201
|
Abstract
Findings from the past 10 years have placed the glucagon-secreting pancreatic α-cell centre stage in the development of diabetes mellitus, a disease affecting almost one in every ten adults worldwide. Glucagon secretion is reduced in patients with type 1 diabetes mellitus, increasing the risk of insulin-induced hypoglycaemia, but is enhanced in type 2 diabetes mellitus, exacerbating the effects of diminished insulin release and action on blood levels of glucose. A better understanding of the mechanisms underlying these changes is therefore an important goal. RNA sequencing reveals that, despite their opposing roles in the control of blood levels of glucose, α-cells and β-cells have remarkably similar patterns of gene expression. This similarity might explain the fairly facile interconversion between these cells and the ability of the α-cell compartment to serve as a source of new β-cells in models of extreme β-cell loss that mimic type 1 diabetes mellitus. Emerging data suggest that GABA might facilitate this interconversion, whereas the amino acid glutamine serves as a liver-derived factor to promote α-cell replication and maintenance of α-cell mass. Here, we survey these developments and their therapeutic implications for patients with diabetes mellitus.
Collapse
Affiliation(s)
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
202
|
Brandt SJ, Müller TD, DiMarchi RD, Tschöp MH, Stemmer K. Peptide-based multi-agonists: a new paradigm in metabolic pharmacology. J Intern Med 2018; 284:581-602. [PMID: 30230640 DOI: 10.1111/joim.12837] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity and its comorbidities, such as type 2 diabetes, are pressing worldwide health concerns. Available anti-obesity treatments include weight loss pharmacotherapies and bariatric surgery. Whilst surgical interventions typically result in significant and sustained weight loss, available pharmacotherapies are far less effective, typically decreasing body weight by no more than 5-10%. An emerging class of multi-agonist drugs may eventually bridge this gap. This new class of specially tailored drugs hybridizes the amino acid sequences of key metabolic hormones into one single entity with enhanced potency and sustained action. Successful examples of this strategy include multi-agonist drugs targeting the receptors for glucagon-like peptide-1 (GLP-1), glucagon and the glucose-dependent insulinotropic polypeptide (GIP). Due to the simultaneous activity at several metabolically relevant receptors, these multi-agonists offer improved body weight loss and glucose tolerance relative to their constituent monotherapies. Further advancing this concept, chimeras were generated that covalently link nuclear acting hormones such as oestrogen, thyroid hormone (T3 ) or dexamethasone to peptide hormones such as GLP-1 or glucagon. The benefit of this strategy is to restrict the nuclear hormone action exclusively to cells expressing the peptide hormone receptor, thereby maximizing combinatorial metabolic efficacy of both drug constituents in the target cells whilst preventing the nuclear hormone cargo from entering and acting on cells devoid of the peptide hormone receptor, in which the nuclear hormone might have unwanted effects. Many of these multi-agonists are in preclinical and clinical development and may represent new and effective tools in the fight against obesity and its comorbidities.
Collapse
Affiliation(s)
- S J Brandt
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - R D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
203
|
Khare P, Mangal P, Baboota RK, Jagtap S, Kumar V, Singh DP, Boparai RK, Sharma SS, Khardori R, Bhadada SK, Kondepudi KK, Chopra K, Bishnoi M. Involvement of Glucagon in Preventive Effect of Menthol Against High Fat Diet Induced Obesity in Mice. Front Pharmacol 2018; 9:1244. [PMID: 30505271 PMCID: PMC6250823 DOI: 10.3389/fphar.2018.01244] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
Glucagon mediated mechanisms have been shown to play clinically significant role in energy expenditure. The present study was designed to understand whether pharmacological mimicking of cold using menthol (TRPM8 modulator) can induce glucagon-mediated energy expenditure to prevent weight gain and related complications. Acute oral and topical administration of TRPM8 agonists (menthol and icilin) increased serum glucagon concentration which was prevented by pre-treatment with AMTB, a TRPM8 blocker. Chronic administration of menthol (50 and 100 mg/kg/day for 12 weeks) to HFD fed animals prevented weight gain, insulin resistance, adipose tissue hypertrophy and triacylglycerol deposition in liver. These effects were not restricted to oral administration, but also observed upon the topical application of menthol (10% w/v). The metabolic alterations caused by menthol in liver and adipose tissue mirrored the known effects of glucagon, such as increased glycogenolysis and gluconeogenesis in the liver, and enhanced thermogenic activity of white and brown adipose tissue. Correlation analysis suggests a strong correlation between glucagon dependent changes and energy expenditure markers. Interestingly, in-vitro treatment of the serum of menthol treated mice increased energy expenditure markers in mature 3T3L1 adipocytes, which was prevented in the presence of non-competitive glucagon receptor antagonist, L-168,049, indicating that menthol-induced increase in serum glucagon is responsible for increase in energy expenditure phenotype. In conclusion, the present work provides evidence that glucagon plays an important role in the preventive effect of menthol against HFD-induced weight gain and related complications.
Collapse
Affiliation(s)
- Pragyanshu Khare
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India.,Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Priyanka Mangal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Ritesh K Baboota
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
| | - Sneha Jagtap
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Vijay Kumar
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
| | | | - Ravneet K Boparai
- Department of Biotechnology, Government College for Girls, Chandigarh, India
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Romesh Khardori
- Division of Endocrinology and Metabolism, The EVMS Sterling Centre of Diabetes and Endocrine Disorders, Department of Internal Medicine, East Virginia Medical School, Norfolk, VA, United States
| | - Sanjay K Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanthi K Kondepudi
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
| | - Kanwaljit Chopra
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
| |
Collapse
|
204
|
Kim T, Holleman CL, Nason S, Arble DM, Ottaway N, Chabenne J, Loyd C, Kim JA, Sandoval D, Drucker DJ, DiMarchi R, Perez-Tilve D, Habegger KM. Hepatic Glucagon Receptor Signaling Enhances Insulin-Stimulated Glucose Disposal in Rodents. Diabetes 2018; 67:2157-2166. [PMID: 30150304 PMCID: PMC6198333 DOI: 10.2337/db18-0068] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Abstract
Glucagon receptor (GCGR) agonists cause hyperglycemia but also weight loss. However, GCG-like peptide 1 receptor (GLP1R)/GCGR mixed agonists do not exhibit the diabetogenic effects often attributed to GCGR activity. Thus, we sought to investigate the effect of glucagon agonism on insulin action and glucose homeostasis. Acute GCGR agonism induced immediate hyperglycemia, followed by improved glucose tolerance and enhanced glucose-stimulated insulin secretion. Moreover, acute GCGR agonism improved insulin tolerance in a dose-dependent manner in both lean and obese mice. Improved insulin tolerance was independent of GLP1R, FGF21, and hepatic glycogenolysis. Moreover, we observed increased glucose infusion rate, disposal, uptake, and suppressed endogenous glucose production during euglycemic clamps. Mice treated with insulin and GCGR agonist had enhanced phosphorylation of hepatic AKT at Ser473; this effect was reproduced in isolated mouse primary hepatocytes and resulted in increased AKT kinase activity. These data reveal that GCGR agonism enhances glucose tolerance, in part, by augmenting insulin action, with implications for the use of GCGR agonism in therapeutic strategies for diabetes.
Collapse
Affiliation(s)
- Teayoun Kim
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Cassie L Holleman
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Shelly Nason
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Deanna M Arble
- Department of Biological Sciences, Marquette University, Milwaukee, WI
| | - Nickki Ottaway
- Metabolic Diseases Institute and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Christine Loyd
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jeong-A Kim
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Richard DiMarchi
- Novo Nordisk Research Center, Indianapolis, IN
- Department of Chemistry, Indiana University, Bloomington, IN
| | - Diego Perez-Tilve
- Metabolic Diseases Institute and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Cincinnati, Cincinnati, OH
| | - Kirk M Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
205
|
Seoane-Collazo P, Roa J, Rial-Pensado E, Liñares-Pose L, Beiroa D, Ruíz-Pino F, López-González T, Morgan DA, Pardavila JÁ, Sánchez-Tapia MJ, Martínez-Sánchez N, Contreras C, Fidalgo M, Diéguez C, Coppari R, Rahmouni K, Nogueiras R, Tena-Sempere M, López M. SF1-Specific AMPKα1 Deletion Protects Against Diet-Induced Obesity. Diabetes 2018; 67:2213-2226. [PMID: 30104247 PMCID: PMC6198345 DOI: 10.2337/db17-1538] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 07/27/2018] [Indexed: 01/09/2023]
Abstract
AMPK is a cellular gauge that is activated under conditions of low energy, increasing energy production and reducing energy waste. Current evidence links hypothalamic AMPK with the central regulation of energy balance. However, it is unclear whether targeting hypothalamic AMPK has beneficial effects in obesity. Here, we show that genetic inhibition of AMPK in the ventromedial nucleus of the hypothalamus (VMH) protects against high-fat diet (HFD)-induced obesity by increasing brown adipose tissue (BAT) thermogenesis and subsequently energy expenditure. Notably, this effect depends upon the AMPKα1 isoform in steroidogenic factor 1 (SF1) neurons of the VMH, since mice bearing selective ablation of AMPKα1 in SF1 neurons display resistance to diet-induced obesity, increased BAT thermogenesis, browning of white adipose tissue, and improved glucose and lipid homeostasis. Overall, our findings point to hypothalamic AMPK in specific neuronal populations as a potential druggable target for the treatment of obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Juan Roa
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eva Rial-Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Laura Liñares-Pose
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Daniel Beiroa
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Francisco Ruíz-Pino
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Tania López-González
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA
| | - José Ángel Pardavila
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - María Jesús Sánchez-Tapia
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Noelia Martínez-Sánchez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel Fidalgo
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain
- FiDiPro Program, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| |
Collapse
|
206
|
Araujo TR, da Silva JA, Vettorazzi JF, Freitas IN, Lubaczeuski C, Magalhães EA, Silva JN, Ribeiro ES, Boschero AC, Carneiro EM, Bonfleur ML, Ribeiro RA. Glucose intolerance in monosodium glutamate obesity is linked to hyperglucagonemia and insulin resistance in α cells. J Cell Physiol 2018; 234:7019-7031. [DOI: 10.1002/jcp.27455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Thiago R. Araujo
- Campus UFRJ‐Macaé, Universidade Federal do R io de Janeiro Macaé Brazil
| | - Joel A. da Silva
- Campus UFRJ‐Macaé, Universidade Federal do R io de Janeiro Macaé Brazil
| | - Jean F. Vettorazzi
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | | | - Camila Lubaczeuski
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | | | - Juliana N. Silva
- Campus UFRJ‐Macaé, Universidade Federal do R io de Janeiro Macaé Brazil
| | - Elane S. Ribeiro
- Campus UFRJ‐Macaé, Universidade Federal do R io de Janeiro Macaé Brazil
| | - Antonio C. Boschero
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | - Everardo M. Carneiro
- Departamento de Biologia Estrutural e Funcional Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | - Maria L. Bonfleur
- Centro de Ciências Biológicas e da Saúde Universidade Estadual do Oeste do Paraná (UNIOESTE) Cascavel Brazil
| | | |
Collapse
|
207
|
Capozzi ME, DiMarchi RD, Tschöp MH, Finan B, Campbell JE. Targeting the Incretin/Glucagon System With Triagonists to Treat Diabetes. Endocr Rev 2018; 39:719-738. [PMID: 29905825 PMCID: PMC7263842 DOI: 10.1210/er.2018-00117] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
Abstract
Glucagonlike peptide 1 (GLP-1) receptor agonists have been efficacious for the treatment of type 2 diabetes due to their ability to reduce weight and attenuate hyperglycemia. However, the activity of glucagonlike peptide 1 receptor-directed strategies is submaximal, and the only potent, sustainable treatment of metabolic dysfunction is bariatric surgery, necessitating the development of unique therapeutics. GLP-1 is structurally related to glucagon and glucose-dependent insulinotropic peptide (GIP), allowing for the development of intermixed, unimolecular peptides with activity at each of their respective receptors. In this review, we discuss the range of tissue targets and added benefits afforded by the inclusion of each of GIP and glucagon. We discuss considerations for the development of sequence-intermixed dual agonists and triagonists, highlighting the importance of evaluating balanced signaling at the targeted receptors. Several multireceptor agonist peptides have been developed and evaluated, and the key preclinical and clinical findings are reviewed in detail. The biological activity of these multireceptor agonists are founded in the success of GLP-1-directed strategies; by including GIP and glucagon components, these multireceptor agonists are thought to enhance GLP-1's activities by broadening the tissue targets and synergizing at tissues that express multiple receptors, such at the brain and pancreatic islet β cells. The development and utility of balanced, unimolecular multireceptor agonists provide both a useful tool for querying the actions of incretins and glucagon during metabolic disease and a unique drug class to treat type 2 diabetes with unprecedented efficacy.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana
- Novo Nordisk Research Center, Indianapolis, Indiana
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Brian Finan
- Novo Nordisk Research Center, Indianapolis, Indiana
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| |
Collapse
|
208
|
Ribeiro RA, Bonfleur ML, Batista TM, Borck PC, Carneiro EM. Regulation of glucose and lipid metabolism by the pancreatic and extra-pancreatic actions of taurine. Amino Acids 2018; 50:1511-1524. [PMID: 30206707 DOI: 10.1007/s00726-018-2650-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
The beneficial actions of L-taurine (Tau) against glucose intolerance, obesity, type 2 diabetes (T2D), and non-alcoholic fat liver disease (NAFLD) have been linked to its antioxidant and anti-inflammatory effects, which ameliorate tissue insulin sensitivity. Importantly, there are several lines of evidence that indicate a direct action of Tau on the endocrine pancreas to regulate the secretion and paracrine actions of insulin, glucagon, and somatostatin. Furthermore, Tau can also ameliorate glucose metabolism through the enhancement of insulin signaling. However, some of the benefits of Tau upon intermediary metabolism may manifest via considerable antagonism of the action of insulin. Therefore, this review discusses the mechanisms of action by which Tau may regulate endocrine pancreatic morphofunction, and glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Rosane A Ribeiro
- NUPEM, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Avenida São José do Barreto, 764, Macaé, RJ, CEP: 27965-045, Brazil.
| | - Maria L Bonfleur
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, PR, Brazil
| | - Thiago M Batista
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Patricia C Borck
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Everardo M Carneiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
209
|
Niwano F, Hiromine Y, Noso S, Babaya N, Ito H, Yasutake S, Matsumoto I, Takeyama Y, Kawabata Y, Ikegami H. Insulin deficiency with and without glucagon: A comparative study between total pancreatectomy and type 1 diabetes. J Diabetes Investig 2018; 9:1084-1090. [PMID: 29288524 PMCID: PMC6123030 DOI: 10.1111/jdi.12799] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/18/2017] [Accepted: 12/24/2017] [Indexed: 12/24/2022] Open
Abstract
AIMS/INTRODUCTION Patients with a total pancreatectomy and type 1 diabetes are similar in regard to absolute insulin deficiency, but different in regard to glucagon, providing a unique opportunity to study the contribution of glucagon to glucose metabolism in an insulin-dependent state. The aim of the present study was to investigate the contribution of glucagon to glucose homeostasis in complete insulin deficiency in vivo. METHODS A total of 38 individuals with a complete lack of endogenous insulin (fasting C-peptide <0.0066 nmol/L) and whose glycemic control was optimized with an insulin pump during hospitalization were retrospectively studied. The basal insulin requirement, time-to-time adjustment of the basal insulin infusion rate, prandial insulin requirement and fasting plasma glucagon were compared between patients with a total pancreatectomy (n = 10) and those with type 1 diabetes (n = 28) after achievement of optimal glycemic control. RESULTS Total daily insulin (P = 0.03) and basal insulin (P = 0.000006), but not prandial insulin requirements, were significantly lower in total pancreatectomy patients than in type 1 diabetes patients. The basal percentage (basal insulin/total daily insulin) was also significantly lower in total pancreatectomy patients than in type 1 diabetes patients (15.8 ± 7.8 vs 32.9 ± 10.1%, P = 0.00003). An increase in the insulin infusion rate early in the morning was not necessary in most patients with a pancreatectomy. The fasting plasma glucagon concentration was significantly lower in total pancreatectomy patients than in type 1 diabetes patients (P = 0.00007), and was positively correlated with the basal insulin requirement (P = 0.038). CONCLUSIONS The difference in insulin requirements between total pancreatectomy and type 1 diabetes patients suggests a contribution of glucagon to the basal insulin requirement and dawn phenomenon.
Collapse
Affiliation(s)
- Fumimaru Niwano
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Yoshihisa Hiromine
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Shinsuke Noso
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Naru Babaya
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Hiroyuki Ito
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Sara Yasutake
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Ippei Matsumoto
- Department of SurgeryKindai University Faculty of MedicineOsakaJapan
| | | | - Yumiko Kawabata
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| | - Hiroshi Ikegami
- Department of Endocrinology, Metabolism and DiabetesFaculty of MedicineKindai UniversityOsakaJapan
| |
Collapse
|
210
|
Al-Massadi O, Müller T, Tschöp M, Diéguez C, Nogueiras R. Ghrelin and LEAP-2: Rivals in Energy Metabolism. Trends Pharmacol Sci 2018; 39:685-694. [DOI: 10.1016/j.tips.2018.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/13/2023]
|
211
|
Elvert R, Herling AW, Bossart M, Weiss T, Zhang B, Wenski P, Wandschneider J, Kleutsch S, Butty U, Kannt A, Wagner M, Haack T, Evers A, Dudda A, Lorenz M, Keil S, Larsen PJ. Running on mixed fuel-dual agonistic approach of GLP-1 and GCG receptors leads to beneficial impact on body weight and blood glucose control: A comparative study between mice and non-human primates. Diabetes Obes Metab 2018; 20:1836-1851. [PMID: 29938884 PMCID: PMC6055720 DOI: 10.1111/dom.13212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/11/2017] [Accepted: 12/25/2017] [Indexed: 12/17/2022]
Abstract
AIM We performed acute and chronic studies in healthy and diet-induced obese animals using mouse-specific or monkey-specific dual GLP-1R/GCGR agonists to investigate their effects on food intake, body weight, blood glucose control and insulin secretion. The selective GLP-1R agonist liraglutide was used as comparator. METHODS The mouse-specific dual agonist and liraglutide were tested in lean wild type, GLP-1R knockout and diet-induced obese mice at different doses. A chronic study was performed in DIO mice to investigate the effect on body weight, food consumption and total energy expenditure (TEE) in obese and diabetic monkeys with a focus on body weight and energy intake. RESULTS The mouse-specific dual agonist and liraglutide similarly affected glycaemic control. A higher loss in body weight was measured in dual agonist-treated obese mice. The dual agonist significantly enhanced plasma glucose excursion in overnight fed GLP-1R-/- mice, probably reflecting a potent GCGR agonist activity. It increased TEE and enhanced fat and carbohydrate oxidation, while liraglutide produced no effect on TEE. In obese and diabetic monkeys, treatment with the monkey-specific dual agonist reduced total energy intake to 60%-70% of baseline TEI during chronic treatment. A decrease in body weight and significant improvement in glucose tolerance was observed. CONCLUSIONS In DIO mice and non-human primates, dual agonists elicited robust glycaemic control, similar to the marketed GLP-1R agonist, while eliciting greater effects on body weight. Results from DIO mice suggest that the increase in TEE is caused not only by increased fat oxidation but also by an increase in carbohydrate oxidation.
Collapse
MESH Headings
- Animals
- Animals, Outbred Strains
- Appetite Depressants/administration & dosage
- Appetite Depressants/adverse effects
- Appetite Depressants/therapeutic use
- Body Weight/drug effects
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Dose-Response Relationship, Drug
- Drug Therapy, Combination/adverse effects
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Female
- Glucagon-Like Peptide-1 Receptor/agonists
- Glucagon-Like Peptide-1 Receptor/genetics
- Glucagon-Like Peptide-1 Receptor/metabolism
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/therapeutic use
- Insulin Secretion/drug effects
- Macaca fascicularis
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/blood
- Obesity/drug therapy
- Obesity/etiology
- Obesity/metabolism
- Random Allocation
- Receptors, Glucagon/agonists
- Receptors, Glucagon/metabolism
Collapse
Affiliation(s)
- Ralf Elvert
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
| | | | | | - Tilo Weiss
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
| | | | | | | | | | - Uwe Butty
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
| | - Aimo Kannt
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Brandt SJ, Kleinert M, Tschöp MH, Müller TD. Are peptide conjugates the golden therapy against obesity? J Endocrinol 2018; 238:R109-R119. [PMID: 29848610 PMCID: PMC6026923 DOI: 10.1530/joe-18-0264] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022]
Abstract
Obesity is a worldwide pandemic, which can be fatal for the most extremely affected individuals. Lifestyle interventions such as diet and exercise are largely ineffective and current anti-obesity medications offer little in the way of significant or sustained weight loss. Bariatric surgery is effective, but largely restricted to only a small subset of extremely obese patients. While the hormonal factors mediating sustained weight loss and remission of diabetes by bariatric surgery remain elusive, a new class of polypharmacological drugs shows potential to shrink the gap in efficacy between a surgery and pharmacology. In essence, this new class of drugs combines the beneficial effects of several independent hormones into a single entity, thereby combining their metabolic efficacy to improve systems metabolism. Such unimolecular drugs include single molecules with agonism at the receptors for glucagon, glucagon-like peptide 1 and the glucose-dependent insulinotropic polypeptide. In preclinical studies, these specially tailored multiagonists outperform both their mono-agonist components and current best in class anti-obesity medications. While clinical trials and vigorous safety analyses are ongoing, these drugs are poised to have a transformative effect in anti-obesity therapy and might hopefully lead the way to a new era in weight-loss pharmacology.
Collapse
Affiliation(s)
- S J Brandt
- Institute for Diabetes and ObesityHelmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD)Neuherberg, Germany
| | - M Kleinert
- Institute for Diabetes and ObesityHelmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD)Neuherberg, Germany
| | - M H Tschöp
- Institute for Diabetes and ObesityHelmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD)Neuherberg, Germany
- Division of Metabolic DiseasesTechnische Universität, Munich, Germany
| | - T D Müller
- Institute for Diabetes and ObesityHelmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD)Neuherberg, Germany
| |
Collapse
|
213
|
Suire CN, Lane S, Leissring MA. Development and Characterization of Quantitative, High-Throughput-Compatible Assays for Proteolytic Degradation of Glucagon. SLAS DISCOVERY 2018; 23:1060-1069. [PMID: 29995452 DOI: 10.1177/2472555218786509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glucagon is a vital peptide hormone involved in the regulation of blood sugar under fasting conditions. Although the processes underlying glucagon production and secretion are well understood, far less is known about its degradation, which could conceivably be manipulated pharmacologically for therapeutic benefit. We describe here the development of novel assays for glucagon degradation, based on fluoresceinated and biotinylated glucagon (FBG) labeled at the N- and C-termini, respectively. Proteolysis at any peptide bond within FBG separates the fluorescent label from the biotin tag, which can be quantified in multiple ways. In one method requiring no specialized equipment, intact FBG is separated from the cleaved fluoresceinated fragments using NeutrAvidin agarose beads, and hydrolysis is quantified by fluorescence. In an alternative, high-throughput-compatible method, the degree of hydrolysis is quantified using fluorescence polarization after addition of unmodified avidin. Using a known glucagon protease, we confirm that FBG is cleaved at similar sites as unmodified glucagon and use both methods to quantify the kinetic parameters of FBG degradation. We show further that the fluorescence polarization-based assay performs exceptionally well ( Z'-factor values >0.80) in a high-throughput, mix-and-measure format.
Collapse
Affiliation(s)
- Caitlin N Suire
- 1 Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Shelley Lane
- 1 Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Malcolm A Leissring
- 1 Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
214
|
Optimization of peptide-based polyagonists for treatment of diabetes and obesity. Bioorg Med Chem 2018; 26:2873-2881. [DOI: 10.1016/j.bmc.2017.10.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022]
|
215
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
216
|
Zapata RC, Singh A, Ajdari NM, Chelikani PK. Dietary Tryptophan Restriction Dose-Dependently Modulates Energy Balance, Gut Hormones, and Microbiota in Obesity-Prone Rats. Obesity (Silver Spring) 2018; 26:730-739. [PMID: 29504260 DOI: 10.1002/oby.22136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To determine the effects of graded dietary restriction of tryptophan on food intake, energy expenditure, body composition, gut hormones, and select fecal bacterial populations in obesity-prone rats. METHODS Obesity-prone rats were randomized to isocaloric diets with varying degrees of tryptophan restriction: control (100% requirements), 70% tryptophan (70TRP), 40% tryptophan (40TRP), or 10% tryptophan (10TRP) for 21 days. The sympathetic system was challenged with a subcutaneous injection of propranolol on days 15 to 17. Measurements included food intake, energy expenditure, body composition, metabolic hormones, and fecal concentrations of select bacteria. RESULTS Moderate tryptophan restriction (70TRP) induced thermogenesis without altering body composition, whereas severe degrees of restriction (40TRP, 10TRP) produced profound hypophagia and decreased energy expenditure and body weight. The thermogenic effects of moderate tryptophan restriction were sympathetically mediated. Severe tryptophan restriction decreased fasting circulating concentrations of glucose, insulin, C-peptide, and leptin, but increased glucagon, pancreatic polypeptide, and glucagon-like peptide-1. Severe tryptophan restriction decreased fecal concentrations of Enterobacteriaceae, Lactobacillus, Bacteroides, and Clostridium coccoides while increasing Roseburia groups. CONCLUSIONS Our findings demonstrate that dietary tryptophan restriction dose-dependently modulates energy balance, with severe restriction causing hypophagia and weight loss and moderate restriction promoting sympathetically driven thermogenesis as well as concurrent changes in gut microbiota and hormones.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Nadia M Ajdari
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
- Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
217
|
Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, Kushner RF, Daniels SR, Wadden TA, Tsai AG, Hu FB, Jakicic JM, Ryan DH, Wolfe BM, Inge TH. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr Rev 2018; 39:79-132. [PMID: 29518206 PMCID: PMC5888222 DOI: 10.1210/er.2017-00253] [Citation(s) in RCA: 472] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022]
Abstract
The prevalence of obesity, measured by body mass index, has risen to unacceptable levels in both men and women in the United States and worldwide with resultant hazardous health implications. Genetic, environmental, and behavioral factors influence the development of obesity, and both the general public and health professionals stigmatize those who suffer from the disease. Obesity is associated with and contributes to a shortened life span, type 2 diabetes mellitus, cardiovascular disease, some cancers, kidney disease, obstructive sleep apnea, gout, osteoarthritis, and hepatobiliary disease, among others. Weight loss reduces all of these diseases in a dose-related manner-the more weight lost, the better the outcome. The phenotype of "medically healthy obesity" appears to be a transient state that progresses over time to an unhealthy phenotype, especially in children and adolescents. Weight loss is best achieved by reducing energy intake and increasing energy expenditure. Programs that are effective for weight loss include peer-reviewed and approved lifestyle modification programs, diets, commercial weight-loss programs, exercise programs, medications, and surgery. Over-the-counter herbal preparations that some patients use to treat obesity have limited, if any, data documenting their efficacy or safety, and there are few regulatory requirements. Weight regain is expected in all patients, especially when treatment is discontinued. When making treatment decisions, clinicians should consider body fat distribution and individual health risks in addition to body mass index.
Collapse
Affiliation(s)
- George A Bray
- Department of Clinical Obesity, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - William E Heisel
- Institute of Health Metrics and Evaluation University of Washington, Seattle, Washington
| | - Ashkan Afshin
- Institute of Health Metrics and Evaluation University of Washington, Seattle, Washington
| | | | - William H Dietz
- Redstone Global Center for Prevention and Wellness, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia
| | - Michael Long
- Redstone Global Center for Prevention and Wellness, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia
| | | | - Stephen R Daniels
- Department of Pediatrics, University of Colorado Children Hospital, Denver, Colorado
| | - Thomas A Wadden
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Adam G Tsai
- Kaiser Permanente Colorado, Denver, Colorado
| | - Frank B Hu
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Donna H Ryan
- Department of Clinical Obesity, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Bruce M Wolfe
- Oregon Health and Science University, Portland, Oregon
| | - Thomas H Inge
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
- Children’s Hospital Colorado, Aurora, Colorado
| |
Collapse
|
218
|
Sloop KW, Emmerson PJ, Statnick MA, Willard FS. The current state of GPCR-based drug discovery to treat metabolic disease. Br J Pharmacol 2018; 175:4060-4071. [PMID: 29394497 DOI: 10.1111/bph.14157] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/14/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
One approach of modern drug discovery is to identify agents that enhance or diminish signal transduction cascades in various cell types and tissues by modulating the activity of GPCRs. This strategy has resulted in the development of new medicines to treat many conditions, including cardiovascular disease, psychiatric disorders, HIV/AIDS, certain forms of cancer and Type 2 diabetes mellitus (T2DM). These successes justify further pursuit of GPCRs as disease targets and provide key learning that should help guide identifying future therapeutic agents. This report reviews the current landscape of GPCR drug discovery with emphasis on efforts aimed at developing new molecules for treating T2DM and obesity. We analyse historical efforts to generate GPCR-based drugs to treat metabolic disease in terms of causal factors leading to success and failure in this endeavour. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Kyle W Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Paul J Emmerson
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Michael A Statnick
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Francis S Willard
- Quantitative Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
219
|
Pedersen C, Porsgaard T, Thomsen M, Rosenkilde MM, Roed NK. Sustained effect of glucagon on body weight and blood glucose: Assessed by continuous glucose monitoring in diabetic rats. PLoS One 2018; 13:e0194468. [PMID: 29558502 PMCID: PMC5860770 DOI: 10.1371/journal.pone.0194468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/02/2018] [Indexed: 11/18/2022] Open
Abstract
Insulin is a vital part of diabetes treatment, whereas glucagon is primarily used to treat insulin-induced hypoglycemia. However, glucagon is suggested to have a central role in the regulation of body weight, which would be beneficial for diabetic patients. Since the glucagon effect on blood glucose is known to be transient, it is relevant to investigate the pharmacodynamics of glucagon after repeated dosing. In the present study, we used telemetry to continuously measure blood glucose in streptozotocin induced diabetic Sprague-Dawley rats. This allowed for a more detailed analysis of glucose regulation compared to intermittent blood sampling. In particular, we evaluated the blood glucose-lowering effect of different insulin doses alone, and in combination with a long acting glucagon analog (LAG). We showed how the effect of the LAG accumulated and persisted over time. Furthermore, we found that addition of the LAG decreased body weight without affecting food intake. In a subsequent study, we focused on the glucagon effect on body weight and food intake during equal glycemic control. In order to obtain comparable maximum blood glucose lowering effect to insulin alone, the insulin dose had to be increased four times in combination with 1 nmol/kg of the LAG. In this set-up the LAG prevented further increase in body weight despite the four times higher insulin-dose. However, the body composition was changed. The insulin group increased both lean and fat mass, whereas the group receiving four times insulin in combination with the LAG only significantly increased the fat mass. No differences were observed in food intake, suggesting a direct effect on energy expenditure by glucagon. Surprisingly, we observed decreased levels of FGF21 in plasma compared to insulin treatment alone. With the combination of insulin and the LAG the blood glucose-lowering effect of insulin was prolonged, which could potentially be beneficial in diabetes treatment.
Collapse
Affiliation(s)
- Christina Pedersen
- Department of GLP-1 & T2D Biology, Novo Nordisk A/S, Maaloev, Denmark
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Trine Porsgaard
- Department of Insulin Pharmacology, Novo Nordisk A/S, Maaloev, Denmark
| | - Maria Thomsen
- Department of Modelling, Novo Nordisk A/S, Maaloev, Denmark
| | - Mette Marie Rosenkilde
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
220
|
Wewer Albrechtsen NJ. Glucagon receptor signaling in metabolic diseases. Peptides 2018; 100:42-47. [PMID: 29412830 DOI: 10.1016/j.peptides.2017.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 01/25/2023]
Abstract
Glucagon is a peptide hormone secreted from the pancreatic alpha cells in response to hypoglycemia but in some patients with type 2 diabetes a paradoxical hypersecretion results from the intake of glucose. In rodent, antagonizing the actions of glucagon have been shown to be effective for lowering blood glucose levels and this has recently have been solidified in patients with type 2 diabetes. Although the reported increases of liver enzymes, hyperglucagonemia, and alpha cell hyperplasia resulting from glucagon receptor antagonism may potentially limit the clinical applicability of glucagon receptor antagonists, they may serve as an instrumental toolbox for delineating the physiology of glucagon. Agonizing glucagon receptor signaling may be relevant, in particular when combined with glucagon-like peptide-1 receptor analogues in the perspective of body weight lowering therapy. Here, we will focus on new conceptual aspects of glucagon biology and how this may led to new diagnostics and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, and the Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
221
|
Nunez DJ, D'Alessio D. Glucagon receptor as a drug target: A witches' brew of eye of newt (peptides) and toe of frog (receptors). Diabetes Obes Metab 2018; 20:233-237. [PMID: 28842950 DOI: 10.1111/dom.13102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022]
MESH Headings
- Animals
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Drugs, Investigational/adverse effects
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Glucagon-Like Peptide-1 Receptor/agonists
- Glucagon-Like Peptide-1 Receptor/metabolism
- Humans
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Molecular Targeted Therapy
- Receptors, Glucagon/agonists
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Derek J Nunez
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - David D'Alessio
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
222
|
Brandt SJ, Götz A, Tschöp MH, Müller TD. Gut hormone polyagonists for the treatment of type 2 diabetes. Peptides 2018; 100:190-201. [PMID: 29412819 PMCID: PMC5805859 DOI: 10.1016/j.peptides.2017.12.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022]
Abstract
Chemical derivatives of the gut-derived peptide hormone glucagon-like peptide 1 (GLP-1) are among the best-in-class pharmacotherapies to treat obesity and type 2 diabetes. However, GLP-1 analogs have modest weight lowering capacity, in the range of 5-10%, and the therapeutic window is hampered by dose-dependent side effects. Over the last few years, a new concept has emerged: combining the beneficial effects of several key metabolic hormones into a single molecular entity. Several unimolecular GLP-1-based polyagonists have shown superior metabolic action compared to GLP-1 monotherapies. In this review article, we highlight the history of polyagonists targeting the receptors for GLP-1, GIP and glucagon, and discuss recent progress in expanding of this concept to now allow targeted delivery of nuclear hormones via GLP-1 and other gut hormones, as a novel approach towards more personalized pharmacotherapies.
Collapse
Affiliation(s)
- Sara J Brandt
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748 Garching, Germany
| | - Anna Götz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748 Garching, Germany; Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany; Institute for Diabetes und Regeneration, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748, Garching, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748 Garching, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748 Garching, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
223
|
Holst JJ, Albrechtsen NJW, Gabe MBN, Rosenkilde MM. Oxyntomodulin: Actions and role in diabetes. Peptides 2018; 100:48-53. [PMID: 29412831 DOI: 10.1016/j.peptides.2017.09.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Abstract
Oxyntomodulin is a product of the glucagon precursor, proglucagon, produced and released from the endocrine L-cells of the gut after enzymatic processing by the precursor prohormone convertase 1/3. It corresponds to the proglucagon sequence 33-69 and thus contains the entire glucagon sequence plus a C-terminal octapeptide, comprising in total 37 amino acids. As might have been expected, it has glucagon-like bioactivity, but also and more surprisingly also activates the receptor for GLP-1. This has given the molecule an interesting status as a glucagon-GLP-1 co-agonist, which is currently attracting considerable interest for its potential in the treatment of diabetes and obesity. Here, we provide an update on oxyntomodulin with a focus on its potential role in metabolic diseases.
Collapse
Affiliation(s)
- Jens J Holst
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Buur Nordskov Gabe
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences & Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
224
|
Hædersdal S, Lund A, Knop FK, Vilsbøll T. The Role of Glucagon in the Pathophysiology and Treatment of Type 2 Diabetes. Mayo Clin Proc 2018; 93:217-239. [PMID: 29307553 DOI: 10.1016/j.mayocp.2017.12.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes is a disease involving both inadequate insulin levels and increased glucagon levels. While glucagon and insulin work together to achieve optimal plasma glucose concentrations in healthy individuals, the usual regulatory balance between these 2 critical pancreatic hormones is awry in patients with diabetes. Although clinical discussion often focuses on the role of insulin, glucagon is equally important in understanding type 2 diabetes. Furthermore, an awareness of the role of glucagon is essential to appreciate differences in the mechanisms of action of various classes of glucose-lowering therapies. Newer drug classes such as dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 receptor agonists improve glycemic control, in part, by affecting glucagon levels. This review provides an overview of the effect of glucose-lowering therapies on glucagon on the basis of an extensive PubMed literature search to identify clinical studies of glucose-lowering therapies in type 2 diabetes that included assessment of glucagon. Clinical practice currently benefits from available therapies that impact the glucagon regulatory pathway. As clinicians look to the future, improved treatment strategies are likely to emerge that will either use currently available therapies whose mechanisms of action complement each other or take advantage of new therapies based on an improved understanding of glucagon pathophysiology.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Asger Lund
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Steno Diabetes Center Copenhagen, University of Copenhagen, Gentofte, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
225
|
Mulvihill EE. Dipeptidyl peptidase inhibitor therapy in type 2 diabetes: Control of the incretin axis and regulation of postprandial glucose and lipid metabolism. Peptides 2018; 100:158-164. [PMID: 29412815 DOI: 10.1016/j.peptides.2017.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a widely expressed, serine protease which regulates the bioactivity of many peptides through cleavage and inactivation including the incretin hormones, glucagon like peptide -1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP). Inhibitors of DPP4 are used therapeutically to treat patients with Type 2 Diabetes Mellitus (T2DM) as they potentiate incretin action to regulate islet hormone secretion and improve glycemia and post-prandial lipid excursions. The widespread clinical use of DPP4 inhibitors has increased interest in the molecular mechanisms by which these drugs mediate their beneficial effects. Traditionally, focus has remained on inhibiting the catalytic activity of DPP4 within the plasma compartment, however evidence is emerging on the importance of inactivation of membrane-bound DPP4 in selective tissue beds to potentiate local hormone gradients. Here we review the recent advances in identifying the cellular sources of both circulating and membrane-bound DPP4 important for cleavage of the incretin hormones and regulation of glucose and lipoprotein metabolism.
Collapse
Affiliation(s)
- Erin E Mulvihill
- University of Ottawa Heart Institute, University of Ottawa, Department of Biochemistry, Microbiology and Immunology, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada.
| |
Collapse
|
226
|
Seghieri M, Christensen AS, Andersen A, Solini A, Knop FK, Vilsbøll T. Future Perspectives on GLP-1 Receptor Agonists and GLP-1/glucagon Receptor Co-agonists in the Treatment of NAFLD. Front Endocrinol (Lausanne) 2018; 9:649. [PMID: 30459715 PMCID: PMC6232120 DOI: 10.3389/fendo.2018.00649] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
Along the obesity pandemic, the prevalence of non-alcoholic fatty liver disease (NAFLD), often regarded as the hepatic manifestation of the metabolic syndrome, increases worldwide representing now the prevalent liver disease in western countries. No pharmacotherapy is approved for the treatment of NAFLD and, currently, the cornerstone treatment is lifestyle modifications focusing on bodyweight loss, notoriously difficult to obtain and even more difficult to maintain. Thus, novel therapeutic approaches are highly demanded. Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) are approved for the treatment of type 2 diabetes and obesity. They exert their body weight-lowering effect by reducing satiety and food intake. GLP-1RAs have also been shown to reduce liver inflammation and fibrosis. Furthermore, glucagon receptor agonism is being investigated for the treatment of NAFLD due to its appetite and food intake-reducing effects, as well as its ability to increase lipid oxidation and thermogenesis. Recent studies suggest that glucagon receptor signaling is disrupted in NAFLD, indicating that supra-physiological glucagon receptor agonism might represent a new NAFLD treatment target. The present review provides (1) an overview in the pathophysiology of NAFLD, including the potential involvement of GLP-1 and glucagon, (2) an introduction to the currently available GLP-1RAs and (3) outlines the potential of emerging GLP-1RAs and GLP-1/glucagon receptor co-agonists in the treatment of NAFLD.
Collapse
Affiliation(s)
- Marta Seghieri
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alexander S. Christensen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Andersen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Filip K. Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Tina Vilsbøll
| |
Collapse
|
227
|
Scheen AJ, Paquot N, Lefèbvre PJ. Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes. Expert Opin Investig Drugs 2017; 26:1373-1389. [PMID: 29052441 DOI: 10.1080/13543784.2017.1395020] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite type 2 diabetes (T2D) being recognized as a bihormonal pancreatic disease, current therapies are mainly focusing on insulin, while targeting glucagon has been long dismissed. However, glucagon receptor (GCGr) antagonists are currently investigated in clinical trials. Area covered: Following a brief description of the rationale for antagonizing GCGr in T2D, lessons from GCGr knock-out mice and pharmacological means to antagonize GCGr, a detailed description of the main results obtained with GCGr antagonists in Phase I-II clinical trials is provided. The development of several small molecules has been discontinued, while new ones are currently considered as well as innovative approaches such as monoclonal antibodies or antisense oligonucleotides inhibiting GCGr gene expression. Their potential benefits but also limitations are discussed. Expert opinion: The proof-of-concept that antagonizing GCGr improves glucose control in T2D has been confirmed in humans. Nevertheless, some adverse events led to stopping the development of some of these GCGr antagonists. New approaches seem to have a better benefit/risk balance, although none has progressed to Phase III clinical trials so far. Pharmacotherapy of T2D is becoming a highly competitive field so that GCGr antagonists should provide clear advantages over numerous existing glucose-lowering medications before eventually reaching clinical practice.
Collapse
Affiliation(s)
- André J Scheen
- a Division of Clinical Pharmacology , Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Belgium.,b Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine , CHU , Liège , Belgium
| | - Nicolas Paquot
- b Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine , CHU , Liège , Belgium
| | - Pierre J Lefèbvre
- b Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine , CHU , Liège , Belgium
| |
Collapse
|
228
|
Caixeta LS, Giesy SL, Krumm CS, Perfield JW, Butterfield A, Schoenberg KM, Beitz DC, Boisclair YR. Effect of circulating glucagon and free fatty acids on hepatic FGF21 production in dairy cows. Am J Physiol Regul Integr Comp Physiol 2017; 313:R526-R534. [PMID: 28794103 DOI: 10.1152/ajpregu.00197.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 01/12/2023]
Abstract
Modern dairy cows meet the energy demand of early lactation by calling on hormonally driven mechanisms to increase the use of lipid reserves. In this context, we recently reported that fibroblast growth factor-21 (FGF21), a hormone required for efficient use of lipid reserves in rodents, is upregulated in periparturient dairy cows. Increased plasma FGF21 in early lactation coincides with elevated circulating concentrations of glucagon (GCG) and nonesterified fatty acids (NEFA). To assess the relative contribution of these factors in regulating FGF21, two experiments were performed in energy-sufficient, nonpregnant, nonlactating dairy cows. In the first study, cows were injected with saline or GCG every 8 h over a 72-h period. GCG increased hepatic FGF21 mRNA by an average of fivefold over matched controls but had no effect on plasma FGF21. In the second study, cows were infused and injected with saline, infused with Intralipid and injected with saline, or infused with Intralipid and injected with GCG. Infusions and injections were administered intravenously over 16 h and subcutaneously every 8 h, respectively. Intralipid infusion increased plasma NEFA from 92 to 550 µM within 3 h and increased plasma FGF21 from 1.3 to >11 ng/ml 6 h later; FGF21 mRNA increased by 34-fold in liver but remained invariant in adipose tissue. GCG injections during the Intralipid infusion had no additional effects on plasma NEFA, liver FGF21 mRNA, or plasma FGF21. These data implicate plasma NEFA as a key factor triggering hepatic production and increased circulating concentrations of FGF21 in early lactation.
Collapse
Affiliation(s)
| | - Sarah L Giesy
- Department of Animal Science, Cornell University, Ithaca, New York
| | | | - James W Perfield
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and
| | - Anthony Butterfield
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and
| | | | - Donald C Beitz
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Yves R Boisclair
- Department of Animal Science, Cornell University, Ithaca, New York;
| |
Collapse
|
229
|
Tschöp M, DiMarchi R. Single-Molecule Combinatorial Therapeutics for Treating Obesity and Diabetes. Diabetes 2017; 66:1766-1769. [PMID: 28603138 DOI: 10.2337/dbi16-0068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022]
Affiliation(s)
- Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, and German Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany, and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, and Novo Nordisk Research Center Indianapolis, Indianapolis, IN
| |
Collapse
|
230
|
Neumann UH, Ho JSS, Chen S, Tam YYC, Cullis PR, Kieffer TJ. Lipid nanoparticle delivery of glucagon receptor siRNA improves glucose homeostasis in mouse models of diabetes. Mol Metab 2017; 6:1161-1172. [PMID: 29031717 PMCID: PMC5641600 DOI: 10.1016/j.molmet.2017.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Abstract
Objective Hyperglucagonemia is present in many forms of diabetes and contributes to hyperglycemia, and glucagon suppression can ameliorate diabetes in mice. Leptin, a glucagon suppressor, can also reverse diabetes in rodents. Lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) effectively targets the liver and is in clinical trials for the treatment of various diseases. We compared the effectiveness of glucagon receptor (Gcgr)-siRNA delivered via LNPs to leptin in two mouse models of diabetes. Methods Gcgr siRNA encapsulated into LNPs or leptin was administered to mice with diabetes due to injection of the β-cell toxin streptozotocin (STZ) alone or combined with high fat diet (HFD/STZ). Results In STZ-diabetic mice, a single injection of Gcgr siRNA lowered blood glucose levels for 3 weeks, improved glucose tolerance, and normalized plasma ketones levels, while leptin therapy normalized blood glucose levels, oral glucose tolerance, and plasma ketones, and suppressed lipid metabolism. In contrast, in HFD/STZ-diabetic mice, Gcgr siRNA lowered blood glucose levels for 2 months, improved oral glucose tolerance, and reduced HbA1c, while leptin had no beneficial effects. Conclusions While leptin may be more effective than Gcgr siRNA at normalizing both glucose and lipid metabolism in STZ diabetes, Gcgr siRNA is more effective at reducing blood glucose levels in HFD/STZ diabetes. Gcgr siRNA improves glucose metabolism but not lipid metabolism in STZ diabetic mice. Leptin improves both glucose and lipid metabolism in STZ diabetic mice. Gcgr siRNA improves glucose metabolism in HFD/STZ diabetic mice. Leptin does not improve glucose metabolism in HFD/STZ diabetic mice.
Collapse
Affiliation(s)
- Ursula H Neumann
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Jessica S S Ho
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sam Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|