201
|
Stress-driven cardiac calcium mishandling via a kinase-to-kinase crosstalk. Pflugers Arch 2021; 473:363-375. [PMID: 33590296 PMCID: PMC7940337 DOI: 10.1007/s00424-021-02533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023]
Abstract
Calcium homeostasis in the cardiomyocyte is critical to the regulation of normal cardiac function. Abnormal calcium dynamics such as altered uptake by the sarcoplasmic reticulum (SR) Ca2+-ATPase and increased diastolic SR calcium leak are involved in the development of maladaptive cardiac remodeling under pathological conditions. Ca2+/calmodulin-dependent protein kinase II-δ (CaMKIIδ) is a well-recognized key molecule in calcium dysregulation in cardiomyocytes. Elevated cellular stress is known as a common feature during pathological remodeling, and c-jun N-terminal kinase (JNK) is an important stress kinase that is activated in response to intrinsic and extrinsic stress stimuli. Our lab recently identified specific actions of JNK isoform 2 (JNK2) in CaMKIIδ expression, activation, and CaMKIIδ-dependent SR Ca2+ mishandling in the stressed heart. This review focuses on the current understanding of cardiac SR calcium handling under physiological and pathological conditions as well as the newly identified contribution of the stress kinase JNK2 in CaMKIIδ-dependent SR Ca2+ abnormal mishandling. The new findings identifying dual roles of JNK2 in CaMKIIδ expression and activation are also discussed in this review.
Collapse
|
202
|
Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021; 8:646932. [PMID: 33659284 PMCID: PMC7917191 DOI: 10.3389/fcvm.2021.646932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Incidence of cardiac arrhythmias increases significantly with age. In order to effectively stratify arrhythmic risk in the aging population it is crucial to elucidate the relevant underlying molecular mechanisms. The changes underlying age-related electrophysiological disruption appear to be closely associated with mitochondrial dysfunction. Thus, the present review examines the mechanisms by which age-related mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions, cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients' mitochondrial function status permits application of appropriate anti-arrhythmic therapies. Here, we discuss novel potential anti-arrhythmic pharmacological interventions that specifically target upstream mitochondrial function and hence ameliorates the need for therapies targeting downstream changes which have constituted traditional antiarrhythmic therapy.
Collapse
Affiliation(s)
- Khalil Saadeh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim Talal Fazmin
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
203
|
Yu ZY, Gong H, Wu J, Dai Y, Kesteven SH, Fatkin D, Martinac B, Graham RM, Feneley MP. Cardiac Gq Receptors and Calcineurin Activation Are Not Required for the Hypertrophic Response to Mechanical Left Ventricular Pressure Overload. Front Cell Dev Biol 2021; 9:639509. [PMID: 33659256 PMCID: PMC7917224 DOI: 10.3389/fcell.2021.639509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/26/2021] [Indexed: 01/19/2023] Open
Abstract
Rationale Gq-coupled receptors are thought to play a critical role in the induction of left ventricular hypertrophy (LVH) secondary to pressure overload, although mechano-sensitive channel activation by a variety of mechanisms has also been proposed, and the relative importance of calcineurin- and calmodulin kinase II (CaMKII)-dependent hypertrophic pathways remains controversial. Objective To determine the mechanisms regulating the induction of LVH in response to mechanical pressure overload. Methods and Results Transgenic mice with cardiac-targeted inhibition of Gq-coupled receptors (GqI mice) and their non-transgenic littermates (NTL) were subjected to neurohumoral stimulation (continuous, subcutaneous angiotensin II (AngII) infusion for 14 days) or mechanical pressure overload (transverse aortic arch constriction (TAC) for 21 days) to induce LVH. Candidate signaling pathway activation was examined. As expected, LVH observed in NTL mice with AngII infusion was attenuated in heterozygous (GqI+/-) mice and absent in homozygous (GqI-/-) mice. In contrast, LVH due to TAC was unaltered by either heterozygous or homozygous Gq inhibition. Gene expression of atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and α-skeletal actin (α-SA) was increased 48 h after AngII infusion or TAC in NTL mice; in GqI mice, the increases in ANP, BNP and α-SA in response to AngII were completely absent, as expected, but all three increased after TAC. Increased nuclear translocation of nuclear factor of activated T-cells c4 (NFATc4), indicating calcineurin pathway activation, occurred in NTL mice with AngII infusion but not TAC, and was prevented in GqI mice infused with AngII. Nuclear and cytoplasmic CaMKIIδ levels increased in both NTL and GqI mice after TAC but not AngII infusion, with increased cytoplasmic phospho- and total histone deacetylase 4 (HDAC4) and increased nuclear myocyte enhancer factor 2 (MEF2) levels. Conclusion Cardiac Gq receptors and calcineurin activation are required for neurohumorally mediated LVH but not for LVH induced by mechanical pressure overload (TAC). Rather, TAC-induced LVH is associated with activation of the CaMKII-HDAC4-MEF2 pathway.
Collapse
Affiliation(s)
- Ze-Yan Yu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Hutao Gong
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Jianxin Wu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Yun Dai
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Scott H Kesteven
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Michael P Feneley
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,Cardiology Department, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
204
|
Jiang F, Yin K, Wu K, Zhang M, Wang S, Cheng H, Zhou Z, Xiao B. The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction. Nat Commun 2021; 12:869. [PMID: 33558521 PMCID: PMC7870949 DOI: 10.1038/s41467-021-21178-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/19/2021] [Indexed: 01/20/2023] Open
Abstract
The beating heart possesses the intrinsic ability to adapt cardiac output to changes in mechanical load. The century-old Frank-Starling law and Anrep effect have documented that stretching the heart during diastolic filling increases its contractile force. However, the molecular mechanotransduction mechanism and its impact on cardiac health and disease remain elusive. Here we show that the mechanically activated Piezo1 channel converts mechanical stretch of cardiomyocytes into Ca2+ and reactive oxygen species (ROS) signaling, which critically determines the mechanical activity of the heart. Either cardiac-specific knockout or overexpression of Piezo1 in mice results in defective Ca2+ and ROS signaling and the development of cardiomyopathy, demonstrating a homeostatic role of Piezo1. Piezo1 is pathologically upregulated in both mouse and human diseased hearts via an autonomic response of cardiomyocytes. Thus, Piezo1 serves as a key cardiac mechanotransducer for initiating mechano-chemo transduction and consequently maintaining normal heart function, and might represent a novel therapeutic target for treating human heart diseases.
Collapse
Affiliation(s)
- Fan Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Kunlun Yin
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Kun Wu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Medical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Mingmin Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Shiqiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences and Institute of Molecular Medicine, Peking University, Beijing, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
205
|
Simon JN, Vrellaku B, Monterisi S, Chu SM, Rawlings N, Lomas O, Marchal GA, Waithe D, Syeda F, Gajendragadkar PR, Jayaram R, Sayeed R, Channon KM, Fabritz L, Swietach P, Zaccolo M, Eaton P, Casadei B. Oxidation of Protein Kinase A Regulatory Subunit PKARIα Protects Against Myocardial Ischemia-Reperfusion Injury by Inhibiting Lysosomal-Triggered Calcium Release. Circulation 2021; 143:449-465. [PMID: 33185461 PMCID: PMC7846288 DOI: 10.1161/circulationaha.120.046761] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Kinase oxidation is a critical signaling mechanism through which changes in the intracellular redox state alter cardiac function. In the myocardium, PKARIα (type-1 protein kinase A) can be reversibly oxidized, forming interprotein disulfide bonds in the holoenzyme complex. However, the effect of PKARIα disulfide formation on downstream signaling in the heart, particularly under states of oxidative stress such as ischemia and reperfusion (I/R), remains unexplored. METHODS Atrial tissue obtained from patients before and after cardiopulmonary bypass and reperfusion and left ventricular (LV) tissue from mice subjected to I/R or sham surgery were used to assess PKARIα disulfide formation by immunoblot. To determine the effect of disulfide formation on PKARIα catalytic activity and subcellular localization, live-cell fluorescence imaging and stimulated emission depletion super-resolution microscopy were performed in prkar1 knock-out mouse embryonic fibroblasts, neonatal myocytes, or adult LV myocytes isolated from "redox dead" (Cys17Ser) PKARIα knock-in mice and their wild-type littermates. Comparison of intracellular calcium dynamics between genotypes was assessed in fura2-loaded LV myocytes, whereas I/R-injury was assessed ex vivo. RESULTS In both humans and mice, myocardial PKARIα disulfide formation was found to be significantly increased (2-fold in humans, P=0.023; 2.4-fold in mice, P<0.001) in response to I/R in vivo. In mouse LV cardiomyocytes, disulfide-containing PKARIα was not found to impact catalytic activity, but instead led to enhanced AKAP (A-kinase anchoring protein) binding with preferential localization of the holoenzyme to the lysosome. Redox-dependent regulation of lysosomal two-pore channels by PKARIα was sufficient to prevent global calcium release from the sarcoplasmic reticulum in LV myocytes, without affecting intrinsic ryanodine receptor leak or phosphorylation. Absence of I/R-induced PKARIα disulfide formation in "redox dead" knock-in mouse hearts resulted in larger infarcts (2-fold, P<0.001) and a concomitant reduction in LV contractile recovery (1.6-fold, P<0.001), which was prevented by administering the lysosomal two-pore channel inhibitor Ned-19 at the time of reperfusion. CONCLUSIONS Disulfide modification targets PKARIα to the lysosome, where it acts as a gatekeeper for two-pore channel-mediated triggering of global calcium release. In the postischemic heart, this regulatory mechanism is critical for protection from extensive injury and offers a novel target for the design of cardioprotective therapeutics.
Collapse
Affiliation(s)
- Jillian N. Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Besarte Vrellaku
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Stefania Monterisi
- Department of Physiology, Anatomy and Genetics (S.M., P.S., M.Z.), University of Oxford, United Kingdom
| | - Sandy M. Chu
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Nadiia Rawlings
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Oliver Lomas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Gerard A. Marchal
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine (D.W.), University of Oxford, United Kingdom
| | - Fahima Syeda
- Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom (F.S., L.F.)
| | - Parag R. Gajendragadkar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Raja Jayaram
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Rana Sayeed
- Cardiothoracic Surgery, Oxford Heart Centre, Oxford University Hospitals National Health Service Foundation Trust, United Kingdom (R.S.)
| | - Keith M. Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom (F.S., L.F.)
- Department of Cardiology, University Hospitals Birmingham, United Kingdom (L.F.)
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics (S.M., P.S., M.Z.), University of Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics (S.M., P.S., M.Z.), University of Oxford, United Kingdom
| | - Philip Eaton
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, United Kingdom (P.E.)
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (J.N.S., B.V., S.M.C., N.R., O.L., G.A.M., P.R.G., R.J., K.M.C., B.C.), University of Oxford, United Kingdom
| |
Collapse
|
206
|
McMullen CJ, Chalmers S, Wood R, Cunningham MR, Currie S. Sunitinib and Imatinib Display Differential Cardiotoxicity in Adult Rat Cardiac Fibroblasts That Involves a Role for Calcium/Calmodulin Dependent Protein Kinase II. Front Cardiovasc Med 2021; 7:630480. [PMID: 33598481 PMCID: PMC7882511 DOI: 10.3389/fcvm.2020.630480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 01/13/2023] Open
Abstract
Background: Tyrosine kinase inhibitors (TKIs) have dramatically improved cancer treatment but are known to cause cardiotoxicity. The pathophysiological consequences of TKI therapy are likely to manifest across different cell types of the heart, yet there is little understanding of the differential adverse cellular effects. Cardiac fibroblasts (CFs) play a pivotal role in the repair and remodeling of the heart following insult or injury, yet their involvement in anti-cancer drug induced cardiotoxicity has been largely overlooked. Here, we examine the direct effects of sunitinib malate and imatinib mesylate on adult rat CF viability, Ca2+ handling and mitochondrial function that may contribute to TKI-induced cardiotoxicity. In particular, we investigate whether Ca2+/calmodulin dependent protein kinase II (CaMKII), may be a mediator of TKI-induced effects. Methods: CF viability in response to chronic treatment with both drugs was assessed using MTT assays and flow cytometry analysis. Calcium mobilization was assessed in CFs loaded with Fluo4-AM and CaMKII activation via oxidation was measured via quantitative immunoblotting. Effects of both drugs on mitochondrial function was determined by live mitochondrial imaging using MitoSOX red. Results: Treatment of CFs with sunitinib (0.1-10 μM) resulted in concentration-dependent alterations in CF phenotype, with progressively significant cell loss at higher concentrations. Flow cytometry analysis and MTT assays revealed increased cell apoptosis and necrosis with increasing concentrations of sunitinib. In contrast, equivalent concentrations of imatinib resulted in no significant change in cell viability. Both sunitinib and imatinib pre-treatment increased Angiotensin II-induced intracellular Ca2+ mobilization, with only sunitinib resulting in a significant effect and also causing increased CaMKII activation via oxidation. Live cell mitochondrial imaging using MitoSOX red revealed that both sunitinib and imatinib increased mitochondrial superoxide production in a concentration-dependent manner. This effect in response to both drugs was suppressed in the presence of the CaMKII inhibitor KN-93. Conclusions: Sunitinib and imatinib showed differential effects on CFs, with sunitinib causing marked changes in cell viability at concentrations where imatinib had no effect. Sunitinib caused a significant increase in Angiotensin II-induced intracellular Ca2+ mobilization and both TKIs caused increased mitochondrial superoxide production. Targeted CaMKII inhibition reversed the TKI-induced mitochondrial damage. These findings highlight a new role for CaMKII in TKI-induced cardiotoxicity, particularly at the level of the mitochondria, and confirm differential off-target toxicity in CFs, consistent with the differential selectivity of sunitinib and imatinib.
Collapse
Affiliation(s)
| | | | | | | | - Susan Currie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
207
|
Cortassa S, Juhaszova M, Aon MA, Zorov DB, Sollott SJ. Mitochondrial Ca 2+, redox environment and ROS emission in heart failure: Two sides of the same coin? J Mol Cell Cardiol 2021; 151:113-125. [PMID: 33301801 PMCID: PMC7880885 DOI: 10.1016/j.yjmcc.2020.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/05/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is a progressive, debilitating condition characterized, in part, by altered ionic equilibria, increased ROS production and impaired cellular energy metabolism, contributing to variable profiles of systolic and diastolic dysfunction with significant functional limitations and risk of premature death. We summarize current knowledge concerning changes of intracellular Na+ and Ca2+ control mechanisms during the disease progression and their consequences on mitochondrial Ca2+ homeostasis and the shift in redox balance. Absent existing biological data, our computational modeling studies advance a new 'in silico' analysis to reconcile existing opposing views, based on different experimental HF models, regarding variations in mitochondrial Ca2+ concentration that participate in triggering and perpetuating oxidative stress in the failing heart and their impact on cardiac energetics. In agreement with our hypothesis and the literature, model simulations demonstrate the possibility that the heart's redox status together with cytoplasmic Na+ concentrations act as regulators of mitochondrial Ca2+ levels in HF and of the bioenergetics response that will ultimately drive ATP supply and oxidative stress. The resulting model predictions propose future directions to study the evolution of HF as well as other types of heart disease, and to develop novel testable mechanistic hypotheses that may lead to improved therapeutics.
Collapse
Affiliation(s)
- Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States; Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Dmitry B Zorov
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
208
|
Danhong Injection and Trimetazidine Protect Cardiomyocytes and Enhance Calcium Handling after Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2480465. [PMID: 33510801 PMCID: PMC7822665 DOI: 10.1155/2021/2480465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 11/18/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide. However, there is no effective treatment for MI. In this study, trimetazidine (TMZ) and Danhong injection (DHI), representing western medicine and traditional Chinese medicine for MI, were used as tools to identify vital processes in alleviating MI injury. Administration of DHI and TMZ obviously decreased myocardial infarct size, improved ultrasonic heart function, and reduced creatine kinase (CK), lactate dehydrogenase (LDH), and glutamic oxaloacetic transaminase (AST) levels after MI. RNA-seq results indicated calcium ion handling and negative regulation of apoptotic process were vital processes and DHI and TMZ obviously reduced the expression of CaMK II and inhibited cleaved caspase-3 and Bax. Furthermore, DHI and TMZ increased p-S16-PLB, p-S16T17-PLB, CACNA1C, p-RyR2, and p-PKA expression but did not affect SERCA2a expression. In addition to the enhancement of cardiac myocyte shortening amplitude, maximum shortening velocity, and calcium transients, DHI and TMZ increased sarcoplasmic reticulum calcium content and enhanced SERCA2a calcium uptake capability by upregulating the phosphorylation of PLB but did not affect calcium exclusion by NCX. In conclusion, DHI and TMZ protect against MI through inhibiting apoptosis by downregulating CaMKII pathway and enhancing cardiac myocyte contractile functions possibly through the PKA signaling pathway.
Collapse
|
209
|
Liao H, Qi Y, Ye Y, Yue P, Zhang D, Li Y. Mechanotranduction Pathways in the Regulation of Mitochondrial Homeostasis in Cardiomyocytes. Front Cell Dev Biol 2021; 8:625089. [PMID: 33553165 PMCID: PMC7858659 DOI: 10.3389/fcell.2020.625089] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are one of the most important organelles in cardiomyocytes. Mitochondrial homeostasis is necessary for the maintenance of normal heart function. Mitochondria perform four major biological processes in cardiomyocytes: mitochondrial dynamics, metabolic regulation, Ca2+ handling, and redox generation. Additionally, the cardiovascular system is quite sensitive in responding to changes in mechanical stress from internal and external environments. Several mechanotransduction pathways are involved in regulating the physiological and pathophysiological status of cardiomyocytes. Typically, the extracellular matrix generates a stress-loading gradient, which can be sensed by sensors located in cellular membranes, including biophysical and biochemical sensors. In subsequent stages, stress stimulation would regulate the transcription of mitochondrial related genes through intracellular transduction pathways. Emerging evidence reveals that mechanotransduction pathways have greatly impacted the regulation of mitochondrial homeostasis. Excessive mechanical stress loading contributes to impairing mitochondrial function, leading to cardiac disorder. Therefore, the concept of restoring mitochondrial function by shutting down the excessive mechanotransduction pathways is a promising therapeutic strategy for cardiovascular diseases. Recently, viral and non-viral protocols have shown potentials in application of gene therapy. This review examines the biological process of mechanotransduction pathways in regulating mitochondrial function in response to mechanical stress during the development of cardiomyopathy and heart failure. We also summarize gene therapy delivery protocols to explore treatments based on mechanical stress-induced mitochondrial dysfunction, to provide new integrative insights into cardiovascular diseases.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yida Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
210
|
Ozturk N, Uslu S, Ozdemir S. Diabetes-induced changes in cardiac voltage-gated ion channels. World J Diabetes 2021; 12:1-18. [PMID: 33520105 PMCID: PMC7807254 DOI: 10.4239/wjd.v12.i1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus affects the heart through various mechanisms such as microvascular defects, metabolic abnormalities, autonomic dysfunction and incompatible immune response. Furthermore, it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopathy (DCM) in the absence of coronary artery disease. As DCM progresses it causes electrical remodeling of the heart, left ventricular dysfunction and heart failure. Electrophysiological changes in the diabetic heart contribute significantly to the incidence of arrhythmias and sudden cardiac death in diabetes mellitus patients. In recent studies, significant changes in repolarizing K+ currents, Na+ currents and L-type Ca2+ currents along with impaired Ca2+ homeostasis and defective contractile function have been identified in the diabetic heart. In addition, insulin levels and other trophic factors change significantly to maintain the ionic channel expression in diabetic patients. There are many diagnostic tools and management options for DCM, but it is difficult to detect its development and to effectively prevent its progress. In this review, diabetes-associated alterations in voltage-sensitive cardiac ion channels are comprehensively assessed to understand their potential role in the pathophysiology and pathogenesis of DCM.
Collapse
Affiliation(s)
- Nihal Ozturk
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Serkan Uslu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| |
Collapse
|
211
|
Gross P, Johnson J, Romero CM, Eaton DM, Poulet C, Sanchez-Alonso J, Lucarelli C, Ross J, Gibb AA, Garbincius JF, Lambert J, Varol E, Yang Y, Wallner M, Feldsott EA, Kubo H, Berretta RM, Yu D, Rizzo V, Elrod J, Sabri A, Gorelik J, Chen X, Houser SR. Interaction of the Joining Region in Junctophilin-2 With the L-Type Ca 2+ Channel Is Pivotal for Cardiac Dyad Assembly and Intracellular Ca 2+ Dynamics. Circ Res 2021; 128:92-114. [PMID: 33092464 PMCID: PMC7790862 DOI: 10.1161/circresaha.119.315715] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after β-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cats
- Cells, Cultured
- Disease Models, Animal
- Excitation Contraction Coupling
- Humans
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Kinetics
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Mutation
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organelle Biogenesis
- Protein Binding
- Protein Interaction Domains and Motifs
- Rats, Sprague-Dawley
- Ryanodine Receptor Calcium Release Channel
- Rats
Collapse
Affiliation(s)
- Polina Gross
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Jaslyn Johnson
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Carlos M. Romero
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Deborah M. Eaton
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Claire Poulet
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Jose Sanchez-Alonso
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Carla Lucarelli
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Jean Ross
- Bioimaging Center Research, Delaware Biotechnology Institute, Newark
| | - Andrew A. Gibb
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Joanne F. Garbincius
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Jonathan Lambert
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Erdem Varol
- Columbia University, Center for Theoretical Neuroscience, Department of Statistics, New York, NY
| | - Yijun Yang
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Markus Wallner
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
- Medical University of Graz, Division of Cardiology, Graz, Austria
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria
| | - Eric A. Feldsott
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Hajime Kubo
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Remus M. Berretta
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Daohai Yu
- Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia
| | - Victor Rizzo
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - John Elrod
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Abdelkarim Sabri
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Julia Gorelik
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Xiongwen Chen
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Steven R. Houser
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| |
Collapse
|
212
|
Hegyi B, Pölönen RP, Hellgren KT, Ko CY, Ginsburg KS, Bossuyt J, Mercola M, Bers DM. Cardiomyocyte Na + and Ca 2+ mishandling drives vicious cycle involving CaMKII, ROS, and ryanodine receptors. Basic Res Cardiol 2021; 116:58. [PMID: 34648073 PMCID: PMC8516771 DOI: 10.1007/s00395-021-00900-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte Na+ and Ca2+ mishandling, upregulated Ca2+/calmodulin-dependent kinase II (CaMKII), and increased reactive oxygen species (ROS) are characteristics of various heart diseases, including heart failure (HF), long QT (LQT) syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). These changes may form a vicious cycle of positive feedback to promote cardiac dysfunction and arrhythmias. In HF rabbit cardiomyocytes investigated in this study, the inhibition of CaMKII, late Na+ current (INaL), and leaky ryanodine receptors (RyRs) all attenuated the prolongation and increased short-term variability (STV) of action potential duration (APD), but in age-matched controls these inhibitors had no or minimal effects. In control cardiomyocytes, we enhanced RyR leak (by low [caffeine] plus isoproterenol mimicking CPVT) which markedly increased STV and delayed afterdepolarizations (DADs). These proarrhythmic changes were significantly attenuated by both CaMKII inhibition and mitochondrial ROS scavenging, with a slight synergy with INaL inhibition. Inducing LQT by elevating INaL (by Anemone toxin II, ATX-II) caused markedly prolonged APD, increased STV, and early afterdepolarizations (EADs). Those proarrhythmic ATX-II effects were largely attenuated by mitochondrial ROS scavenging, and partially reduced by inhibition of CaMKII and pathological leaky RyRs using dantrolene. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) bearing LQT3 mutation SCN5A N406K, dantrolene significantly attenuated cell arrhythmias and APD prolongation. Targeting critical components of the Na+-Ca2+-CaMKII-ROS-INaL arrhythmogenic vicious cycle may exhibit important on-target and also trans-target effects (e.g., INaL and RyR inhibition can alter INaL-mediated LQT3 effects). Incorporating this vicious cycle into therapeutic strategies provides novel integrated insight for treating cardiac arrhythmias and diseases.
Collapse
Affiliation(s)
- Bence Hegyi
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Risto-Pekka Pölönen
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA ,grid.168010.e0000000419368956Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Kim T. Hellgren
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Christopher Y. Ko
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Kenneth S. Ginsburg
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Julie Bossuyt
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Mark Mercola
- grid.168010.e0000000419368956Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305 USA
| | - Donald M. Bers
- grid.27860.3b0000 0004 1936 9684Department of Pharmacology, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| |
Collapse
|
213
|
Abi-Gerges A, Castro L, Leroy J, Domergue V, Fischmeister R, Vandecasteele G. Selective changes in cytosolic β-adrenergic cAMP signals and L-type Calcium Channel regulation by Phosphodiesterases during cardiac hypertrophy. J Mol Cell Cardiol 2021; 150:109-121. [PMID: 33184031 DOI: 10.1016/j.yjmcc.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023]
Abstract
Background In cardiomyocytes, phosphodiesterases (PDEs) type 3 and 4 are the predominant enzymes that degrade cAMP generated by β-adrenergic receptors (β-ARs), impacting notably the regulation of the L-type Ca2+ current (ICa,L). Cardiac hypertrophy (CH) is accompanied by a reduction in PDE3 and PDE4, however, whether this affects the dynamic regulation of cytosolic cAMP and ICa,L is not known. Methods and Results CH was induced in rats by thoracic aortic banding over a time period of five weeks and was confirmed by anatomical measurements. Left ventricular myocytes (LVMs) were isolated from CH and sham-operated (SHAM) rats and transduced with an adenovirus encoding a Förster resonance energy transfer (FRET)-based cAMP biosensor or subjected to the whole-cell configuration of the patch-clamp technique to measure ICa,L. Aortic stenosis resulted in a 46% increase in heart weight to body weight ratio in CH compared to SHAM. In SHAM and CH LVMs, a short isoprenaline stimulation (Iso, 100 nM, 15 s) elicited a similar transient increase in cAMP with a half decay time (t1/2off) of ~50 s. In both groups, PDE4 inhibition with Ro 20-1724 (10 μM) markedly potentiated the amplitude and slowed the decline of the cAMP transient, this latter effect being more pronounced in SHAM (t1/2off ~ 250 s) than in CH (t1/2off ~ 150 s, P < 0.01). In contrast, PDE3 inhibition with cilostamide (1 μM) had no effect on the amplitude of the cAMP transient and a minimal effect on its recovery in SHAM, whereas it potentiated the amplitude and slowed the decay in CH (t1/2off ~ 80 s). Iso pulse stimulation also elicited a similar transient increase in ICa,L in SHAM and CH, although the duration of the rising phase was delayed in CH. Inhibition of PDE3 or PDE4 potentiated ICa,L amplitude in SHAM but not in CH. Besides, while only PDE4 inhibition slowed down the decline of ICa,L in SHAM, both PDE3 and PDE4 contributed in CH. Conclusion These results identify selective alterations in cytosolic cAMP and ICa,L regulation by PDE3 and PDE4 in CH, and show that the balance between PDE3 and PDE4 for the regulation of β-AR responses is shifted toward PDE3 during CH.
Collapse
Affiliation(s)
- Aniella Abi-Gerges
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Liliana Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, 75005, Paris, France
| | - Jérôme Leroy
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Valérie Domergue
- UMS-IPSIT, INSERM, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Rodolphe Fischmeister
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Grégoire Vandecasteele
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
214
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
215
|
Balderas-Villalobos J, Steele TWE, Eltit JM. Physiological and Pathological Relevance of Selective and Nonselective Ca 2+ Channels in Skeletal and Cardiac Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:225-247. [PMID: 35138617 PMCID: PMC10683374 DOI: 10.1007/978-981-16-4254-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Contraction of the striated muscle is fundamental for human existence. The action of voluntary skeletal muscle enables activities such as breathing, establishing body posture, and diverse body movements. Additionally, highly precise motion empowers communication, artistic expression, and other activities that define everyday human life. The involuntary contraction of striated muscle is the core function of the heart and is essential for blood flow. Several ion channels are important in the transduction of action potentials to cytosolic Ca2+ signals that enable muscle contraction; however, other ion channels are involved in the progression of muscle pathologies that can impair normal life or threaten it. This chapter describes types of selective and nonselective Ca2+ permeable ion channels expressed in the striated muscle, their participation in different aspects of muscle excitation and contraction, and their relevance to the progression of some pathological states.
Collapse
Affiliation(s)
- Jaime Balderas-Villalobos
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tyler W E Steele
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jose M Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
216
|
Choi J, Moon MY, Han GY, Chang MS, Yang D, Cha J. Phellodendron amurense Extract Protects Human Keratinocytes from PM2.5-Induced Inflammation via PAR-2 Signaling. Biomolecules 2020; 11:biom11010023. [PMID: 33379296 PMCID: PMC7824043 DOI: 10.3390/biom11010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary supplement and personal care products aiming to provide protection from air pollution have been of great interest for decades. Epidemiology demonstrated that PM10 and PM2.5 particulate matter (PM) are an actual threat to public health worldwide, but the detailed processes of how these particles attack the cells are not fully understood. Here, we report that the measurement of intracellular calcium concentration ([Ca2+]i) using human respiratory or skin cells can illustrate pollutant challenges by triggering Ca2+ influx in these cells. This signal was generated by proteinase-activated receptor-2 (PAR-2), confirmed by competition analyses, and Phellodendron amurense bark extract (PAE), a traditional medicine, was able to control the response and expression of PAR-2. Increase in proinflammatory cytokines and decrease in cell adhesion components could suggest a severe damage status by air pollutants and protection by PAE. Finally, we identified 4-O-feruloylquinic acid (FQA), an active compound of PAE, showing the same effects on Ca2+ influx and PAR-2 regulation. The results presented here should help understand the underlying mechanism of PM insults and the beneficial effect of standardized PAE as dietary supplement or cosmetical ingredient.
Collapse
Affiliation(s)
- Jiyoung Choi
- Research Center, The Garden of Naturalsolution, Gyeonggi-do 18103, Korea; (J.C.); (M.Y.M.); (G.Y.H.); (M.S.C.)
| | - Mi Yeon Moon
- Research Center, The Garden of Naturalsolution, Gyeonggi-do 18103, Korea; (J.C.); (M.Y.M.); (G.Y.H.); (M.S.C.)
| | - Gi Yeon Han
- Research Center, The Garden of Naturalsolution, Gyeonggi-do 18103, Korea; (J.C.); (M.Y.M.); (G.Y.H.); (M.S.C.)
| | - Moon Sik Chang
- Research Center, The Garden of Naturalsolution, Gyeonggi-do 18103, Korea; (J.C.); (M.Y.M.); (G.Y.H.); (M.S.C.)
| | - Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Correspondence: (D.Y.); (J.C.); Tel.: +82-32-899-6072 (D.Y.); +82-31-374-5240(J.C.)
| | - Joonseok Cha
- Research Center, The Garden of Naturalsolution, Gyeonggi-do 18103, Korea; (J.C.); (M.Y.M.); (G.Y.H.); (M.S.C.)
- Correspondence: (D.Y.); (J.C.); Tel.: +82-32-899-6072 (D.Y.); +82-31-374-5240(J.C.)
| |
Collapse
|
217
|
Sridhar KC, Hersch N, Dreissen G, Merkel R, Hoffmann B. Calcium mediated functional interplay between myocardial cells upon laser-induced single-cell injury: an in vitro study of cardiac cell death signaling mechanisms. Cell Commun Signal 2020; 18:191. [PMID: 33371897 PMCID: PMC7771078 DOI: 10.1186/s12964-020-00689-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
Background The electromechanical function of myocardial tissue depends on the intercellular communication between cardiomyocytes (CMs) as well as their crosstalk with other cell types. Cell injury, and subsequent death trigger inflammation as in myocardial infarction (MI) resulting in myocardial remodeling. Although mechanisms underlying myocardial cell death have been studied so far, the signaling events following single cell death and spontaneous response of connected cells in the myocardial tissue is still barely understood. Methods Here, we investigated the effect of laser-induced single cell death on Calcium (Ca2+) concentrations and transport in myocardial cell clusters in vitro. Spatial and temporal changes in intracellular Ca2+ concentrations [Ca2+]i were studied using a fluorescent calcium indicator, Fluo-4AM. Spontaneous signaling events following cell death were studied in rat embryonic cardiomyocytes and non-myocytes using separate cell culture systems. Results Cell death triggered spontaneous increase in intracellular Ca2+ levels ([Ca2+]i) of surrounding cells. The spread of the observed propagating Ca2+ signal was slow and sustained in myocytes while it was rapid and transient in fibroblasts (Fbs). Further, sustained high Ca2+ levels temporarily impaired the contractility in CMs. The cell-type specific effect of ablation was confirmed using separate cultures of CMs and Fbs. Comparing Ca2+ propagation speed in myocytes and fibroblasts, we argue for a diffusion-driven Ca2+ propagation in myocytes, but not in fibroblasts. Radial and sequential Ca2+ diffusion across the CMs through cell–cell contacts and presence of Cx43-based intercellular junctions indicated a gap junction flow of Ca2+. Conclusions These findings illustrate the spontaneous Ca2+-mediated functional interplay in myocardial cell clusters upon mechanical injury and, further, the difference in Ca2+ signaling in cardiomyocytes and fibroblasts. Video Abstract
Collapse
Affiliation(s)
- Krishna Chander Sridhar
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Georg Dreissen
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
218
|
Macartney MJ, Peoples GE, McLennan PL. Cardiac Arrhythmia Prevention in Ischemia and Reperfusion by Low-Dose Dietary Fish Oil Supplementation in Rats. J Nutr 2020; 150:3086-3093. [PMID: 32886112 DOI: 10.1093/jn/nxaa256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Supplementing animal diets with fish oil increases myocardial omega-3 polyunsaturated fatty acids [ω-3 (n-3) PUFA], lowers heart rate, and prevents malignant cardiac arrhythmias. In contrast to epidemiological reports, results of some human clinical trials and of unphysiologically high doses employed in animal studies call into question the application of dietary ω-3 PUFA for cardioprotection. OBJECTIVE This study tested the hypothesis that low ω-3 PUFA dietary thresholds for myocardial incorporation in rats, equivalent in dose to what humans derive from eating fish, can reduce heart rate and arrhythmia vulnerability. METHODS Male Sprague-Dawley rats (12-15 wk old) were fed isoenergetic diets containing 10% fat for 4-5 wk. The control diet (CON) contained 5.5% beef tallow, 2.5% sunflower seed oil, and 2% olive oil. Fish oil diets contained high-DHA tuna oil, exchanged for olive oil: 0.31% [fish oil group 1 (FO1)] (human equivalent EPA + DHA 570 mg/d); 1.25% [fish oil group 2 (FO2)] (equivalent EPA + DHA 2.3 g/d). Anaesthetized rats (pentobarbital, 60 mg/kg intraperitoneally) were subjected in vivo to 15-min cardiac ischemia by left coronary artery occlusion and then reperfusion, with arrhythmias detected by electrocardiogram. RESULTS Fish oil dose dependently modulated myocardial membrane fatty acids (DHA mean ± SEM: CON, 5.0 ± 0.2%; FO1, 13.1 ± 0.9%; FO2, 18.3 ± 0.4%; n = 4-5; P-trend < 0.001 ANOVA); resting heart rate (CON, 453 ± 6; FO1, 432 ± 4; FO2, 422 ± 5 bpm; n = 15-18; P-trend < 0.001); reduced ventricular fibrillation (VF) (CON, 89%; FO1, 60%; P = 0.052; FO2, 50%; n = 15-18; P = 0.013 chi square); and total arrhythmia severity (arrhythmia score: CON, 6.1 ± 0.4; FO1, 4.6 ± 0.5; FO2, 3.1 ± 0.7; n = 15-18; P-trend < 0.01) during ischemia and reperfusion (VF: Con, 86%; FO1, 22% P = 0.011; FO2, 8% P = 0.001; n = 7-12); (arrhythmia score: CON, 4.6 ± 0.3; FO1, 3.1 ± 0.3; FO2, 1.3 ± 0.3; n = 7-12; P-trend < 0.001). CONCLUSIONS Ventricular arrhythmias were prevented and heart rate was slowed by lower ω-3 PUFA intake in rats than previously reported, equivalent to human fish consumption and associated with increased myocardial DHA. The efficacy of low-dose fish oil demonstrates biological plausibility for nutritional ω-3 fatty acid-mediated cardioprotection and suggests that effectiveness in human clinical trials may be obscured by failure to exclude fish eaters.
Collapse
Affiliation(s)
- Michael J Macartney
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Gregory E Peoples
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Peter L McLennan
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| |
Collapse
|
219
|
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Christopher L -H Huang
- Physiological Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, UK
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
220
|
Kohno M, Kobayashi S, Yamamoto T, Yoshitomi R, Kajii T, Fujii S, Nakamura Y, Kato T, Uchinoumi H, Oda T, Okuda S, Watanabe K, Mizukami Y, Yano M. Enhancing calmodulin binding to cardiac ryanodine receptor completely inhibits pressure-overload induced hypertrophic signaling. Commun Biol 2020; 3:714. [PMID: 33244105 PMCID: PMC7691336 DOI: 10.1038/s42003-020-01443-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac hypertrophy is a well-known major risk factor for poor prognosis in patients with cardiovascular diseases. Dysregulation of intracellular Ca2+ is involved in the pathogenesis of cardiac hypertrophy. However, the precise mechanism underlying cardiac hypertrophy remains elusive. Here, we investigate whether pressure-overload induced hypertrophy can be induced by destabilization of cardiac ryanodine receptor (RyR2) through calmodulin (CaM) dissociation and subsequent Ca2+ leakage, and whether it can be genetically rescued by enhancing the binding affinity of CaM to RyR2. In the very initial phase of pressure-overload induced cardiac hypertrophy, when cardiac contractile function is preserved, reactive oxygen species (ROS)-mediated RyR2 destabilization already occurs in association with relaxation dysfunction. Further, stabilizing RyR2 by enhancing the binding affinity of CaM to RyR2 completely inhibits hypertrophic signaling and improves survival. Our study uncovers a critical missing link between RyR2 destabilization and cardiac hypertrophy.
Collapse
Affiliation(s)
- Michiaki Kohno
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takeshi Yamamoto
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Ryosuke Yoshitomi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshiro Kajii
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shohei Fujii
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshihide Nakamura
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takayoshi Kato
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tetsuro Oda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinichi Okuda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenji Watanabe
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, 755-8505, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, 755-8505, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
221
|
Zhang R, Guo T, Han Y, Huang H, Shi J, Hu J, Li H, Wang J, Saleem A, Zhou P, Lan F. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. J Biomed Mater Res B Appl Biomater 2020; 109:949-960. [PMID: 33231364 DOI: 10.1002/jbm.b.34759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte like cells derived from human pluripotent stem cells (hPSC-CMs) have a good application perspective in many fields such as disease modeling, drug screening and clinical treatment. However, these are severely hampered by the fact that hPSC-CMs are immature compared to adult human cardiomyocytes. Therefore, many approaches such as genetic manipulation, biochemical factors supplement, mechanical stress, electrical stimulation and three-dimensional culture have been developed to promote the maturation of hPSC-CMs. Recently, establishing in vitro synthetic artificial microenvironments based on the in vivo development program of cardiomyocytes has achieved much attention due to their inherent properties such as stiffness, plasticity, nanotopography and chemical functionality. In this review, the achievements and deficiency of reported synthetic microenvironments that mainly discussed comprehensive biological, chemical, and physical factors, as well as three-dimensional culture were mainly discussed, which have significance to improve the microenvironment design and accelerate the maturation of hPSC-CMs.
Collapse
Affiliation(s)
- Rui Zhang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China.,College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tianwei Guo
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Han
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiaxuan Hu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Hongjiao Li
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jianlin Wang
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Amina Saleem
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ping Zhou
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Feng Lan
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
222
|
Li Y, Chang Y, Li X, Li X, Gao J, Zhou Y, Wu F, Bai R, Dong T, Ma S, Zhang S, Lu WJ, Tan X, Wang Y, Lan F. RAD-Deficient Human Cardiomyocytes Develop Hypertrophic Cardiomyopathy Phenotypes Due to Calcium Dysregulation. Front Cell Dev Biol 2020; 8:585879. [PMID: 33195237 PMCID: PMC7642210 DOI: 10.3389/fcell.2020.585879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Ras associated with diabetes (RAD) is a membrane protein that acts as a calcium channel regulator by interacting with cardiac L-type Ca2 + channels (LTCC). RAD defects can disrupt intracellular calcium dynamics and lead to cardiac hypertrophy. However, due to the lack of reliable human disease models, the pathological mechanism of RAD deficiency leading to cardiac hypertrophy is not well understood. In this study, we created a RRAD–/– H9 cell line using CRISPR/Cas9 technology. RAD disruption did not affect the ability and efficiency of cardiomyocytes differentiation. However, RAD deficient hESC-CMs recapitulate hypertrophic phenotype in vitro. Further studies have shown that elevated intracellular calcium level and abnormal calcium regulation are the core mechanisms by which RAD deficiency leads to cardiac hypertrophy. More importantly, management of calcium dysregulation has been found to be an effective way to prevent the development of cardiac hypertrophy in vitro.
Collapse
Affiliation(s)
- Ya'nan Li
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yun Chang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaolei Li
- Department of Cardiology, Heart Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaowei Li
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jian Gao
- Experimental Medicine, Faculty of Medicine, Vancouver, BC, Canada
| | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Fujian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Rui Bai
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Tao Dong
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shuhong Ma
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Siyao Zhang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Wen-Jing Lu
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yongming Wang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
223
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
224
|
Tian Q, Lipp P. Apparent calcium spark properties and fast-scanning 2D confocal imaging modalities. Cell Calcium 2020; 93:102303. [PMID: 33316584 DOI: 10.1016/j.ceca.2020.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Ca2+ sparks are instrumental to understand physiological and pathological Ca2+ signaling in the heart. High-speed two spatially dimensional (2D) confocal imaging (>120 Hz) enables acquisition of sparks with high-content information, however, owing to a wide variety of different acquisition modalities the question arises: how much they reflect the "true" Ca2+ spark properties. To address this issue, we compared a fast point and a 2D-array scanner equipped with a range of different detectors. As a quasi-standard biological sample, we employed Ca2+ sparks in permeabilized and intact mouse ventricular myocytes and utilized an unbiased, automatic Ca2+ spark analysis tool, iSpark. Data from the point scanner suffered from low pixel photon fluxes (PPF) concomitant with high Poissonian noise. Images from the 2D-array scanner displayed substantially increased PPF, lower Poissonian noise and almost 3-fold increased sign-to-noise ratios. Noteworthy, data from the 2D scanner suffered from considerable inter-pinhole crosstalk evident for the permeabilized cells. Spark properties, such as frequency, amplitude, decay time and spatial spread were distinctly different for any scanner/detector combination. Our study reveals that the apparent Ca2+ spark properties differ dependent on the particular recording modality and set-up employed, quantitatively.
Collapse
Affiliation(s)
- Qinghai Tian
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology, Research Center for Molecular Imaging and Screening, Medical Faculty, Saarland University, Kirrberger Str. 100, Homburg, Saar, 66421, Germany
| | - Peter Lipp
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology, Research Center for Molecular Imaging and Screening, Medical Faculty, Saarland University, Kirrberger Str. 100, Homburg, Saar, 66421, Germany.
| |
Collapse
|
225
|
Chen HX, Yang ZY, Hou HT, Wang J, Wang XL, Yang Q, Liu L, He GW. Novel mutations of TCTN3/LTBP2 with cellular function changes in congenital heart disease associated with polydactyly. J Cell Mol Med 2020; 24:13751-13762. [PMID: 33098376 PMCID: PMC7753982 DOI: 10.1111/jcmm.15950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Congenital heart disease (CHD) associated with polydactyly involves various genes. We aimed to identify variations from genes related to complex CHD with polydactyly and to investigate the cellular functions related to the mutations. Blood was collected from a complex CHD case with polydactyly, and whole exome sequencing (WES) was performed. The CRISPR/Cas9 system was used to generate human pluripotent stem cell with mutations (hPSCs-Mut) that were differentiated into cardiomyocytes (hPSC-CMs-Mut) and analysed by transcriptomics on day 0, 9 and 13. Two heterozygous mutations, LTBP2 (c.2206G>A, p.Asp736Asn, RefSeq NM_000428.2) and TCTN3 (c.1268G>A, p.Gly423Glu, RefSeq NM_015631.5), were identified via WES but no TBX5 mutations were found. The stable cell lines of hPSCs-LTBP2mu /TCTN3mu were constructed and differentiated into hPSC-CMs-LTBP2mu /TCTN3mu . Compared to the wild type, LTBP2 mutation delayed the development of CMs. The TCTN3 mutation consistently presented lower rate and weaker force of the contraction of CMs. For gene expression pattern of persistent up-regulation, pathways in cardiac development and congenital heart disease were enriched in hPSCs-CM-LTBP2mu , compared with hPSCs-CM-WT. Thus, the heterozygous mutations in TCTN3 and LTBP2 affect contractility (rate and force) of cardiac myocytes and may affect the development of the heart. These findings provide new insights into the pathogenesis of complex CHD with polydactyly.
Collapse
Affiliation(s)
- Huan-Xin Chen
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zi-Yue Yang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiu-Li Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lin Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Zhejiang University, Hangzhou, Zhejiang, China.,Drug Research and Development Center, Wannan Medical College, Wuhu, Anhui, China.,Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
226
|
Hu H, Jiang M, Cao Y, Zhang Z, Jiang B, Tian F, Feng J, Dou Y, Gorospe M, Zheng M, Zheng L, Yang Z, Wang W. HuR regulates phospholamban expression in isoproterenol-induced cardiac remodelling. Cardiovasc Res 2020; 116:944-955. [PMID: 31373621 DOI: 10.1093/cvr/cvz205] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/30/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022] Open
Abstract
AIMS The elevated expression of phospholamban (PLB) has been observed in heart failure and cardiac remodelling, inhibiting the affinity of Ca2+ pump to Ca2+ thereby impairing heart relaxation. However, the mechanisms underlying the regulation of PLB remains to be further studied. The present study aims to test the role of RNA-binding protein HuR in the regulation of PLB and the impact of this regulatory process in cardiac remodelling. METHODS AND RESULTS A mouse model specifically deleted HuR in cardiomyocytes were used for testing the role of HuR in regulating PLB during isoproterenol (ISO)-induced cardiac remodelling. HuR deficiency did not significantly influence the phenotype and function of mouse heart under static status. However, deletion of HuR in cardiomyocytes mitigated the effect of ISO in inducing PLB expression and reducing β1-AR expression, in turn aggravating ISO-induced myocardial hypertrophy and cardiac fibrosis. In H9C2 cells, association of HuR with PLB and β1-AR mRNAs stabilized PLB mRNA and destabilized β1-AR mRNA, respectively. CONCLUSION HuR stabilizes PLB mRNA and destabilizes β1-AR mRNA. The HuR-PLB and HuR-β1-AR regulatory processes impact on ISO-induced cardiac remodelling.
Collapse
Affiliation(s)
- Han Hu
- >Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Mingyang Jiang
- Department of Cardiology, State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Yangpo Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road Beijing, 100191, China
| | - Zhuojun Zhang
- >Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Bin Jiang
- >Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Feng Tian
- Department of Laboratory Animal Science, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road Beijing, 100191, China
| | - Yali Dou
- Department of Pathology and Biological Chemistry, University of Michigan, 1301 Catherine Street, Ann Arbor, MI 48105, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Ming Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road Beijing, 100191, China
| | - Lemin Zheng
- Institute of Cardiovascular Research, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Zhongzhou Yang
- Department of Cardiology, State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Wengong Wang
- >Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
227
|
Han JW, Kang C, Kim Y, Lee MG, Kim JY. Isoproterenol-induced hypertrophy of neonatal cardiac myocytes and H9c2 cell is dependent on TRPC3-regulated Ca V1.2 expression. Cell Calcium 2020; 92:102305. [PMID: 33069962 DOI: 10.1016/j.ceca.2020.102305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
CaV1.2 and transient receptor potential canonical channel 3 (TRPC3) are two proteins known to have important roles in pathological cardiac hypertrophy; however, such roles still remain unclear. A better understanding of these roles is important for furthering the clinical understanding of heart failure. We previously reported that Trpc3-knockout (KO) mice are resistant to pathologic hypertrophy and that their CaV1.2 protein expression is reduced. In this study, we aimed to examine the relationship between these two proteins and characterize their role in neonatal cardiomyocytes. We measured CaV1.2 expression in the hearts of wild-type (WT) and Trpc3-/- mice, and examined the effects of Trpc3 knockdown and overexpression in the rat cell line H9c2. We also compared the hypertrophic responses of neonatal cardiomyocytes cultured from Trpc3-/- mice to a representative hypertrophy-causing drug, isoproterenol (ISO), and measured the activity of nuclear factor of activated T cells 3 (NFAT3) in neonatal cardiomyocytes (NCMCs). We inhibited the L-type current with nifedipine, and measured the intracellular calcium concentration using Fura-2 with 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced Ba2+ influx. When using the Trpc3-mediated Ca2+ influx, both intracellular calcium concentration and calcium influx were reduced in Trpc3-KO myocytes. Not only was the expression of CaV1.2 greatly reduced in Trpc3-KO cardiac lysate, but the size of the CaV1.2 currents in NCMCs was also greatly reduced. When NCMCs were treated with Trpc3 siRNA, it was confirmed that the expression of CaV1.2 and the intracellular nuclear transfer activity of NFAT decreased. In H9c2 cells, the ISO activated- and verapamil inhibited- Ca2+ influxes were dramatically attenuated by Trpc3 siRNA treatment. In addition, it was confirmed that both the expression of CaV1.2 and the size of H9c2 cells were regulated according to the expression and activation level of TRPC3. We found that after stimulation with ISO, cell hypertrophy occurred in WT myocytes, while the increase in size of Trpc3-KO myocytes was greatly reduced. These results suggest that not only the cell hypertrophy process in neonatal cardiac myocytes and H9c2 cells were regulated according to the expression level of CaV1.2, but also that the expression level of CaV1.2 was regulated by TRPC3 through the activation of NFAT.
Collapse
Affiliation(s)
- Jung Woo Han
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Choeun Kang
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Yonjung Kim
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
228
|
Campbell H, Aguilar-Sanchez Y, Quick AP, Dobrev D, Wehrens XHT. SPEG: a key regulator of cardiac calcium homeostasis. Cardiovasc Res 2020; 117:2175-2185. [PMID: 33067609 DOI: 10.1093/cvr/cvaa290] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Proper cardiac Ca2+ homeostasis is essential for normal excitation-contraction coupling. Perturbations in cardiac Ca2+ handling through altered kinase activity has been implicated in altered cardiac contractility and arrhythmogenesis. Thus, a better understanding of cardiac Ca2+ handling regulation is vital for a better understanding of various human disease processes. 'Striated muscle preferentially expressed protein kinase' (SPEG) is a member of the myosin light chain kinase family that is key for normal cardiac function. Work within the last 5 years has revealed that SPEG has a crucial role in maintaining normal cardiac Ca2+ handling through maintenance of transverse tubule formation and phosphorylation of junctional membrane complex proteins. Additionally, SPEG has been causally impacted in human genetic diseases such as centronuclear myopathy and dilated cardiomyopathy as well as in common acquired cardiovascular disease such as heart failure and atrial fibrillation. Given the rapidly emerging role of SPEG as a key cardiac Ca2+ regulator, we here present this review in order to summarize recent findings regarding the mechanisms of SPEG regulation of cardiac excitation-contraction coupling in both physiology and human disease. A better understanding of the roles of SPEG will be important for a more complete comprehension of cardiac Ca2+ regulation in physiology and disease.
Collapse
Affiliation(s)
- Hannah Campbell
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann P Quick
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dobromir Dobrev
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
229
|
Sadek MS, Cachorro E, El-Armouche A, Kämmerer S. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E7462. [PMID: 33050419 PMCID: PMC7590001 DOI: 10.3390/ijms21207462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterases (PDEs) are the principal superfamily of enzymes responsible for degrading the secondary messengers 3',5'-cyclic nucleotides cAMP and cGMP. Their refined subcellular localization and substrate specificity contribute to finely regulate cAMP/cGMP gradients in various cellular microdomains. Redistribution of multiple signal compartmentalization components is often perceived under pathological conditions. Thereby PDEs have long been pursued as therapeutic targets in diverse disease conditions including neurological, metabolic, cancer and autoimmune disorders in addition to numerous cardiovascular diseases (CVDs). PDE2 is a unique member of the broad family of PDEs. In addition to its capability to hydrolyze both cAMP and cGMP, PDE2 is the sole isoform that may be allosterically activated by cGMP increasing its cAMP hydrolyzing activity. Within the cardiovascular system, PDE2 serves as an integral regulator for the crosstalk between cAMP/cGMP pathways and thereby may couple chronically adverse augmented cAMP signaling with cardioprotective cGMP signaling. This review provides a comprehensive overview of PDE2 regulatory functions in multiple cellular components within the cardiovascular system and also within various subcellular microdomains. Implications for PDE2- mediated crosstalk mechanisms in diverse cardiovascular pathologies are discussed highlighting the prospective use of PDE2 as a potential therapeutic target in cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| |
Collapse
|
230
|
ER Stress-Induced Secretion of Proteins and Their Extracellular Functions in the Heart. Cells 2020; 9:cells9092066. [PMID: 32927693 PMCID: PMC7563782 DOI: 10.3390/cells9092066] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a result of conditions that imbalance protein homeostasis or proteostasis at the ER, for example ischemia, and is a common event in various human pathologies, including the diseased heart. Cardiac integrity and function depend on the active secretion of mature proteins from a variety of cell types in the heart, a process that requires an intact ER environment for efficient protein folding and trafficking to the secretory pathway. As a consequence of ER stress, most protein secretion by the ER secretory pathway is decreased. Strikingly, there is a select group of proteins that are secreted in greater quantities during ER stress. ER stress resulting from the dysregulation of ER Ca2+ levels, for instance, stimulates the secretion of Ca2+-binding ER chaperones, especially GRP78, GRP94, calreticulin, and mesencephalic astrocyte-derived neurotrophic factor (MANF), which play a multitude of roles outside the cell, strongly depending on the cell type and tissue. Here we review current insights in ER stress-induced secretion of proteins, particularly from the heart, and highlight the extracellular functions of these proteins, ranging from the augmentation of cardiac cell viability to the modulation of pro- and anti-apoptotic, oncogenic, and immune-stimulatory cell signaling, cell invasion, extracellular proteostasis, and more. Many of the roles of ER stress-induced protein secretion remain to be explored in the heart. This article is part of a special issue entitled “The Role of Proteostasis Derailment in Cardiac Diseases.”
Collapse
|
231
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Bhuiyan MS. Molecular Perspectives of Mitochondrial Adaptations and Their Role in Cardiac Proteostasis. Front Physiol 2020; 11:1054. [PMID: 32982788 PMCID: PMC7481364 DOI: 10.3389/fphys.2020.01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the key to properly functioning energy generation in the metabolically demanding cardiomyocytes and thus essential to healthy heart contractility on a beat-to-beat basis. Mitochondria being the central organelle for cellular metabolism and signaling in the heart, its dysfunction leads to cardiovascular disease. The healthy mitochondrial functioning critical to maintaining cardiomyocyte viability and contractility is accomplished by adaptive changes in the dynamics, biogenesis, and degradation of the mitochondria to ensure cellular proteostasis. Recent compelling evidence suggests that the classical protein quality control system in cardiomyocytes is also under constant mitochondrial control, either directly or indirectly. Impairment of cytosolic protein quality control may affect the position of the mitochondria in relation to other organelles, as well as mitochondrial morphology and function, and could also activate mitochondrial proteostasis. Despite a growing interest in the mitochondrial quality control system, very little information is available about the molecular function of mitochondria in cardiac proteostasis. In this review, we bring together current understanding of the adaptations and role of the mitochondria in cardiac proteostasis and describe the adaptive/maladaptive changes observed in the mitochondrial network required to maintain proteomic integrity. We also highlight the key mitochondrial signaling pathways activated in response to proteotoxic stress as a cellular mechanism to protect the heart from proteotoxicity. A deeper understanding of the molecular mechanisms of mitochondrial adaptations and their role in cardiac proteostasis will help to develop future therapeutics to protect the heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
232
|
Ljubojevic-Holzer S, Herren AW, Djalinac N, Voglhuber J, Morotti S, Holzer M, Wood BM, Abdellatif M, Matzer I, Sacherer M, Radulovic S, Wallner M, Ivanov M, Wagner S, Sossalla S, von Lewinski D, Pieske B, Brown JH, Sedej S, Bossuyt J, Bers DM. CaMKIIδC Drives Early Adaptive Ca 2+ Change and Late Eccentric Cardiac Hypertrophy. Circ Res 2020; 127:1159-1178. [PMID: 32821022 PMCID: PMC7547876 DOI: 10.1161/circresaha.120.316947] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. CaMKII (Ca2+-Calmodulin dependent protein kinase) δC activation is implicated in pathological progression of heart failure (HF) and CaMKIIδC transgenic mice rapidly develop HF and arrhythmias. However, little is known about early spatio-temporal Ca2+ handling and CaMKII activation in hypertrophy and HF.
Collapse
Affiliation(s)
- Senka Ljubojevic-Holzer
- Department of Cardiology (S.L.-H., N.D., J.V., M.A., I.M., M.S., S.R., M.W., D.v.L., S. Sedej), Medical University of Graz, Austria.,Department of Pharmacology, University of California, Davis, CA (S.L.-H., A.W.H., S.M., B.M.W., J.B., D.M.B.).,BioTechMed Graz, Austria (S.L.-H., J.V., S. Sedej)
| | - Anthony W Herren
- Department of Pharmacology, University of California, Davis, CA (S.L.-H., A.W.H., S.M., B.M.W., J.B., D.M.B.)
| | - Natasa Djalinac
- Department of Cardiology (S.L.-H., N.D., J.V., M.A., I.M., M.S., S.R., M.W., D.v.L., S. Sedej), Medical University of Graz, Austria
| | - Julia Voglhuber
- Department of Cardiology (S.L.-H., N.D., J.V., M.A., I.M., M.S., S.R., M.W., D.v.L., S. Sedej), Medical University of Graz, Austria.,BioTechMed Graz, Austria (S.L.-H., J.V., S. Sedej)
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, CA (S.L.-H., A.W.H., S.M., B.M.W., J.B., D.M.B.)
| | - Michael Holzer
- Otto-Loewi Research Centre, Division of Pharmacology (M.H.), Medical University of Graz, Austria
| | - Brent M Wood
- Department of Pharmacology, University of California, Davis, CA (S.L.-H., A.W.H., S.M., B.M.W., J.B., D.M.B.)
| | - Mahmoud Abdellatif
- Department of Cardiology (S.L.-H., N.D., J.V., M.A., I.M., M.S., S.R., M.W., D.v.L., S. Sedej), Medical University of Graz, Austria
| | - Ingrid Matzer
- Department of Cardiology (S.L.-H., N.D., J.V., M.A., I.M., M.S., S.R., M.W., D.v.L., S. Sedej), Medical University of Graz, Austria
| | - Michael Sacherer
- Department of Cardiology (S.L.-H., N.D., J.V., M.A., I.M., M.S., S.R., M.W., D.v.L., S. Sedej), Medical University of Graz, Austria
| | - Snjezana Radulovic
- Department of Cardiology (S.L.-H., N.D., J.V., M.A., I.M., M.S., S.R., M.W., D.v.L., S. Sedej), Medical University of Graz, Austria
| | - Markus Wallner
- Department of Cardiology (S.L.-H., N.D., J.V., M.A., I.M., M.S., S.R., M.W., D.v.L., S. Sedej), Medical University of Graz, Austria
| | - Milan Ivanov
- Institute for Medical Research, University of Belgrade, Serbia (M.I.)
| | - Stefan Wagner
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany (S.W., S. Sossalla)
| | - Samuel Sossalla
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany (S. Sossalla).,Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany (S.W., S. Sossalla)
| | - Dirk von Lewinski
- Department of Cardiology (S.L.-H., N.D., J.V., M.A., I.M., M.S., S.R., M.W., D.v.L., S. Sedej), Medical University of Graz, Austria
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine Berlin, Germany (B.P.)
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, La Jolla (J.H.B.)
| | - Simon Sedej
- Department of Cardiology (S.L.-H., N.D., J.V., M.A., I.M., M.S., S.R., M.W., D.v.L., S. Sedej), Medical University of Graz, Austria.,BioTechMed Graz, Austria (S.L.-H., J.V., S. Sedej).,Faculty of Medicine, Institute of Physiology, University of Maribor, Slovenia (S. Sedej)
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, CA (S.L.-H., A.W.H., S.M., B.M.W., J.B., D.M.B.)
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA (S.L.-H., A.W.H., S.M., B.M.W., J.B., D.M.B.)
| |
Collapse
|
233
|
Adenoviral βARKct Cardiac Gene Transfer Ameliorates Postresuscitation Myocardial Injury in a Porcine Model of Cardiac Arrest. Shock 2020; 52:631-638. [PMID: 31725109 DOI: 10.1097/shk.0000000000001320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of the study was to determine whether the inhibition of the G-protein-coupled receptor kinase 2 by adenoviral βARKct cardiac gene transfer can ameliorate postresuscitation myocardial injury in pigs with cardiac arrest (CA) and explore the mechanism of myocardial protection. METHODS Male landrace domestic pigs were randomized into the sham group (anesthetized and instrumented, but ventricular fibrillation was not induced) (n = 4), control group (ventricular fibrillation 8 min, n = 8), and βARKct group (ventricular fibrillation 8 min, n = 8). Hemodynamic parameters were monitored continuously. Blood samples were collected at baseline, 30 min, 2 h, 4 h, and 6 h after the return of spontaneous circulation (ROSC). Left ventricular ejection fraction was assessed by echocardiography at baseline and 6 h after ROSC. These animals were euthanized, and the cardiac tissue was removed for analysis at 6 h after ROSC. RESULTS Compared with those in the sham group, left ventricular +dp/dtmax, -dp/dtmax, cardiac output (CO), and ejection fraction (EF) in the control group and the βARKct group were significantly decreased at 6 h after the restoration of spontaneous circulation. However, the βARKct treatment produced better left ventricular +dp/dtmax, -dp/dtmax, CO, and EF after ROSC. The βARKct treatment also produced lower serum cardiac troponin I, CK-MB, and lactate after ROSC. Furthermore, the adenoviral βARKct gene transfer significantly increased β1 adrenergic receptors, SERCA2a, RyR2 levels, and decreased GRK2 levels compared to control. CONCLUSIONS The inhibition of GRK2 by adenoviral βARKct cardiac gene transfer can ameliorate postresuscitation myocardial injury through beneficial effects on restoring the sarcoplasmic reticulum Ca-handling proteins expression and upregulating the β1-adrenergic receptor level after cardiac arrest.
Collapse
|
234
|
Gordan R, Fefelova N, Gwathmey JK, Xie LH. Iron Overload, Oxidative Stress and Calcium Mishandling in Cardiomyocytes: Role of the Mitochondrial Permeability Transition Pore. Antioxidants (Basel) 2020; 9:E758. [PMID: 32824344 PMCID: PMC7465659 DOI: 10.3390/antiox9080758] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Iron (Fe) plays an essential role in many physiological processes. Hereditary hemochromatosis or frequent blood transfusions often cause iron overload (IO), which can lead to cardiomyopathy and arrhythmias; however, the underlying mechanism is not well defined. In the present study, we assess the hypothesis that IO promotes arrhythmias via reactive oxygen species (ROS) production, mitochondrial membrane potential (∆Ψm) depolarization, and disruption of cytosolic Ca dynamics. In ventricular myocytes isolated from wild type (WT) mice, both cytosolic and mitochondrial Fe levels were elevated following perfusion with the Fe3+/8-hydroxyquinoline (8-HQ) complex. IO promoted mitochondrial superoxide generation (measured using MitoSOX Red) and induced the depolarization of the ΔΨm (measured using tetramethylrhodamine methyl ester, TMRM) in a dose-dependent manner. IO significantly increased the rate of Ca wave (CaW) formation measured in isolated ventricular myocytes using Fluo-4. Furthermore, in ex-vivo Langendorff-perfused hearts, IO increased arrhythmia scores as evaluated by ECG recordings under programmed S1-S2 stimulation protocols. We also carried out similar experiments in cyclophilin D knockout (CypD KO) mice in which the mitochondrial permeability transition pore (mPTP) opening is impaired. While comparable cytosolic and mitochondrial Fe load, mitochondrial ROS production, and depolarization of the ∆Ψm were observed in ventricular myocytes isolated from both WT and CypD KO mice, the rate of CaW formation in isolated cells and the arrhythmia scores in ex-vivo hearts were significantly lower in CypD KO mice compared to those observed in WT mice under conditions of IO. The mPTP inhibitor cyclosporine A (CsA, 1 µM) also exhibited a protective effect. In conclusion, our results suggest that IO induces mitochondrial ROS generation and ∆Ψm depolarization, thus opening the mPTP, thereby promoting CaWs and cardiac arrhythmias. Conversely, the inhibition of mPTP ameliorates the proarrhythmic effects of IO.
Collapse
Affiliation(s)
| | | | | | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (R.G.); (N.F.); (J.K.G.)
| |
Collapse
|
235
|
Dashwood A, Cheesman E, Beard N, Haqqani H, Wong YW, Molenaar P. Understanding How Phosphorylation and Redox Modifications Regulate Cardiac Ryanodine Receptor Type 2 Activity to Produce an Arrhythmogenic Phenotype in Advanced Heart Failure. ACS Pharmacol Transl Sci 2020; 3:563-582. [PMID: 32832863 DOI: 10.1021/acsptsci.0c00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/17/2022]
Abstract
Heart failure (HF) is a global pandemic with significant mortality and morbidity. Despite current medications, 50% of individuals die within 5 years of diagnosis. Of these deaths, 30-50% will be a result of sudden cardiac death from ventricular arrhythmias. This review discusses two stress-induced mechanisms, phosphorylation from chronic β-adrenoceptor (β-AR) stimulation and thiol modifications from oxidative stress, and how they modulate the cardiac ryanodine receptor type 2 (RyR2) and foster an arrhythmogenic phenotype. Calcium (Ca2+) is the ubiquitous secondary messenger of excitation-contraction coupling and provides a common pathway for contractile dysfunction and arrhythmia genesis. In a healthy heart, Ca2+ is released from the sarcoplasmic reticulum (SR) by RyR2. The open probability of RyR2 is under the dynamic influence of co-proteins, ions, and kinases that are in strict balance to ensure normal physiological functioning. In HF, chronic β-AR activity and production of reactive oxygen species and reactive nitrogen species provide two stress-induced mechanisms uncoupling RyR2 control, resulting in pathological diastolic SR Ca2+ leak. This increased cytosolic [Ca2+] promotes Ca2+ extrusion via the local Na+/Ca2+ exchanger, resulting in net sarcolemmal depolarization, delayed after depolarization and ventricular arrhythmia. Experimental models researching oxidative stress and phosphorylation have aimed to identify how post-translational modifications to the RyR2 macromolecular complex, and the associated Na+/Ca2+ cycling proteins, result in pathological Ca2+ handling and diastolic leak. However, the causative molecular changes remain controversial and undefined. Through understanding the molecular mechanisms that produce an arrhythmic phenotype, novel therapeutic targets to treat HF and prevent its malignant course can be identified.
Collapse
Affiliation(s)
- Alexander Dashwood
- Heart Lung Institute, The Prince Charles Hospital, Chermside, Brisbane, Queensland 4032, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia.,Griffith University, Southport, Queensland 4215, Australia
| | - Elizabeth Cheesman
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia
| | - Nicole Beard
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.,Faculty of Science and Technology, University of Canberra, Bruce, Australian Capital Territory 2617, Australia
| | - Haris Haqqani
- Heart Lung Institute, The Prince Charles Hospital, Chermside, Brisbane, Queensland 4032, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia
| | - Yee Weng Wong
- Heart Lung Institute, The Prince Charles Hospital, Chermside, Brisbane, Queensland 4032, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia
| | - Peter Molenaar
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia.,Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
236
|
Lyu J, Wang M, Kang X, Xu H, Cao Z, Yu T, Huang K, Wu J, Wei X, Lei Q. Macrophage-mediated regulation of catecholamines in sympathetic neural remodeling after myocardial infarction. Basic Res Cardiol 2020; 115:56. [DOI: 10.1007/s00395-020-0813-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
|
237
|
Peng X, Li L, Zhang M, Zhao Q, Wu K, Bai R, Ruan Y, Liu N. Sodium-Glucose Cotransporter 2 Inhibitors Potentially Prevent Atrial Fibrillation by Ameliorating Ion Handling and Mitochondrial Dysfunction. Front Physiol 2020; 11:912. [PMID: 32848857 PMCID: PMC7417344 DOI: 10.3389/fphys.2020.00912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a novel class of glucose-lowering agents that significantly improve the prognosis of patients with type 2 diabetes (T2D) and heart failure. SGLT2i has recently been implicated in the treatment of atrial fibrillation (AF) with clinical data demonstrating that these agents decrease the incidence of AF events in patients with T2D. Fundamental findings have suggested that SGLT2i may alleviate atrial electrical and structural remodeling. The underlying mechanisms of SGLT2i are likely associated with balancing the sodium and calcium handling disorders and mitigating the mitochondrial dysfunction in atrial myocytes. This review illustrates the advances in understanding the underlying mechanisms of SGLT2i as an evolving treatment modality for AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
238
|
Mohieldin AM, Pala R, Sherpa RT, Alanazi M, Alanazi A, Shamloo K, Ahsan A, AbouAlaiwi WA, Moresco JJ, Yates JR, Nauli SM. Proteomic Identification Reveals the Role of Ciliary Extracellular-Like Vesicle in Cardiovascular Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903140. [PMID: 32832346 PMCID: PMC7435257 DOI: 10.1002/advs.201903140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Primary cilia are shown to have membrane swelling, also known as ciliary bulbs. However, the role of these structures and their physiological relevance remains unknown. Here, it is reported that a ciliary bulb has extracellular vesicle (EV)-like characteristics. The ciliary extracellular-like vesicle (cELV) has a unique dynamic movement and can be released by mechanical fluid force. To better identify the cELV, differential multidimensional proteomic analyses are performed on the cELV. A database of 172 cELV proteins is generated, and all that examined are confirmed to be in the cELV. Repressing the expression of these proteins in vitro and in vivo inhibits cELV formation. In addition to the randomized heart looping, hydrocephalus, and cystic kidney in fish, compensated heart contractility is observed in both fish and mouse models. Specifically, low circulation of cELV results in hypotension with compensated heart function, left ventricular hypertrophy, cardiac fibrosis, and arrhythmogenic characteristics, which result in a high mortality rate in mice. Furthermore, the overall ejection fraction, stroke volume, and cardiac output are significantly decreased in mice lacking cELV. It is thus proposed that the cELV as a nanocompartment within a primary cilium plays an important role in cardiovascular functions.
Collapse
Affiliation(s)
- Ashraf M. Mohieldin
- Department of Biomedical and Pharmaceutical SciencesChapman UniversityIrvineCA92618USA
| | - Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical SciencesChapman UniversityIrvineCA92618USA
| | - Rinzhin T. Sherpa
- Department of Biomedical and Pharmaceutical SciencesChapman UniversityIrvineCA92618USA
| | - Madhawi Alanazi
- Department of Biomedical and Pharmaceutical SciencesChapman UniversityIrvineCA92618USA
| | - Ashwaq Alanazi
- Department of Biomedical and Pharmaceutical SciencesChapman UniversityIrvineCA92618USA
| | - Kiumars Shamloo
- Department of Biomedical and Pharmaceutical SciencesChapman UniversityIrvineCA92618USA
| | - Amir Ahsan
- Department of Physics, Computer Science and EngineeringChapman UniversityOrangeCA92866USA
| | - Wissam A. AbouAlaiwi
- Department of Pharmacology and Experimental TherapeuticsUniversity of ToledoToledoOH43614USA
| | - James J. Moresco
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - John R. Yates
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical SciencesChapman UniversityIrvineCA92618USA
- Department of MedicineUniversity of California IrvineIrvineCA92868USA
| |
Collapse
|
239
|
Burton RAB, Tomek J, Ambrosi CM, Larsen HE, Sharkey AR, Capel RA, Corbett AD, Bilton S, Klimas A, Stephens G, Cremer M, Bose SJ, Li D, Gallone G, Herring N, Mann EO, Kumar A, Kramer H, Entcheva E, Paterson DJ, Bub G. Optical Interrogation of Sympathetic Neuronal Effects on Macroscopic Cardiomyocyte Network Dynamics. iScience 2020; 23:101334. [PMID: 32674058 PMCID: PMC7363704 DOI: 10.1016/j.isci.2020.101334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/12/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiac stimulation via sympathetic neurons can potentially trigger arrhythmias. We present approaches to study neuron-cardiomyocyte interactions involving optogenetic selective probing and all-optical electrophysiology to measure activity in an automated fashion. Here we demonstrate the utility of optical interrogation of sympathetic neurons and their effects on macroscopic cardiomyocyte network dynamics to address research targets such as the effects of adrenergic stimulation via the release of neurotransmitters, the effect of neuronal numbers on cardiac behavior, and the applicability of optogenetics in mechanistic in vitro studies. As arrhythmias are emergent behaviors that involve the coordinated activity of millions of cells, we image at macroscopic scales to capture complex dynamics. We show that neurons can both decrease and increase wave stability and re-entrant activity in culture depending on their induced activity-a finding that may help us understand the often conflicting results seen in experimental and clinical studies.
Collapse
Affiliation(s)
- Rebecca-Ann B Burton
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK; University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK.
| | - Jakub Tomek
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Christina M Ambrosi
- The George Washington University, Department of Biomedical Engineering, Washington, DC 20052, USA
| | - Hege E Larsen
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Amy R Sharkey
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Rebecca A Capel
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | | | - Samuel Bilton
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Aleksandra Klimas
- The George Washington University, Department of Biomedical Engineering, Washington, DC 20052, USA
| | - Guy Stephens
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Maegan Cremer
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | - Samuel J Bose
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | - Dan Li
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Giuseppe Gallone
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Neil Herring
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Edward O Mann
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Abhinav Kumar
- University of Oxford, Department of Biochemistry, Glycobiology Institute, Oxford, UK
| | - Holger Kramer
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Emilia Entcheva
- The George Washington University, Department of Biomedical Engineering, Washington, DC 20052, USA
| | - David J Paterson
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK
| | - Gil Bub
- University of Oxford, Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, Parks Road, Oxford OX1 3PT, UK; McGill University, Department of Physiology, McIntyre Medical Sciences Building, Room 1128, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
240
|
Modeling Epac1 interactions with the allosteric inhibitor AM-001 by co-solvent molecular dynamics. J Comput Aided Mol Des 2020; 34:1171-1179. [PMID: 32700175 PMCID: PMC7533256 DOI: 10.1007/s10822-020-00332-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
The exchange proteins activated by cAMP (EPAC) are implicated in a large variety of physiological processes and they are considered as promising targets for a wide range of therapeutic applications. Several recent reports provided evidence for the therapeutic effectiveness of the inhibiting EPAC1 activity cardiac diseases. In that context, we recently characterized a selective EPAC1 antagonist named AM-001. This compound was featured by a non-competitive mechanism of action but the localization of its allosteric site to EPAC1 structure has yet to be investigated. Therefore, we performed cosolvent molecular dynamics with the aim to identify a suitable allosteric binding site. Then, the docking and molecular dynamics were used to determine the binding of the AM-001 to the regions highlighted by cosolvent molecular dynamics for EPAC1. These analyses led us to the identification of a suitable allosteric AM-001 binding pocket at EPAC1. As a model validation, we also evaluated the binding poses of the available AM-001 analogues, with a different biological potency. Finally, the complex EPAC1 with AM-001 bound at the putative allosteric site was further refined by molecular dynamics. The principal component analysis led us to identify the protein motion that resulted in an inactive like conformation upon the allosteric inhibitor binding.
Collapse
|
241
|
Zhang X, Li Y, Zhang X, Piacentino V, Harris DM, Berretta R, Margulies KB, Houser SR, Chen X. A low voltage activated Ca 2+ current found in a subset of human ventricular myocytes. Channels (Austin) 2020; 14:231-245. [PMID: 32684070 PMCID: PMC7515576 DOI: 10.1080/19336950.2020.1794420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Low voltage activated (ICa-LVA) calcium currents including Cav1.3 and T-type calcium current (ICa-T) have not been reported in adult human left ventricular myocytes (HLVMs). We tried to examine their existence and possible correlation with etiology and patient characteristics in a big number of human LVMs isolated from explanted terminally failing (F) hearts, failing hearts with left ventricular assist device (F-LVAD) and nonfailing (NF) human hearts. LVA (ICa-LVA) was determined by subtracting L-type Ca2+ current (ICa-L) recorded with the holding potential of −50 mV from total Ca2+ current recorded with the holding potential of −90 mV or −70 mV. ICa- LVA was further tested with its sensitivity to 100 µM CdCl2 and tetrodotoxin. Three HLVMs (3 of 137 FHLVMs) from 2 (N = 30 hearts) failing human hearts, of which one was idiopathic and the other was due to primary pulmonary hypertension, were found with ICa-LVA. ICa-LVA in one FHLVM was not sensitive to 100 µM CdCl2 while ICa-LVA in another two FHLVMs was not sensitive to tetrodotoxin. It peaked at the voltage of −40~-20 mV and had a time-dependent decay faster than ICa-L but slower than sodium current (INa). ICa-LVA was not found in any HLVMs from NF (75 HLVMs from 17 hearts) or F-LVAD hearts (82 HLVMs from 18 hearts) but a statistically significant correlation could not be established. In conclusion, ICa-LVA was detected in some HLVMs of a small portion of human hearts that happened to be nonischemic failing hearts.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Infection Diseases The First Affiliated Hospital of China Medical University , Shenyang China.,Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Yijia Li
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Xiaoying Zhang
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Valentino Piacentino
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,Department Grand Strand Surgical Care, Grand Strand Regional Medical Center , Myrtle Beach, SC
| | - David M Harris
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Remus Berretta
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Steven R Houser
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| | - Xiongwen Chen
- Department of Physiology and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine , Philadelphia, PA, USA
| |
Collapse
|
242
|
Laudette M, Coluccia A, Sainte-Marie Y, Solari A, Fazal L, Sicard P, Silvestri R, Mialet-Perez J, Pons S, Ghaleh B, Blondeau JP, Lezoualc'h F. Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress. Cardiovasc Res 2020; 115:1766-1777. [PMID: 30873562 DOI: 10.1093/cvr/cvz076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Recent studies reported that cAMP-binding protein Epac1-deficient mice were protected against various forms of cardiac stress, suggesting that pharmacological inhibition of Epac1 could be beneficial for the treatment of cardiac diseases. To test this assumption, we characterized an Epac1-selective inhibitory compound and investigated its potential cardioprotective properties. METHODS AND RESULTS We used the Epac1-BRET (bioluminescence resonance energy transfer) for searching for non-cyclic nucleotide Epac1 modulators. A thieno[2,3-b]pyridine derivative, designated as AM-001 was identified as a non-competitive inhibitor of Epac1. AM-001 has no antagonist effect on Epac2 or protein kinase A activity. This small molecule prevents the activation of the Epac1 downstream effector Rap1 in cultured cells, in response to the Epac1 preferential agonist, 8-CPT-AM. In addition, we found that AM-001 inhibited Epac1-dependent deleterious effects such as cardiomyocyte hypertrophy and death. Importantly, AM-001-mediated inhibition of Epac1 reduces infarct size after mouse myocardial ischaemia/reperfusion injury. Finally, AM-001 attenuates cardiac hypertrophy, inflammation and fibrosis, and improves cardiac function during chronic β-adrenergic receptor activation with isoprenaline (ISO) in mice. At the molecular level, ISO increased Epac1-G protein-coupled receptor kinase 5 (GRK5) interaction and induced GRK5 nuclear import and histone deacetylase type 5 (HDAC5) nuclear export to promote the activity of the prohypertrophic transcription factor, myocyte enhancer factor 2 (MEF2). Inversely, AM-001 prevented the non-canonical action of GRK5 on HDAC5 cytoplasmic shuttle to down-regulate MEF2 transcriptional activity. CONCLUSION Our study represents a 'proof-of-concept' for the therapeutic effectiveness of inhibiting Epac1 activity in cardiac disease using small-molecule pharmacotherapy.
Collapse
Affiliation(s)
- Marion Laudette
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - Yannis Sainte-Marie
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Andrea Solari
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Loubina Fazal
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | - Pierre Sicard
- INSERM, CNRS, Université de Montpellier, PHYMEDEXP, IPAM, Montpellier, France
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Roma, Italy
| | - Jeanne Mialet-Perez
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| | | | - Bijan Ghaleh
- INSERM, U955, Equipe 03, F-94000 Créteil, France
| | - Jean-Paul Blondeau
- Université Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry Cedex, France
| | - Frank Lezoualc'h
- INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 avenue Jean Pouhlès, Toulouse, France.,Université de Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
243
|
Sanchez-Alonso JL, Loucks A, Schobesberger S, van Cromvoirt AM, Poulet C, Chowdhury RA, Trayanova N, Gorelik J. Nanoscale regulation of L-type calcium channels differentiates between ischemic and dilated cardiomyopathies. EBioMedicine 2020; 57:102845. [PMID: 32580140 PMCID: PMC7317229 DOI: 10.1016/j.ebiom.2020.102845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Subcellular localization and function of L-type calcium channels (LTCCs) play an important role in regulating contraction of cardiomyocytes. Understanding how this is affected by the disruption of transverse tubules during heart failure could lead to new insights into the disease. METHODS Cardiomyocytes were isolated from healthy donor hearts, as well as from patients with cardiomyopathies and with left ventricular assist devices. Scanning ion conductance and confocal microscopy was used to study membrane structures in the cells. Super-resolution scanning patch-clamp was used to examine LTCC function in different microdomains. Computational modeling predicted the impact of these changes to arrhythmogenesis at the whole-heart level. FINDINGS We showed that loss of structural organization in failing myocytes leads to re-distribution of functional LTCCs from the T-tubules to the sarcolemma. In ischemic cardiomyopathy, the increased LTCC open probability in the T-tubules depends on the phosphorylation by protein kinase A, whereas in dilated cardiomyopathy, the increased LTCC opening probability in the sarcolemma results from enhanced phosphorylation by calcium-calmodulin kinase II. LVAD implantation corrected LTCCs pathophysiological activity, although it did not improve their distribution. Using computational modeling in a 3D anatomically-realistic human ventricular model, we showed how LTCC location and activity can trigger heart rhythm disorders of different severity. INTERPRETATION Our findings demonstrate that LTCC redistribution and function differentiate between disease aetiologies. The subcellular changes observed in specific microdomains could be the consequence of the action of distinct protein kinases. FUNDING This work was supported by NIH grant (ROI-HL 126802 to NT-JG) and British Heart Foundation (grant RG/17/13/33173 to JG, project grant PG/16/17/32069 to RAC). Funders had no role in study design, data collection, data analysis, interpretation, writing of the report.
Collapse
Affiliation(s)
- Jose L Sanchez-Alonso
- Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W120NN, UK
| | - Alexandra Loucks
- Department of Biomedical Engineering and Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sophie Schobesberger
- Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W120NN, UK
| | - Ankie M van Cromvoirt
- Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W120NN, UK
| | - Claire Poulet
- Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W120NN, UK
| | - Rasheda A Chowdhury
- Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W120NN, UK
| | - Natalia Trayanova
- Department of Biomedical Engineering and Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Julia Gorelik
- Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London W120NN, UK.
| |
Collapse
|
244
|
Whittaker DG, Clerx M, Lei CL, Christini DJ, Mirams GR. Calibration of ionic and cellular cardiac electrophysiology models. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1482. [PMID: 32084308 PMCID: PMC8614115 DOI: 10.1002/wsbm.1482] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/30/2022]
Abstract
Cardiac electrophysiology models are among the most mature and well-studied mathematical models of biological systems. This maturity is bringing new challenges as models are being used increasingly to make quantitative rather than qualitative predictions. As such, calibrating the parameters within ion current and action potential (AP) models to experimental data sets is a crucial step in constructing a predictive model. This review highlights some of the fundamental concepts in cardiac model calibration and is intended to be readily understood by computational and mathematical modelers working in other fields of biology. We discuss the classic and latest approaches to calibration in the electrophysiology field, at both the ion channel and cellular AP scales. We end with a discussion of the many challenges that work to date has raised and the need for reproducible descriptions of the calibration process to enable models to be recalibrated to new data sets and built upon for new studies. This article is categorized under: Analytical and Computational Methods > Computational Methods Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Dominic G. Whittaker
- Centre for Mathematical Medicine & Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
| | - Michael Clerx
- Computational Biology & Health Informatics, Department of Computer ScienceUniversity of OxfordOxfordUK
| | - Chon Lok Lei
- Computational Biology & Health Informatics, Department of Computer ScienceUniversity of OxfordOxfordUK
| | | | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
245
|
Hausenloy DJ, Schulz R, Girao H, Kwak BR, De Stefani D, Rizzuto R, Bernardi P, Di Lisa F. Mitochondrial ion channels as targets for cardioprotection. J Cell Mol Med 2020; 24:7102-7114. [PMID: 32490600 PMCID: PMC7339171 DOI: 10.1111/jcmm.15341] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.
Collapse
Affiliation(s)
- Derek J. Hausenloy
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart Research Institute SingaporeNational Heart CentreSingaporeSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular Research CenterCollege of Medical and Health SciencesAsia UniversityTaichung CityTaiwan
| | - Rainer Schulz
- Institute of PhysiologyJustus‐Liebig University GiessenGiessenGermany
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of CoimbraCACCCoimbraPortugal
| | - Brenda R. Kwak
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
| | - Diego De Stefani
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Rosario Rizzuto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Paolo Bernardi
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| | - Fabio Di Lisa
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| |
Collapse
|
246
|
Li J, Agvanian S, Zhou K, Shaw RM, Hong T. Exogenous Cardiac Bridging Integrator 1 Benefits Mouse Hearts With Pre-existing Pressure Overload-Induced Heart Failure. Front Physiol 2020; 11:708. [PMID: 32670093 PMCID: PMC7327113 DOI: 10.3389/fphys.2020.00708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Cardiac bridging integrator 1 (cBIN1) organizes transverse tubule (t-tubule) membrane calcium handling microdomains required for normal beat-to-beat contractility. cBIN1 is transcriptionally reduced in heart failure (HF). We recently found that cBIN1 pretreatment can limit HF development in stressed mice. Here, we aim to explore whether cBIN1 replacement therapy can improve myocardial function in continuously stressed hearts with pre-existing HF. Methods: Adult male mice were subjected to sham or transverse aortic constriction (TAC) surgery at the age of 8-10 weeks old. Adeno-associated virus 9 (AAV9) transducing cBIN1-V5 or GFP-V5 (3 × 1010 vg) was administered through retro-orbital injection at 5 weeks post-TAC. Mice were followed by echocardiography to monitor cardiac function until 20 weeks after TAC. Overall survival, heart and lung weight (LW), and HF incidence were determined. In a second set of animals in which AAV9-cBIN1 pretreatment prevents HF, we recorded cardiac pressure-volume (PV) loops and obtained myocardial immunofluorescence imaging. Results: The overall Kaplan-Meir survival of AAV9-cBIN1 mice was 77.8%, indicating a significant partial rescue between AAV9-GFP (58.8%) and sham (100%) treated mice. In mice with ejection fraction (EF) ≥30% prior to AAV9 injection at 5 weeks post-TAC, AAV9-cBIN1 significantly increased survival to 93.3%, compared to 62.5% survival for AAV9-GFP treated mice. The effect of exogenous cBIN1 was to attenuate TAC-induced left ventricular (LV) dilation and prevent further HF development. Recovery of EF also occurs in AAV9-cBIN1-treated mice. We found that EF increases to a peak at 6-8 weeks post-viral injection. Furthermore, PV loop analysis identified that AAV9-cBIN1 increases both systolic and diastolic function of the post-TAC hearts. At the myocyte level, AAV9-cBIN1 normalizes cBIN1 expression, t-tubule membrane intensity, and intracellular distribution of Cav1.2 and ryanodine receptors (RyRs). Conclusions: In mice with pre-existing HF, exogenous cBIN1 can normalize t-tubule calcium handling microdomains, limit HF progression, rescue cardiac function, and improve survival.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sosse Agvanian
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kang Zhou
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Robin M. Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| | - TingTing Hong
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
247
|
Belkin MN, Dela Cruz M, Nadeem U, Patel AR, Kim G, Grinstein J. Massive Myocardial Calcium Deposition: Hardened Heart. JACC Case Rep 2020; 2:996-1003. [PMID: 34317401 PMCID: PMC8302108 DOI: 10.1016/j.jaccas.2020.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
Abstract
A 25-year-old African-American woman with end-stage renal disease presented with new-onset heart failure. Transthoracic echocardiography indicated a significantly hyperechoic myocardium, and computed tomography noted a circumferential hyperattenuated myocardium. Endomyocardial biopsy revealed focal interstitial and intramyocyte calcium deposition in the heart, confirming a rare diagnosis of massive myocardial calcium deposition. (Level of Difficulty: Beginner.).
Collapse
Affiliation(s)
- Mark N. Belkin
- Section of Cardiology, University of Chicago, Chicago, Illinois
| | - Mark Dela Cruz
- Section of Cardiology, University of Chicago, Chicago, Illinois
| | - Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Amit R. Patel
- Section of Cardiology, University of Chicago, Chicago, Illinois
| | - Gene Kim
- Section of Cardiology, University of Chicago, Chicago, Illinois
| | - Jonathan Grinstein
- Section of Cardiology, University of Chicago, Chicago, Illinois
- Address for correspondence: Dr. Jonathan Grinstein, University of Chicago, 5841 South Maryland Avenue, A621, Chicago, Illinois 60637.
| |
Collapse
|
248
|
Wang R, Wang M, He S, Sun G, Sun X. Targeting Calcium Homeostasis in Myocardial Ischemia/Reperfusion Injury: An Overview of Regulatory Mechanisms and Therapeutic Reagents. Front Pharmacol 2020; 11:872. [PMID: 32581817 PMCID: PMC7296066 DOI: 10.3389/fphar.2020.00872] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Calcium homeostasis plays an essential role in maintaining excitation–contraction coupling (ECC) in cardiomyocytes, including calcium release, recapture, and storage. Disruption of calcium homeostasis may affect heart function, leading to the development of various heart diseases. Myocardial ischemia/reperfusion (MI/R) injury may occur after revascularization, which is a treatment used in coronary heart disease. MI/R injury is a complex pathological process, and the main cause of increased mortality and disability after treatment of coronary heart disease. However, current methods and drugs for treating MI/R injury are very scarce, not ideal, and have limitations. Studies have shown that MI/R injury can cause calcium overload that can further aggravate MI/R injury. Therefore, we reviewed the effects of critical calcium pathway regulators on MI/R injury and drew an intuitive diagram of the calcium homeostasis pathway. We also summarized and analyzed calcium pathway-related or MI/R drugs under research or marketing by searching Therapeutic Target and PubMed Databases. The data analysis showed that six drugs and corresponding targets are used to treat MI/R injury and involved in calcium signaling pathways. We emphasize the relevance of further detailed investigation of MI/R injury and calcium homeostasis and the therapeutic role of calcium homeostasis in MI/R injury, which bridges basic research and clinical applications of MI/R injury.
Collapse
Affiliation(s)
- Ruiying Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuaibing He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
249
|
Seo DY, Bae JH, Kim TN, Kwak HB, Kha PT, Han J. Exercise-Induced Circulating Irisin Level Is Correlated with Improved Cardiac Function in Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3863. [PMID: 32485990 PMCID: PMC7313080 DOI: 10.3390/ijerph17113863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Irisin, a recently identified myokine, plays an important physiological role in modulating energy homeostasis. However, the role of irisin in cardiac function during exercise has not been evaluated. In this study, we investigated the effect of exercise on irisin, pro-inflammatory cytokines, and cardiac function during 12 weeks of exercise in rats. Eight-week-old Sprague-Dawley male rats were randomly divided into two groups (n = 9 per group): sedentary control (CON) and exercise (EXE) groups. The EXE group was trained on a motorized treadmill at 20 m/min, for 60 min/day, five times/week for 12 weeks. The EXE group showed a decrease in abdominal visceral fat (p < 0.05), epididymal fat (p < 0.01), and total cholesterol (TC) (p < 0.05) and an increase in irisin levels (p < 0.01). Irisin negatively correlated with abdominal visceral (p < 0.05) and epididymal fat (p < 0.05) and positively correlated with the ejection fraction (p < 0.05), fractional shortening (p < 0.05), and cardiac output (p < 0.05). In conclusion, exercise decreases the abdominal visceral and epididymal fat and TC levels, possibly caused by elevated irisin levels, thus improving the cardiac function. This suggests that exercise-induced circulating irisin levels correlate with improved cardiac function in rats.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (T.N.K.); (P.T.K.)
- Smart Marine Therapeutics Center, Inje Univeristy, Busan 47392, Korea
| | - Jun Hyun Bae
- Institute of Sport Science, Seoul National University, Seoul 08826, Korea;
| | - Tae Nyun Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (T.N.K.); (P.T.K.)
- Smart Marine Therapeutics Center, Inje Univeristy, Busan 47392, Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon 22212, Korea;
| | - Pham Trong Kha
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (T.N.K.); (P.T.K.)
- Smart Marine Therapeutics Center, Inje Univeristy, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea; (D.Y.S.); (T.N.K.); (P.T.K.)
- Smart Marine Therapeutics Center, Inje Univeristy, Busan 47392, Korea
| |
Collapse
|
250
|
Ge Z, Li A, McNamara J, Dos Remedios C, Lal S. Pathogenesis and pathophysiology of heart failure with reduced ejection fraction: translation to human studies. Heart Fail Rev 2020; 24:743-758. [PMID: 31209771 DOI: 10.1007/s10741-019-09806-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heart failure represents the end result of different pathophysiologic processes, which culminate in functional impairment. Regardless of its aetiology, the presentation of heart failure usually involves symptoms of pump failure and congestion, which forms the basis for clinical diagnosis. Pathophysiologic descriptions of heart failure with reduced ejection fraction (HFrEF) are being established. Most commonly, HFrEF is centred on a reactive model where a significant initial insult leads to reduced cardiac output, further triggering a cascade of maladaptive processes. Predisposing factors include myocardial injury of any cause, chronically abnormal loading due to hypertension, valvular disease, or tachyarrhythmias. The pathophysiologic processes behind remodelling in heart failure are complex and reflect systemic neurohormonal activation, peripheral vascular effects and localised changes affecting the cardiac substrate. These abnormalities have been the subject of intense research. Much of the translational successes in HFrEF have come from targeting neurohormonal responses to reduced cardiac output, with blockade of the renin-angiotensin-aldosterone system (RAAS) and beta-adrenergic blockade being particularly fruitful. However, mortality and morbidity associated with heart failure remains high. Although systemic neurohormonal blockade slows disease progression, localised ventricular remodelling still adversely affects contractile function. Novel therapy targeted at improving cardiac contractile mechanics in HFrEF hold the promise of alleviating heart failure at its source, yet so far none has found success. Nevertheless, there are increasing calls for a proximal, 'cardiocentric' approach to therapy. In this review, we examine HFrEF therapy aimed at improving cardiac function with a focus on recent trials and emerging targets.
Collapse
Affiliation(s)
- Zijun Ge
- Sydney Medical School, University of Sydney, Camperdown, Australia
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
| | - Amy Li
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
- Department of Pharmacy and Biomedical Science, La Trobe University, Melbourne, Australia
| | - James McNamara
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
| | - Cris Dos Remedios
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
| | - Sean Lal
- Sydney Medical School, University of Sydney, Camperdown, Australia.
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.
- Cardiac Research Laboratory, Discipline of Anatomy and Histology, University of Sydney, Anderson Stuart Building (F13), Camperdown, NSW, 2006, Australia.
| |
Collapse
|