimer's disease. However, the biological mechanisms underpinning this association remain unclear. The protective effect of education on Alzheimer's disease may be mediated via increased brain reserve. We used two-sample Mendelian randomization to explore putative causal relationships between educational attainment, structural brain reserve as proxied by MRI phenotypes and Alzheimer's disease. Summary statistics were obtained from genome-wide association studies of educational attainment (n = 1 131 881), late-onset Alzheimer's disease (35 274 cases, 59 163 controls) and 15 measures of grey or white matter macro- or micro-structure derived from structural or diffusion MRI (nmax = 33 211). We conducted univariable Mendelian randomization analyses to investigate bidirectional associations between (i) educational attainment and Alzheimer's disease; (ii) educational attainment and imaging-derived phenotypes; and (iii) imaging-derived phenotypes and Alzheimer's disease. Multivariable Mendelian randomization was used to assess whether brain structure phenotypes mediated the effect of education on Alzheimer's disease risk. Genetically proxied educational attainment was inversely associated with Alzheimer's disease (odds ratio per standard deviation increase in genetically predicted years of schooling = 0.70, 95% confidence interval 0.60, 0.80). There were positive associations between genetically predicted educational attainment and four cortical metrics (standard deviation units change in imaging phenotype per one standard deviation increase in genetically predicted years of schooling): surface area 0.30 (95% confidence interval 0.20, 0.40); volume 0.29 (95% confidence interval 0.20, 0.37); intrinsic curvature 0.18 (95% confidence interval 0.11, 0.25); local gyrification index 0.21 (95% confidence interval 0.11, 0.31)]; and inverse associations with cortical intracellular volume fraction [-0.09 (95% confidence interval -0.15, -0.03)] and white matter hyperintensities volume [-0.14 (95% confidence interval -0.23, -0.05)]. Genetically proxied levels of surface area, cortical volume and intrinsic curvature were positively associated with educational attainment [standard deviation units change in years of schooling per one standard deviation increase in respective genetically predicted imaging phenotype: 0.13 (95% confidence interval 0.10, 0.16); 0.15 (95% confidence interval 0.11, 0.19) and 0.12 (95% confidence interval 0.04, 0.19)]. We found no evidence of associations between genetically predicted imaging-derived phenotypes and Alzheimer's disease. The inverse association of genetically predicted educational attainment with Alzheimer's disease did not attenuate after adjusting for imaging-derived phenotypes in multivariable analyses. Our results provide support for a protective causal effect of educational attainment on Alzheimer's disease risk, as well as potential bidirectional causal relationships between education and brain macro- and micro-structure. However, we did not find evidence that these structural markers affect risk of Alzheimer's disease. The protective effect of education on Alzheimer's disease may be mediated via other measures of brain reserve not included in the present study, or by alternative mechanisms.
Collapse
Affiliation(s)
- Aida Seyedsalehi
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Benjamin I Perry
- Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
- CAMEO, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB4 1PX, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0BB, UK
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
- CAMEO, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB4 1PX, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
247
|
Toledo F, Carson F. Neurocircuitry of Personality Traits and Intent in Decision-Making. Behav Sci (Basel) 2023; 13:351. [PMID: 37232586 PMCID: PMC10215416 DOI: 10.3390/bs13050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Even though most personality features are moderately stable throughout life, changes can be observed, which influence one's behavioral patterns. A variety of subjective assessments can be performed to track these changes; however, the subjective characteristic of these assessments may lead to questions about intentions and values. The use of neuroimaging techniques may aid the investigation of personality traits through a more objective lens, overcoming the barriers imposed by confounders. Here, neurocircuits associated with changes in personality domains were investigated to address this issue. Cortical systems involved in traits such as extraversion and neuroticism were found to share multiple components, as did traits of agreeableness and conscientiousness, with these four features revolving around the activation and structural integrity of the medial prefrontal cortex (mPFC). The attribute of openness appears scattered throughout cortical and subcortical regions, being discussed here as a possible reflection of intent, at the same time modulating and being governed by other traits. Insights on how systems operate on personality may increase comprehension on factors acting on the evolution, development, and consolidation of personality traits through life, as in neurocognitive disorders.
Collapse
Affiliation(s)
- Felippe Toledo
- Department of Physiotherapy, LUNEX International University of Health, Exercise and Sports, L-4671 Differdange, Luxembourg;
- Luxembourg Health and Sport Sciences Research Institute A.S.B.L., L-4671 Differdange, Luxembourg
| | - Fraser Carson
- Luxembourg Health and Sport Sciences Research Institute A.S.B.L., L-4671 Differdange, Luxembourg
- Department of Sport and Exercise Science, LUNEX International University of Health, Exercise and Sports, L-4671 Differdange, Luxembourg
| |
Collapse
|
248
|
Matoba N, Le BD, Valone JM, Wolter JM, Mory J, Liang D, Aygün N, Broadaway KA, Bond ML, Mohlke KL, Zylka MJ, Love MI, Stein JL. Wnt activity reveals context-specific genetic effects on gene regulation in neural progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527357. [PMID: 36798360 PMCID: PMC9934631 DOI: 10.1101/2023.02.07.527357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Gene regulatory effects in bulk-post mortem brain tissues are undetected at many non-coding brain trait-associated loci. We hypothesized that context-specific genetic variant function during stimulation of a developmental signaling pathway would explain additional regulatory mechanisms. We measured chromatin accessibility and gene expression following activation of the canonical Wnt pathway in primary human neural progenitors from 82 donors. TCF/LEF motifs, brain structure-, and neuropsychiatric disorder-associated variants were enriched within Wnt-responsive regulatory elements (REs). Genetically influenced REs were enriched in genomic regions under positive selection along the human lineage. Stimulation of the Wnt pathway increased the detection of genetically influenced REs/genes by 66.2%/52.7%, and led to the identification of 397 REs primed for effects on gene expression. Context-specific molecular quantitative trait loci increased brain-trait colocalizations by up to 70%, suggesting that genetic variant effects during early neurodevelopmental patterning lead to differences in adult brain and behavioral traits.
Collapse
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Justin M Wolter
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities; Carrboro, NC, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Marielle L Bond
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Mark J Zylka
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities; Carrboro, NC, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities; Carrboro, NC, USA
| |
Collapse
|
249
|
Schijven D, Postema MC, Fukunaga M, Matsumoto J, Miura K, de Zwarte SMC, van Haren NEM, Cahn W, Hulshoff Pol HE, Kahn RS, Ayesa-Arriola R, Ortiz-García de la Foz V, Tordesillas-Gutierrez D, Vázquez-Bourgon J, Crespo-Facorro B, Alnæs D, Dahl A, Westlye LT, Agartz I, Andreassen OA, Jönsson EG, Kochunov P, Bruggemann JM, Catts SV, Michie PT, Mowry BJ, Quidé Y, Rasser PE, Schall U, Scott RJ, Carr VJ, Green MJ, Henskens FA, Loughland CM, Pantelis C, Weickert CS, Weickert TW, de Haan L, Brosch K, Pfarr JK, Ringwald KG, Stein F, Jansen A, Kircher TTJ, Nenadić I, Krämer B, Gruber O, Satterthwaite TD, Bustillo J, Mathalon DH, Preda A, Calhoun VD, Ford JM, Potkin SG, Chen J, Tan Y, Wang Z, Xiang H, Fan F, Bernardoni F, Ehrlich S, Fuentes-Claramonte P, Garcia-Leon MA, Guerrero-Pedraza A, Salvador R, Sarró S, Pomarol-Clotet E, Ciullo V, Piras F, Vecchio D, Banaj N, Spalletta G, Michielse S, van Amelsvoort T, Dickie EW, Voineskos AN, Sim K, Ciufolini S, Dazzan P, Murray RM, Kim WS, Chung YC, Andreou C, Schmidt A, Borgwardt S, McIntosh AM, Whalley HC, Lawrie SM, du Plessis S, Luckhoff HK, Scheffler F, Emsley R, Grotegerd D, Lencer R, Dannlowski U, Edmond JT, Rootes-Murdy K, Stephen JM, Mayer AR, Antonucci LA, et alSchijven D, Postema MC, Fukunaga M, Matsumoto J, Miura K, de Zwarte SMC, van Haren NEM, Cahn W, Hulshoff Pol HE, Kahn RS, Ayesa-Arriola R, Ortiz-García de la Foz V, Tordesillas-Gutierrez D, Vázquez-Bourgon J, Crespo-Facorro B, Alnæs D, Dahl A, Westlye LT, Agartz I, Andreassen OA, Jönsson EG, Kochunov P, Bruggemann JM, Catts SV, Michie PT, Mowry BJ, Quidé Y, Rasser PE, Schall U, Scott RJ, Carr VJ, Green MJ, Henskens FA, Loughland CM, Pantelis C, Weickert CS, Weickert TW, de Haan L, Brosch K, Pfarr JK, Ringwald KG, Stein F, Jansen A, Kircher TTJ, Nenadić I, Krämer B, Gruber O, Satterthwaite TD, Bustillo J, Mathalon DH, Preda A, Calhoun VD, Ford JM, Potkin SG, Chen J, Tan Y, Wang Z, Xiang H, Fan F, Bernardoni F, Ehrlich S, Fuentes-Claramonte P, Garcia-Leon MA, Guerrero-Pedraza A, Salvador R, Sarró S, Pomarol-Clotet E, Ciullo V, Piras F, Vecchio D, Banaj N, Spalletta G, Michielse S, van Amelsvoort T, Dickie EW, Voineskos AN, Sim K, Ciufolini S, Dazzan P, Murray RM, Kim WS, Chung YC, Andreou C, Schmidt A, Borgwardt S, McIntosh AM, Whalley HC, Lawrie SM, du Plessis S, Luckhoff HK, Scheffler F, Emsley R, Grotegerd D, Lencer R, Dannlowski U, Edmond JT, Rootes-Murdy K, Stephen JM, Mayer AR, Antonucci LA, Fazio L, Pergola G, Bertolino A, Díaz-Caneja CM, Janssen J, Lois NG, Arango C, Tomyshev AS, Lebedeva I, Cervenka S, Sellgren CM, Georgiadis F, Kirschner M, Kaiser S, Hajek T, Skoch A, Spaniel F, Kim M, Kwak YB, Oh S, Kwon JS, James A, Bakker G, Knöchel C, Stäblein M, Oertel V, Uhlmann A, Howells FM, Stein DJ, Temmingh HS, Diaz-Zuluaga AM, Pineda-Zapata JA, López-Jaramillo C, Homan S, Ji E, Surbeck W, Homan P, Fisher SE, Franke B, Glahn DC, Gur RC, Hashimoto R, Jahanshad N, Luders E, Medland SE, Thompson PM, Turner JA, van Erp TGM, Francks C. Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium. Proc Natl Acad Sci U S A 2023; 120:e2213880120. [PMID: 36976765 PMCID: PMC10083554 DOI: 10.1073/pnas.2213880120] [Show More Authors] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/03/2023] [Indexed: 03/29/2023] Open
Abstract
Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
Collapse
Affiliation(s)
- Dick Schijven
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
| | - Merel C. Postema
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam1081 HZ, The Netherlands
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Sonja M. C. de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - Neeltje E. M. van Haren
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Sophia Children's Hospital, Rotterdam3015 CN, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
| | - René S. Kahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht3584 CG, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, New York, NY10468
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, Instituto de Investigación Marqués de Valdecilla, University Hospital Marqués de Valdecilla, Santander39008, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Medicine and Psychiatry, School of Medicine, University of Cantabria, Santander39011, Spain
| | - Víctor Ortiz-García de la Foz
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Psychiatry, Marqués de Valdecilla University Hospital, Instituto de Investigación Sanitaria Valdecilla, School of Medicine, University of Cantabria, Santander39011, Spain
| | - Diana Tordesillas-Gutierrez
- Department of Radiology, Instituto de Investigación Marqués de Valdecilla, Marqués de Valdecilla University Hospital, Santander39011, Spain
- Advanced Computing and e-Science, Instituto de Física de Cantabria, Universidad de Cantabria - Consejo Superior de Investigaciones Científicas, Santander39005, Spain
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, Instituto de Investigación Marqués de Valdecilla, University Hospital Marqués de Valdecilla, Santander39008, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Psychiatry, School of Medicine, University of Sevilla, University Hospital Virgen del Rocío, Consejo Superior de Investigaciones Científicas - Instituto de Biomedicina de Sevilla, Sevilla41013, Spain
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychology, University of Oslo, Oslo0373, Norway
- Bjørknes College, Oslo0456, Norway
| | - Andreas Dahl
- Department of Psychology, University of Oslo, Oslo0373, Norway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychology, University of Oslo, Oslo0373, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo0372, Norway
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo0450, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo0373, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo0372, Norway
| | - Erik G. Jönsson
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo0450, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD21201
| | - Jason M. Bruggemann
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Edith Collins Centre (Translational Research in Alcohol, Drugs & Toxicology), Sydney Local Health District, Sydney2050, Australia
- Specialty of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney2006, Australia
| | - Stanley V. Catts
- School of Medicine, The University of Queensland, Brisbane4006, Australia
| | - Patricia T. Michie
- School of Psychological Sciences, University of Newcastle, Newcastle2308, Australia
| | - Bryan J. Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane4072, Australia
- Queensland Centre for Mental Health Research, The University of Queensland, Brisbane4076, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Paul E. Rasser
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle2308, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle2308, Australia
- Hunter Medical Research Institute, Newcastle2305, Australia
| | - Ulrich Schall
- Centre for Brain and Mental Health Research, University of Newcastle, Newcastle2308, Australia
| | - Rodney J. Scott
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle2308, Australia
| | - Vaughan J. Carr
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Melissa J. Green
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
| | - Frans A. Henskens
- School of Medicine and Public Health, University of Newcastle, Newcastle2308, Australia
- PRC for Health Behaviour, Hunter Medical Research Institute, Newcastle2305, Australia
| | - Carmel M. Loughland
- School of Medicine and Public Health, University of Newcastle, Newcastle2308, Australia
- Hunter New England Mental Health Service, Newcastle2305, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne3053, Australia
| | - Cynthia Shannon Weickert
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY13210
| | - Thomas W. Weickert
- School of Psychiatry, University of New South Wales, Sydney2033, Australia
- Neuroscience Research Australia, Sydney2031, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY13210
| | - Lieuwe de Haan
- Early Psychosis Department, Department of Psychiatry, Amsterdam UMC (location AMC), Amsterdam1105 AZ, The Netherlands
- Arkin Institute for Mental Health, Amsterdam1033 NN, The Netherlands
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Kai G. Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
- Core-Facility Brainimaging, Faculty of Medicine, Philipps-Universität Marburg, Marburg35032, Germany
| | - Tilo T. J. Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Marburg35032, Germany
| | - Bernd Krämer
- Department of General Psychiatry, Section for Experimental Psychopathology and Neuroimaging, Heidelberg University, Heidelberg69115, Germany
| | - Oliver Gruber
- Department of General Psychiatry, Section for Experimental Psychopathology and Neuroimaging, Heidelberg University, Heidelberg69115, Germany
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA19104
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Juan Bustillo
- Department of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, NM87106
| | - Daniel H. Mathalon
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA94143
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA94121
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
| | - Vince D. Calhoun
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA30303
| | - Judith M. Ford
- San Francisco VA Medical Center, University of California, San Francisco, CA94121
| | - Steven G. Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
- Long Beach VA Health Care System, Long Beach, CA90822
| | - Jingxu Chen
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Hong Xiang
- Chongqing University Three Gorges Hospital, Chongqing404188, P.R. China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing100096, P.R. China
| | - Fabio Bernardoni
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Technische Universität Dresden, University Hospital C.G. Carus, Dresden01307, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Treatment and Research Center, Technische Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden01307, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Translational Developmental Neuroscience Section, Technische Universität Dresden, University Hospital C.G. Carus, Dresden01307, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Treatment and Research Center, Technische Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden01307, Germany
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Maria Angeles Garcia-Leon
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Benito Menni Complex Assistencial en Salut Mental, Barcelona08830, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona08035, Spain
- Mental Health Research Networking Center (Ciber del Área de Salud Mental), Madrid28029, Spain
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome00179, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX77030
| | - Stijn Michielse
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Erin W. Dickie
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, TorontoM5S 2S1, Canada
- Department of Psychiatry, University of Toronto, TorontoM5T 1R8, Canada
| | - Aristotle N. Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, TorontoM5S 2S1, Canada
- Department of Psychiatry, University of Toronto, TorontoM5T 1R8, Canada
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore539747, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore119228, Singapore
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, LondonSE5 8AF, United Kingdom
| | - Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju54896, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju54896, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju54896, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju54896, Republic of Korea
| | - Christina Andreou
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
| | - André Schmidt
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry, University Psychiatric Clinics (Universitäre Psychiatrische Kliniken), University of Basel, Basel4002, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
| | - Andrew M. McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Heather C. Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Stephen M. Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, EdinburghEH16 4SB, United Kingdom
| | - Stefan du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
- Stellenbosch University Genomics of Brain Disorders Research Unit, South African Medical Research Council, Cape Town7505, South Africa
| | - Hilmar K. Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
| | - Freda Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
| | - Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch7505, South Africa
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck23562, Germany
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, Westfälische Wilhelms-Universität Münster, Münster48149, Germany
| | - Jesse T. Edmond
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
| | - Kelly Rootes-Murdy
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
| | | | | | - Linda A. Antonucci
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari70121, Italy
| | - Leonardo Fazio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari70121, Italy
- Psychiatry Unit, Bari University Hospital, Bari70121, Italy
| | - Covadonga M. Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
- School of Medicine, Universidad Complutense, Madrid28040, Spain
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
| | - Noemi G. Lois
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid28009, Spain
- Ciber del Área de Salud Mental, Instituto de Salud Carlos III, Madrid28029, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid28009, Spain
- School of Medicine, Universidad Complutense, Madrid28040, Spain
| | - Alexander S. Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow115522, Russian Federation
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow115522, Russian Federation
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala751 85, Sweden
| | - Carl M. Sellgren
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm113 64, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm171 65, Sweden
| | - Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Montreal Neurological Institute, McGill University, MontrealH3A 2B4, Canada
| | - Stefan Kaiser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Department of Psychiatry, Division of Adult Psychiatry, Geneva University Hospitals, Geneva1202, Switzerland
| | - Tomas Hajek
- National Institute of Mental Health, Klecany250 67, Czech Republic
- Department of Psychiatry, Dalhousie University, HalifaxB3H 2E2, Canada
| | - Antonin Skoch
- National Institute of Mental Health, Klecany250 67, Czech Republic
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany250 67, Czech Republic
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul08826, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul08826, Republic of Korea
| | - Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul08826, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul08826, Republic of Korea
| | - Anthony James
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Geor Bakker
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Christian Knöchel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Michael Stäblein
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Viola Oertel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main60528, Germany
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Department of Child and Adolescent Psychiatry, Technische Universität Dresden, Dresden01187, Germany
| | - Fleur M. Howells
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town7935, South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town7505, South Africa
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town7935, South Africa
| | - Ana M. Diaz-Zuluaga
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Julian A. Pineda-Zapata
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Carlos López-Jaramillo
- Department of Psychiatry, Research Group in Psychiatry (GIPSI), Faculty of Medicine, Universidad de Antioquia, Medellín050010, Colombia
| | - Stephanie Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich8050, Switzerland
| | - Ellen Ji
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Werner Surbeck
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK), Zurich8008, Switzerland
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY11030
- Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY11004
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, New York, NY11549
| | - Simon E. Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - David C. Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA02115
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT06102
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA19104
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA19104
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo187-8551, Japan
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland1010, New Zealand
- Department of Women’s and Children’s Health, Uppsala University, Uppsala752 37, Sweden
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Sarah E. Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane4006, Australia
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Jessica A. Turner
- Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, GA30303
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA30303
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA92697
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA92697
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| |
Collapse
|
250
|
Navarri X, Vosberg DE, Shin J, Richer L, Leonard G, Pike GB, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Pausova Z, Paus T. A biologically informed polygenic score of neuronal plasticity moderates the association between cognitive aptitudes and cortical thickness in adolescents. Dev Cogn Neurosci 2023; 60:101232. [PMID: 36963244 PMCID: PMC10064237 DOI: 10.1016/j.dcn.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Although many studies of the adolescent brain identified positive associations between cognitive abilities and cortical thickness, little is known about mechanisms underlying such brain-behavior relationships. With experience-induced plasticity playing an important role in shaping the cerebral cortex throughout life, it is likely that some of the inter-individual variations in cortical thickness could be explained by genetic variations in relevant molecular processes, as indexed by a polygenic score of neuronal plasticity (PGS-NP). Here, we studied associations between PGS-NP, cognitive abilities, and thickness of the cerebral cortex, estimated from magnetic resonance images, in the Saguenay Youth Study (SYS, 533 females, 496 males: age=15.0 ± 1.8 years of age; cross-sectional), and the IMAGEN Study (566 females, 556 males; between 14 and 19 years; longitudinal). Using Gene Ontology, we first identified 199 genes implicated in neuronal plasticity, which mapped to 155,600 single nucleotide polymorphisms (SNPs). Second, we estimated their effect sizes from an educational attainment meta-GWAS to build a PGS-NP. Third, we examined a possible moderating role of PGS-NP in the relationship between performance intelligence quotient (PIQ), and its subtests, and the thickness of 34 cortical regions. In SYS, we observed a significant interaction between PGS-NP and object assembly vis-à-vis thickness in male adolescents (p = 0.026). A median-split analysis showed that, in males with a 'high' PGS-NP, stronger associations between object assembly and thickness were found in regions with larger age-related changes in thickness (r = 0.55, p = 0.00075). Although the interaction between PIQ and PGS-NP was non-significant (p = 0.064), we performed a similar median-split analysis. Again, in the high PGS-NP males, positive associations between PIQ and thickness were observed in regions with larger age-related changes in thickness (r = 0.40, p = 0.018). In the IMAGEN cohort, we did not replicate the first set of results (interaction between PGS-NP and cognitive abilities via-a-vis cortical thickness) while we did observe the same relationship between the brain-behaviour relationship and (longitudinal) changes in cortical thickness (Matrix reasoning: r = 0.63, p = 6.5e-05). No statistically significant results were observed in female adolescents in either cohort. Overall, these cross-sectional and longitudinal results suggest that molecular mechanisms involved in neuronal plasticity may contribute to inter-individual variations of cortical thickness related to cognitive abilities during adolescence in a sex-specific manner.
Collapse
Affiliation(s)
- Xavier Navarri
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada
| | - Daniel E Vosberg
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada
| | - Jean Shin
- Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Gabriel Leonard
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales & psychiatrie", University Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS; Centre Borelli, Gif-sur-Yvette, France; and AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette; and Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany; Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany; Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Zdenka Pausova
- Departments of Physiology and Nutritional Sciences, Hospital for Sick Children, University of Toronto, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON M5S3G3, Canada.
| |
Collapse
|