201
|
Luque MA, Beltran-Matas P, Marin MC, Torres B, Herrero L. Excitability is increased in hippocampal CA1 pyramidal cells of Fmr1 knockout mice. PLoS One 2017; 12:e0185067. [PMID: 28931075 PMCID: PMC5607184 DOI: 10.1371/journal.pone.0185067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/06/2017] [Indexed: 02/03/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a failure of neuronal cells to express the gene encoding the fragile mental retardation protein (FMRP). Clinical features of the syndrome include intellectual disability, learning impairment, hyperactivity, seizures and anxiety. Fmr1 knockout (KO) mice do not express FMRP and, as a result, reproduce some FXS behavioral abnormalities. While intrinsic and synaptic properties of excitatory cells in various part of the brain have been studied in Fmr1 KO mice, a thorough analysis of action potential characteristics and input-output function of CA1 pyramidal cells in this model is lacking. With a view to determining the effects of the absence of FMRP on cell excitability, we studied rheobase, action potential duration, firing frequency-current intensity relationship and action potential after-hyperpolarization (AHP) in CA1 pyramidal cells of the hippocampus of wild type (WT) and Fmr1 KO male mice. Brain slices were prepared from 8- to 12-week-old mice and the electrophysiological properties of cells recorded. Cells from both groups had similar resting membrane potentials. In the absence of FMRP expression, cells had a significantly higher input resistance, while voltage threshold and depolarization voltage were similar in WT and Fmr1 KO cell groups. No changes were observed in rheobase. The action potential duration was longer in the Fmr1 KO cell group, and the action potential firing frequency evoked by current steps of the same intensity was higher. Moreover, the gain (slope) of the relationship between firing frequency and injected current was 1.25-fold higher in the Fmr1 KO cell group. Finally, AHP amplitude was significantly reduced in the Fmr1 KO cell group. According to these data, FMRP absence increases excitability in hippocampal CA1 pyramidal cells.
Collapse
Affiliation(s)
| | | | - M. Carmen Marin
- Department of Physiology. University of Seville, Seville, Spain
| | - Blas Torres
- Department of Physiology. University of Seville, Seville, Spain
| | - Luis Herrero
- Department of Physiology. University of Seville, Seville, Spain
- * E-mail:
| |
Collapse
|
202
|
Borrie SC, Brems H, Legius E, Bagni C. Cognitive Dysfunctions in Intellectual Disabilities: The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways. Annu Rev Genomics Hum Genet 2017; 18:115-142. [DOI: 10.1146/annurev-genom-091416-035332] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah C. Borrie
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00173 Rome, Italy
| |
Collapse
|
203
|
Korb E, Herre M, Zucker-Scharff I, Gresack J, Allis CD, Darnell RB. Excess Translation of Epigenetic Regulators Contributes to Fragile X Syndrome and Is Alleviated by Brd4 Inhibition. Cell 2017; 170:1209-1223.e20. [PMID: 28823556 DOI: 10.1016/j.cell.2017.07.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 05/17/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
Abstract
Fragile X syndrome (FXS) is a leading genetic cause of intellectual disability and autism. FXS results from the loss of function of fragile X mental retardation protein (FMRP), which represses translation of target transcripts. Most of the well-characterized target transcripts of FMRP are synaptic proteins, yet targeting these proteins has not provided effective treatments. We examined a group of FMRP targets that encode transcriptional regulators, particularly chromatin-associated proteins. Loss of FMRP in mice results in widespread changes in chromatin regulation and aberrant gene expression. To determine if targeting epigenetic factors could reverse phenotypes associated with the disorder, we focused on Brd4, a BET protein and chromatin reader targeted by FMRP. Inhibition of Brd4 function alleviated many of the phenotypes associated with FXS. We conclude that loss of FMRP results in significant epigenetic misregulation and that targeting transcription via epigenetic regulators like Brd4 may provide new treatments for FXS.
Collapse
Affiliation(s)
- Erica Korb
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Margaret Herre
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Jodi Gresack
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
204
|
Decreased surface expression of the δ subunit of the GABA A receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome. Exp Neurol 2017; 297:168-178. [PMID: 28822839 DOI: 10.1016/j.expneurol.2017.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022]
Abstract
While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABAA receptors (GABAARs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABAAR, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABAARs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with immunolabeling at perisynaptic locations in Fmr1 KO mice. While α4 immunogold particles were also reduced at perisynaptic locations in the Fmr1 KO mice, the labeling was increased at synaptic sites. Together these findings suggest that, in the dentate gyrus, altered surface expression of the δ subunit, rather than a decrease in δ subunit expression alone, could be limiting δ subunit-mediated tonic inhibition in this model of FXS. Finding ways to increase surface expression of the δ subunit of the GABAAR could be a novel approach to treatment of hyperexcitability-related alterations in FXS.
Collapse
|
205
|
Na ES, De Jesús-Cortés H, Martinez-Rivera A, Kabir ZD, Wang J, Ramesh V, Onder Y, Rajadhyaksha AM, Monteggia LM, Pieper AA. D-cycloserine improves synaptic transmission in an animal model of Rett syndrome. PLoS One 2017; 12:e0183026. [PMID: 28813484 PMCID: PMC5559075 DOI: 10.1371/journal.pone.0183026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/30/2017] [Indexed: 01/24/2023] Open
Abstract
Rett syndrome (RTT), a leading cause of intellectual disability in girls, is predominantly caused by mutations in the X-linked gene MECP2. Disruption of Mecp2 in mice recapitulates major features of RTT, including neurobehavioral abnormalities, which can be reversed by re-expression of normal Mecp2. Thus, there is reason to believe that RTT could be amenable to therapeutic intervention throughout the lifespan of patients after the onset of symptoms. A common feature underlying neuropsychiatric disorders, including RTT, is altered synaptic function in the brain. Here, we show that Mecp2tm1.1Jae/y mice display lower presynaptic function as assessed by paired pulse ratio, as well as decreased long term potentiation (LTP) at hippocampal Schaffer–collateral-CA1 synapses. Treatment of Mecp2tm1.1Jae/y mice with D-cycloserine (DCS), an FDA-approved analog of the amino acid D-alanine with antibiotic and glycinergic activity, corrected the presynaptic but not LTP deficit without affecting deficient hippocampal BDNF levels. DCS treatment did, however, partially restore lower BDNF levels in the brain stem and striatum. Thus, treatment with DCS may mitigate the severity of some of the neurobehavioral symptoms experienced by patients with Rett syndrome.
Collapse
Affiliation(s)
- Elisa S. Na
- Department of Psychology & Philosophy, Texas Woman’s University, Denton, TX, United States of America
| | - Héctor De Jesús-Cortés
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Arlene Martinez-Rivera
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
| | - Zeeba D. Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
| | - Jieqi Wang
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Vijayashree Ramesh
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Yasemin Onder
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Anjali M. Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- * E-mail: (AMR); (LMM); (AAP)
| | - Lisa M. Monteggia
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail: (AMR); (LMM); (AAP)
| | - Andrew A. Pieper
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Department of Free Radical and Radiation Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Department of Veterans Affairs, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- * E-mail: (AMR); (LMM); (AAP)
| |
Collapse
|
206
|
Antonioli-Santos R, Lanzillotta-Mattos B, Hedin-Pereira C, Serfaty CA. The fine tuning of retinocollicular topography depends on reelin signaling during early postnatal development of the rat visual system. Neuroscience 2017; 357:264-272. [PMID: 28602919 DOI: 10.1016/j.neuroscience.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
During postnatal development, neural circuits are extremely dynamic and develop precise connection patterns that emerge as a result of the elimination of synaptic terminals, a process instructed by molecular cues and patterns of electrical activity. In the rodent visual system, this process begins during the first postnatal week and proceeds during the second and third postnatal weeks as spontaneous retinal activity and finally use-dependent fine tuning takes place. Reelin is a large extracellular matrix glycoprotein able to affect several steps of brain development, from neuronal migration to the maturation of dendritic spines and use-dependent synaptic development. In the present study, we investigated the role of reelin on the topographical refinement of primary sensory connections studying the development of retinal ganglion cell axon terminals in the rat superior colliculus. We found that reelin levels in the visual layers of the superior colliculus are the highest between the second and third postnatal weeks. Blocking reelin signaling with a neutralizing antibody (CR-50) from PND 7 to PND 14 induced a non-specific sprouting of ipsilateral retinocollicular axons outside their typical distribution of discrete patches of axon terminals. Also we found that reelin blockade resulted in reduced levels of phospho-GAP43, increased GluN1 and GluN2B-NMDA subunits and decreased levels of GAD65 content in the visual layers of the superior colliculus. The results suggest that reelin signaling is associated with the maturation of excitatory and inhibitory synaptic machinery influencing the development and fine tuning of topographically organized neural circuits during postnatal development.
Collapse
Affiliation(s)
- Rachel Antonioli-Santos
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil; Institute of Biomedical Research, Marcílio Dias Navy Hospital, Rio de Janeiro, Brazil
| | - Bruna Lanzillotta-Mattos
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil
| | - Cecília Hedin-Pereira
- Federal University of Rio de Janeiro, Institute of Biomedical Sciences, Laboratory of Cellular Neuroanatomy - Rio de Janeiro, Brazil; Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Claudio Alberto Serfaty
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil.
| |
Collapse
|
207
|
Doll CA, Vita DJ, Broadie K. Fragile X Mental Retardation Protein Requirements in Activity-Dependent Critical Period Neural Circuit Refinement. Curr Biol 2017; 27:2318-2330.e3. [PMID: 28756946 PMCID: PMC5572839 DOI: 10.1016/j.cub.2017.06.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
Abstract
Activity-dependent synaptic remodeling occurs during early-use critical periods, when naive juveniles experience sensory input. Fragile X mental retardation protein (FMRP) sculpts synaptic refinement in an activity sensor mechanism based on sensory cues, with FMRP loss causing the most common heritable autism spectrum disorder (ASD), fragile X syndrome (FXS). In the well-mapped Drosophila olfactory circuitry, projection neurons (PNs) relay peripheral sensory information to the central brain mushroom body (MB) learning/memory center. FMRP-null PNs reduce synaptic branching and enlarge boutons, with ultrastructural and synaptic reconstitution MB connectivity defects. Critical period activity modulation via odorant stimuli, optogenetics, and transgenic tetanus toxin neurotransmission block show that elevated PN activity phenocopies FMRP-null defects, whereas PN silencing causes opposing changes. FMRP-null PNs lose activity-dependent synaptic modulation, with impairments restricted to the critical period. We conclude that FMRP is absolutely required for experience-dependent changes in synaptic connectivity during the developmental critical period of neural circuit optimization for sensory input.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - Dominic J Vita
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37203, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37203, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37203, USA.
| |
Collapse
|
208
|
Sanchez-Vives MV, Massimini M, Mattia M. Shaping the Default Activity Pattern of the Cortical Network. Neuron 2017; 94:993-1001. [PMID: 28595056 DOI: 10.1016/j.neuron.2017.05.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/20/2017] [Accepted: 05/06/2017] [Indexed: 10/19/2022]
Abstract
Slow oscillations have been suggested as the default emergent activity of the cortical network. This is a low complexity state that integrates neuronal, synaptic, and connectivity properties of the cortex. Shaped by variations of physiological parameters, slow oscillations provide information about the underlying healthy or pathological network. We review how this default activity is shaped, how it acts as a powerful attractor, and how getting out of it is necessary for the brain to recover the levels of complexity associated with conscious states. We propose that slow oscillations provide a robust unifying paradigm for the study of cortical function.
Collapse
Affiliation(s)
- Maria V Sanchez-Vives
- Systems Neuroscience, IDIBAPS, 08036 Barcelona, Spain; ICREA, 08010 Barcelona, Spain.
| | | | | |
Collapse
|
209
|
Mottahedin A, Ardalan M, Chumak T, Riebe I, Ek J, Mallard C. Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:190. [PMID: 28744200 PMCID: PMC5504097 DOI: 10.3389/fncel.2017.00190] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
The brain is a plastic organ where both the intrinsic CNS milieu and extrinsic cues play important roles in shaping and wiring neural connections. The perinatal period constitutes a critical time in central nervous system development with extensive refinement of neural connections, which are highly sensitive to fetal and neonatal compromise, such as inflammatory challenges. Emerging evidence suggests that inflammatory cells in the brain such as microglia and astrocytes are pivotal in regulating synaptic structure and function. In this article, we will review the role of glia cells in synaptic physiology and pathophysiology, including microglia-mediated elimination of synapses. We propose that activation of the immune system dynamically affects synaptic organization and function in the developing brain. We will discuss the role of neuroinflammation in altered synaptic plasticity following perinatal inflammatory challenges and potential implications for neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amin Mottahedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Tetyana Chumak
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Ilse Riebe
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Joakim Ek
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| |
Collapse
|
210
|
Prefrontal Cortex Dysfunction in Fragile X Mice Depends on the Continued Absence of Fragile X Mental Retardation Protein in the Adult Brain. J Neurosci 2017; 37:7305-7317. [PMID: 28652410 DOI: 10.1523/jneurosci.0571-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/09/2017] [Accepted: 06/10/2017] [Indexed: 01/28/2023] Open
Abstract
Fragile X Syndrome (FX) is generally considered a developmental disorder, arising from a mutation that disrupts the transcription of Fragile X Mental Retardation Protein (FMRP). However, FMRP regulates the transcription of other proteins and participates in an unknown number of protein-protein interactions throughout life. In addition to known developmental issues, it is thus likely that some dysfunction is also due to the ongoing absence of FMRP. Dissociating dysfunction due to developmental dysregulation from dysfunction due to the continued absence of FMRP is necessary to understand the different roles of FMRP and to treat patients effectively throughout life. We show here that FX model mice display substantial deficits in a PFC-dependent task. We then use conditional knock-out mice to eliminate FMRP only in the PFC alone of adult mice. We observe an increase in the proportion of nonlearners and a delay in the onset of learning in both FX and conditional knock-out mice. The results suggest that these deficits (1) are due to the absence of FMRP in the PFC alone and (2) are not the result of developmental dysregulation. Furthermore, PFC-associated deficits are rescued by initiating production of FMRP in adult conditional restoration mice, suggesting that PFC dysfunction may persist as long as FMRP is absent and therefore can be rescued after development. The data suggest that it is possible to dissociate the roles of FMRP in neural function from developmental dysregulation, and that PFC function can be restored in the adult FX brain.SIGNIFICANCE STATEMENT The absence of Fragile X Mental Retardation Protein (FMRP) from birth results in developmental disabilities and lifelong impairments. We show here that in mouse models PFC dysfunction in Fragile X Syndrome (FX) can be attributed to the continued absence of FMRP from the PFC, independent of FMRP status during development. Furthermore, initiation of FMRP production in the PFC of adult FX animals rescues PFC function. The results suggest that at least some FX-specific neurological defects can be rescued in the adult FX brain after development.
Collapse
|
211
|
Tactile Defensiveness and Impaired Adaptation of Neuronal Activity in the Fmr1 Knock-Out Mouse Model of Autism. J Neurosci 2017; 37:6475-6487. [PMID: 28607173 DOI: 10.1523/jneurosci.0651-17.2017] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 11/21/2022] Open
Abstract
Sensory hypersensitivity is a common symptom in autism spectrum disorders (ASDs), including fragile X syndrome (FXS), and frequently leads to tactile defensiveness. In mouse models of ASDs, there is mounting evidence of neuronal and circuit hyperexcitability in several brain regions, which could contribute to sensory hypersensitivity. However, it is not yet known whether or how sensory stimulation might trigger abnormal sensory processing at the circuit level or abnormal behavioral responses in ASD mouse models, especially during an early developmental time when experience-dependent plasticity shapes such circuits. Using a novel assay, we discovered exaggerated motor responses to whisker stimulation in young Fmr1 knock-out (KO) mice (postnatal days 14-16), a model of FXS. Adult Fmr1 KO mice actively avoided a stimulus that was innocuous to wild-type controls, a sign of tactile defensiveness. Using in vivo two-photon calcium imaging of layer 2/3 barrel cortex neurons expressing GCaMP6s, we found no differences between wild-type and Fmr1 KO mice in overall whisker-evoked activity, though 45% fewer neurons in young Fmr1 KO mice responded in a time-locked manner. Notably, we identified a pronounced deficit in neuronal adaptation to repetitive whisker stimulation in both young and adult Fmr1 KO mice. Thus, impaired adaptation in cortical sensory circuits is a potential cause of tactile defensiveness in autism.SIGNIFICANCE STATEMENT We use a novel paradigm of repetitive whisker stimulation and in vivo calcium imaging to assess tactile defensiveness and barrel cortex activity in young and adult Fmr1 knock-out mice, the mouse model of fragile X syndrome (FXS). We describe evidence of tactile defensiveness, as well as a lack of L2/3 neuronal adaptation in barrel cortex, during whisker stimulation. We propose that a defect in sensory adaptation within local neuronal networks, beginning at a young age and continuing into adulthood, likely contributes to sensory overreactivity in FXS and perhaps other ASDs.
Collapse
|
212
|
Schaefer TL, Davenport MH, Grainger LM, Robinson CK, Earnheart AT, Stegman MS, Lang AL, Ashworth AA, Molinaro G, Huber KM, Erickson CA. Acamprosate in a mouse model of fragile X syndrome: modulation of spontaneous cortical activity, ERK1/2 activation, locomotor behavior, and anxiety. J Neurodev Disord 2017; 9:6. [PMID: 28616095 PMCID: PMC5467053 DOI: 10.1186/s11689-017-9184-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/13/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fragile X Syndrome (FXS) occurs as a result of a silenced fragile X mental retardation 1 gene (FMR1) and subsequent loss of fragile X mental retardation protein (FMRP) expression. Loss of FMRP alters excitatory/inhibitory signaling balance, leading to increased neuronal hyperexcitability and altered behavior. Acamprosate (the calcium salt of N-acetylhomotaurinate), a drug FDA-approved for relapse prevention in the treatment of alcohol dependence in adults, is a novel agent with multiple mechanisms that may be beneficial for people with FXS. There are questions regarding the neuroactive effects of acamprosate and the significance of the molecule's calcium moiety. Therefore, the electrophysiological, cellular, molecular, and behavioral effects of acamprosate were assessed in the Fmr1-/y (knock out; KO) mouse model of FXS controlling for the calcium salt in several experiments. METHODS Fmr1 KO mice and their wild-type (WT) littermates were utilized to assess acamprosate treatment on cortical UP state parameters, dendritic spine density, and seizure susceptibility. Brain extracellular-signal regulated kinase 1/2 (ERK1/2) activation was used to investigate this signaling molecule as a potential biomarker for treatment response. Additional adult mice were used to assess chronic acamprosate treatment and any potential effects of the calcium moiety using CaCl2 treatment on behavior and nuclear ERK1/2 activation. RESULTS Acamprosate attenuated prolonged cortical UP state duration, decreased elevated ERK1/2 activation in brain tissue, and reduced nuclear ERK1/2 activation in the dentate gyrus in KO mice. Acamprosate treatment modified behavior in anxiety and locomotor tests in Fmr1 KO mice in which control-treated KO mice were shown to deviate from control-treated WT mice. Mice treated with CaCl2 were not different from saline-treated mice in the adult behavior battery or nuclear ERK1/2 activation. CONCLUSIONS These data indicate that acamprosate, and not calcium, improves function reminiscent of reduced anxiety-like behavior and hyperactivity in Fmr1 KO mice and that acamprosate attenuates select electrophysiological and molecular dysregulation that may play a role in the pathophysiology of FXS. Differences between control-treated KO and WT mice were not evident in a recognition memory test or in examination of acoustic startle response/prepulse inhibition which impeded conclusions from being made about the treatment effects of acamprosate in these instances.
Collapse
Affiliation(s)
- Tori L Schaefer
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Matthew H Davenport
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Lindsay M Grainger
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Chandler K Robinson
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Anthony T Earnheart
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Melinda S Stegman
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Anna L Lang
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202 USA
| | - Amy A Ashworth
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Present address: BlackbookHR, Cincinnati, OH 45202 USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Craig A Erickson
- Division of Psychiatry, MLC 7004, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| |
Collapse
|
213
|
Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome. Mol Autism 2017; 8:22. [PMID: 28596820 PMCID: PMC5463459 DOI: 10.1186/s13229-017-0140-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/04/2017] [Indexed: 12/31/2022] Open
Abstract
Background Studies in the fmr1 KO mouse demonstrate hyper-excitability and increased high-frequency neuronal activity in sensory cortex. These abnormalities may contribute to prominent and distressing sensory hypersensitivities in patients with fragile X syndrome (FXS). The current study investigated functional properties of auditory cortex using a sensory entrainment task in FXS. Methods EEG recordings were obtained from 17 adolescents and adults with FXS and 17 age- and sex-matched healthy controls. Participants heard an auditory chirp stimulus generated using a 1000-Hz tone that was amplitude modulated by a sinusoid linearly increasing in frequency from 0–100 Hz over 2 s. Results Single trial time-frequency analyses revealed decreased gamma band phase-locking to the chirp stimulus in FXS, which was strongly coupled with broadband increases in gamma power. Abnormalities in gamma phase-locking and power were also associated with theta-gamma amplitude-amplitude coupling during the pre-stimulus period and with parent reports of heightened sensory sensitivities and social communication deficits. Conclusions This represents the first demonstration of neural entrainment alterations in FXS patients and suggests that fast-spiking interneurons regulating synchronous high-frequency neural activity have reduced functionality. This reduced ability to synchronize high-frequency neural activity was related to the total power of background gamma band activity. These observations extend findings from fmr1 KO models of FXS, characterize a core pathophysiological aspect of FXS, and may provide a translational biomarker strategy for evaluating promising therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0140-1) contains supplementary material, which is available to authorized users.
Collapse
|
214
|
Castano-Prat P, Perez-Zabalza M, Perez-Mendez L, Escorihuela RM, Sanchez-Vives MV. Slow and Fast Neocortical Oscillations in the Senescence-Accelerated Mouse Model SAMP8. Front Aging Neurosci 2017; 9:141. [PMID: 28620295 PMCID: PMC5449444 DOI: 10.3389/fnagi.2017.00141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/27/2017] [Indexed: 11/28/2022] Open
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) model is characterized by accelerated, progressive cognitive decline as well as Alzheimer’s disease (AD)-like neurodegenerative changes, and resembles the etiology of multicausal, sporadic late-onset/age-related AD in humans. Our aim was to find whether these AD-like pathological features, together with the cognitive deficits present in the SAMP8 strain, are accompanied by disturbances in cortical network activity with respect to control mice (SAM resistance 1, SAMR1) and, if so, how the alterations in cortical activity progress with age. For this purpose, we characterized the extracellular spontaneous oscillatory activity in different regions of the cerebral cortex of SAMP8 and SAMR1 mice under ketamine anesthesia at 5 and 7 months of age. Under these conditions, slow oscillations and fast rhythms generated in the cortical network were recorded and different parameters of these oscillations were quantified and compared between SAMP8 and their control, SAMR1 mice. The average frequency of slow oscillations in SAMP8 mice was decreased with respect to the control mice at both studied ages. An elongation of the silent periods or Down states was behind the decreased slow oscillatory frequency while the duration of active or Up states remained stable. SAMP8 mice also presented increased cycle variability and reduced high frequency components during Down states. During Up states, the power peak in the gamma range was displaced towards lower frequencies in all the cortical areas of SAMP8 with respect to control mice suggesting that the spectral profile of SAMP8 animals is shifted towards lower frequencies. This shift is reminiscent to one of the principal hallmarks of electroencephalography (EEG) abnormalities in patients with Alzheimer’s disease, and adds evidence in support of the suitability of the SAMP8 mouse as a model of this disease. Although some of the differences between SAMP8 and control mice were emphasized with age, the evolution of the studied parameters as SAMR1 mice got older indicates that the SAMR1 phenotype tends to converge with that of SAMP8 animals. To our knowledge, this is the first systematic characterization of the cortical slow and fast rhythms in the SAMP8 strain and it provides useful insights about the cellular and synaptic mechanisms underlying the reported alterations.
Collapse
Affiliation(s)
- Patricia Castano-Prat
- Systems Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona, Spain
| | - Maria Perez-Zabalza
- Systems Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona, Spain
| | - Lorena Perez-Mendez
- Systems Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona, Spain
| | - Rosa M Escorihuela
- Departament de Psiquiatria i Medicina Legal, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Maria V Sanchez-Vives
- Systems Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Barcelona, Spain.,ICREABarcelona, Spain
| |
Collapse
|
215
|
Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci 2017; 47:534-548. [PMID: 28452083 DOI: 10.1111/ejn.13595] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/18/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASD) and epilepsy are common neurological diseases of childhood, with an estimated incidence of approximately 0.5-1% of the worldwide population. Several genetic, neuroimaging and neuropathological studies clearly showed that both ASD and epilepsy have developmental origins and a substantial degree of heritability. Most importantly, ASD and epilepsy frequently coexist in the same individual, suggesting a common neurodevelopmental basis for these disorders. Genome-wide association studies recently allowed for the identification of a substantial number of genes involved in ASD and epilepsy, some of which are mutated in syndromes presenting both ASD and epilepsy clinical features. At the cellular level, both preclinical and clinical studies indicate that the different genetic causes of ASD and epilepsy may converge to perturb the excitation/inhibition (E/I) balance, due to the dysfunction of excitatory and inhibitory circuits in various brain regions. Metabolic and immune dysfunctions, as well as environmental causes also contribute to ASD pathogenesis. Thus, an E/I imbalance resulting from neurodevelopmental deficits of multiple origins might represent a common pathogenic mechanism for both diseases. Here, we will review the most significant studies supporting these hypotheses. A deeper understanding of the molecular and cellular determinants of autism-epilepsy comorbidity will pave the way to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuri Bozzi
- Neurodevelopmental Disorders Research Group, Centre for Mind/Brain Sciences, University of Trento, via Sommarive 9, 38123, Povo, Trento, Italy.,CNR Neuroscience Institute, Pisa, Italy
| | - Giovanni Provenzano
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Simona Casarosa
- CNR Neuroscience Institute, Pisa, Italy.,Laboratory of Neural Development and Regeneration, Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
216
|
Tatti R, Haley MS, Swanson O, Tselha T, Maffei A. Neurophysiology and Regulation of the Balance Between Excitation and Inhibition in Neocortical Circuits. Biol Psychiatry 2017; 81:821-831. [PMID: 27865453 PMCID: PMC5374043 DOI: 10.1016/j.biopsych.2016.09.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/25/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
Brain function relies on the ability of neural networks to maintain stable levels of activity, while experiences sculpt them. In the neocortex, the balance between activity and stability relies on the coregulation of excitatory and inhibitory inputs onto principal neurons. Shifts of excitation or inhibition result in altered excitability impaired processing of incoming information. In many neurodevelopmental and neuropsychiatric disorders, the excitability of local circuits is altered, suggesting that their pathophysiology may involve shifts in synaptic excitation, inhibition, or both. Most studies focused on identifying the cellular and molecular mechanisms controlling network excitability to assess whether they may be altered in animal models of disease. The impact of changes in excitation/inhibition balance on local circuit and network computations is not clear. Here we report findings on the integration of excitatory and inhibitory inputs in healthy cortical circuits and discuss how shifts in excitation/inhibition balance may relate to pathological phenotypes.
Collapse
Affiliation(s)
- Roberta Tatti
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Melissa S. Haley
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Olivia Swanson
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Tenzin Tselha
- Dept. of Neurobiology and Behavior, SUNY-Stony Brook, Stony Brook, NY 11794
| | - Arianna Maffei
- Department of Neurobiology and Behavior, Stony Brook University, The State University of New York, Stony Brook, New York.
| |
Collapse
|
217
|
Wallace ML, van Woerden GM, Elgersma Y, Smith SL, Philpot BD. Ube3a loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice. J Neurophysiol 2017; 118:634-646. [PMID: 28468997 DOI: 10.1152/jn.00618.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3AUbe3aSTOP/p+ mice recapitulate major features of AS in humans and allow conditional reinstatement of maternal Ube3a with the expression of Cre recombinase. We have recently shown that AS model mice exhibit reduced inhibitory drive onto layer (L)2/3 pyramidal neurons of visual cortex, which contributes to a synaptic excitatory/inhibitory imbalance. However, it remains unclear how this loss of inhibitory drive affects neural circuits in vivo. Here we examined visual cortical response properties in individual neurons to explore the consequences of Ube3a loss on intact cortical circuits and processing. Using in vivo patch-clamp electrophysiology, we measured the visually evoked responses to square-wave drifting gratings in L2/3 regular-spiking (RS) neurons in control mice, Ube3a-deficient mice, and mice in which Ube3a was conditionally reinstated in GABAergic neurons. We found that Ube3a-deficient mice exhibited enhanced pyramidal neuron excitability in vivo as well as weaker orientation tuning. These observations are the first to show alterations in cortical computation in an AS model, and they suggest a basis for cortical dysfunction in AS.NEW & NOTEWORTHY Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of the gene UBE3A Using electrophysiological recording in vivo, we describe visual cortical dysfunctions in a mouse model of AS. Aberrant cellular properties in AS model mice could be improved by reinstating Ube3a in inhibitory neurons. These findings suggest that inhibitory neurons play a substantial role in the pathogenesis of AS.
Collapse
Affiliation(s)
- Michael L Wallace
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Spencer L Smith
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina; and
| | - Benjamin D Philpot
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina; .,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina; and
| |
Collapse
|
218
|
Sinclair D, Oranje B, Razak KA, Siegel SJ, Schmid S. Sensory processing in autism spectrum disorders and Fragile X syndrome-From the clinic to animal models. Neurosci Biobehav Rev 2017; 76:235-253. [PMID: 27235081 PMCID: PMC5465967 DOI: 10.1016/j.neubiorev.2016.05.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/08/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023]
Abstract
Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics.
Collapse
Affiliation(s)
- D Sinclair
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - B Oranje
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, HP A 01.126 Heidelberglaan 100, CX Utrecht, 3584, The Netherlands; Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Psychiatric Center Glostrup, Ndr. Ringvej 29-67, Glostrup, 2600, Denmark; Faculty of Health Sciences, Department of Neurology, Psychiatry, and Sensory Sciences, University of Copenhagen, Denmark
| | - K A Razak
- Psychology Department, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - S J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 125 S 31st St., Philadelphia, PA 19104, USA
| | - S Schmid
- Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, MSB 470, London, ON N6A 5C1, Canada.
| |
Collapse
|
219
|
Franco LM, Okray Z, Linneweber GA, Hassan BA, Yaksi E. Reduced Lateral Inhibition Impairs Olfactory Computations and Behaviors in a Drosophila Model of Fragile X Syndrome. Curr Biol 2017; 27:1111-1123. [PMID: 28366741 PMCID: PMC5405172 DOI: 10.1016/j.cub.2017.02.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/02/2017] [Accepted: 02/28/2017] [Indexed: 01/02/2023]
Abstract
Fragile X syndrome (FXS) patients present neuronal alterations that lead to severe intellectual disability, but the underlying neuronal circuit mechanisms are poorly understood. An emerging hypothesis postulates that reduced GABAergic inhibition of excitatory neurons is a key component in the pathophysiology of FXS. Here, we directly test this idea in a FXS Drosophila model. We show that FXS flies exhibit strongly impaired olfactory behaviors. In line with this, olfactory representations are less odor specific due to broader response tuning of excitatory projection neurons. We find that impaired inhibitory interactions underlie reduced specificity in olfactory computations. Finally, we show that defective lateral inhibition across projection neurons is caused by weaker inhibition from GABAergic interneurons. We provide direct evidence that deficient inhibition impairs sensory computations and behavior in an in vivo model of FXS. Together with evidence of impaired inhibition in autism and Rett syndrome, these findings suggest a potentially general mechanism for intellectual disability. Lack of dFMRP leads to reduced olfactory attraction and aversion in fruit flies Odor selectivity of antennal lobe projection neurons is impaired in dfmr1− flies GABAergic lateral inhibition within the antennal lobe is weaker in dfmr1− flies Deficient lateral inhibition impairs sensory computations and animal behavior
Collapse
Affiliation(s)
- Luis M Franco
- Neuroelectronics Research Flanders (NERF), KU Leuven, Kapeldreef 75, 3001 Leuven, Belgium; VIB Center for the Biology of Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Zeynep Okray
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Gerit A Linneweber
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, UPMC, Sorbonne Universités, Inserm, CNRS, 47 Boulevard Hôpital, 75013 Paris, France.
| | - Emre Yaksi
- Neuroelectronics Research Flanders (NERF), KU Leuven, Kapeldreef 75, 3001 Leuven, Belgium; Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Olav Kyrres gate 9, 7030 Trondheim, Norway.
| |
Collapse
|
220
|
Zhang X, Sullivan CS, Kratz MB, Kasten MR, Maness PF, Manis PB. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex. Front Neural Circuits 2017; 11:19. [PMID: 28386219 PMCID: PMC5362729 DOI: 10.3389/fncir.2017.00019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/06/2017] [Indexed: 11/29/2022] Open
Abstract
The neural cell adhesion molecule (NCAM), has been shown to be an obligate regulator of synaptic stability and pruning during critical periods of cortical maturation. However, the functional consequences of NCAM deletion on the organization of inhibitory circuits in cortex are not known. In vesicular gamma-amino butyric acid (GABA) transporter (VGAT)-channelrhodopsin2 (ChR2)-enhanced yellow fluorescent protein (EYFP) transgenic mice, NCAM is expressed postnatally at perisomatic synaptic puncta of EYFP-labeled parvalbumin, somatostatin and calretinin-positive interneurons, and in the neuropil in the anterior cingulate cortex (ACC). To investigate how NCAM deletion affects the spatial organization of inhibitory inputs to pyramidal cells, we used laser scanning photostimulation in brain slices of VGAT-ChR2-EYFP transgenic mice crossed to either NCAM-null or wild type (WT) mice. Laser scanning photostimulation revealed that NCAM deletion increased the strength of close-in inhibitory connections to layer 2/3 pyramidal cells of the ACC. In addition, in NCAM-null mice, the intrinsic excitability of pyramidal cells increased, whereas the intrinsic excitability of GABAergic interneurons did not change. The increase in inhibitory tone onto pyramidal cells, and the increased pyramidal cell excitability in NCAM-null mice will alter the delicate coordination of excitation and inhibition (E/I coordination) in the ACC, and may be a factor contributing to circuit dysfunction in diseases such as schizophrenia and bipolar disorder, in which NCAM has been implicated.
Collapse
Affiliation(s)
- Xuying Zhang
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Chelsea S Sullivan
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Megan B Kratz
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Michael R Kasten
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Paul B Manis
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel HillChapel Hill, NC, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel Hill, NC, USA
| |
Collapse
|
221
|
Wang J, Ethridge LE, Mosconi MW, White SP, Binder DK, Pedapati EV, Erickson CA, Byerly MJ, Sweeney JA. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome. J Neurodev Disord 2017; 9:11. [PMID: 28316753 PMCID: PMC5351111 DOI: 10.1186/s11689-017-9191-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cortical hyperexcitability due to abnormal fast-spiking inhibitory interneuron function has been documented in fmr1 KO mice, a mouse model of the fragile X syndrome which is the most common single gene cause of autism and intellectual disability. METHODS We collected resting state dense-array electroencephalography data from 21 fragile X syndrome (FXS) patients and 21 age-matched healthy participants. RESULTS FXS patients exhibited greater gamma frequency band power, which was correlated with social and sensory processing difficulties. Second, FXS patients showed increased spatial spreading of phase-synchronized high frequency neural activity in the gamma band. Third, we observed increased negative theta-to-gamma but decreased alpha-to-gamma band amplitude coupling, and the level of increased theta power was inversely related to the level of resting gamma power in FXS. CONCLUSIONS Increased theta band power and coupling from frontal sources may represent a mechanism providing compensatory inhibition of high-frequency gamma band activity, potentially contributing to the widely varying level of neurophysiological and behavioral abnormalities and treatment response seen in full-mutation FXS patients. These findings extend preclinical observations and provide new mechanistic insights into brain alterations and their variability across FXS patients. Electrophysiological measures may provide useful translational biomarkers for advancing drug development and individualizing treatments for neurodevelopmental disorders with associated neuronal hyperexcitability.
Collapse
Affiliation(s)
- Jun Wang
- Department of Psychology, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang China 321004
| | - Lauren E. Ethridge
- Department of Pediatrics, Section of Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Department of Psychology, University of Oklahoma, Norman, OK USA
| | - Matthew W. Mosconi
- Clinical Child Psychology Program and Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS USA
| | - Stormi P. White
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Devin K. Binder
- Center for Glial-Neuronal Interactions, Neuroscience Graduate Program, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA USA
| | - Ernest V. Pedapati
- Department of Psychiatry and Behavioral Neuroscience and Division of Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Craig A. Erickson
- Department of Psychiatry and Behavioral Neuroscience and Division of Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Matthew J. Byerly
- Center for Mental Health Research and Recovery, Montana State University, Bozeman, MT USA
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH USA
| |
Collapse
|
222
|
Schmunk G, Nguyen RL, Ferguson DL, Kumar K, Parker I, Gargus JJ. High-throughput screen detects calcium signaling dysfunction in typical sporadic autism spectrum disorder. Sci Rep 2017; 7:40740. [PMID: 28145469 PMCID: PMC5286408 DOI: 10.1038/srep40740] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/09/2016] [Indexed: 11/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders without any defined uniting pathophysiology. Ca2+ signaling is emerging as a potential node in the genetic architecture of the disorder. We previously reported decreased inositol trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum in several rare monogenic syndromes highly comorbid with autism – fragile X and tuberous sclerosis types 1 and 2 syndromes. We now extend those findings to a cohort of subjects with sporadic ASD without any known mutations. We developed and applied a high throughput Fluorometric Imaging Plate Reader (FLIPR) assay to monitor agonist-evoked Ca2+ signals in human primary skin fibroblasts. Our results indicate that IP3 -mediated Ca2+ release from the endoplasmic reticulum in response to activation of purinergic receptors is significantly depressed in subjects with sporadic as well as rare syndromic forms of ASD. We propose that deficits in IP3-mediated Ca2+ signaling represent a convergent hub function shared across the spectrum of autistic disorders – whether caused by rare highly penetrant mutations or sporadic forms – and holds promise as a biomarker for diagnosis and novel drug discovery.
Collapse
Affiliation(s)
- Galina Schmunk
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - Rachel L Nguyen
- Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - David L Ferguson
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - Kenny Kumar
- Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - Ian Parker
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA.,Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, California, USA
| | - J Jay Gargus
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA.,Division of Human Genetics &Genomics, Department of Pediatrics, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
223
|
Benussi A, Cotelli MS, Cosseddu M, Bertasi V, Turla M, Salsano E, Dardis A, Padovani A, Borroni B. Preliminary Results on Long-Term Potentiation-Like Cortical Plasticity and Cholinergic Dysfunction After Miglustat Treatment in Niemann-Pick Disease Type C. JIMD Rep 2017; 36:19-27. [PMID: 28092091 DOI: 10.1007/8904_2016_33] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a rare autosomal recessive lysosomal storage disorder, which manifests clinically with a wide range of neurological signs and symptoms. We assessed multiple neurological, neuropsychological and neurophysiological biomarkers using a transcranial magnetic stimulation (TMS) multi-paradigm approach in two patients with NPC carrying a homozygous mutation in the NPC1 gene, and in two heterozygous family members.We assessed short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), long-interval intracortical inhibition (LICI), short-latency afferent inhibition (SAI) and long-term potentiation (LTP)-like cortical plasticity with a paired associative stimulation (PAS) protocol.Baseline SAI and LTP-like plasticity were impaired in both patients with NPC and in the symptomatic heterozygous NPC1 gene mutation carrier. Only a limited decrease in SICI and ICF was observed, while LICI was within normal range in all subjects at baseline. After 12 months of treatment with miglustat, a considerable improvement in SAI and LTP-like plasticity was observed in both patients with NPC. In conclusion, these biomarkers could help to confirm the diagnosis of NPC, and may give an indication of prognostic outcomes in pharmacological trials.
Collapse
Affiliation(s)
- Alberto Benussi
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, University of Brescia, Piazzale Spedali Civili 1, Brescia, Italy
| | | | - Maura Cosseddu
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, University of Brescia, Piazzale Spedali Civili 1, Brescia, Italy
| | | | | | - Ettore Salsano
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Andrea Dardis
- University Hospital "Santa Maria della Misericordia", Udine, Italy
| | - Alessandro Padovani
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, University of Brescia, Piazzale Spedali Civili 1, Brescia, Italy
| | - Barbara Borroni
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, University of Brescia, Piazzale Spedali Civili 1, Brescia, Italy.
| |
Collapse
|
224
|
Han M, Mejias R, Chiu SL, Rose R, Adamczyk A, Huganir R, Wang T. Mice lacking GRIP1/2 show increased social interactions and enhanced phosphorylation at GluA2-S880. Behav Brain Res 2017; 321:176-184. [PMID: 28063882 DOI: 10.1016/j.bbr.2016.12.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/26/2016] [Accepted: 12/29/2016] [Indexed: 01/01/2023]
Abstract
Glutamate receptor interacting proteins 1 and 2 (GRIP1/2) play an important role in regulating synaptic trafficking of AMPA receptor 2/3 (GluA2/3) and synaptic strength. Gain-of-function GRIP1 mutations are implicated in social behavioral deficits in autism. To study mechanisms of Grip1/2-mediated AMPA signaling in the regulation of social behaviors, we performed social behavioral testing on neuron-specific Grip1/2-double knockout (DKO) and wild type (WT) mice that are matched for age, sex, and strain background. We determined the expression profile of key signaling proteins in AMPAR, mGluR, mTOR, and GABA pathways in frontal cortex, striatum, and cerebellum of DKO mice. Compared to WT mice, DKO mice show increased sociability in a modified three-chamber social behavioral test [mean±sem for interaction time in seconds; WT: 44.0±5.0; n=10; DKO: 81.0±9.0; n=9; two factor repeated measures ANOVA: F(1,37)=14.45; p<0.01 and planned t-test; p<0.01] and in a dyadic male-male social interaction test (mean±sem for total time in seconds: sniffing, WT-WT, 18.9±1.1; WT-DKO, 42.5±2.1; t-test: p<0.001; following, WT-WT, 7.7±0.72; WT-DKO,14.4±1.8; t-test: p<0.001). Immunoblot studies identified an increase in phosphorylation at GluA2-Serine 880 (GluA2-pS880) in frontal cortex (mean±sem; WT: 0.69±0.06, n=5; DKO: 0.96±0.06, n=6; t-test; p<0.05) and reduced GABAβ3 expression in striatum (mean±sem; WT: 1.16±0.04, n=4; DKO: 0.95±0.06, n=4; t-test; p<0.05) in DKO mice. GluA2-S880 phosphorylation is known to regulate GluA2synaptic recycling, AMPA signaling strength and plasticity. GABAβ3 has been implicated in the etiology and pathogenesis in autism. These data support an important role of Grip1/2-mediated AMPA signaling in regulating social behaviors and disturbance of glutamate- and GABA-signaling in specialized brain regions in autism-related social behavioral deficits.
Collapse
Affiliation(s)
- Mei Han
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Rebeca Mejias
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Shu-Ling Chiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Rebecca Rose
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Abby Adamczyk
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Richard Huganir
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Tao Wang
- McKusick-Nathans Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
225
|
Sinclair D, Featherstone R, Naschek M, Nam J, Du A, Wright S, Pance K, Melnychenko O, Weger R, Akuzawa S, Matsumoto M, Siegel SJ. GABA-B Agonist Baclofen Normalizes Auditory-Evoked Neural Oscillations and Behavioral Deficits in the Fmr1 Knockout Mouse Model of Fragile X Syndrome. eNeuro 2017; 4:ENEURO.0380-16.2017. [PMID: 28451631 PMCID: PMC5394929 DOI: 10.1523/eneuro.0380-16.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
Fragile X syndrome is a genetic condition resulting from FMR1 gene mutation that leads to intellectual disability, autism-like symptoms, and sensory hypersensitivity. Arbaclofen, a GABA-B agonist, has shown efficacy in some individuals with FXS but has become unavailable after unsuccessful clinical trials, prompting interest in publicly available, racemic baclofen. The present study investigated whether racemic baclofen can remediate abnormalities of neural circuit function, sensory processing, and behavior in Fmr1 knockout mice, a rodent model of fragile X syndrome. Fmr1 knockout mice showed increased baseline and auditory-evoked high-frequency gamma (30-80 Hz) power relative to C57BL/6 controls, as measured by electroencephalography. These deficits were accompanied by decreased T maze spontaneous alternation, decreased social interactions, and increased open field center time, suggestive of diminished working memory, sociability, and anxiety-like behavior, respectively. Abnormal auditory-evoked gamma oscillations, working memory, and anxiety-related behavior were normalized by treatment with baclofen, but impaired sociability was not. Improvements in working memory were evident predominantly in mice whose auditory-evoked gamma oscillations were dampened by baclofen. These findings suggest that racemic baclofen may be useful for targeting sensory and cognitive disturbances in fragile X syndrome.
Collapse
Affiliation(s)
- D Sinclair
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Featherstone
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Naschek
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Nam
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Du
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Wright
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K Pance
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - O Melnychenko
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Weger
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Akuzawa
- Neuroscience Research Unit, DDR, Astellas Pharma Inc., Tsukuba-Shi, Ibaraki 305-8585, Japan
| | - M Matsumoto
- Neuroscience Research Unit, DDR, Astellas Pharma Inc., Tsukuba-Shi, Ibaraki 305-8585, Japan
| | - S J Siegel
- Translational Neuroscience Program Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
226
|
Rigas P, Leontiadis LJ, Tsakanikas P, Skaliora I. Spontaneous Neuronal Network Persistent Activity in the Neocortex: A(n) (Endo)phenotype of Brain (Patho)physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 988:235-247. [PMID: 28971403 DOI: 10.1007/978-3-319-56246-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abnormal synaptic homeostasis in the cerebral cortex represents a risk factor for both psychiatric and neurodegenerative disorders, from autism and schizophrenia to Alzheimer's disease. Neurons via synapses form recurrent networks that are intrinsically active in the form of oscillating activity, visible at increasingly macroscopic neurophysiological levels: from single cell recordings to the local field potentials (LFPs) to the clinically relevant electroencephalography (EEG). Understanding in animal models the defects at the level of neural circuits is important in order to link molecular and cellular phenotypes with behavioral phenotypes of neurodevelopmental and/or neurodegenerative brain disorders. In this study we introduce the novel idea that recurring persistent network activity (Up states) in the neocortex at the reduced level of the brain slice may be used as an endophenotype of brain disorders that will help us understand not only how local microcircuits of the cortex may be affected in brain diseases, but also when, since an important issue for the design of successful treatment strategies concerns the time window available for intervention.
Collapse
Affiliation(s)
- Pavlos Rigas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efessiou 4, Athens, 11527, Greece.
| | - Leonidas J Leontiadis
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efessiou 4, Athens, 11527, Greece
| | - Panagiotis Tsakanikas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efessiou 4, Athens, 11527, Greece
| | - Irini Skaliora
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efessiou 4, Athens, 11527, Greece
| |
Collapse
|
227
|
Sabanov V, Braat S, D'Andrea L, Willemsen R, Zeidler S, Rooms L, Bagni C, Kooy RF, Balschun D. Impaired GABAergic inhibition in the hippocampus of Fmr1 knockout mice. Neuropharmacology 2016; 116:71-81. [PMID: 28012946 DOI: 10.1016/j.neuropharm.2016.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 01/24/2023]
Abstract
Many clinical and molecular features of the fragile X syndrome, a common form of intellectual disability and autism, can be modeled by deletion of the Fmr1 protein (Fmrp) in mice. Previous studies showed a decreased expression of several components of the GABAergic system in Fmr1 knockout mice. Here, we used this mouse model to investigate the functional consequences of Fmrp deletion on hippocampal GABAergic inhibition in the CA1-region of the hippocampus. Whole-cell patch-clamp recordings demonstrated a significantly reduced amplitude of evoked inhibitory postsynaptic currents (eIPSCs) and a decrease in the amplitude and frequency of spontaneous IPSCs. In addition, miniature IPSCs were reduced in amplitude and frequency and decayed significantly slower than mIPSCs in controls. Quantitative real-time PCR revealed a significantly lower expression of α2, β1 and δ GABAA receptor subunits in the hippocampus of the juvenile mice (P22) compared to wild-type littermates. Correspondingly, we found also at the protein level reduced amounts of α2, β1 and δ subunits in Fmr1 knockout mice. Overall, these results demonstrate that the reduction in several components of the GABAergic system is already present at young age and that this reduction results in measurable abnormalities on GABAA receptor-mediated phasic inhibition. These abnormalities might contribute to the behavioral and cognitive deficits of this fragile X mouse model.
Collapse
Affiliation(s)
- Victor Sabanov
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium.
| | - Sien Braat
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| | - Laura D'Andrea
- Center for Human Genetics-VIB Center for the Biology of Disease, KULeuven, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy.
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands.
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands.
| | - Liesbeth Rooms
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium.
| | - Claudia Bagni
- Center for Human Genetics-VIB Center for the Biology of Disease, KULeuven, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Department of Fundamental Neuroscience, University of Lausanne, Switzerland.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| | - Detlef Balschun
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
228
|
Westmark CJ, Chuang SC, Hays SA, Filon MJ, Ray BC, Westmark PR, Gibson JR, Huber KM, Wong RKS. APP Causes Hyperexcitability in Fragile X Mice. Front Mol Neurosci 2016; 9:147. [PMID: 28018172 PMCID: PMC5156834 DOI: 10.3389/fnmol.2016.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023] Open
Abstract
Amyloid-beta protein precursor (APP) and metabolite levels are altered in fragile X syndrome (FXS) patients and in the mouse model of the disorder, Fmr1KO mice. Normalization of APP levels in Fmr1KO mice (Fmr1KO /APPHET mice) rescues many disease phenotypes. Thus, APP is a potential biomarker as well as therapeutic target for FXS. Hyperexcitability is a key phenotype of FXS. Herein, we determine the effects of APP levels on hyperexcitability in Fmr1KO brain slices. Fmr1KO /APPHET slices exhibit complete rescue of UP states in a neocortical hyperexcitability model and reduced duration of ictal discharges in a CA3 hippocampal model. These data demonstrate that APP plays a pivotal role in maintaining an appropriate balance of excitation and inhibition (E/I) in neural circuits. A model is proposed whereby APP acts as a rheostat in a molecular circuit that modulates hyperexcitability through mGluR5 and FMRP. Both over- and under-expression of APP in the context of the Fmr1KO increases seizure propensity suggesting that an APP rheostat maintains appropriate E/I levels but is overloaded by mGluR5-mediated excitation in the absence of FMRP. These findings are discussed in relation to novel treatment approaches to restore APP homeostasis in FXS.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Shih-Chieh Chuang
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA
| | - Seth A. Hays
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Mikolaj J. Filon
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Brian C. Ray
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Pamela R. Westmark
- Department of Medicine, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Jay R. Gibson
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Robert K. S. Wong
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA
| |
Collapse
|
229
|
Marín O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat Med 2016; 22:1229-1238. [PMID: 27783067 DOI: 10.1038/nm.4225] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023]
Abstract
There is a growing understanding that pathological genetic variation and environmental insults during sensitive periods in brain development have long-term consequences on brain function, which range from learning disabilities to complex psychiatric disorders such as schizophrenia. Furthermore, recent experiments in animal models suggest that therapeutic interventions during sensitive periods, typically before the onset of clear neurological and behavioral symptoms, might prevent or ameliorate the development of specific pathologies. These studies suggest that understanding the dynamic nature of the pathophysiological mechanisms underlying psychiatric disorders is crucial for the development of effective therapies. In this Perspective, I explore the emerging concept of developmental windows in psychiatric disorders, their relevance for understanding disease progression and their potential for the design of new therapies. The limitations and caveats of early interventions in psychiatric disorders are also discussed in this context.
Collapse
Affiliation(s)
- Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| |
Collapse
|
230
|
Harrington AJ, Raissi A, Rajkovich K, Berto S, Kumar J, Molinaro G, Raduazzo J, Guo Y, Loerwald K, Konopka G, Huber KM, Cowan CW. MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders. eLife 2016; 5. [PMID: 27779093 PMCID: PMC5094851 DOI: 10.7554/elife.20059] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
Numerous genetic variants associated with MEF2C are linked to autism, intellectual disability (ID) and schizophrenia (SCZ) – a heterogeneous collection of neurodevelopmental disorders with unclear pathophysiology. MEF2C is highly expressed in developing cortical excitatory neurons, but its role in their development remains unclear. We show here that conditional embryonic deletion of Mef2c in cortical and hippocampal excitatory neurons (Emx1-lineage) produces a dramatic reduction in cortical network activity in vivo, due in part to a dramatic increase in inhibitory and a decrease in excitatory synaptic transmission. In addition, we find that MEF2C regulates E/I synapse density predominantly as a cell-autonomous, transcriptional repressor. Analysis of differential gene expression in Mef2c mutant cortex identified a significant overlap with numerous synapse- and autism-linked genes, and the Mef2c mutant mice displayed numerous behaviors reminiscent of autism, ID and SCZ, suggesting that perturbing MEF2C function in neocortex can produce autistic- and ID-like behaviors in mice. DOI:http://dx.doi.org/10.7554/eLife.20059.001 Abnormal development of the brain contributes to intellectual disability, as well as to a number of psychiatric disorders, including schizophrenia and autism. As the brain develops, neurons establish connections with one another called synapses, which are either excitatory or inhibitory. At excitatory synapses, an electrical signal in the first cell increases the likelihood that the second cell will also produce an electrical signal. At inhibitory synapses, electrical activity in the first cell reduces the chances of the second cell producing an electrical signal. An imbalance between excitatory and inhibitory activity is one of the factors thought to give rise to neurodevelopmental disorders. Many individuals with schizophrenia, autism or intellectual disability possess mutations in, or near, a gene called MEF2C. This gene, which is active in both excitatory and inhibitory neurons, encodes a protein that regulates the activity of many other genes during brain development. Harrington, Raissi et al. therefore hypothesized that alterations in MEF2C might predispose individuals to neurodevelopmental disorders by disrupting the balance of excitatory and inhibitory synapses in the developing brain. To test this idea, Harrington, Raissi et al. generated mice that lack the Mef2c gene in a large proportion of their neurons throughout development. As predicted, the animals showed an imbalance of excitatory and inhibitory synapses in the brain’s outer layer, the cortex. They also displayed changes in behavior like those seen in autism. These included a loss of interest in social interaction and a reduction in vocalizations, suggesting impaired communication. Other behavioral changes included hyperactivity, repetitive movements and severe learning impairments: all features commonly observed in human neurodevelopmental disorders. The next challenge is to understand when, where and how MEF2C acts in the cortex to shape the balance of excitatory and inhibitory connections. Once this is known, further studies can test whether disrupting these processes leads directly to behaviors characteristic of autism, schizophrenia and intellectual disability. This may lead to the development of new drugs that can reverse or improve the symptoms of these conditions in affected individuals. DOI:http://dx.doi.org/10.7554/eLife.20059.002
Collapse
Affiliation(s)
- Adam J Harrington
- Department of Neurosciences, Medical University of South Carolina, Charleston, United States.,Department of Psychiatry, Harvard Medical School, Belmont, United States
| | - Aram Raissi
- Department of Psychiatry, Harvard Medical School, Belmont, United States
| | - Kacey Rajkovich
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Stefano Berto
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical School, Belmont, United States.,Medical Scientist Training Program, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Gemma Molinaro
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan Raduazzo
- Department of Psychiatry, Harvard Medical School, Belmont, United States
| | - Yuhong Guo
- Department of Psychiatry, Harvard Medical School, Belmont, United States
| | - Kris Loerwald
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Genevieve Konopka
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Kimberly M Huber
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Christopher W Cowan
- Department of Neurosciences, Medical University of South Carolina, Charleston, United States.,Department of Psychiatry, Harvard Medical School, Belmont, United States
| |
Collapse
|
231
|
FMRP regulates an ethanol-dependent shift in GABA BR function and expression with rapid antidepressant properties. Nat Commun 2016; 7:12867. [PMID: 27666021 PMCID: PMC5052688 DOI: 10.1038/ncomms12867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022] Open
Abstract
Alcohol promotes lasting neuroadaptive changes that may provide relief from depressive symptoms, often referred to as the self-medication hypothesis. However, the molecular/synaptic pathways that are shared by alcohol and antidepressants are unknown. In the current study, acute exposure to ethanol produced lasting antidepressant and anxiolytic behaviours. To understand the functional basis of these behaviours, we examined a molecular pathway that is activated by rapid antidepressants. Ethanol, like rapid antidepressants, alters γ-aminobutyric acid type B receptor (GABABR) expression and signalling, to increase dendritic calcium. Furthermore, new GABABRs are synthesized in response to ethanol treatment, requiring fragile-X mental retardation protein (FMRP). Ethanol-dependent changes in GABABR expression, dendritic signalling, and antidepressant efficacy are absent in Fmr1-knockout (KO) mice. These findings indicate that FMRP is an important regulator of protein synthesis following alcohol exposure, providing a molecular basis for the antidepressant efficacy of acute ethanol exposure. Alcohol is thought to lead to neuroadaptive changes, although the underlying molecular mechanisms are unclear. Here, the authors find ethanol treatment alters GABAB-receptor expression via fragile-X mental retardation protein in mice, leading to antidepressant-like behaviours.
Collapse
|
232
|
Somatosensory map expansion and altered processing of tactile inputs in a mouse model of fragile X syndrome. Neurobiol Dis 2016; 96:201-215. [PMID: 27616423 DOI: 10.1016/j.nbd.2016.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome (FXS) is a common inherited form of intellectual disability caused by the absence or reduction of the fragile X mental retardation protein (FMRP) encoded by the FMR1 gene. In humans, one symptom of FXS is hypersensitivity to sensory stimuli, including touch. We used a mouse model of FXS (Fmr1 KO) to study sensory processing of tactile information conveyed via the whisker system. In vivo electrophysiological recordings in somatosensory barrel cortex showed layer-specific broadening of the receptive fields at the level of layer 2/3 but not layer 4, in response to whisker stimulation. Furthermore, the encoding of tactile stimuli at different frequencies was severely affected in layer 2/3. The behavioral effect of this broadening of the receptive fields was tested in the gap-crossing task, a whisker-dependent behavioral paradigm. In this task the Fmr1 KO mice showed differences in the number of whisker contacts with platforms, decrease in the whisker sampling duration and reduction in the whisker touch-time while performing the task. We propose that the increased excitability in the somatosensory barrel cortex upon whisker stimulation may contribute to changes in the whisking strategy as well as to other observed behavioral phenotypes related to tactile processing in Fmr1 KO mice.
Collapse
|
233
|
Wahlstrom-Helgren S, Klyachko VA. Dynamic balance of excitation and inhibition rapidly modulates spike probability and precision in feed-forward hippocampal circuits. J Neurophysiol 2016; 116:2564-2575. [PMID: 27605532 DOI: 10.1152/jn.00413.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
Feed-forward inhibitory (FFI) circuits are important for many information-processing functions. FFI circuit operations critically depend on the balance and timing between the excitatory and inhibitory components, which undergo rapid dynamic changes during neural activity due to short-term plasticity (STP) of both components. How dynamic changes in excitation/inhibition (E/I) balance during spike trains influence FFI circuit operations remains poorly understood. In the current study we examined the role of STP in the FFI circuit functions in the mouse hippocampus. Using a coincidence detection paradigm with simultaneous activation of two Schaffer collateral inputs, we found that the spiking probability in the target CA1 neuron was increased while spike precision concomitantly decreased during high-frequency bursts compared with a single spike. Blocking inhibitory synaptic transmission revealed that dynamics of inhibition predominately modulates the spike precision but not the changes in spiking probability, whereas the latter is modulated by the dynamics of excitation. Further analyses combining whole cell recordings and simulations of the FFI circuit suggested that dynamics of the inhibitory circuit component may influence spiking behavior during bursts by broadening the width of excitatory postsynaptic responses and that the strength of this modulation depends on the basal E/I ratio. We verified these predictions using a mouse model of fragile X syndrome, which has an elevated E/I ratio, and found a strongly reduced modulation of postsynaptic response width during bursts. Our results suggest that changes in the dynamics of excitatory and inhibitory circuit components due to STP play important yet distinct roles in modulating the properties of FFI circuits.
Collapse
Affiliation(s)
- Sarah Wahlstrom-Helgren
- Departments of Cell Biology & Physiology and Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Vitaly A Klyachko
- Departments of Cell Biology & Physiology and Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
234
|
Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits. Neural Dev 2016; 11:14. [PMID: 27503008 PMCID: PMC4977860 DOI: 10.1186/s13064-016-0069-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/03/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fragile X Syndrome is the leading monogenetic cause of autism and most common form of intellectual disability. Previous studies have implicated changes in dendritic spine architecture as the primary result of loss of Fragile X Mental Retardation Protein (FMRP), but recent work has shown that neural proliferation is decreased and cell death is increased with either loss of FMRP or overexpression of FMRP. The purpose of this study was to investigate the effects of loss of FMRP on behavior and cellular activity. METHODS We knocked down FMRP expression using morpholino oligos in the optic tectum of Xenopus laevis tadpoles and performed a series of behavioral and electrophysiological assays. We investigated visually guided collision avoidance, schooling, and seizure propensity. Using single cell electrophysiology, we assessed intrinsic excitability and synaptic connectivity of tectal neurons. RESULTS We found that FMRP knockdown results in decreased swimming speed, reduced schooling behavior and decreased seizure severity. In single cells, we found increased inhibition relative to excitation in response to sensory input. CONCLUSIONS Our results indicate that the electrophysiological development of single cells in the absence of FMRP is largely unaffected despite the large neural proliferation defect. The changes in behavior are consistent with an increase in inhibition, which could be due to either changes in cell number or altered inhibitory drive, and indicate that FMRP can play a significant role in neural development much earlier than previously thought.
Collapse
|
235
|
Sensory hypo-excitability in a rat model of fetal development in Fragile X Syndrome. Sci Rep 2016; 6:30769. [PMID: 27465362 PMCID: PMC4964352 DOI: 10.1038/srep30769] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is characterized by sensory hyper-sensitivity, and animal models suggest that neuronal hyper-excitability contributes to this phenotype. To understand how sensory dysfunction develops in FXS, we used the rat model (FMR-KO) to quantify the maturation of cortical visual responses from the onset of responsiveness prior to eye-opening, through age equivalents of human juveniles. Rather than hyper-excitability, visual responses before eye-opening had reduced spike rates and an absence of early gamma oscillations, a marker for normal thalamic function at this age. Despite early hypo-excitability, the developmental trajectory of visual responses in FMR-KO rats was normal, and showed the expected loss of visually evoked bursting at the same age as wild-type, two days before eye-opening. At later ages, during the third and fourth post-natal weeks, signs of mild hyper-excitability emerged. These included an increase in the visually-evoked firing of regular spiking, presumptive excitatory, neurons, and a reduced firing of fast-spiking, presumptive inhibitory, neurons. Our results show that early network changes in the FMR-KO rat arise at ages equivalent to fetal humans and have consequences for excitability that are opposite those found in adults. This suggests identification and treatment should begin early, and be tailored in an age-appropriate manner.
Collapse
|
236
|
Achuta VS, Grym H, Putkonen N, Louhivuori V, Kärkkäinen V, Koistinaho J, Roybon L, Castrén ML. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome. Dev Neurobiol 2016; 77:438-453. [PMID: 27411166 DOI: 10.1002/dneu.22419] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/14/2016] [Accepted: 07/12/2016] [Indexed: 01/04/2023]
Abstract
Disrupted metabotropic glutamate receptor 5 (mGluR5) signaling is implicated in many neuropsychiatric disorders, including autism spectrum disorder, found in fragile X syndrome (FXS). Here we report that intracellular calcium responses to the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) are augmented, and calcium-dependent mGluR5-mediated mechanisms alter the differentiation of neural progenitors in neurospheres derived from human induced pluripotent FXS stem cells and the brains of mouse model of FXS. Treatment with the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) prevents an abnormal clustering of DHPG-responsive cells that are responsive to activation of ionotropic receptors in mouse FXS neurospheres. MPEP also corrects morphological defects of differentiated cells and enhanced migration of neuron-like cells in mouse FXS neurospheres. Unlike in mouse neurospheres, MPEP increases the differentiation of DHPG-responsive radial glial cells as well as the subpopulation of cells responsive to both DHPG and activation of ionotropic receptors in human neurospheres. However, MPEP normalizes the FXS-specific increase in the differentiation of cells responsive only to N-methyl-d-aspartate (NMDA) present in human neurospheres. Exposure to MPEP prevents the accumulation of intermediate basal progenitors in embryonic FXS mouse brain suggesting that rescue effects of GluR5 antagonist are progenitor type-dependent and species-specific differences of basal progenitors may modify effects of MPEP on the cortical development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Venkat Swaroop Achuta
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Heli Grym
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Noora Putkonen
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Verna Louhivuori
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Virve Kärkkäinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, BMC A10, Sölvegatan 19, Lund, SE-221 84, Sweden
| | - Maija L Castrén
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland.,Autism Foundation, Kuortaneenkatu 7B, Helsinki, FI-00520, Finland
| |
Collapse
|
237
|
Cowley B, Kirjanen S, Partanen J, Castrén ML. Epileptic Electroencephalography Profile Associates with Attention Problems in Children with Fragile X Syndrome: Review and Case Series. Front Hum Neurosci 2016; 10:353. [PMID: 27462212 PMCID: PMC4941803 DOI: 10.3389/fnhum.2016.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/28/2016] [Indexed: 01/18/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and a variant of autism spectrum disorder (ASD). The FXS population is quite heterogeneous with respect to comorbidities, which implies the need for a personalized medicine approach, relying on biomarkers or endophenotypes to guide treatment. There is evidence that quantitative electroencephalography (EEG) endophenotype-guided treatments can support increased clinical benefit by considering the patient's neurophysiological profile. We describe a case series of 11 children diagnosed with FXS, aged one to 14 years, mean 4.6 years. Case data are based on longitudinal clinically-observed reports by attending physicians for comorbid symptoms including awake and asleep EEG profiles. We tabulate the comorbid EEG symptoms in this case series, and relate them to the literature on EEG endophenotypes and associated treatment options. The two most common endophenotypes in the data were diffuse slow oscillations and epileptiform EEG, which have been associated with attention and epilepsy respectively. This observation agrees with reported prevalence of comorbid behavioral symptoms for FXS. In this sample of FXS children, attention problems were found in 37% (4 of 11), and epileptic seizures in 45% (5 of 11). Attention problems were found to associate with the epilepsy endophenotype. From the synthesis of this case series and literature review, we argue that the evidence-based personalized treatment approach, exemplified by neurofeedback, could benefit FXS children by focusing on observable, specific characteristics of comorbid disease symptoms.
Collapse
Affiliation(s)
- Benjamin Cowley
- Brain Work Research Centre, Finnish Institute of Occupational HealthHelsinki, Finland; Cognitive Brain Research Unit, Cognitive Science, Institute of Behavioral Sciences, University of HelsinkiHelsinki, Finland
| | | | - Juhani Partanen
- Department of Clinical Neurophysiology, University Hospital of Helsinki Helsinki, Finland
| | - Maija L Castrén
- Faculty of Medicine, Physiology, University of HelsinkiHelsinki, Finland; Autism Foundation in FinlandHelsinki, Finland
| |
Collapse
|
238
|
Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice. J Neurosci 2016; 36:2131-47. [PMID: 26888925 DOI: 10.1523/jneurosci.2921-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5(R/R)) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5(R/R) mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. SIGNIFICANCE STATEMENT Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical, neurophysiological, and behavioral symptoms observed in the fragile X mouse. This work provides strong evidence that Homer-mGlu5 binding contributes to symptoms associated with neurodevelopmental disorders.
Collapse
|
239
|
Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes. Neuroscience 2016; 324:202-17. [DOI: 10.1016/j.neuroscience.2016.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/02/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
|
240
|
Synaptic Plasticity, a Prominent Contributor to the Anxiety in Fragile X Syndrome. Neural Plast 2016; 2016:9353929. [PMID: 27239350 PMCID: PMC4864533 DOI: 10.1155/2016/9353929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/04/2016] [Indexed: 01/03/2023] Open
Abstract
Fragile X syndrome (FXS) is an inheritable neuropsychological disease caused by expansion of the CGG trinucleotide repeat affecting the fmr1 gene on X chromosome, resulting in silence of the fmr1 gene and failed expression of FMRP. Patients with FXS suffer from cognitive impairment, sensory integration deficits, learning disability, anxiety, autistic traits, and so forth. Specifically, the morbidity of anxiety in FXS individuals remains high from childhood to adulthood. By and large, it is common that the change of brain plasticity plays a key role in the progression of disease. But for now, most studies excessively emphasized the one-sided factor on the change of synaptic plasticity participating in the generation of anxiety during the development of FXS. Here we proposed an integrated concept to acquire better recognition about the details of this process.
Collapse
|
241
|
Luongo F, Horn M, Sohal VS. Putative Microcircuit-Level Substrates for Attention Are Disrupted in Mouse Models of Autism. Biol Psychiatry 2016; 79:667-75. [PMID: 26022075 PMCID: PMC4624609 DOI: 10.1016/j.biopsych.2015.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Deep layer excitatory circuits in the prefrontal cortex represent the strongest locus for genetic convergence in autism, but specific abnormalities within these circuits that mediate key features of autism, such as cognitive or attentional deficits, remain unknown. Attention normally increases the sensitivity of neural populations to incoming signals by decorrelating ongoing cortical circuit activity. Here, we investigated whether mechanisms underlying this phenomenon might be disrupted within deep layer prefrontal circuits in mouse models of autism. METHODS We isolated deep layer prefrontal circuits in brain slices then used single-photon GCaMP imaging to record activity from many (50 to 100) neurons simultaneously to study patterns of spontaneous activity generated by these circuits under normal conditions and in two etiologically distinct models of autism: mice exposed to valproic acid in utero and Fmr1 knockout mice. RESULTS We found that modest doses of the cholinergic agonist carbachol normally decorrelate spontaneous activity generated by deep layer prefrontal networks. This effect was disrupted in both valproic acid-exposed and Fmr1 knockout mice but intact following other manipulations that did not model autism. CONCLUSIONS Our results suggest that cholinergic modulation may contribute to attention by acting on local cortical microcircuits to decorrelate spontaneous activity. Furthermore, defects in this mechanism represent a microcircuit-level endophenotype that could link diverse genetic and developmental disruptions to attentional deficits in autism. Future studies could elucidate pathways leading from various etiologies to this circuit-level abnormality or use this abnormality itself as a target and identify novel therapeutic strategies that restore normal circuit function.
Collapse
Affiliation(s)
- Francisco Luongo
- Department of Psychiatry, 675 Nelson Rising Lane University of California, San Francisco San Francisco, CA 94143-0444,Center for Integrative Neuroscience, 675 Nelson Rising Lane University of California, San Francisco San Francisco, CA 94143-0444,Sloan-Swartz Center for Theoretical Neurobiology, 675 Nelson Rising Lane University of California, San Francisco San Francisco, CA 94143-0444,Neuroscience Graduate Program, 675 Nelson Rising Lane University of California, San Francisco San Francisco, CA 94143-0444
| | - Meryl Horn
- Neuroscience Graduate Program, 675 Nelson Rising Lane University of California, San Francisco San Francisco, CA 94143-0444
| | - Vikaas S. Sohal
- Department of Psychiatry, 675 Nelson Rising Lane University of California, San Francisco San Francisco, CA 94143-0444,Center for Integrative Neuroscience, 675 Nelson Rising Lane University of California, San Francisco San Francisco, CA 94143-0444,Sloan-Swartz Center for Theoretical Neurobiology, 675 Nelson Rising Lane University of California, San Francisco San Francisco, CA 94143-0444, To whom correspondence should be addressed at
| |
Collapse
|
242
|
Zhang L, Liang Z, Zhu P, Li M, Yi YH, Liao WP, Su T. Altered intrinsic properties and bursting activities of neurons in layer IV of somatosensory cortex from Fmr-1 knockout mice. Exp Neurol 2016; 280:60-9. [PMID: 27048919 DOI: 10.1016/j.expneurol.2016.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/04/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
Neuroadaptations and alterations in neuronal excitability are critical in brain maturation and many neurological diseases. Fragile X syndrome (FXS) is a pervasive neurodevelopmental disorder characterized by extensive synaptic and circuit dysfunction. It is still unclear about the alterations in intrinsic excitability of individual neurons and their link to hyperexcitable circuitry. In this study, whole cell patch-clamp recordings were employed to characterize the membrane and firing properties of layer IV cells in slices of the somatosensory cortex of Fmr-1 knockout (KO) mice. These cells generally exhibited a regular spiking (RS) pattern, while there were significant increases in the number of cells that adopted intrinsic bursting (IB) compared with age-matched wild type (WT) cells. The cells subgrouped according to their firing patterns and maturation differed significantly in membrane and discharge properties between KO and WT. The changes in the intrinsic properties were consistent with highly facilitated discharges in KO cells induced by current injection. Spontaneous activities of RS neurons driven by local network were also increased in the KO cells, especially in neonate groups. Under an epileptiform condition mimicked by omission of Mg(2+) in extracellular solution, these RS neurons from KO mice were more likely to switch to burst discharges. Analysis on bursts revealed that the KO cells tended to form burst discharges and even severe events manifested as seizure-like ictal discharges. These results suggest that alterations in intrinsic properties in individual neurons are involved in the abnormal excitability of cortical circuitry and possibly account for the pathogenesis of epilepsy in FXS.
Collapse
Affiliation(s)
- Linming Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhanrong Liang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Pingping Zhu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Meng Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
243
|
Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17:174-86. [PMID: 26469219 DOI: 10.3109/15622975.2015.1085597] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Imbalance between excitation and inhibition and increased excitatory-inhibitory (E-I) ratio is a common mechanism in autism spectrum disorders (ASD) that is responsible for the learning and memory, cognitive, sensory, motor deficits, and seizures occurring in these disorders. ASD are very heterogeneous and better understanding of E-I imbalance in brain will lead to better diagnosis and treatments. METHODS We perform a critical literature review of the causes and presentations of E-I imbalance in ASD. RESULTS E-I imbalance in ASD is due primarily to abnormal glutamatergic and GABAergic neurotransmission in key brain regions such as neocortex, hippocampus, amygdala, and cerebellum. Other causes are due to dysfunction of neuropeptides (oxytocin), synaptic proteins (neuroligins), and immune system molecules (cytokines). At the neuropathological level E-I imbalance in ASD is presented as a "minicolumnopathy". E-I imbalance alters the manner by which the brain processes information and regulates behaviour. New developments for investigating E-I imbalance such as optogenetics and transcranial magnetic stimulation (TMS) are presented. Non-invasive brain stimulation methods such as TMS for treatment of the core symptoms of ASD are discussed. CONCLUSIONS Understanding E-I imbalance has important implications for developing better pharmacological and behavioural treatments for ASD, including TMS, new drugs, biomarkers and patient stratification.
Collapse
Affiliation(s)
- Genoveva Uzunova
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA
| | - Stefano Pallanti
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA.,b Psychiatry and Behavioural Sciences, UC Davis Health System , CA , USA.,c Department Psychiatry , University of Florence , Florence , Italy.,d Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Eric Hollander
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA
| |
Collapse
|
244
|
Ethridge LE, White SP, Mosconi MW, Wang J, Byerly MJ, Sweeney JA. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome. Transl Psychiatry 2016; 6:e787. [PMID: 27093069 PMCID: PMC4872406 DOI: 10.1038/tp.2016.48] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/09/2022] Open
Abstract
Sensory hypersensitivities are common, clinically distressing features of Fragile X Syndrome (FXS). Preclinical evidence suggests this abnormality may result from synaptic hyper-excitability in sensory systems. This model predicts reduced sensory habituation to repeated stimulus presentation. Fourteen adolescents and adults with FXS and 15 age-matched controls participated in a modified auditory gating task using trains of 4 identical tones during dense array electroencephalography (EEG). Event-related potential and single trial time-frequency analyses revealed decreased habituation of the N1 event-related potential response in FXS, and increased gamma power coupled with decreases in gamma phase-locking during the early-stimulus registration period. EEG abnormalities in FXS were associated with parent reports of heightened sensory sensitivities and social communication deficits. Reduced habituation and altered gamma power and phase-locking to auditory cues demonstrated here in FXS patients parallels preclinical findings with Fmr1 KO mice. Thus, the EEG abnormalities seen in FXS patients support the model of neocortical hyper-excitability in FXS, and may provide useful translational biomarkers for evaluating novel treatment strategies targeting its neural substrate.
Collapse
Affiliation(s)
- L E Ethridge
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Psychology, University of Oklahoma, Norman, OK, USA,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, 1100 North East 13th Street, Nicholson Tower, Suite 4900, Oklahoma City, OK 73104, USA. E-mail:
| | - S P White
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M W Mosconi
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA,Departments of Applied Behavioral Science and Psychology, Schiefelbusch Institute for Life Span Studies and Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - J Wang
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M J Byerly
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J A Sweeney
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
245
|
Interneuron Transcriptional Dysregulation Causes Frequency-Dependent Alterations in the Balance of Inhibition and Excitation in Hippocampus. J Neurosci 2016; 35:15276-90. [PMID: 26586816 DOI: 10.1523/jneurosci.1834-15.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Circuit dysfunction in complex brain disorders such as schizophrenia and autism is caused by imbalances between inhibitory and excitatory synaptic transmission (I/E). Short-term plasticity differentially alters responses from excitatory and inhibitory synapses, causing the I/E ratio to change as a function of frequency. However, little is known about I/E ratio dynamics in complex brain disorders. Transcriptional dysregulation in interneurons, particularly parvalbumin interneurons, is a consistent pathophysiological feature of schizophrenia. Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that in hippocampus is highly concentrated in inhibitory interneurons and regulates parvalbumin transcription. Here, we used PGC-1α(-/-) mice to investigate effects of interneuron transcriptional dysregulation on the dynamics of the I/E ratio at the synaptic and circuit level in hippocampus. We find that loss of PGC-1α increases the I/E ratio onto CA1 pyramidal cells in response to Schaffer collateral stimulation in slices from young adult mice. The underlying mechanism is enhanced basal inhibition, including increased inhibition from parvalbumin interneurons. This decreases the spread of activation in CA1 and dramatically limits pyramidal cell spiking, reducing hippocampal output. The I/E ratio and CA1 output are partially restored by paired-pulse stimulation at short intervals, indicating frequency-dependent effects. However, circuit dysfunction persists, indicated by alterations in kainate-induced gamma oscillations and impaired nest building. Together, these results show that transcriptional dysregulation in hippocampal interneurons causes frequency-dependent alterations in I/E ratio and circuit function, suggesting that PGC-1α deficiency in psychiatric and neurological disorders contributes to disease by causing functionally relevant alterations in I/E balance. SIGNIFICANCE STATEMENT Alteration in the inhibitory and excitatory synaptic transmission (I/E) balance is a fundamental principle underlying the circuit dysfunction observed in many neuropsychiatric and neurodevelopmental disorders. The I/E ratio is dynamic, continuously changing because of synaptic short-term plasticity. We show here that transcriptional dysregulation in interneurons, particularly parvalbumin interneurons, causes frequency-dependent alterations in the I/E ratio and in circuit function in hippocampus. Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α-deficient) mice have enhanced inhibition in CA1, the opposite of what is seen in cortex. This study fills an important gap in current understanding of how changes in inhibition in complex brain disorders affect I/E dynamics, leading to region-specific circuit dysfunction and behavioral impairment. This study also provides a conceptual framework for analyzing the effects of short-term plasticity on the I/E balance in disease models.
Collapse
|
246
|
Doll CA, Broadie K. Activity-dependent FMRP requirements in development of the neural circuitry of learning and memory. Development 2016; 142:1346-56. [PMID: 25804740 DOI: 10.1242/dev.117127] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The activity-dependent refinement of neural circuit connectivity during critical periods of brain development is essential for optimized behavioral performance. We hypothesize that this mechanism is defective in fragile X syndrome (FXS), the leading heritable cause of intellectual disability and autism spectrum disorders. Here, we use optogenetic tools in the Drosophila FXS disease model to test activity-dependent dendritogenesis in two extrinsic neurons of the mushroom body (MB) learning and memory brain center: (1) the input projection neuron (PN) innervating Kenyon cells (KCs) in the MB calyx microglomeruli and (2) the output MVP2 neuron innervated by KCs in the MB peduncle. Both input and output neuron classes exhibit distinctive activity-dependent critical period dendritic remodeling. MVP2 arbors expand in Drosophila mutants null for fragile X mental retardation 1 (dfmr1), as well as following channelrhodopsin-driven depolarization during critical period development, but are reduced by halorhodopsin-driven hyperpolarization. Optogenetic manipulation of PNs causes the opposite outcome--reduced dendritic arbors following channelrhodopsin depolarization and expanded arbors following halorhodopsin hyperpolarization during development. Importantly, activity-dependent dendritogenesis in both neuron classes absolutely requires dfmr1 during one developmental window. These results show that dfmr1 acts in a neuron type-specific activity-dependent manner for sculpting dendritic arbors during early-use, critical period development of learning and memory circuitry in the Drosophila brain.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Department of Cell and Developmental Biology, The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Department of Cell and Developmental Biology, The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| |
Collapse
|
247
|
Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry. Neurobiol Dis 2016; 89:76-87. [PMID: 26851502 DOI: 10.1016/j.nbd.2016.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/22/2023] Open
Abstract
Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early-use critical period.
Collapse
|
248
|
Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome. Neurobiol Dis 2016; 89:126-35. [PMID: 26850918 DOI: 10.1016/j.nbd.2016.02.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/21/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Sensory processing deficits are common in autism spectrum disorders, but the underlying mechanisms are unclear. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism. Electrophysiological responses in humans with FXS show reduced habituation with sound repetition and this deficit may underlie auditory hypersensitivity in FXS. Our previous study in Fmr1 knockout (KO) mice revealed an unusually long state of increased sound-driven excitability in auditory cortical neurons suggesting that cortical responses to repeated sounds may exhibit abnormal habituation as in humans with FXS. Here, we tested this prediction by comparing cortical event related potentials (ERP) recorded from wildtype (WT) and Fmr1 KO mice. We report a repetition-rate dependent reduction in habituation of N1 amplitude in Fmr1 KO mice and show that matrix metalloproteinase-9 (MMP-9), one of the known FMRP targets, contributes to the reduced ERP habituation. Our studies demonstrate a significant up-regulation of MMP-9 levels in the auditory cortex of adult Fmr1 KO mice, whereas a genetic deletion of Mmp-9 reverses ERP habituation deficits in Fmr1 KO mice. Although the N1 amplitude of Mmp-9/Fmr1 DKO recordings was larger than WT and KO recordings, the habituation of ERPs in Mmp-9/Fmr1 DKO mice is similar to WT mice implicating MMP-9 as a potential target for reversing sensory processing deficits in FXS. Together these data establish ERP habituation as a translation relevant, physiological pre-clinical marker of auditory processing deficits in FXS and suggest that abnormal MMP-9 regulation is a mechanism underlying auditory hypersensitivity in FXS. SIGNIFICANCE Fragile X Syndrome (FXS) is the leading known genetic cause of autism spectrum disorders. Individuals with FXS show symptoms of auditory hypersensitivity. These symptoms may arise due to sustained neural responses to repeated sounds, but the underlying mechanisms remain unclear. For the first time, this study shows deficits in habituation of neural responses to repeated sounds in the Fmr1 KO mice as seen in humans with FXS. We also report an abnormally high level of matrix metalloprotease-9 (MMP-9) in the auditory cortex of Fmr1 KO mice and that deletion of Mmp-9 from Fmr1 KO mice reverses habituation deficits. These data provide a translation relevant electrophysiological biomarker for sensory deficits in FXS and implicate MMP-9 as a target for drug discovery.
Collapse
|
249
|
Kim H, Lim CS, Kaang BK. Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder. Behav Brain Funct 2016; 12:3. [PMID: 26790724 PMCID: PMC4719705 DOI: 10.1186/s12993-016-0087-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a broad spectrum of neurodevelopmental disorders characterized by three central behavioral symptoms: impaired social interaction, impaired social communication, and restricted and repetitive behaviors. However, the symptoms are heterogeneous among patients and a number of ASD mouse models have been generated containing mutations that mimic the mutations found in human patients with ASD. Each mouse model was found to display a unique set of repetitive behaviors. In this review, we summarize the repetitive behaviors of the ASD mouse models and variations found in their neural mechanisms including molecular and electrophysiological features. We also propose potential neuronal mechanisms underlying these repetitive behaviors, focusing on the role of the cortico-basal ganglia-thalamic circuits and brain regions associated with both social and repetitive behaviors. Further understanding of molecular and circuitry mechanisms of the repetitive behaviors associated with ASD is necessary to aid the development of effective treatments for these disorders.
Collapse
Affiliation(s)
- Hyopil Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
250
|
Cramer NP, Xu X, F Haydar T, Galdzicki Z. Altered intrinsic and network properties of neocortical neurons in the Ts65Dn mouse model of Down syndrome. Physiol Rep 2015; 3:3/12/e12655. [PMID: 26702072 PMCID: PMC4760451 DOI: 10.14814/phy2.12655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022] Open
Abstract
All individuals with Down syndrome (DS) have a varying but significant degree of cognitive disability. Although hippocampal deficits clearly play an important role, behavioral studies also suggest that deficits within the neocortex contribute to somatosensory deficits and impaired cognition in DS. Using thalamocortical slices from the Ts65Dn mouse model of DS, we investigated the intrinsic and network properties of regular spiking neurons within layer 4 of the somatosensory cortex. In these neurons, the membrane capacitance was increased and specific membrane resistance decreased in slices from Ts65Dn mice. Examination of combined active and passive membrane properties suggests that trisomic layer 4 neurons are less excitable than those from euploid mice. The frequencies of excitatory and inhibitory spontaneous synaptic activities were also reduced in Ts65Dn neurons. With respect to network activity, spontaneous network oscillations (Up states) were shorter and less numerous in the neocortex from Ts65Dn mice when compared to euploid. Up states evoked by electrical stimulation of the ventrobasal nucleus (VBN) of the thalamus were similarly affected in Ts65Dn mice. Additionally, monosynaptic EPSCs and polysynaptic IPSCs evoked by VBN stimulation were significantly delayed in layer 4 regular spiking neurons from Ts65Dn mice. These results indicate that, in the Ts65Dn model of DS, the overall electrophysiological properties of neocortical neurons are altered leading to aberrant network activity within the neocortex. Similar changes in DS individuals may contribute to sensory and cognitive dysfunction and therefore may implicate new targets for cognitive therapies in this developmental disorder.
Collapse
Affiliation(s)
- Nathan P Cramer
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Xiufen Xu
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|