201
|
Ribot JC, Serre K, Silva-Santos B. Developmental and Functional Assays to Study Murine and Human γδ T Cells. Methods Mol Biol 2017; 1514:257-267. [PMID: 27787805 DOI: 10.1007/978-1-4939-6548-9_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The key roles played by gamma-delta (γδ) T cells in immunity to infection and tumors critically depend on their differentiation into effectors capable of secreting cytokines (such as interferon-γ or interleukin-17), and killing infected or transformed cells. Here we detail the main methods used to investigate the differentiation of γδ T cells from murine or human origin. We describe developmental assays, such as thymic organ cultures (TOCs) and coculture of progenitors cells with OP9-DL1 stomal cells, as well as functional assays typically employed to evaluate γδ T cell cytotoxicity and cytokine production.
Collapse
Affiliation(s)
- Julie C Ribot
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisbon, 1649-028, Portugal.
| | - Karine Serre
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisbon, 1649-028, Portugal.
| | - Bruno Silva-Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| |
Collapse
|
202
|
A disparate subset of double-negative T cells contributes to the outcome of murine fulminant viral hepatitis via effector molecule fibrinogen-like protein 2. Immunol Res 2016; 64:518-30. [PMID: 26482053 DOI: 10.1007/s12026-015-8727-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The underlying immune-mediated mechanisms involved in virus-induced severe hepatitis have not been well elucidated. In this study, we investigated the role of CD3(+)CD4(-)CD8(-) double-negative T (DN T) cells in the pathogenesis of fulminant viral hepatitis (FVH) induced by murine hepatitis virus strain 3 (MHV-3). After MHV-3 infection, the proportions of DN T cells increased significantly in BALB/cJ mice, and splenic DN T cells expressing high levels of CD69 were recruited by MHV-3-infected hepatocytes to the liver. Serum levels of alanine aminotransferase, aspartate aminotransferase and total bilirubin increased, accompanied by massive hepatocyte necrosis. These DN T cells were predominantly consisted of a TCRαβ(+) subset expressing high levels of CD44 and did not produce cytokine except IL-2. Adoptive transfer of this subset of DN T cells to the MHV-3-infected mice resulted in an increase in murine fibrinogen-like protein 2 (mfgl2) expressions in association with massive fibrin deposition in the liver. Following MHV-3 infection, membrane mfgl2 expression and functional procoagulant activity increased remarkably in the DN T cells. Introduction of a recombinant adenovirus which encoded a microRNA specifically targeting mfgl2 gene (Ad-mfgl2-miRNA) in vivo significantly inhibited the hepatic expression of mfgl2 and improved survival in mice. However, under this condition, adoptive transfer of the DN T cells accelerated the disease progression and reversed the benefit from mfgl2 gene silence, leading to a 100 % death rate. Our results demonstrate that DN T cells contribute to the outcome of MHV-3-induced FVH via an important effector molecule mfgl2.
Collapse
|
203
|
Adjuvant materials that enhance bovine γδ T cell responses. Vet Immunol Immunopathol 2016; 181:30-38. [DOI: 10.1016/j.vetimm.2016.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
|
204
|
Abstract
Vδ2Vγ9 T cells are the dominant γδ T-cell subset in human peripheral blood. Vδ2 T cells recognize pyrophosphate molecules derived from microbes or tumor cells; hence, they play a role in antimicrobial and antitumor immunity. TGF-β, together with IL-15, induces a regulatory phenotype in Vδ2 T cells, characterized by forkhead box protein P3 (FoxP3) expression and suppressive activity on CD4 T-cell activation. We performed a genome-wide transcriptome analysis and found that the same conditions (TGF-β plus IL-15) strongly enhanced the expression of additional genes in Vδ2 T cells, including IKAROS family zinc finger 4 (IKZF4; Eos), integrin subunit alpha E (ITGAE; CD103/αEβ7), and IL9 This up-regulation was associated with potent IL-9 production as revealed by flow cytometry and multiplex analysis of cell culture supernatants. In contrast to CD4 and CD8 αβ T cells, γδ T cells did not require IL-4 for induction of intracellular IL-9 expression. Upon antigen restimulation of Vδ2 T cells expanded in vitro in the presence of TGF-β and IL-15, IL-9 was the most abundant among 16 analyzed cytokines and chemokines. IL-9 is a pleiotropic cytokine involved in various (patho)physiological conditions, including allergy and tumor defense, where it can promote antitumor immunity. Given the conspicuous sensitivity of many different tumors to Vδ2 T-cell-mediated killing, the conditions defined here for strong induction of IL-9 might be relevant for the development of Vδ2 T-cell-based immunotherapy.
Collapse
|
205
|
Pietrzyńska M, Zembrzuska J, Tomczak R, Mikołajczyk J, Rusińska-Roszak D, Voelkel A, Buchwald T, Jampílek J, Lukáč M, Devínsky F. Experimental and in silico investigations of organic phosphates and phosphonates sorption on polymer-ceramic monolithic materials and hydroxyapatite. Eur J Pharm Sci 2016; 93:295-303. [DOI: 10.1016/j.ejps.2016.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 01/01/2023]
|
206
|
Polasky C, Weigend S, Schrader L, Berndt A. Non-specific activation of CD8α-characterised γδ T cells in PBL cultures of different chicken lines. Vet Immunol Immunopathol 2016; 179:1-7. [DOI: 10.1016/j.vetimm.2016.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022]
|
207
|
Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett 2016; 380:413-423. [PMID: 27392648 PMCID: PMC5003697 DOI: 10.1016/j.canlet.2016.07.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022]
Abstract
Excitement is growing for therapies that harness the power of patients' immune systems to combat their diseases. One approach to immunotherapy involves engineering patients' own T cells to express a chimeric antigen receptor (CAR) to treat advanced cancers, particularly those refractory to conventional therapeutic agents. Although these engineered immune cells have made remarkable strides in the treatment of patients with certain hematologic malignancies, success with solid tumors has been limited, probably due to immunosuppressive mechanisms in the tumor niche. In nearly all studies to date, T cells bearing αβ receptors have been used to generate CAR T cells. In this review, we highlight biological characteristics of γδ T cells that are distinct from those of αβ T cells, including homing to epithelial and mucosal tissues and unique functions such as direct antigen recognition, lack of alloreactivity, and ability to present antigens. We offer our perspective that these features make γδ T cells promising for use in cellular therapy against several types of solid tumors, including melanoma and gastrointestinal cancers. Engineered γδ T cells should be considered as a new platform for adoptive T cell cancer therapy for mucosal tumors.
Collapse
MESH Headings
- Animals
- Genes, T-Cell Receptor delta
- Genes, T-Cell Receptor gamma
- Genetic Therapy/methods
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/transplantation
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Microenvironment
Collapse
Affiliation(s)
- Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sang Yun Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Brian G Till
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
208
|
Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, Nussbaumer O, Deban L, Cipolat S, Hart R, Iannitto ML, Laing A, Spencer-Dene B, East P, Gibbons D, Irving PM, Pereira P, Steinhoff U, Hayday A. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell 2016; 167:203-218.e17. [PMID: 27641500 PMCID: PMC5037318 DOI: 10.1016/j.cell.2016.08.030] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/06/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
Many body surfaces harbor organ-specific γδ T cell compartments that contribute to tissue integrity. Thus, murine dendritic epidermal T cells (DETCs) uniquely expressing T cell receptor (TCR)-Vγ5 chains protect from cutaneous carcinogens. The DETC repertoire is shaped by Skint1, a butyrophilin-like (Btnl) gene expressed specifically by thymic epithelial cells and suprabasal keratinocytes. However, the generality of this mechanism has remained opaque, since neither Skint1 nor DETCs are evolutionarily conserved. Here, Btnl1 expressed by murine enterocytes is shown to shape the local TCR-Vγ7(+) γδ compartment. Uninfluenced by microbial or food antigens, this activity evokes the developmental selection of TCRαβ(+) repertoires. Indeed, Btnl1 and Btnl6 jointly induce TCR-dependent responses specifically in intestinal Vγ7(+) cells. Likewise, human gut epithelial cells express BTNL3 and BTNL8 that jointly induce selective TCR-dependent responses of human colonic Vγ4(+) cells. Hence, a conserved mechanism emerges whereby epithelia use organ-specific BTNL/Btnl genes to shape local T cell compartments.
Collapse
Affiliation(s)
- Rafael Di Marco Barros
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; MBPhD Programme, University College London, London WC1E 6BT, UK
| | | | - Robin J Dart
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Rosie Hart
- Francis Crick Institute, London WC2A3LY, UK
| | - Maria Luisa Iannitto
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Adam Laing
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Deena Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Peter M Irving
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pablo Pereira
- Department of Immunology, Pasteur Institute, 75015 Paris, France
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hospital Epidemiology, University of Marburg, 35037 Marburg, Germany
| | - Adrian Hayday
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK.
| |
Collapse
|
209
|
Medication-Related Osteonecrosis of the Jaw: New Insights into Molecular Mechanisms and Cellular Therapeutic Approaches. Stem Cells Int 2016; 2016:8768162. [PMID: 27721837 PMCID: PMC5046039 DOI: 10.1155/2016/8768162] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022] Open
Abstract
In recent years, medication-related osteonecrosis of the jaw (MRONJ) became an arising disease due to the important antiresorptive drug prescriptions to treat oncologic and osteoporotic patients, as well as the use of new antiangiogenic drugs such as VEGF antagonist. So far, MRONJ physiopathogenesis still remains unclear. Aiming to better understand MRONJ physiopathology, the first objective of this review would be to highlight major molecular mechanisms that are known to be involved in bone formation and remodeling. Recent development in MRONJ pharmacological treatments showed good results; however, those treatments are not curative and could have major side effects. In parallel to pharmacological treatments, MSC grafts appeared to be beneficial in the treatment of MRONJ, in multiple aspects: (1) recruitment and stimulation of local or regional endogenous cells to differentiate into osteoblasts and thus bone formation, (2) beneficial impact on bone remodeling, and (3) immune-modulatory properties that decrease inflammation. In this context, the second objective of this manuscript would be to summarize the molecular regulatory events controlling osteogenic differentiation, bone remodeling, and osteoimmunology and potential beneficial effects of MSC related to those aspects, in order to apprehend MRONJ and to develop new therapeutic approaches.
Collapse
|
210
|
CD27(-)CD45(+) γδ T cells can be divided into two populations, CD27(-)CD45(int) and CD27(-)CD45(hi) with little proliferation potential. Biochem Biophys Res Commun 2016; 478:1298-303. [PMID: 27553282 DOI: 10.1016/j.bbrc.2016.08.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 01/14/2023]
Abstract
In addition to the majority of T cells which carry the αβ T cell receptor (TCR) for antigen, a distinct subset of about 1-5% of human peripheral blood T cells expressing the γδ TCR contributes to immune responses to infection, tissue damage and cancer. T cells with the Vδ2(+) TCR, usually paired with Vγ9, constitute the majority of these γδ T cells. Analogous to αβ T cells, they can be sorted into naive (CD27(+)CD45RA(+)), central memory (CD27(+)CD45RA(-)), effector memory (CD27(-)CD45RA(-)), and terminally-differentiated effector memory (CD27(-)CD45RA(+)) phenotypes. Here, we found that CD27(-)CD45RA(+) γδ T cells can be further divided into two populations based on the level of expression of CD45RA: CD27(-)CD45RA(int) and CD27(-)CD45RA(hi). Those with the CD27(-)CD45RA(hi) phenotype lack extensive proliferative capacity, while those with the CD27(-)CD45RA(int) phenotype can be easily expanded by culture with zoledronate and IL-2. These CD27(-)CD45RA(hi) potentially exhausted γδ T cells were found predominantly in cancer patients but also in healthy subjects. We conclude that γδ T cells can be divided into at least 5 subsets enabling discrimination of γδ T cells with poor proliferative capacity. It was one of our goals to predict the feasibility of γδ T cell expansion to sufficient amounts for adoptive immunotherapy without the necessity for conducting small-scale culture tests. Fulfilling the ≥1.5% criterion for γδ T cells with phenotypes other than CD27(-)CD45RA(hi), may help avoid small-scale culture testing and shorten the preparation period for adoptive γδ T cells by 10 days, which may be beneficial for patients with advanced cancer.
Collapse
|
211
|
Chen H, You H, Wang L, Zhang X, Zhang J, He W. Chaperonin-containing T-complex Protein 1 Subunit ζ Serves as an Autoantigen Recognized by Human Vδ2 γδ T Cells in Autoimmune Diseases. J Biol Chem 2016; 291:19985-93. [PMID: 27489109 DOI: 10.1074/jbc.m115.700070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/20/2023] Open
Abstract
Human γδ T cells recognize conserved endogenous and stress-induced antigens typically associated with autoimmune diseases. However, the role of γδ T cells in autoimmune diseases is not clear. Few autoimmune disease-related antigens recognized by T cell receptor (TCR) γδ have been defined. In this study, we compared Vδ2 TCR complementarity-determining region 3 (CDR3) between systemic lupus erythematosus (SLE) patients and healthy donors. Results show that CDR3 length distribution differed significantly and displayed oligoclonal characteristics in SLE patients when compared with healthy donors. We found no difference in the frequency of Jδ gene fragment usage between these two groups. According to the dominant CDR3δ sequences in SLE patients, synthesized SL2 peptides specifically bound to human renal proximal tubular epithelial cell line HK-2; SL2-Vm, a mutant V sequence of SL2, did not bind. We identified the putative protein ligand chaperonin-containing T-complex protein 1 subunit ζ (CCT6A) using SL2 as a probe in HK-2 cell protein extracts by affinity chromatography and liquid chromatography-electrospray ionization-tandem mass spectrometry analysis. We found CCT6A expression on the surface of HK-2 cells. Cytotoxicity of only Vδ2 γδ T cells to HK-2 cells was blocked by anti-CCT6A antibody. Finally, we note that CCT6A concentration was significantly increased in plasma of SLE and rheumatoid arthritis patients. These data suggest that CCT6A is a novel autoantigen recognized by Vδ2 γδ T cells, which deepens our understanding of mechanisms in autoimmune diseases.
Collapse
Affiliation(s)
- Hui Chen
- From the Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China and
| | - Hongqin You
- From the Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China and
| | - Lifang Wang
- From the Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China and
| | - Xuan Zhang
- the Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Jianmin Zhang
- From the Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China and
| | - Wei He
- From the Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China and
| |
Collapse
|
212
|
Hyde KJ, Schust DJ. Immunologic challenges of human reproduction: an evolving story. Fertil Steril 2016; 106:499-510. [PMID: 27477190 DOI: 10.1016/j.fertnstert.2016.07.1073] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Characterization of the implanting human fetus as an allograft prompted a field of research in reproductive immunology that continues to fascinate and perplex scientists. Paternal- or partner-derived alloantigens are present in the maternal host at multiple times during the reproductive process. They begin with exposure to semen, continue through implantation and placentation, and may persist for decades in the form of fetal microchimerism. Changes in maternal immune responses that allow allogenic fertilization and survival of semiallogenic concepti to delivery must be balanced with a continued need to respond appropriately to pathogenic invaders, commensals, cell or tissue damage, and any tendency toward malignant transformation. This complex and sophisticated balancing act is essential for survival of mother, fetus, and the species itself. We will discuss concepts of alloimmune recognition, tolerance, and ignorance as they pertain to mammalian reproduction with a focus on human reproduction, maternal immune modulation, and the very earliest events in the reproductive process, fertilization and implantation.
Collapse
Affiliation(s)
- Kassie J Hyde
- University of Missouri School of Medicine, Columbia, Missouri
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri.
| |
Collapse
|
213
|
Caillon A, Schiffrin EL. Role of Inflammation and Immunity in Hypertension: Recent Epidemiological, Laboratory, and Clinical Evidence. Curr Hypertens Rep 2016; 18:21. [PMID: 26846785 DOI: 10.1007/s11906-016-0628-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inflammation has been shown to play an important role in the mechanisms involved in the pathogenesis of hypertension. Accordingly, innate and adaptive immune responses participate in blood pressure elevation. Here, we describe recent immunity studies focusing on novel inflammatory mechanisms during the hypertensive process. Different subpopulations of cells involved in innate and adaptive immune responses, such as monocyte/macrophages and dendritic cells on the one hand and B and T lymphocytes on the other hand, play roles leading to vascular injury in hypertension. Innate lymphoid cells, including natural killer cells and γ/δ T cells, have recently been demonstrated to participate in hypertensive mechanisms triggering vascular inflammation. In summary, we discuss the evidence of interaction of these different inflammatory and immune components in both experimental models and in humans during the development of hypertension.
Collapse
Affiliation(s)
- Antoine Caillon
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, QC, Canada, H3T 1E2.
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, QC, Canada, H3T 1E2. .,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, #B-127, 3755 Côte-Ste-Catherine Rd., Montreal, QC, Canada, H3T 1E2.
| |
Collapse
|
214
|
Wistuba-Hamprecht K, Martens A, Haehnel K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Demuth I, Steinhagen-Thiessen E, Larbi A, Schilling B, Schadendorf D, Wolchok JD, Blank CU, Pawelec G, Garbe C, Weide B. Proportions of blood-borne Vδ1+ and Vδ2+ T-cells are associated with overall survival of melanoma patients treated with ipilimumab. Eur J Cancer 2016; 64:116-26. [PMID: 27400322 DOI: 10.1016/j.ejca.2016.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Human γδ T-cells possess regulatory and cytotoxic capabilities, and could potentially influence the efficacy of immunotherapies. We analysed the frequencies of peripheral γδ T-cells, including their most prominent subsets (Vδ1+ and Vδ2+ cells) and differentiation states in 109 melanoma patients and 109 healthy controls. We additionally analysed the impact of γδ T-cells on overall survival (OS) calculated from the first dose of ipilimumab in melanoma patients. Higher median frequencies of Vδ1+ cells and lower median frequencies of Vδ2+ cells were identified in patients compared to healthy subjects (Vδ1+: 30% versus 15%, Vδ2+: 39% versus 64%, both p < 0.001). Patients with higher frequencies of Vδ1+ cells (≥30%) had poorer OS (p = 0.043) and a Vδ1+ differentiation signature dominated by late-differentiated phenotypes. In contrast, higher frequencies of Vδ2+ cells (≥39%) were associated with longer survival (p = 0.031) independent of the M category or lactate dehydrogenase level. Patients with decreasing frequencies of Vδ2+ cells under ipilimumab treatment had worse OS and a lower rate of clinical benefit than patients without such decreases. Therefore, we suggest frequencies of both Vδ1+ and Vδ2+ cells as candidate biomarkers for outcome in melanoma patients following ipilimumab. Further studies are needed to validate these results and to clarify whether they represent prognostic associations or whether γδ T-cells are specifically and/or functionally linked to the mode of action of ipilimumab.
Collapse
Affiliation(s)
- Kilian Wistuba-Hamprecht
- Department of Dermatology, University Medical Center, Tübingen, Germany; Department of Internal Medicine II, University Medical Center, Tübingen, Germany.
| | - Alexander Martens
- Department of Dermatology, University Medical Center, Tübingen, Germany; Department of Internal Medicine II, University Medical Center, Tübingen, Germany
| | - Karin Haehnel
- Department of Internal Medicine II, University Medical Center, Tübingen, Germany
| | | | - Jianda Yuan
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael A Postow
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Phillip Wong
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuela Romano
- Department of Oncology, Immunotherapy Unit, INSERM U932, Institut Curie, Paris, France
| | - Amir Khammari
- Department of Oncodermatology, INSERM Research Unit 892, University Hospital, Nantes, France
| | - Brigitte Dreno
- Department of Oncodermatology, INSERM Research Unit 892, University Hospital, Nantes, France
| | | | | | - Ilja Demuth
- Research Group on Geriatrics, Charité - Universitaetsmedizin, Berlin, Germany; Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Germany
| | | | - Anis Larbi
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Bastian Schilling
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jedd D Wolchok
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | | | - Graham Pawelec
- Department of Internal Medicine II, University Medical Center, Tübingen, Germany; School of Science and Technology, College of Arts and Science, Nottingham Trent University, Nottingham, UK; Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Claus Garbe
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center, Tübingen, Germany
| |
Collapse
|
215
|
Antitumor effects of minodronate, a third-generation nitrogen-containing bisphosphonate, in synergy with γδT cells in human glioblastoma in vitro and in vivo. J Neurooncol 2016; 129:231-41. [PMID: 27393349 DOI: 10.1007/s11060-016-2186-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/11/2016] [Indexed: 12/30/2022]
Abstract
Nitrogen-containing bisphosphonates (N-BPs), which prevent bone resorption, exert direct and γδT cell (GDT)-mediated antitumor effects against several tumor cell types, including glioblastoma (GBM). However, limited information is available regarding the antitumor effects of N-BPs in GBM. Specifically, the antitumor effects of minodronate (MDA), a third-generation N-BP, in GBM are yet unclear. This study aimed to investigate the antitumor effects of MDA in GBM in vitro and in vivo. We performed growth inhibition and apoptosis detection assays using the GBM cell lines U87MG and U138MG. Apoptosis inhibition assays were also conducted. In vivo xenograft assays were performed in highly immunodeficient NOD.Cg-Prkdc(scid) Il2rg(tm1Sug)/Jic mice subcutaneously implanted with U87MG and U138MG cells. Growth inhibition and apoptosis detection assays demonstrated that MDA inhibited GBM cell growth via apoptosis, which was markedly enhanced by ex vivo expanded GDT. A pan-caspase inhibitor, z-VAD-fmk, inhibited MDA-induced U138MG apoptosis and MDA/GDT-induced U87MG and U138MG apoptosis. But z-VAD-fmk increased MDA-induced U87MG apoptosis. MDA/GDT-mediated apoptosis was blocked by the anti-T cell receptor (TCR) Vγ9, mevalonate pathway inhibitor, granzyme B inhibitor, and antitumor necrosis factor (TNF)-α. In vivo xenograft assays showed that combined intraperitoneal administration of MDA/GDT induced antitumor effects on unestablished U87MG-derived subcutaneous tumors. MDA exerted direct and GDT-mediated anti-GBM apoptotic effects in a caspase-dependent manner. GDT recognized MDA-exposed GBM cells via TCRVγ9 and induced apoptosis via granzyme B and TNF-α release. Because MDA elicited anti-GBM effects in synergy with GDT in vivo, a combination of MDA and ex vivo-generated GDT could be an effective treatment in patients with GBM.
Collapse
|
216
|
Christopoulos P, Bukatz D, Kock S, Malkovsky M, Finke J, Fisch P. Improved analysis of TCRγδ variable region expression in humans. J Immunol Methods 2016; 434:66-72. [DOI: 10.1016/j.jim.2016.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 01/13/2023]
|
217
|
Olmos S, Blois S, Frecha C, Márquez G, Roux M. Cytokines Mediating Inflammation in a Model of Secondary Immunodeficiency in Wistar Rats: Immunomodulation Triggered by Thymomodulin. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x0600400204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have previously demonstrated in a rat model of immunodeficiency, an increase in the number of γδ T cells in the gut lamina propria and in the number of CD8αα+, CD25+, γδ+ subpopulations of intestinal intraepithelial lymphocytes (iIEL). The increased percentage of CD8αα+ iIEL that express CD25 indicates inflammation. The present study confirms the existence of an inflammatory process in the immunodeficient animals (R21) that is not detectable at the histological level but is characterized by an increase of the pro-inflammatory cytokines TNF-α and IFN-γ. We have shown a direct relationship between TNF receptor II (TNF-RII) expression and the higher levels of the γδ+ iIEL expressing TNF-α (TCRγδ+/TNF-α+ cells) that could be indicating a differential T cell reactivity. The effects of the increased expression of inflammatory cytokines such as TNF-α and INF-γ seem to be down regulated by the high levels of antigen specific TGF-β expression, which, we believe, is antigen specific and appears to maintain oral tolerance. Finally, in malnourished animals NF-κB remains principally in the cytosol and is unable to translocate to the nucleus, indicating the existence of alterations in the metabolic pathways leading to nuclear factor κB translocation from the cytoplasm to the nucleus. The therapeutic action of the immunomodulator TmB was demonstrated by its capacity to return all the cytokines studied to control levels. Moreover, its effects allowed the transcription factor NF-κB to translocate to the nucleus from the cytosol.
Collapse
Affiliation(s)
| | - S. Blois
- Faculty of Pharmacy and Biochemistry, IDEHU- Instituto de Estudios de Inmunidad Humoral, CONICET, University of Buenos Aires, Argentina
| | | | | | | |
Collapse
|
218
|
Ma H, Yuan Y, Zhao L, Ye Z, Xu J, Li M, Jiang Z, Jiang Y. Association of γδ T Cell Compartment Size to Disease Activity and Response to Therapy in SLE. PLoS One 2016; 11:e0157772. [PMID: 27333282 PMCID: PMC4917177 DOI: 10.1371/journal.pone.0157772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/03/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Although γδT cells are widely recognized as pivotal elements in immune-mediated diseases, their role in the pathogenesis of SLE and therapeutic outcome remains under explored. The current study aims to characterize the γδT cell compartment in SLE and correlate its status to disease severity and response to therapy. METHODS Human peripheral blood-derived γδ T cells were isolated from 14 healthy volunteers and 22 SLE patients (before and after 4 and 12 weeks following the onset of glucocorticoids (GC), mycophenolatemofetil (MMF) orhydroxychloroquine (HCQ) treatment). The γδ T cells were characterized using flow cytometry. In addition, serum concentration of IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10 and IL-17A was determined by cytometric bead array (CBA). RESULTS The SLEDAI scores dropped significantly following therapy in a subset of patients (responders-R) but not in some (non- responders-NR). Peripheral blood γδ T cells in general, and γ9+δ T cells and TNF-α/IL-17-secreting CD4-CD8-γδ T cell subsets in particular, were decreased in SLE compared to healthy controls. The numbers of the γδ T cell subsets reached levels similar to those of healthy controls following therapy in R but not in NR. Serum IL-6, IL-10 and IL-17 but not IFN-γ and TNF-α were significantly increased in SLE compared to the healthy controls and exhibited differential changes following therapy. In addition, inverse correlation was observed between SLEDAI scores and γδ T cell compartments, especially with TNF-α+γδT cells, TNF-α+γ9+δT cells and IL17+CD4-CD8-γδT cells subsets. Differential correlation patterns were also observed between serum cytokine levels and various γδ T cell compartments. CONCLUSIONS A strong association exists between γδ T cell compartments and SLE pathogenesis, disease severity and response to therapy.
Collapse
Affiliation(s)
- Hongshuang Ma
- Department of Rheumatology, the First Hospital, Jilin University, Changchun, 130021, China
| | - Yi Yuan
- Department of Rheumatology, the First Hospital, Jilin University, Changchun, 130021, China
| | - Ling Zhao
- Department of Rheumatology, the First Hospital, Jilin University, Changchun, 130021, China
| | - Zhuang Ye
- Department of Rheumatology, the First Hospital, Jilin University, Changchun, 130021, China
| | - Jiandong Xu
- Westbury Christian School, 10420 Hillcroft, Houston, TX, 77096, United States of America
| | - Man Li
- Genetic Diagnosis Center, the First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenyu Jiang
- Department of Rheumatology, the First Hospital, Jilin University, Changchun, 130021, China
- * E-mail: (ZJ); (YJ)
| | - Yanfang Jiang
- Genetic Diagnosis Center, the First Hospital of Jilin University, Changchun, 130021, China
- Key Laboratory for Zoonosis Research, Ministry of Education, the First Hospital, Jilin University, Changchun, 130032, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- * E-mail: (ZJ); (YJ)
| |
Collapse
|
219
|
Shmeeda H, Amitay Y, Gorin J, Tzemach D, Mak L, Stern ST, Barenholz Y, Gabizon A. Coencapsulation of alendronate and doxorubicin in pegylated liposomes: a novel formulation for chemoimmunotherapy of cancer. J Drug Target 2016; 24:878-889. [PMID: 27187807 DOI: 10.1080/1061186x.2016.1191081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We developed a pegylated liposome formulation of a dissociable salt of a nitrogen-containing bisphosphonate, alendronate (Ald), coencapsulated with the anthracycline, doxorubicin (Dox), a commonly used chemotherapeutic agent. Liposome-encapsulated ammonium Ald generates a gradient driving Dox into liposomes, forming a salt that holds both drugs in the liposome water phase. The resulting formulation (PLAD) allows for a high-loading efficiency of Dox, comparable to that of clinically approved pegylated liposomal doxorubicin sulfate (PLD) and is very stable in plasma stability assays. Cytotoxicity tests indicate greater potency for PLAD compared to PLD. This appears to be related to a synergistic effect of the coencapsulated Ald and Dox. PLAD and PLD differed in in vitro monocyte-induced IL-1β release (greater for PLAD) and complement activation (greater for PLD). A molar ratio Ald/Dox of ∼1:1 seems to provide an optimal compromise between loading efficiency of Dox, circulation time and in vivo toxicity of PLAD. In mice, the circulation half-life and tumor uptake of PLAD were comparable to PLD. In the M109R and 4T1 tumor models in immunocompetent mice, PLAD was superior to PLD in the growth inhibition of subcutaneous tumor implants. This new formulation appears to be a promising tool to exploit the antitumor effects of aminobisphosphonates in synergy with chemotherapy.
Collapse
Affiliation(s)
| | - Yasmine Amitay
- a Shaare Zedek Medical Center , Jerusalem , Israel.,b School of Medicine, Hebrew University , Jerusalem , Israel
| | - Jenny Gorin
- a Shaare Zedek Medical Center , Jerusalem , Israel
| | - Dina Tzemach
- a Shaare Zedek Medical Center , Jerusalem , Israel
| | - Lidia Mak
- a Shaare Zedek Medical Center , Jerusalem , Israel
| | - Stephan T Stern
- c Frederick National Laboratory for Cancer Research, NCL , Frederick , MD , USA
| | | | - Alberto Gabizon
- a Shaare Zedek Medical Center , Jerusalem , Israel.,b School of Medicine, Hebrew University , Jerusalem , Israel
| |
Collapse
|
220
|
Penha R, Higgins J, Mutamba S, Barrow P, Mahida Y, Foster N. IL-36 receptor is expressed by human blood and intestinal T lymphocytes and is dose-dependently activated via IL-36β and induces CD4+ lymphocyte proliferation. Cytokine 2016; 85:18-25. [PMID: 27269181 DOI: 10.1016/j.cyto.2016.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022]
Abstract
We show that IL-36R is expressed by T (CD4+ and CD8+) and B (CD19+) lymphocytes in human blood and also by CD4+ T lymphocytes in the intestinal lamina propria. IL-36R protein was mostly stored in the cytoplasm of CD4 lymphocytes and B cells, during steady state conditions and the greatest expression of IL-36R mRNA was measured in CD4+ (T helper) lymphocytes. IL-36 β, which functions via IL-36R induced rapid and significant (P<0.05) proliferation of CD4+ lymphocytes, within 48h. IL-36R expression was also maintained on the surface of circulating CD4+ lymphocytes which enter the intestinal lamina propria. In conclusion our study is the first to show that (1) all human blood lymphocytes express IL-36R; (2) IL-36R expression is maintained by circulating CD4+ lymphocytes which enter the intestinal lamina propria and (3) IL-36R/IL-36 β induces rapid CD4 lymphocyte proliferation. The possible significance of these results in the context of human disease is discussed.
Collapse
Affiliation(s)
- Rafael Penha
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - John Higgins
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Shilla Mutamba
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Yashwant Mahida
- The Institute of Infection, Immunity and Inflammation, University of Nottingham, UK
| | - Neil Foster
- School of Veterinary Medicine and Science, University of Nottingham, UK.
| |
Collapse
|
221
|
Wiest DL. Development of γδ T Cells, the Special-Force Soldiers of the Immune System. Methods Mol Biol 2016; 1323:23-32. [PMID: 26294395 DOI: 10.1007/978-1-4939-2809-5_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
While the functions of αβ T cells in host resistance to pathogen infection are understood in far more detail than those of γδ lineage T cells, γδ T cells perform critical, essential functions during immune responses that cannot be compensated by αβ T cells. Accordingly, it is essential to understand how the development of γδ T cells is controlled so that their generation and function might be manipulated in future for therapeutic benefit. This introductory chapter will cover the basic processes that underlie γδ T cell development in the thymus, as well as the current understanding of how they are controlled.
Collapse
Affiliation(s)
- David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA,
| |
Collapse
|
222
|
Old JM. Haematopoiesis in Marsupials. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:40-46. [PMID: 26592963 DOI: 10.1016/j.dci.2015.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Marsupials are a group of mammals that give birth to immature young lacking mature immune tissues at birth, and are unable to mount their own specific immune defence. Their immune tissues develop in a non-sterile ex-utero environment unlike that of eutherian mammals such as ourselves. Marsupials are therefore ideal models for studying the development of immune tissues, in particular haematopoiesis, yet relatively little has been investigated. Most studies have been restricted to histological or immunohistological studies, however some factors likely to be involved, based on eutherian studies in haematopoiesis, have been isolated and characterised, including a few key markers, and some cell signaling and regulation molecules, mostly involved in lymphocytopoiesis. However the role of many molecules in haematopoiesis is largely presumed. We currently lack much of the rudimentary information regarding time of appearance and expression levels of these molecules, and no functional studies have been conducted. This paper reviews our knowledge of marsupial haematopoiesis to date, and highlights the need for future research in marsupials to gain further insights into the evolution of haematopoiesis.
Collapse
Affiliation(s)
- Julie M Old
- Water and Wildlife Ecology, School of Science and Health, University of Western Sydney, Hawkesbury, Locked Bag 1797, Penrith, N.S.W, 2751 Australia.
| |
Collapse
|
223
|
Sinkora M, Butler JE. Progress in the use of swine in developmental immunology of B and T lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:1-17. [PMID: 26708608 DOI: 10.1016/j.dci.2015.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
The adaptive immune system of higher vertebrates is believed to have evolved to counter the ability of pathogens to avoid expulsion because their high rate of germline mutations. Vertebrates developed this adaptive immune response through the evolution of lymphocytes capable of somatic generation of a diverse repertoire of their antigenic receptors without the need to increase the frequency of germline mutation. The focus of our research and this article is on the ontogenetic development of the lymphocytes, and the repertoires they generate in swine. Several features are discussed including (a) the "closed" porcine placenta means that de novo fetal development can be studied for 114 days without passive influence from the mother, (b) newborn piglets are precocial permitting them to be reared without their mothers in germ-free isolators, (c) swine are members of the γδ-high group of mammals and thus provides a greater opportunity to characterize the role of γδ T cells and (d) because swine have a simplified variable heavy and light chain genome they offer a convenient system to study antibody repertoire development.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic.
| | - John E Butler
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
224
|
Seminal plasma induces inflammation in the uterus through the γδ T/IL-17 pathway. Sci Rep 2016; 6:25118. [PMID: 27109934 PMCID: PMC4842971 DOI: 10.1038/srep25118] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/11/2016] [Indexed: 01/13/2023] Open
Abstract
After insemination, a large number of leukocytes migrate into the uterus, which is accompanied by intense inflammation. However, the details of how seminal plasma interacts with the uterus are still not very clear. Here, we present that neutrophils migrate and accumulate around the uterine epithelium following insemination, which is accompanied by an increase in interleukin (IL) 17A levels. Additionally, we find that γδ T cells are the major source of IL-17A, and the seminal plasma could induce the γδ T cells to secret IL-17A. Blocking IL-17A could reduce the number of neutrophils in the uterus and prevent them from migrating to the epithelium by decreasing the chemokines CXCL1, CXCL2 and CXCL5. Blocking IL-17A did not affect the Th1/Th2 balance but actually diminished the inflammation in the uterus by reducing the expression of IL-1β and TNF-α. In summary, we found a new mechanism by which seminal plasma could influence the inflammation in the uterus through the γδ T/IL-17 pathway to regulate the expression of various chemokines and cytokines.
Collapse
|
225
|
Rong L, Li K, Li R, Liu HM, Sun R, Liu XY. Analysis of tumor-infiltrating gamma delta T cells in rectal cancer. World J Gastroenterol 2016; 22:3573-3580. [PMID: 27053849 PMCID: PMC4814643 DOI: 10.3748/wjg.v22.i13.3573] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the regulatory effect of Vδ1 T cells and the antitumor activity of Vδ2 T cells in rectal cancer.
METHODS: Peripheral blood, tumor tissues and para-carcinoma tissues from 20 rectal cancer patients were collected. Naïve CD4 T cells from the peripheral blood of rectal cancer patients were purified by negative selection using a Naive CD4+ T Cell Isolation Kit II (Miltenyi Biotec). Tumor tissues and para-carcinoma tissues were minced into small pieces and digested in a triple enzyme mixture containing collagenase type IV, hyaluronidase, and deoxyribonuclease for 2 h at room temperature. After digestion, the cells were washed twice in RPMI1640 and cultured in RPMI1640 containing 10% human serum supplemented with L-glutamine and 2-mercaptoethanol and 1000 U/mL of IL-2 for the generation of T cells. Vδ1 T cells and Vδ2 T cells from tumor tissues and para-carcinoma tissues were expanded by anti-TCR γδ antibodies. The inhibitory effects of Vδ1 T cells on naïve CD4 T cells were analyzed using the CFSE method. The cytotoxicity of Vδ2 T cells on rectal cancer lines was determined by the LDH method.
RESULTS: The percentage of Vδ1 T cells in rectal tumor tissues from rectal cancer patients was significantly increased, and positively correlated with the T stage. The percentage of Vδ2 T cells in rectal tumor tissues from rectal cancer patients was significantly decreased, and negatively correlated with the T stage. After culture for 14 d with 1 μg/mL anti-TCR γδ antibodies, the percentage of Vδ1 T cells from para-carcinoma tissues was 21.45% ± 4.64%, and the percentage of Vδ2 T cells was 38.64% ± 8.05%. After culture for 14 d, the percentage of Vδ1 T cells from rectal cancer tissues was 67.45% ± 11.75% and the percentage of Vδ2 T cells was 8.94% ± 2.85%. Tumor-infiltrating Vδ1 T cells had strong inhibitory effects, and tumor-infiltrating Vδ2 T cells showed strong cytolytic activity. The inhibitory effects of Vδ1 T cells from para-carcinoma tissues and from rectal cancer tissue were not significantly different. In addition, the cytolytic activities of Vδ2 T cells from para-carcinoma tissues and from rectal cancer tissues were not significantly different.
CONCLUSION: A percentage imbalance in Vδ1 and Vδ2 T cells in rectal cancer patients may contribute to the development of rectal cancer.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Cell Separation
- Cells, Cultured
- Coculture Techniques
- Cytotoxicity, Immunologic
- Humans
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasm Staging
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Rectal Neoplasms/immunology
- Rectal Neoplasms/metabolism
- Rectal Neoplasms/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
Collapse
|
226
|
McGill JL, Rusk RA, Guerra-Maupome M, Briggs RE, Sacco RE. Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica. PLoS One 2016; 11:e0151083. [PMID: 26942409 PMCID: PMC4778910 DOI: 10.1371/journal.pone.0151083] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/23/2016] [Indexed: 01/08/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of severe lower respiratory tract infection in children under five years of age. IL-17 and Th17 responses are increased in children infected with HRSV and have been implicated in both protective and pathogenic roles during infection. Bovine RSV (BRSV) is genetically closely related to HRSV and is a leading cause of severe respiratory infections in young cattle. While BRSV infection in the calf parallels many aspects of human infection with HRSV, IL-17 and Th17 responses have not been studied in the bovine. Here we demonstrate that calves infected with BRSV express significant levels of IL-17, IL-21 and IL-22; and both CD4 T cells and γδ T cells contribute to this response. In addition to causing significant morbidity from uncomplicated infections, BRSV infection also contributes to the development of bovine respiratory disease complex (BRDC), a leading cause of morbidity in both beef and dairy cattle. BRDC is caused by a primary viral infection, followed by secondary bacterial pneumonia by pathogens such as Mannheimia haemolytica. Here, we demonstrate that in vivo infection with M. haemolytica results in increased expression of IL-17, IL-21 and IL-22. We have also developed an in vitro model of BRDC and show that co-infection of PBMC with BRSV followed by M. haemolytica leads to significantly exacerbated IL-17 production, which is primarily mediated by IL-17-producing γδ T cells. Together, our results demonstrate that calves, like humans, mount a robust IL-17 response during RSV infection; and suggest a previously unrecognized role for IL-17 and γδ T cells in the pathogenesis of BRDC.
Collapse
Affiliation(s)
- Jodi L. McGill
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Rachel A. Rusk
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Mariana Guerra-Maupome
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Robert E. Briggs
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| |
Collapse
|
227
|
The Role of γδ T Cells in Systemic Lupus Erythematosus. J Immunol Res 2016; 2016:2932531. [PMID: 26981547 PMCID: PMC4766344 DOI: 10.1155/2016/2932531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by the overproduction of autoantibodies against an array of nuclear and cytoplasmic antigens and affects multiple organs, such as the skin, joints, kidneys, and neuronal tissues. T cells have been recognized as important players in the development of SLE due to their functions in cytokine secretion, antigen presentation, and supporting B cells for antibody production. γδ T cells are a minor population of T cells that play important roles in infection and tumor-associated disease. In recent years, the role of γδ T cells in autoimmune diseases has been investigated. In this review, we discussed the role of γδ T cells in the pathogenesis of SLE.
Collapse
|
228
|
Lu H, Li DJ, Jin LP. γδT Cells and Related Diseases. Am J Reprod Immunol 2016; 75:609-18. [PMID: 26833725 DOI: 10.1111/aji.12495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Discovered 30 years ago, γδT cells remain an enigmatic T-cell subset. Although they account for a small portion of the total human circulating T-cell pool, their associations with other immune cells and their potential regulatory roles in related diseases have been explored but still require further investigation. γδT cells which are MHC-unrestricted innate-like lymphocytes with more unique antigen receptors than αβT cells and B cells are considered to bridge innate and adaptive immunity. They have APC functions and initiate adaptive immunity. Due to their distribution in specific tissues, secretion of Th1-, Th2-, and Th17-type cytokines, and other characteristics, they are involved in a variety of physiology and pathology processes. They are barometers in HIV infection. However, different γδT cell subsets play opposing roles in HBV infections, autoimmune diseases, and several types of tumors. Moreover, decidual γδT cells have protective roles during pregnancies by synthesizing several cytokines. This emerging evidence provides an improved understanding of the immune mechanism of infection, autoimmunity, cancer, and other related disorders and better insights regarding the potential roles of γδT cells in immunological therapeutic strategies.
Collapse
Affiliation(s)
- Han Lu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Li-Ping Jin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
229
|
Abstract
T cell development is a complex multistep process that requires the coordinated activation of distinct signaling responses and the regulated progression of developing cells (thymocytes) through key stages of maturation. Although sophisticated techniques such as fetal thymus organ culture, in vitro thymocyte culture, and multi-parameter flow cytometric analysis are now widely employed to evaluate thymocyte maturation by experienced laboratories, defects in T cell development can usually be identified with more simplified screening methods. Here, we provide a basic protocol for assessment of T cell development that will enable laboratories with access to a four parameter flow cytometer to screen mouse strains, including those generated from embryonic stem cells with targeted gene mutations, for thymocyte maturation defects.
Collapse
Affiliation(s)
- Jan Y M Lee
- Section for Cellular and Developmental Biology, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | |
Collapse
|
230
|
Liu H, Zheng T, Mao Y, Xu C, Wu F, Bu L, Mou X, Zhou Y, Yuan G, Wang S, Zhou T, Chen D, Mao C. γδ Τ cells enhance B cells for antibody production in Hashimoto's thyroiditis, and retinoic acid induces apoptosis of the γδ Τ cell. Endocrine 2016; 51:113-22. [PMID: 25994301 DOI: 10.1007/s12020-015-0631-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
TCR γδ(+) Τ cells are important in the pathogenesis of inflammatory and autoimmune conditions. This study investigated the effect of γδ T cells on autoantibody production in patients with Hashimoto's thyroiditis (HT). A total of 148 subjects were enrolled, including 99 patients with HT, 5 with simple goiters, and 44 healthy controls. Peripheral blood and thyroid mononuclear cells were subjected to flow cytometric analysis. Thyroid tissues underwent immunofluorescent staining and immunohistochemistry for γδ T cells and anti-thyroid antibody detection. Antibody production was measured by ELISA and automated chemiluminescent immunoassays. And activation and apoptosis of peripheral blood γδT cells and B cells were measured by flow cytometric analysis. The percentage of γδ T cells were greater in thyroid tissue from HT patients than that of goiter patients (n = 5, 5.33 ± 1.20 vs. 2.07 ± 0.44 %; P < 0.05), with the Vδ1(+) γδ T cell subset especially dominant. Frequencies of CD69 (8.42 ± 1.08 vs. 1.60 ± 0.38 %, P < 0.001), HLA-DR (58.12 ± 6.36 vs. 37.82 ± 3.70 %, P < 0.05), CD40L (1.58 ± 0.35 vs. 0.15 ± 0.05 %, P < 0.01), and ICOS (2.78 ± 0.66 vs. 0.28 ± 0.13 %, P < 0.01) expressed on γδ T cells from HT patients (n = 19) were significantly increased compared with those of healthy controls (n = 15). More importantly, γδ T cells from HT patients enhanced B cells for antibody production, and all-trans retinoic acid (ATRA) treatment inhibited the effect by inducing apoptosis of γδ Τ cells. γδ Τ cells appear to play an important role in the pathogenesis of HT, and ATRA might be an effective regulator for HT patients.
Collapse
Affiliation(s)
- Hongli Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Department of Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yufei Mao
- Department of Laboratory Immunology, Jiangsu University School of Medicine, Zhenjiang, 212001, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Fei Wu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Ling Bu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Xiao Mou
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yuepeng Zhou
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Guoyue Yuan
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Shengjun Wang
- Department of Laboratory Immunology, Jiangsu University School of Medicine, Zhenjiang, 212001, China
| | - Tong Zhou
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Deyu Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| |
Collapse
|
231
|
Taking up Cancer Immunotherapy Challenges: Bispecific Antibodies, the Path Forward? Antibodies (Basel) 2015; 5:antib5010001. [PMID: 31557983 PMCID: PMC6698871 DOI: 10.3390/antib5010001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023] Open
Abstract
As evidenced by the recent approvals of Removab (EU, Trion Pharma) in 2009 and of Blincyto (US, Amgen) in 2014, the high potential of bispecific antibodies in the field of immuno-oncology is eliciting a renewed interest from pharmaceutical companies. Supported by rapid advances in antibody engineering and the development of several technological platforms such as Triomab or bispecific T cell engagers (BiTEs), the “bispecifics” market has increased significantly over the past decade and may occupy a pivotal space in the future. Over 30 bispecific molecules are currently in different stages of clinical trials and more than 70 in preclinical phase. This review focuses on the clinical potential of bispecific antibodies as immune effector cell engagers in the onco-immunotherapy field. We summarize current strategies targeting various immune cells and their clinical interests. Furthermore, perspectives of bispecific antibodies in future clinical developments are addressed.
Collapse
|
232
|
Strbo N, Alcaide ML, Romero L, Bolivar H, Jones D, Podack ER, Fischl MA. Loss of Intra-Epithelial Endocervical Gamma Delta (GD) 1 T Cells in HIV-Infected Women. Am J Reprod Immunol 2015; 75:134-45. [PMID: 26666220 DOI: 10.1111/aji.12458] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/05/2015] [Indexed: 01/18/2023] Open
Abstract
PROBLEM Human gamma delta (GD) T cells play a well-documented role in epithelial barrier surveillance and protection. Two subsets of GD T cells, defined by the use of either the Vdelta2 (GD2) or Vdelta1 (GD1) TCR, predominate. We hypothesized that endocervical GD T cells play important role in lower genital tract anti-HIV immune responses. METHOD OF STUDY HIV-infected (n = 18) and HIV-uninfected (n = 19) pre-menopausal women participating in the WIHS cohort were recruited. Frequency and phenotype of GD T cells were determined in endocervical cytobrush samples and peripheral blood by multicolor flow cytometry. RESULTS We found depletion of GD2 cells in the blood of HIV-infected women as well as significant decrease in the frequency of endocervical GD1 cells compared to uninfected women. CONCLUSION We report for the first time, the GD1 cells are a predominant endocervical T-cell subset that is significantly decreased in HIV-infected women.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria L Alcaide
- Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hector Bolivar
- Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deborah Jones
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Fischl
- Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
233
|
Rezende RM, da Cunha AP, Kuhn C, Rubino S, M'Hamdi H, Gabriely G, Vandeventer T, Liu S, Cialic R, Pinheiro-Rosa N, Oliveira RP, Gaublomme JT, Obholzer N, Kozubek J, Pochet N, Faria AMC, Weiner HL. Identification and characterization of latency-associated peptide-expressing γδ T cells. Nat Commun 2015; 6:8726. [PMID: 26644347 PMCID: PMC4686827 DOI: 10.1038/ncomms9726] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
γδ T cells are a subset of lymphocytes specialized in protecting the host against pathogens and tumours. Here we describe a subset of regulatory γδ T cells that express the latency-associated peptide (LAP), a membrane-bound TGF-β1. Thymic CD27+IFN-γ+CCR9+α4β7+TCRγδ+ cells migrate to the periphery, particularly to Peyer's patches and small intestine lamina propria, where they upregulate LAP, downregulate IFN-γ via ATF-3 expression and acquire a regulatory phenotype. TCRγδ+LAP+ cells express antigen presentation molecules and function as antigen presenting cells that induce CD4+Foxp3+ regulatory T cells, although TCRγδ+LAP+ cells do not themselves express Foxp3. Identification of TCRγδ+LAP+ regulatory cells provides an avenue for understanding immune regulation and biologic processes linked to intestinal function and disease. Latency-associated peptide (LAP) is a membrane-bound form of TGF-β1. Here the authors show that LAP marks a subset of regulatory γδ T cells with innate gut-homing properties, which present antigen and induce CD4+ Foxp3+ in Peyer's patches and lamina propria.
Collapse
Affiliation(s)
- Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andre P da Cunha
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chantal Kuhn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen Rubino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hanane M'Hamdi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Rheumatology Unit, Department of Medicine at Karolinska University Hospital, Karolinska Institute, Solna, Stockholm 17177, Sweden
| | - Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Tyler Vandeventer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shirong Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ron Cialic
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Natalia Pinheiro-Rosa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31.270-901, Brazil
| | - Rafael P Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31.270-901, Brazil
| | - Jellert T Gaublomme
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Nikolaus Obholzer
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - James Kozubek
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Nathalie Pochet
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts 02142, USA
| | - Ana M C Faria
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31.270-901, Brazil
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
234
|
Wistuba-Hamprecht K, Haehnel K, Janssen N, Demuth I, Pawelec G. Peripheral blood T-cell signatures from high-resolution immune phenotyping of γδ and αβ T-cells in younger and older subjects in the Berlin Aging Study II. IMMUNITY & AGEING 2015; 12:25. [PMID: 26640505 PMCID: PMC4670504 DOI: 10.1186/s12979-015-0052-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/24/2015] [Indexed: 01/10/2023]
Abstract
Background Aging and latent infection with Cytomegalovirus (CMV) are thought to be major factors driving the immune system towards immunosenescence, primarily characterized by reduced amounts of naïve T-cells and increased memory T-cells, potentially associated with higher morbidity and mortality. The composition of both major compartments, γδ as well as αβ T-cells, is altered by age and CMV, but detailed knowledge of changes to the γδ subset is currently limited. Results Here, we have surveyed a population of 73 younger (23–35 years) and 144 older (62–85 years) individuals drawn from the Berlin Aging Study II, investigating the distribution of detailed differentiation phenotypes of both γδ and αβ T-cells. Correlation of frequencies and absolute counts of the identified phenotypes with age and the presence of CMV revealed a lower abundance of Vδ2-positive and a higher amount of Vδ1-positive cells. We found higher frequencies of late-differentiated and lower frequencies of early-differentiated cells in the Vδ1+ and Vδ1-Vδ2-, but not in the Vδ2+ populations in elderly CMV-seropositive individuals confirming the association of these Vδ2-negative cells with CMV-immunosurveillance. We identified the highest Vδ1:Vδ2 ratios in the CMV-seropositive elderly. The observed increased CD4:CD8 ratios in the elderly were significantly lower in CMV-seropositive individuals, who also possessed a lower naïve and a larger late-differentiated compartment of CD8+ αβ T-cells, reflecting the consensus in the literature. Conclusions Our findings illustrate in detail the strong influence of CMV on the abundance and differentiation pattern of γδ T-cells as well as αβ T-cells in older and younger people. Mechanisms responsible for the phenotypic alterations in the γδ T-cell compartment, associated both with the presence of CMV and with age require further clarification. Electronic supplementary material The online version of this article (doi:10.1186/s12979-015-0052-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kilian Wistuba-Hamprecht
- Department of Internal Medicine II, University Medical Center, Waldhörnlestr. 22, Tübingen, 72072 Germany ; Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Karin Haehnel
- Department of Internal Medicine II, University Medical Center, Waldhörnlestr. 22, Tübingen, 72072 Germany
| | - Nicole Janssen
- Department of Internal Medicine II, University Medical Center, Waldhörnlestr. 22, Tübingen, 72072 Germany
| | - Ilja Demuth
- Research Group on Geriatrics, Charité - Universitaetsmedizin, Berlin, Germany ; Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Graham Pawelec
- Department of Internal Medicine II, University Medical Center, Waldhörnlestr. 22, Tübingen, 72072 Germany ; The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| |
Collapse
|
235
|
Abstract
Epidemiological studies have established an association between obesity, insulin resistance, type 2 diabetes and a number of cancer types. Research has focused predominantly on altered endocrine factors, growth factors and signalling pathways, with little known in man about the immune involvement in the relevant pathophysiological processes. Moreover, in an era of exciting new breakthroughs in cancer immunotherapy, there is also a need to study the safety and efficacy of immunotherapeutics in the complex setting of inflammatory-driven obesity-associated cancer. This review addresses key immune cell subsets underpinning obesity-associated inflammation and describes how such immune compartments might be targeted to prevent and treat obesity-associated cancer. We propose that the modulation, metabolism, migration and abundance of pro- and anti-inflammatory cells and tumour-specific T cells might be therapeutically altered to both restore immune balance, alleviating pathological inflammation, and to improve anti-tumour immune responses in obesity-associated cancer.
Collapse
|
236
|
Huang Y, Yang Z, Huang C, McGowan J, Casper T, Sun D, Born WK, O'Brien RL. γδ T Cell-Dependent Regulatory T Cells Prevent the Development of Autoimmune Keratitis. THE JOURNAL OF IMMUNOLOGY 2015; 195:5572-81. [PMID: 26566677 DOI: 10.4049/jimmunol.1501604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
Abstract
To prevent potentially damaging inflammatory responses, the eye actively promotes local immune tolerance via a variety of mechanisms. Owing to trauma, infection, or other ongoing autoimmunity, these mechanisms sometimes fail, and an autoimmune disorder may develop in the eye. In mice of the C57BL/10 (B10) background, autoimmune keratitis often develops spontaneously, particularly in the females. Its incidence is greatly elevated in the absence of γδ T cells, such that ∼80% of female B10.TCRδ(-/-) mice develop keratitis by 18 wk of age. In this article, we show that CD8(+) αβ T cells are the drivers of this disease, because adoptive transfer of CD8(+), but not CD4(+), T cells to keratitis-resistant B10.TCRβ/δ(-/-) hosts induced a high incidence of keratitis. This finding was unexpected because in other autoimmune diseases, more often CD4(+) αβ T cells, or both CD4(+) and CD8(+) αβ T cells, mediate the disease. Compared with wild-type B10 mice, B10.TCRδ(-/-) mice also show increased percentages of peripheral memory phenotype CD8(+) αβ T cells, along with an elevated frequency of CD8(+) αβ T cells biased to produce inflammatory cytokines. In addition, B10.TCRδ-/- mice have fewer peripheral CD4(+) CD25(+) Foxp3(+) αβ regulatory T cells (Tregs), which express lower levels of receptors needed for Treg development and function. Together, these observations suggest that in B10 background mice, γδ T cells are required to generate adequate numbers of CD4(+) CD25(+) Foxp3(+) Tregs, and that in B10.TCRδ(-/-) mice a Treg deficiency allows dysregulated effector or memory CD8(+) αβ T cells to infiltrate the cornea and provoke an autoimmune attack.
Collapse
Affiliation(s)
- Yafei Huang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045; Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City 430030, People's Republic of China
| | - Zhifang Yang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045; Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City 430030, People's Republic of China; and
| | - Chunjian Huang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Jessica McGowan
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Tamara Casper
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033
| | - Willi K Born
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Rebecca L O'Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045;
| |
Collapse
|
237
|
Legut M, Cole DK, Sewell AK. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell Mol Immunol 2015; 12:656-68. [PMID: 25864915 PMCID: PMC4716630 DOI: 10.1038/cmi.2015.28] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/01/2015] [Indexed: 12/13/2022] Open
Abstract
γδ T cells form an important part of adaptive immune responses against infections and malignant transformation. The molecular targets of human γδ T cell receptors (TCRs) remain largely unknown, but recent studies have confirmed the recognition of phosphorylated prenyl metabolites, lipids in complex with CD1 molecules and markers of cellular stress. All of these molecules are upregulated on various cancer types, highlighting the potential importance of the γδ T cell compartment in cancer immunosurveillance and paving the way for the use of γδ TCRs in cancer therapy. Ligand recognition by the γδ TCR often requires accessory/co-stimulatory stress molecules on both T cells and target cells; this cellular stress context therefore provides a failsafe against harmful self-reactivity. Unlike αβ T cells, γδ T cells recognise their targets irrespective of HLA haplotype and therefore offer exciting possibilities for off-the-shelf, pan-population cancer immunotherapies. Here, we present a review of known ligands of human γδ T cells and discuss the promise of harnessing these cells for cancer treatment.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Clinical Trials as Topic
- Gene Expression Regulation, Neoplastic/immunology
- Hemiterpenes/immunology
- Humans
- Immunotherapy/methods
- Ligands
- Models, Molecular
- Monitoring, Immunologic
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Organophosphorus Compounds/immunology
- Phosphorylation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Mateusz Legut
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
238
|
Phalke SP, Chiplunkar SV. Activation status of γδ T cells dictates their effect on osteoclast generation and bone resorption. Bone Rep 2015; 3:95-103. [PMID: 28377972 PMCID: PMC5365245 DOI: 10.1016/j.bonr.2015.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/20/2015] [Accepted: 10/14/2015] [Indexed: 01/13/2023] Open
Abstract
γδ T cells, a small subset of T cell population (5–10%), forms a bridge between innate and adaptive immunity. Although the role of γδ T cells in infectious diseases and antitumor immunity is well investigated, their role in bone biology needs to be explored. Aminobisphosphonates are used as a standard treatment modality for bone related disorders and are potent activators of γδ T cells. In the present study, we have compared the effect of “activated” and “freshly isolated” γδ T cells on osteoclast generation and function. We have shown that “activated” (αCD3/CD28 + rhIL2 or BrHPP + rhIL2 stimulated) γδ T cells inhibit osteoclastogenesis, while “freshly isolated” γδ T cells enhance osteoclast generation and function. Upon stimulation with phosphoantigen (BrHPP), “freshly isolated” γδ T cells were also able to suppress osteoclast generation and function. Cytokine profiles of these cells revealed that, “freshly isolated” γδ T cells secrete higher amounts of IL6 (pro-osteoclastogenic), while “activated” γδ T cells secrete high IFNγ levels (anti-osteoclastogenic). Neutralization of IFNγ and IL6 reversed the “inhibitory” or “stimulatory” effect of γδ T cells on osteoclastogenesis. In conclusion, we have shown that, activation status and dynamics of IL6 and IFNγ secretion dictate pro and anti-osteoclastogenic role of γδ T cells. Freshly isolated (unstimulated) γδ T cells enhance osteoclastogenesis. Activated γδ T cells inhibit osteoclast generation and function. Activated γδ T cells secrete high IFNγ, while freshly isolated secrete high IL6. Dynamics of IL6/IFNγ explains pro- and anti-osteoclastogenic effect of γδ T cells.
Collapse
Key Words
- Activation status
- BrHPP, bromohydrin pyrophosphate
- CBA, cytometric bead array
- Cytokines
- FCS, Fetal calf serum
- FH, Ficoll-Hypaque
- IFNγ, interferon gamma
- IL6, interleukin 6
- MACS, magnetic-activated cell sorting
- MFI, mean fluorescent intensity
- OAAS, osteoclast activity assay substrate
- OPCs, osteoclast precursor cells
- Osteoclasts
- PBMCs, peripheral blood mononuclear cells
- PBS, phosphate buffered saline
- Phosphoantigen
- RPMI, Roswell Park Memorial Institute medium
- SEM, standard error of mean
- TRAP, tartarate resistant acid phosphatase
- cαMEM, complete minimum essential medium with alpha modification
- rhIL2, recombinant human interleukin 2
- rhMCSF, recombinant human macrophage-colony stimulating factor
- rhRANKL, recombinant human receptor activator of nuclear factor kappa-B ligand
- αIFNγ, anti-interferon gamma
- αIL6, anti-interleukin 6
- γδ T cells
Collapse
Affiliation(s)
| | - Shubhada V. Chiplunkar
- Corresponding author at: Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.Chiplunkar LaboratoryAdvanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi Mumbai410210India
| |
Collapse
|
239
|
γδ T Cells Play a Protective Role in Chikungunya Virus-Induced Disease. J Virol 2015; 90:433-43. [PMID: 26491151 DOI: 10.1128/jvi.02159-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is an alphavirus responsible for causing epidemic outbreaks of polyarthralgia in humans. Because CHIKV is initially introduced via the skin, where γδ T cells are prevalent, we evaluated the response of these cells to CHIKV infection. CHIKV infection led to a significant increase in γδ T cells in the infected foot and draining lymph node that was associated with the production of proinflammatory cytokines and chemokines in C57BL/6J mice. γδ T cell(-/-) mice demonstrated exacerbated CHIKV disease characterized by less weight gain and greater foot swelling than occurred in wild-type mice, as well as a transient increase in monocytes and altered cytokine/chemokine expression in the foot. Histologically, γδ T cell(-/-) mice had increased inflammation-mediated oxidative damage in the ipsilateral foot and ankle joint compared to wild-type mice which was independent of differences in CHIKV replication. These results suggest that γδ T cells play a protective role in limiting the CHIKV-induced inflammatory response and subsequent tissue and joint damage. IMPORTANCE Recent epidemics, including the 2004 to 2007 outbreak and the spread of CHIKV to naive populations in the Caribbean and Central and South America with resultant cases imported into the United States, have highlighted the capacity of CHIKV to cause explosive epidemics where the virus can spread to millions of people and rapidly move into new areas. These studies identified γδ T cells as important to both recruitment of key inflammatory cell populations and dampening the tissue injury due to oxidative stress. Given the importance of these cells in the early response to CHIKV, this information may inform the development of CHIKV vaccines and therapeutics.
Collapse
|
240
|
Soriano-Sarabia N, Archin NM, Bateson R, Dahl NP, Crooks AM, Kuruc JD, Garrido C, Margolis DM. Peripheral Vγ9Vδ2 T Cells Are a Novel Reservoir of Latent HIV Infection. PLoS Pathog 2015; 11:e1005201. [PMID: 26473478 PMCID: PMC4608739 DOI: 10.1371/journal.ppat.1005201] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/10/2015] [Indexed: 12/02/2022] Open
Abstract
Eradication of HIV infection will require the identification of all cellular reservoirs that harbor latent infection. Despite low or lack of CD4 receptor expression on Vδ2 T cells, infection of these cells has previously been reported. We found that upregulation of the CD4 receptor may render primary Vδ2 cells target for HIV infection in vitro and we propose that HIV-induced immune activation may allow infection of γδ T cells in vivo. We assessed the presence of latent HIV infection by measurements of DNA and outgrowth assays within Vδ2 cells in 18 aviremic patients on long-standing antiretroviral therapy. In 14 patients we recovered latent but replication-competent HIV from highly purified Vδ2 cells demonstrating that peripheral Vδ2 T cells are a previously unrecognized reservoir in which latent HIV infection is unexpectedly frequent. Antiretroviral therapy (ART) has led to a decreased HIV-related morbidity and mortality across the world. While successful ART restores health, it does not cure infection as latent HIV-1 remains integrated within different cell populations, unaffected by ART. To date resting memory CD4+ T cells are the best-characterized cellular reservoir. However, eradication of HIV-1 infection requires the description of all latent cellular reservoirs harboring replication-competent HIV-1. We describe the discovery of an unexpected cellular reservoir within γδ T lymphocytes. This novel reservoir must be considered as strategies to clear latent HIV are developed and tested.
Collapse
Affiliation(s)
- Natalia Soriano-Sarabia
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nancie M. Archin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rosalie Bateson
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Noelle P. Dahl
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Amanda M. Crooks
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - JoAnn D. Kuruc
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Carolina Garrido
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
241
|
Boghal RH, Stephenson B, Afford SC. Immune cell communication in liver disease and liver regeneration. SIGNALING PATHWAYS IN LIVER DISEASES 2015:110-129. [DOI: 10.1002/9781118663387.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
242
|
Abstract
The interaction betweenSalmonella and its host is complex and dynamic: the host mounts an immune defense against the pathogen, which in turn acts to reduce, evade, or exploit these responses to successfully colonize the host. Although the exact mechanisms mediating protective immunity are poorly understood, it is known that T cells are a critical component of immunity to Salmonella infection, and a robust T-cell response is required for both clearance of primary infection and resistance to subsequent challenge. B-cell functions, including but not limited to antibody production, are also required for generation of protective immunity. Additionally, interactions among host cells are essential. For example, antigen-presenting cells (including B cells) express cytokines that participate in CD4+ T cell activation and differentiation. Differentiated CD4+ T cells secrete cytokines that have both autocrine and paracrine functions, including recruitment and activation of phagocytes, and stimulation of B cell isotype class switching and affinity maturation. Multiple bacterium-directed mechanisms, including altered antigen expression and bioavailability and interference with antigen-presenting cell activation and function, combine to modify Salmonella's "pathogenic signature" in order to minimize its susceptibility to host immune surveillance. Therefore, a more complete understanding of adaptive immune responses may provide insights into pathogenic bacterial functions. Continued identification of adaptive immune targets will guide rational vaccine development, provide insights into host functions required to resist Salmonella infection, and correspondingly provide valuable reagents for defining the critical pathogenic capabilities of Salmonella that contribute to their success in causing acute and chronic infections.
Collapse
|
243
|
Hyperactivation and in situ recruitment of inflammatory Vδ2 T cells contributes to disease pathogenesis in systemic lupus erythematosus. Sci Rep 2015; 5:14432. [PMID: 26395317 PMCID: PMC4585774 DOI: 10.1038/srep14432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/28/2015] [Indexed: 12/01/2022] Open
Abstract
In this study, we measured the proportion of peripheral Vδ2 T cells as well as the status and chemokine receptor expression profiles in SLE patients and healthy control (HC). In addition, Vδ2 T cell infiltration in the kidneys of patients with lupus nephritis was examined. The results showed that the percentage of peripheral Vδ2 T cells in new-onset SLE was decreased, and negatively correlated with the SLE Disease Activity Index score and the severity of proteinuria. These cells had a decreased apoptosis but an increased proliferation, and they showed increased accumulation in SLE kidneys. Moreover, IL-21 production and CD40L, CCR4, CCR7, CCR8, CXCR1 and CX3CR1 expression in Vδ2 T cells from SLE patients was significantly higher than from HC (p < 0.05), and these factors were downregulated in association with the repopulation of peripheral Vδ2 T cells in patients who were in remission (p < 0.05). In addition, anti-TCR Vδ2 antibodies activation significantly upregulated these chemokine receptors on Vδ2 T cells from HC, and this effect was blocked by inhibitors of PLC-γ1, MAPK/Erk, and PI3K signaling pathways. Our findings demonstrate that the distribution and function status of Vδ2 T cells from SLE patients are abnormal, and these aberrations may contribute to disease pathogenesis.
Collapse
|
244
|
Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 2015; 68:83-107. [PMID: 26399242 DOI: 10.1007/s00251-015-0868-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution.
Collapse
Affiliation(s)
- Ana Pinheiro
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- SaBio-IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Fabiana Neves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joana Abrantes
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Rose Mage
- NIAID, NIH, Bethesda, MD, 20892, USA
| | - Pedro José Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
245
|
Wistuba-Hamprecht K, Di Benedetto S, Schilling B, Sucker A, Schadendorf D, Garbe C, Weide B, Pawelec G. Phenotypic characterization and prognostic impact of circulating γδ and αβ T-cells in metastatic malignant melanoma. Int J Cancer 2015; 138:698-704. [PMID: 26383054 DOI: 10.1002/ijc.29818] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/14/2015] [Indexed: 11/07/2022]
Abstract
Human T cells carrying γδ T-cell receptors (TCRs) represent a minor population relative to those with αβ TCRs. There has been much interest recently in the possibility of using these γδ T-cells in cancer therapy because they can kill tumor cells in vitro in an MHC-unrestricted manner, and possess potential regulatory capability and antigen-presenting capacity. The presence of γδ T-cells in late-stage melanoma patients and their relationship with survival has not been extensively explored, although relatively lower percentages of total γδ T-cells and Vδ2+ cells have been reported. Here, we present a detailed analysis of associations of γδ T-cell subsets and differentiation stages with survival in Stage IV patients, compared with CD4+ and CD8+ αβ T-cells. We found an increased Vδ1:Vδ2-ratio and a decreased CD4:CD8-ratio in patients compared to healthy controls, on the basis both of relative frequencies and absolute cell counts per μL blood. Nonetheless, Kaplan-Meier analyses showed that a higher than median frequency of Vδ1+ cells was negatively associated with survival, whereas there were no positive or negative associations with frequencies of Vδ2+ cells. Correlations of cell differentiation status with survival revealed a negative association of early-differentiated Vδ1+ T cells with survival, both on the basis of relative frequencies and absolute counts. There was also a positive correlation between the frequencies of early-differentiated CD8+ αβ T-cells and survival. Our findings suggest peripheral blood frequencies of Vδ1+ T-cells as a potential prognostic marker in melanoma. The mechanisms by which higher abundance of Vδ1+ cells are associated with poorer survival require determination.
Collapse
Affiliation(s)
- Kilian Wistuba-Hamprecht
- Department of Internal Medicine II, University Medical Center, Tübingen, Germany.,Department of Dermatology, University Medical Center, Tübingen, Germany
| | | | - Bastian Schilling
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, and the German Cancer Consortium (DKTK), Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, and the German Cancer Consortium (DKTK), Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, and the German Cancer Consortium (DKTK), Essen, Germany
| | - Claus Garbe
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center, Tübingen, Germany.,Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Internal Medicine II, University Medical Center, Tübingen, Germany
| |
Collapse
|
246
|
Abstract
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.
Collapse
Affiliation(s)
- Caitlin C. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Adrienne M. Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
247
|
Inghirami G, Chan WC, Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol Rev 2015; 263:124-59. [PMID: 25510275 DOI: 10.1111/imr.12248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell lymphoproliferative disorders are a heterogeneous group of neoplasms with distinct clinical-biological properties. The normal cellular counterpart of these processes has been postulated based on functional and immunophenotypic analyses. However, T lymphocytes have been proven to be remarkably capable of modulating their properties, adapting their function in relationship with multiple stimuli and to the microenvironment. This impressive plasticity is determined by the equilibrium among a pool of transcription factors and by DNA chromatin regulators. It is now proven that the acquisition of specific genomic defects leads to the enforcement/activation of distinct pathways, which ultimately alter the preferential activation of defined regulators, forcing the neoplastic cells to acquire features and phenotypes distant from their original fate. Thus, dissecting the landscape of the genetic defects and their functional consequences in T-cell neoplasms is critical not only to pinpoint the origin of these tumors but also to define innovative mechanisms to re-adjust an unbalanced state to which the tumor cells have become addicted and make them vulnerable to therapies and targetable by the immune system. In our review, we briefly describe the pathological and clinical aspects of the T-cell lymphoma subtypes as well as NK-cell lymphomas and then focus on the current understanding of their pathogenesis and the implications on diagnosis and treatment.
Collapse
Affiliation(s)
- Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy; Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
248
|
Minculescu L, Sengeløv H. The role of gamma delta T cells in haematopoietic stem cell transplantation. Scand J Immunol 2015; 81:459-68. [PMID: 25753378 DOI: 10.1111/sji.12289] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/27/2015] [Indexed: 01/18/2023]
Abstract
Although haematopoietic stem cell transplantation (HSCT) is a potential curative treatment for haematological malignancies, it is still a procedure associated with substantial morbidity and mortality due to toxicity, graft-versus-host disease (GVHD) and relapse. Recent attempts of developing safer transplantation modalities increasingly focuses on selective cell depletion and graft engineering with the aim of retaining beneficial immune donor cells for the graft-versus-leukaemia (GVL) effect. In this context, the adoptive and especially innate effector functions of γδ T cells together with clinical studies investigating the effect of γδ T cells in relation to HSCT are reviewed. In addition to phospho-antigen recognition by the γδ T cell receptor (TCR), γδ T cells express receptors of the natural killer (NK) and natural cytotoxicity (NCR) families enabling them to recognize and kill leukaemia cells. Antigen recognition independent from the major histocompatibility complex (MHC) allows for the theoretical possibility of mediating GVL without an allogeneic response in terms of GVHD. Early studies on the impact of γδ T cells in HSCT have reported conflicting results. Recent studies, however, do suggest an overall favourable effect of high γδ T cell immune reconstitution after HSCT; patients with elevated numbers of γδ T cells had a significantly higher overall survival rate and a decreased rate of acute GVHD compared to patients with low or normal γδ T cell counts. Further research in terms of effector mechanisms, subtypes and tissue distribution during the course of HSCT is needed to assess the potentially beneficial effects of γδ T cells in this setting.
Collapse
Affiliation(s)
- L Minculescu
- Department of Clinical Immunology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - H Sengeløv
- Department of Haematology, National University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
249
|
Bank I, Marcu-Malina V. Quantitative peripheral blood perturbations of γδ T cells in human disease and their clinical implications. Clin Rev Allergy Immunol 2015; 47:311-33. [PMID: 24126758 DOI: 10.1007/s12016-013-8391-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human γδ T cells, which play innate and adaptive, protective as well as destructive, roles in the immune response, were discovered in 1986, but the clinical significance of alterations of the levels of these cells in the peripheral blood in human diseases has not been comprehensively reviewed. Here, we review patterns of easily measurable changes of this subset of T cells in peripheral blood from relevant publications in PubMed and their correlations with specific disease categories, specific diagnoses within disease categories, and prognostic outcomes. These collective data suggest that enumeration of γδ T cells and their subsets in the peripheral blood of patients could be a useful tool to evaluate diagnosis and prognosis in the clinical setting.
Collapse
Affiliation(s)
- Ilan Bank
- Department of Medicine F, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, 52621, Israel,
| | | |
Collapse
|
250
|
Owens GC, Erickson KL, Malone CC, Pan C, Huynh MN, Chang JW, Chirwa T, Vinters HV, Mathern GW, Kruse CA. Evidence for the involvement of gamma delta T cells in the immune response in Rasmussen encephalitis. J Neuroinflammation 2015; 12:134. [PMID: 26186920 PMCID: PMC4506578 DOI: 10.1186/s12974-015-0352-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/24/2015] [Indexed: 02/03/2023] Open
Abstract
Background Rasmussen encephalitis (RE) is a rare neuroinflammatory disease characterized by intractable seizures and progressive atrophy on one side of the cerebrum. Perivascular cuffing and clusters of T cells in the affected cortical hemisphere are indicative of an active cellular immune response. Methods Peripheral blood mononuclear cells (PBMCs) and brain-infiltrating lymphocytes (BILs) were isolated from 20 RE surgery specimens by standard methods, and CD3+ T cell populations were analyzed by flow cytometry. Gamma delta T cell receptor spectratyping was carried out by nested PCR of reversed transcribed RNA extracted from RE brain tissue, followed by high resolution capillary electrophoresis. A MiSeq DNA sequencing platform was used to sequence the third complementarity determining region (CDR3) of δ1 chains. Results CD3+ BILs from all of the RE brain specimens comprised both αβ and γδ T cells. The median αβ:γδ ratio was 1.9 (range 0.58–5.2) compared with a median ratio of 7.7 (range 2.7–40.8) in peripheral blood from the same patients. The αβ T cells isolated from brain tissue were predominantly CD8+, and the majority of γδ T cells were CD4− CD8−. Staining for the early activation marker CD69 showed that a fraction of the αβ and γδ T cells in the BILs were activated (median 42 %; range 13–91 %, and median 47 %; range 14–99 %, respectively). Spectratyping T cell receptor (TCR) Vδ1-3 chains from 14 of the RE brain tissue specimens indicated that the γδ T cell repertoire was relatively restricted. Sequencing δ1 chain PCR fragments revealed that the same prevalent CDR3 sequences were found in all of the brain specimens. These CDR3 sequences were also detected in brain tissue from 15 focal cortical dysplasia (FCD) cases. Conclusion Neuroinflammation in RE involves both activated αβ and γδ T cells. The presence of γδ T cells with identical TCR δ1 chain CDR3 sequences in all of the brain specimens examined suggests that a non-major histocompatibility complex (MHC)-restricted immune response to the same antigen(s) is involved in the etiology of RE. The presence of the same δ1 clones in CD brain implies the involvement of a common inflammatory pathway in both diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0352-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geoffrey C Owens
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, 300 Stein Plaza, Ste. 562, Los Angeles, CA, 90095-6901, USA.
| | - Kate L Erickson
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, 300 Stein Plaza, Ste. 562, Los Angeles, CA, 90095-6901, USA.
| | - Colin C Malone
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, 300 Stein Plaza, Ste. 562, Los Angeles, CA, 90095-6901, USA.
| | - Calvin Pan
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, USA.
| | - My N Huynh
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, 300 Stein Plaza, Ste. 562, Los Angeles, CA, 90095-6901, USA.
| | - Julia W Chang
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, 300 Stein Plaza, Ste. 562, Los Angeles, CA, 90095-6901, USA. .,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA.
| | - Thabiso Chirwa
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, 300 Stein Plaza, Ste. 562, Los Angeles, CA, 90095-6901, USA.
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA. .,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA. .,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA. .,Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA.
| | - Gary W Mathern
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, 300 Stein Plaza, Ste. 562, Los Angeles, CA, 90095-6901, USA. .,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA. .,Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA. .,Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA.
| | - Carol A Kruse
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, 300 Stein Plaza, Ste. 562, Los Angeles, CA, 90095-6901, USA.,Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, USA
| |
Collapse
|