201
|
Hansen KJ, Favreau JT, Gershlak JR, Laflamme MA, Albrecht DR, Gaudette GR. Optical Method to Quantify Mechanical Contraction and Calcium Transients of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Eng Part C Methods 2017; 23:445-454. [PMID: 28562232 DOI: 10.1089/ten.tec.2017.0190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution. The image capture system rapidly alternates between brightfield and epifluorescent illumination of contracting cells. Mechanical contraction is quantified by a speckle tracking algorithm applied to brightfield image pairs, whereas calcium transients are measured by a fluorescent calcium reporter. This technique captured changes in contractile strain, calcium transients, and beat frequency of hPS-CMs over 21 days in culture, as well as acute responses to isoproterenol and Cytochalasin D. The technique described above can be applied without the need to alter the culture platform, allowing for determination of hPS-CM behavior over weeks in culture for drug discovery and myocardial regeneration applications.
Collapse
Affiliation(s)
- Katrina J Hansen
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - John T Favreau
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Joshua R Gershlak
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Michael A Laflamme
- 2 Toronto General Research Institute, McEwen Centre for Regenerative Medicine, University Health Network , Toronto, Canada
| | - Dirk R Albrecht
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Glenn R Gaudette
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| |
Collapse
|
202
|
In vitro development of zebrafish vascular networks. Reprod Toxicol 2017; 70:102-115. [DOI: 10.1016/j.reprotox.2017.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 12/28/2022]
|
203
|
Gouveia PJ, Rosa S, Ricotti L, Abecasis B, Almeida HV, Monteiro L, Nunes J, Carvalho FS, Serra M, Luchkin S, Kholkin AL, Alves PM, Oliveira PJ, Carvalho R, Menciassi A, das Neves RP, Ferreira LS. Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes. Biomaterials 2017. [PMID: 28622605 DOI: 10.1016/j.biomaterials.2017.05.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of engineered cardiac tissue for high-throughput drug screening/toxicology assessment remains largely unexplored. Here we propose a scaffold that mimics aspects of cardiac extracellular matrix while preserving the contractility of cardiomyocytes. The scaffold is based on a poly(caprolactone) (PCL) nanofilm with magnetic properties (MNF, standing for magnetic nanofilm) coated with a layer of piezoelectric (PIEZO) microfibers of poly(vinylidene fluoride-trifluoroethylene) (MNF+PIEZO). The nanofilm creates a flexible support for cell contraction and the aligned PIEZO microfibers deposited on top of the nanofilm creates conditions for cell alignment and electrical stimulation of the seeded cells. Our results indicate that MNF+PIEZO scaffold promotes rat and human cardiac cell attachment and alignment, maintains the ratio of cell populations overtime, promotes cell-cell communication and metabolic maturation, and preserves cardiomyocyte (CM) contractility for at least 12 days. The engineered cardiac construct showed high toxicity against doxorubicin, a cardiotoxic molecule, and responded to compounds that modulate CM contraction such as epinephrine, propranolol and heptanol.
Collapse
Affiliation(s)
- P José Gouveia
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - S Rosa
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - L Ricotti
- The BioRobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - B Abecasis
- Instituto de Tecnologia Química e Biologica António Xavier, New University of Lisbon, Av. da Republica, 2780-157 Oeiras, Portugal
| | - H V Almeida
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - L Monteiro
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - J Nunes
- Center for Mechanical Engineering, University of Coimbra, 3030-788 Coimbra, Portugal
| | - F Sofia Carvalho
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - M Serra
- Instituto de Tecnologia Química e Biologica António Xavier, New University of Lisbon, Av. da Republica, 2780-157 Oeiras, Portugal
| | - S Luchkin
- CICECO - Materials Institute of Aveiro & Physics Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A Leonidovitch Kholkin
- CICECO - Materials Institute of Aveiro & Physics Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | - P Marques Alves
- Instituto de Tecnologia Química e Biologica António Xavier, New University of Lisbon, Av. da Republica, 2780-157 Oeiras, Portugal
| | - P Jorge Oliveira
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - R Carvalho
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - A Menciassi
- The BioRobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - R Pires das Neves
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - L Silva Ferreira
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
204
|
Fleischer S, Feiner R, Dvir T. Cardiac tissue engineering: from matrix design to the engineering of bionic hearts. Regen Med 2017; 12:275-284. [PMID: 28498093 DOI: 10.2217/rme-2016-0150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The field of cardiac tissue engineering aims at replacing the scar tissue created after a patient has suffered from a myocardial infarction. Various technologies have been developed toward fabricating a functional engineered tissue that closely resembles that of the native heart. While the field continues to grow and techniques for better tissue fabrication continue to emerge, several hurdles still remain to be overcome. In this review we will focus on several key advances and recent technologies developed in the field, including biomimicking the natural extracellular matrix structure and enhancing the transfer of the electrical signal. We will also discuss recent developments in the engineering of bionic cardiac tissues which integrate the fields of tissue engineering and electronics to monitor and control tissue performance.
Collapse
Affiliation(s)
- Sharon Fleischer
- The Laboratory for Tissue Engineering & Regenerative Medicine, Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel.,Center for Nanoscience & Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Feiner
- The Laboratory for Tissue Engineering & Regenerative Medicine, Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel.,Center for Nanoscience & Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Dvir
- The Laboratory for Tissue Engineering & Regenerative Medicine, Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel.,Center for Nanoscience & Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.,Department of Materials Science & Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
205
|
Lu HF, Leong MF, Lim TC, Chua YP, Lim JK, Du C, Wan ACA. Engineering a functional three-dimensional human cardiac tissue model for drug toxicity screening. Biofabrication 2017; 9:025011. [DOI: 10.1088/1758-5090/aa6c3a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
206
|
Abstract
Since the advent of the generation of human induced pluripotent stem cells (hiPSCs), numerous protocols have been developed to differentiate hiPSCs into cardiomyocytes and then subsequently assess their ability to recapitulate the properties of adult human cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) are often assessed in single-cell assays. A shortcoming of these assays is the limited ability to characterize the physiological parameters of cardiomyocytes, such as contractile force, due to random orientations. This protocol describes the differentiation of cardiomyocytes from hiPSCs, which occurs within 14 d. After casting, cardiomyocytes undergo 3D assembly. This produces fibrin-based engineered heart tissues (EHTs)-in a strip format-that generate force under auxotonic stretch conditions. 10-15 d after casting, the EHTs can be used for contractility measurements. This protocol describes parallel expansion of hiPSCs; standardized generation of defined embryoid bodies, growth factor and small-molecule-based cardiac differentiation; and standardized generation of EHTs. To carry out the protocol, experience in advanced cell culture techniques is required.
Collapse
|
207
|
Mannhardt I, Saleem U, Benzin A, Schulze T, Klampe B, Eschenhagen T, Hansen A. Automated Contraction Analysis of Human Engineered Heart Tissue for Cardiac Drug Safety Screening. J Vis Exp 2017:55461. [PMID: 28448053 PMCID: PMC5564700 DOI: 10.3791/55461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cardiac tissue engineering describes techniques to constitute three dimensional force-generating engineered tissues. For the implementation of these procedures in basic research and preclinical drug development, it is important to develop protocols for automated generation and analysis under standardized conditions. Here, we present a technique to generate engineered heart tissue (EHT) from cardiomyocytes of different species (rat, mouse, human). The technique relies on the assembly of a fibrin-gel containing dissociated cardiomyocytes between elastic polydimethylsiloxane (PDMS) posts in a 24-well format. Three-dimensional, force-generating EHTs constitute within two weeks after casting. This procedure allows for the generation of several hundred EHTs per week and is technically limited only by the availability of cardiomyocytes (0.4-1.0 x 106/EHT). Evaluation of auxotonic muscle contractions is performed in a modified incubation chamber with a mechanical interlock for 24-well plates and a camera placed on top of this chamber. A software controls a camera moved on an XYZ axis system to each EHT. EHT contractions are detected by an automated figure recognition algorithm, and force is calculated based on shortening of the EHT and the elastic propensity and geometry of the PDMS posts. This procedure allows for automated analysis of high numbers of EHT under standardized and sterile conditions. The reliable detection of drug effects on cardiomyocyte contraction is crucial for cardiac drug development and safety pharmacology. We demonstrate, with the example of the hERG channel inhibitor E-4031, that the human EHT system replicates drug responses on contraction kinetics of the human heart, indicating it to be a promising tool for cardiac drug safety screening.
Collapse
Affiliation(s)
- Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research);
| | - Umber Saleem
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| | - Anika Benzin
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| | - Thomas Schulze
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| | - Birgit Klampe
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| |
Collapse
|
208
|
Liu Y, Xia T, Wei J, Liu Q, Li X. Micropatterned co-culture of cardiac myocytes on fibrous scaffolds for predictive screening of drug cardiotoxicities. NANOSCALE 2017; 9:4950-4962. [PMID: 28382363 DOI: 10.1039/c7nr00001d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The spatial arrangement of cardiac myocytes (CMs) and other non-myocytes scaffolds, closely resembling native tissue, is essential to control the CM morphology and function for cardiac tissue regeneration. In the current study, micropatterned fibrous scaffolds were developed to establish a CM co-culture system with cardiac fibroblasts (CFs) and endothelial cells (ECs) as a potential in vitro drug screening model. To pursue a biomimetic approach to influence CM behaviors, strip, oval and wave-patterned mats were constructed by deposition of electrospun fibers on lithographic collectors, followed by precise stacking for cell co-cultures. CMs, CFs, and ECs were located on the patterned scaffolds with controlled cellular distribution in the respective regions and no across condition was found. Compared with those after strip and oval-patterned co-culture, CMs co-cultured on wave-patterned scaffolds displayed significantly greater cell viabilities, larger cell elongation ratios, stronger expressions of cardiac-specific Troponin I, connexin 43 and sarcomeric α-actinin and higher beating rates during 15 days of incubation. The responses of co-cultured CMs to quinidine, erythromycin and sotalol show good correlations with clinical observations in the beating rate and the prolongation of the contraction and relaxation time. The in vivo safety data reflected well with the concentrations for 50% of maximal effect (EC50) after drug treatment on co-cultured CMs, which was determined from the changes in the corrected field potential duration (FPDc) against the drug concentrations. During 15 days of patterned co-culture, the interbeat intervals and fluctuations of the CMs indicated quick changes in response to haloperidol treatment and sufficient restoration of the original beating profiles after drug removal. This study demonstrates the capabilities of micropatterned co-culture of CMs to establish the cardiac function as a reproducible and reliable platform for screening cardiac side effects of drugs.
Collapse
Affiliation(s)
- Yaowen Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | | | | | | | | |
Collapse
|
209
|
Jagla K, Kalman B, Boudou T, Hénon S, Batonnet-Pichon S. Beyond mice: Emerging and transdisciplinary models for the study of early-onset myopathies. Semin Cell Dev Biol 2017; 64:171-180. [DOI: 10.1016/j.semcdb.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 01/23/2023]
|
210
|
Fonoudi H, Bosman A. Turning Potential Into Action: Using Pluripotent Stem Cells to Understand Heart Development and Function in Health and Disease. Stem Cells Transl Med 2017; 6:1452-1457. [PMID: 28337852 PMCID: PMC5689742 DOI: 10.1002/sctm.16-0476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/24/2017] [Indexed: 12/26/2022] Open
Abstract
Pluripotent stem cells hold enormous potential for regenerative therapies, however their ability to provide insight into early human development and the origins of disease could arguably provide an even greater outcome. This is primarily due to their contribution to the establishment of a powerful knowledge base of human development, something which all researchers and clinicians can potentially benefit from. Modeling human heart development and disease using pluripotent stem cells has already provided many important insights into cardiogenesis and cardiovascular disease mechanisms however, it is important to be aware of the complexities of this model system. Thorough contemplation of experimental models and specialized techniques is required to provide high‐quality evidence of the intricacies of both normal early development, and when this process goes awry in disease states. Stem Cells Translational Medicine2017;6:1452–1457
Collapse
Affiliation(s)
- Hananeh Fonoudi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Alexis Bosman
- Griffith University School of Medicine, Gold Coast, Queensland, Australia
| |
Collapse
|
211
|
Soares JS, Zhang W, Sacks MS. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds. Acta Biomater 2017; 51:220-236. [PMID: 28063987 DOI: 10.1016/j.actbio.2016.12.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022]
Abstract
Formation of engineering tissues (ET) remains an important scientific area of investigation for both clinical translational and mechanobiological studies. Needled-nonwoven (NNW) scaffolds represent one of the most ubiquitous biomaterials based on their well-documented capacity to sustain tissue formation and the unique property of substantial construct stiffness amplification, the latter allowing for very sensitive determination of forming tissue modulus. Yet, their use in more fundamental studies is hampered by the lack of: (1) substantial understanding of the mechanics of the NNW scaffold itself under finite deformations and means to model the complex mechanical interactions between scaffold fibers, cells, and de novo tissue; and (2) rational models with reliable predictive capabilities describing their evolving mechanical properties and their response to mechanical stimulation. Our objective is to quantify the mechanical properties of the forming ET phase in constructs that utilize NNW scaffolds. We present herein a novel mathematical model to quantify their stiffness based on explicit considerations of the modulation of NNW scaffold fiber-fiber interactions and effective fiber stiffness by surrounding de novo ECM. Specifically, fibers in NNW scaffolds are effectively stiffer than if acting alone due to extensive fiber-fiber cross-over points that impart changes in fiber geometry, particularly crimp wavelength and amplitude. Fiber-fiber interactions in NNW scaffolds also play significant role in the bulk anisotropy of the material, mainly due to fiber buckling and large translational out-of-plane displacements occurring to fibers undergoing contraction. To calibrate the model parameters, we mechanically tested impregnated NNW scaffolds with polyacrylamide (PAM) gels with a wide range of moduli with values chosen to mimic the effects of surrounding tissues on the scaffold fiber network. Results indicated a high degree of model fidelity over a wide range of planar strains. Lastly, we illustrated the impact of our modeling approach quantifying the stiffness of engineered ECM after in vitro incubation and early stages of in vivo implantation obtained in a concurrent study of engineered tissue pulmonary valves in an ovine model. STATEMENT OF SIGNIFICANCE Regenerative medicine has the potential to fully restore diseased tissues or entire organs with engineered tissues. Needled-nonwoven scaffolds can be employed to serve as the support for their growth. However, there is a lack of understanding of the mechanics of these materials and their interactions with the forming tissues. We developed a mathematical model for these scaffold-tissue composites to quantify the mechanical properties of the forming tissues. Firstly, these measurements are pivotal to achieve functional requirements for tissue engineering implants; however, the theoretical development yielded critical insight into particular mechanisms and behaviors of these scaffolds that were not possible to conjecture without the insight given by modeling, let alone describe or foresee a priori.
Collapse
Affiliation(s)
- João S Soares
- Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, Center for Cardiovascular Simulation, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712-1229, United States
| | - Will Zhang
- Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, Center for Cardiovascular Simulation, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712-1229, United States
| | - Michael S Sacks
- Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, Center for Cardiovascular Simulation, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712-1229, United States.
| |
Collapse
|
212
|
Kofron CM, Mende U. In vitro models of the cardiac microenvironment to study myocyte and non-myocyte crosstalk: bioinspired approaches beyond the polystyrene dish. J Physiol 2017; 595:3891-3905. [PMID: 28116799 DOI: 10.1113/jp273100] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
The heart is a complex pluricellular organ composed of cardiomyocytes and non-myocytes including fibroblasts, endothelial cells and immune cells. Myocytes are responsible for electrical conduction and contractile force generation, while the other cell types are responsible for matrix deposition, vascularization, and injury response. Myocytes and non-myocytes are known to communicate and exert mutual regulatory effects. In concert, they determine the structural, electrical and mechanical characteristics in the healthy and remodelled myocardium. Dynamic crosstalk between myocytes and non-myocytes plays a crucial role in stress/injury-induced hypertrophy and fibrosis development that can ultimately lead to heart failure and arrhythmias. Investigations of heterocellular communication in the myocardium are hampered by the intricate interspersion of the different cell types and the complexity of the tissue architecture. In vitro models have facilitated investigations of cardiac cells in a direct and controllable manner and have provided important functional and mechanistic insights. However, these cultures often lack regulatory input from the other cell types as well as additional topographical, electrical, mechanical and biochemical cues from the cardiac microenvironment that all contribute to modulating cell differentiation, maturation, alignment, function and survival. Advancements in the development of more complex pluricellular physiological platforms that incorporate diverse cues from the myocardial microenvironment are expected to lead to more physiologically relevant cardiac tissue-like in vitro models for mechanistic biological research, disease modelling, therapeutic target identification, drug testing and regeneration.
Collapse
Affiliation(s)
- Celinda M Kofron
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
213
|
Fine B, Vunjak-Novakovic G. Shortcomings of Animal Models and the Rise of Engineered Human Cardiac Tissue. ACS Biomater Sci Eng 2017; 3:1884-1897. [PMID: 33440547 DOI: 10.1021/acsbiomaterials.6b00662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We provide here an historical context of how studies utilizing engineered human cardiac muscle can complement and in some cases substitute animal and cell models for studies of disease and drug testing. We give an overview of the development of animal models and discuss the ability of novel human tissue models to overcome limited predictive power of cell culture and animal models in studies of drug efficacy and safety. The in vitro generation of cardiac tissue is discussed in the context of state of the art in the field. Finally we describe the assembly of multitissue platforms for more accurate representation of integrated human cardiac physiology and consider the advantages of in silico drug trials to augment our ability to predict drug-drug and organ-organ interactions in humans.
Collapse
Affiliation(s)
- Barry Fine
- Department of Biomedical Engineering and ‡Department of Medicine, Columbia University, New York, New York 10027, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering and Department of Medicine, Columbia University, New York, New York 10027, United States
| |
Collapse
|
214
|
Zhang W, Kong C, Tong M, Chooi W, Huang N, Li R, Chan B. Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: Effects of niche cell supplementation and mechanical stimulation. Acta Biomater 2017; 49:204-217. [PMID: 27890729 DOI: 10.1016/j.actbio.2016.11.058] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/18/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as a promising source for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. Here, we fabricate cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials. Supplementation of niche cells at 3% to the number of hESC-CMs enhance the maturation of the hESC-CMs in 3D tissue matrix. The benefits of adding mesenchymal stem cells (MSCs) are comparable to that of adding fibroblasts. These two cell types demonstrate similar effects in promoting the compaction and cell spreading, as well as expression of maturation markers at both gene and protein levels. Mechanical loading, particularly cyclic stretch, produces engineered cardiac tissues with higher maturity in terms of twitch force, elastic modulus, sarcomere length and molecular signature, when comparing to static stretch or non-stretched controls. The current study demonstrates that the application of niche cells and mechanical stretch both stimulate the maturation of hESC-CMs in 3D architecture. Our results therefore suggest that this 3D model can be used for in vitro cardiac maturation study. STATEMENT OF SIGNIFICANCE Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as being a promising source of cells for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. In the current study, we have fabricated cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials and demonstrated that supplementation of mesenchymal niche cells as well as provision of mechanical loading particularly stretching have significantly promoted the maturation of the cardiomyocytes and hence improved the mechanical functional characteristics of the tissue strips. Specifically, with 3% niche cells including both fibroblasts and mesenchymal stem cells, a more mature hESC-CMs derived cardiac strip was resulted, in terms of compaction and spreading of cells, and upregulation of molecular signature in both gene and protein expression of maturation. Mechanical loading, particularly cyclic stretch, produces engineered cardiac tissues with higher maturity in terms of molecular signature markers and functional parameters including twitch force, elastic modulus and sarcomere length, when comparing with static stretch or non-stretched controls. The current study demonstrates that the application of niche cells and mechanical stretch both stimulate the maturation of hESC-CMs in 3D architecture, resulting in more mature cardiac strips. Our results contribute to bioengineering of functional heart tissue strips for drug screening and disease modeling.
Collapse
|
215
|
Deddens JC, Sadeghi AH, Hjortnaes J, van Laake LW, Buijsrogge M, Doevendans PA, Khademhosseini A, Sluijter JPG. Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models. Adv Healthc Mater 2017; 6. [PMID: 27906521 DOI: 10.1002/adhm.201600571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An urgent need exists to improve the understanding of adverse cardiac remodeling in order to develop new therapeutic interventions that will prevent, reverse, or regenerate the fibrotic changes in the failing heart. With recent advances in both disease biology and cardiac tissue engineering, the translation of fundamental laboratory research toward the treatment of chronic heart failure patients becomes a more realistic option. Here, the current understanding of cardiac fibrosis and the great potential of tissue engineering are presented. Approaches using hydrogel-based tissue engineered heart constructs are discussed to contemplate key challenges for modeling tissue engineered cardiac fibrosis and to provide a future outlook for preclinical and clinical applications.
Collapse
Affiliation(s)
- Janine C. Deddens
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
| | - Amir Hossein Sadeghi
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Biomaterials Innovation Research Center; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Harvard-MIT Division of Health Sciences & Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Linda W. van Laake
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Marc Buijsrogge
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Harvard-MIT Division of Health Sciences & Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
- Department of Physics; King Abdulaziz University; Jeddah 21569 Saudi Arabia
| | - Joost P. G. Sluijter
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| |
Collapse
|
216
|
Thymosin β4 Improves Differentiation and Vascularization of EHTs. Stem Cells Int 2017; 2017:6848271. [PMID: 28191018 PMCID: PMC5278226 DOI: 10.1155/2017/6848271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/07/2016] [Indexed: 01/14/2023] Open
Abstract
Induced pluripotent stem cells (iPSC) constitute a powerful tool to study cardiac physiology and represents a promising treatment strategy to tackle cardiac disease. However, iPSCs remain relatively immature after differentiation. Additionally, engineered heart tissue (EHT) has been investigated as a therapy option in preclinical disease models with promising results, although their vascularization and functionality leave room for improvement. Thymosin β4 (Tβ4) has been shown to promote the differentiation of progenitor cell lines to cardiomyocytes while it also induces angiogenic sprouting and vascular maturation. We examined the potential impact of Tβ4 to enhance maturation of cardiomyocytes from iPSCs. Assessing the expression of transcription factors associated with cardiac differentiation, we were able to demonstrate the increased generation of cells displaying cardiomyocyte characteristics in vitro. Furthermore, we demonstrated, in a zebrafish model of embryonic vascular development, that Tβ4 is crucial for the proper execution of lymphatic and angiogenic vessel sprouting. Finally, utilizing Tβ4-transduced EHTs generated from mice genetically engineered to label endothelial cells in vitro, we show that treatment with Tβ4 promotes vascularization and contractility in EHTs, highlighting Tβ4 as a growth factor improving the formation of cardiomyocytes from iPSC and enhancing the performance of EHTs generated from neonatal cardiomyocytes.
Collapse
|
217
|
Sidorov VY, Samson PC, Sidorova TN, Davidson JM, Lim CC, Wikswo JP. I-Wire Heart-on-a-Chip I: Three-dimensional cardiac tissue constructs for physiology and pharmacology. Acta Biomater 2017; 48:68-78. [PMID: 27818308 DOI: 10.1016/j.actbio.2016.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/07/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
Engineered 3D cardiac tissue constructs (ECTCs) can replicate complex cardiac physiology under normal and pathological conditions. Currently, most measurements of ECTC contractility are either made isometrically, with fixed length and without control of the applied force, or auxotonically against a variable force, with the length changing during the contraction. The "I-Wire" platform addresses the unmet need to control the force applied to ECTCs while interrogating their passive and active mechanical and electrical characteristics. A six-well plate with inserted PDMS casting molds containing neonatal rat cardiomyocytes cultured with fibrin for 13-15days is mounted on the motorized mechanical stage of an inverted microscope equipped with a fast sCMOS camera. A calibrated flexible probe provides strain load of the ECTC via lateral displacement, and the microscope detects the deflections of both the probe and the ECTC. The ECTCs exhibited longitudinally aligned cardiomyocytes with well-developed sarcomeric structure, recapitulated the Frank-Starling force-tension relationship, and demonstrated expected transmembrane action potentials, electrical and mechanical restitutions, and responses to both β-adrenergic stimulation and blebbistatin. The I-Wire platform enables creation and mechanical and electrical characterization of ECTCs, and hence can be valuable in the study of cardiac diseases, drug screening, drug development, and the qualification of cells for tissue-engineered regenerative medicine. STATEMENT OF SIGNIFICANCE There is a growing interest in creating engineered heart tissue constructs for basic cardiac research, applied research in cardiac pharmacology, and repair of damaged hearts. We address an unmet need to characterize fully the performance of these tissues with our simple "I-Wire" assay that allows application of controlled forces to three-dimensional cardiac fiber constructs and measurement of both the electrical and mechanical properties of the construct. The advantage of I-Wire over other approaches is that the constructs being measured are truly three-dimensional, rather than a single layer of cells grown within a microfluidic device. We anticipate that the I-Wire will be extremely useful for the evaluation of myocardial constructs created using cardiomyocytes derived from human induced pluripotent stem cells.
Collapse
|
218
|
Zuppinger C. Edge-Detection for Contractility Measurements with Cardiac Spheroids. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2017. [DOI: 10.1007/978-1-4939-6661-5_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
219
|
Smith AST, Macadangdang J, Leung W, Laflamme MA, Kim DH. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 2017; 35:77-94. [PMID: 28007615 PMCID: PMC5237393 DOI: 10.1016/j.biotechadv.2016.12.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Winnie Leung
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Michael A Laflamme
- Toronto General Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
220
|
|
221
|
Zhou W, Dai X, Lieber CM. Advances in nanowire bioelectronics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:016701. [PMID: 27823988 DOI: 10.1088/0034-4885/80/1/016701] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Semiconductor nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometer-scale footprint comparable to subcellular structures and bio-molecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum consumption of energy. In this review article, we summarize recent progress in the field of nanowire bioelectronics with a focus primarily on silicon nanowire field-effect transistor biosensors. First, the synthesis and assembly of semiconductor nanowires will be described, including the basics of nanowire FETs crucial to their configuration as biosensors. Second, we will introduce and review recent results in nanowire bioelectronics for biomedical applications ranging from label-free sensing of biomolecules, to extracellular and intracellular electrophysiological recording.
Collapse
Affiliation(s)
- Wei Zhou
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
222
|
Tallawi M, Dippold D, Rai R, D'Atri D, Roether J, Schubert D, Rosellini E, Engel F, Boccaccini A. Novel PGS/PCL electrospun fiber mats with patterned topographical features for cardiac patch applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:569-76. [DOI: 10.1016/j.msec.2016.06.083] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/24/2016] [Accepted: 06/25/2016] [Indexed: 10/21/2022]
|
223
|
Biermann D, Eder A, Arndt F, Seoudy H, Reichenspurner H, Mir T, Riso A, Kozlik-Feldmann R, Peldschus K, Kaul MG, Schuler T, Krasemann S, Hansen A, Eschenhagen T, Sachweh JS. Towards a Tissue-Engineered Contractile Fontan-Conduit: The Fate of Cardiac Myocytes in the Subpulmonary Circulation. PLoS One 2016; 11:e0166963. [PMID: 27875570 PMCID: PMC5119816 DOI: 10.1371/journal.pone.0166963] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/06/2016] [Indexed: 11/20/2022] Open
Abstract
The long-term outcome of patients with single ventricles improved over time, but remains poor compared to other congenital heart lesions with biventricular circulation. Main cause for this unfavourable outcome is the unphysiological hemodynamic of the Fontan circulation, such as subnormal systemic cardiac output and increased systemic-venous pressure. To overcome this limitation, we are developing the concept of a contractile extracardiac Fontan-tunnel. In this study, we evaluated the survival and structural development of a tissue-engineered conduit under in vivo conditions. Engineered heart tissue was generated from ventricular heart cells of neonatal Wistar rats, fibrinogen and thrombin. Engineered heart tissues started beating around day 8 in vitro and remained contractile in vivo throughout the experiment. After culture for 14 days constructs were implanted around the right superior vena cava of Wistar rats (n = 12). Animals were euthanized after 7, 14, 28 and 56 days postoperatively. Hematoxylin and eosin staining showed cardiomyocytes arranged in thick bundles within the engineered heart tissue-conduit. Immunostaining of sarcomeric actin, alpha-actin and connexin 43 revealed a well -developed cardiac myocyte structure. Magnetic resonance imaging (d14, n = 3) revealed no constriction or stenosis of the superior vena cava by the constructs. Engineered heart tissues survive and contract for extended periods after implantation around the superior vena cava of rats. Generation of larger constructs is warranted to evaluate functional benefits of a contractile Fontan-conduit.
Collapse
Affiliation(s)
- Daniel Biermann
- Cardiac Surgery for Congenital Heart Disease, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Alexandra Eder
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Florian Arndt
- Department for Paediatric Cardiology, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hatim Seoudy
- Department for Cardiovascular Surgery, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Reichenspurner
- Department for Cardiovascular Surgery, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Mir
- Department for Paediatric Cardiology, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arlindo Riso
- Cardiac Surgery for Congenital Heart Disease, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Kozlik-Feldmann
- Department for Paediatric Cardiology, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kersten Peldschus
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael G. Kaul
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tillman Schuler
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jörg S. Sachweh
- Cardiac Surgery for Congenital Heart Disease, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
224
|
Stoehr A, Hirt MN, Hansen A, Seiffert M, Conradi L, Uebeler J, Limbourg FP, Eschenhagen T. Spontaneous Formation of Extensive Vessel-Like Structures in Murine Engineered Heart Tissue. Tissue Eng Part A 2016; 22:326-35. [PMID: 26763667 DOI: 10.1089/ten.tea.2015.0242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Engineered heart tissue (EHT) from primary heart cells contains endothelial cells (ECs), but the extent to which ECs organize into vessel-like structures or even functional vessels remains unknown and is difficult to study by conventional methods. In this study, we generated fibrin-based mini-EHTs from a transgenic mouse line (Cdh5-CreERT2 × Rosa26-LacZ), in which ECs were specifically and inducibly labeled by applying tamoxifen (EC(iLacZ)). EHTs were generated from an unpurified cell mix of newborn mouse hearts and were cultured under standard serum-containing conditions. Cre expression in 15-day-old EHTs was induced by addition of o-hydroxytamoxifen to the culture medium for 48 h, and ECs were visualized by X-gal staining. EC(iLacZ) EHTs showed a dense X-gal-positive vessel-like network with distinct tubular structures. Immunofluorescence revealed that ECs were mainly associated with cardiomyocytes within the EHT. EC(iLacZ) EHT developed spontaneous and regular contractility with forces up to 0.1 mN. Coherent contractility and the presence of an extensive vessel-like network were both dependent on the presence of animal sera in the culture medium. Contractile EC(iLacZ) EHTs successfully served as grafts in implantation studies onto the hearts of immunodeficient mice. Four weeks after implantation, EHTs showed X-gal-positive lumen-forming vessel structures connected to the host myocardium circulation as they contained erythrocytes on a regular basis. Taken together, genetic labeling of ECs revealed the extensive formation of vessel-like structures in EHTs in vitro. The EC(iLacZ) EHT model could help simultaneously study biological effects of compounds on cardiomyocyte function and tissue vascularization.
Collapse
Affiliation(s)
- Andrea Stoehr
- 1 Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,2 DZHK (German Centre for Cardiovascular Research) , Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marc N Hirt
- 1 Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,2 DZHK (German Centre for Cardiovascular Research) , Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- 1 Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,2 DZHK (German Centre for Cardiovascular Research) , Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Moritz Seiffert
- 1 Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,2 DZHK (German Centre for Cardiovascular Research) , Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany .,3 Department of General and Interventional Cardiology, University Heart Center Hamburg , Hamburg, Germany
| | - Lenard Conradi
- 1 Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,2 DZHK (German Centre for Cardiovascular Research) , Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany .,3 Department of General and Interventional Cardiology, University Heart Center Hamburg , Hamburg, Germany
| | - June Uebeler
- 1 Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,2 DZHK (German Centre for Cardiovascular Research) , Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Florian P Limbourg
- 4 Vascular Medicine Research, Department of Nephrology and Hypertension, Medizinische Hochschule Hannover , Hannover, Germany
| | - Thomas Eschenhagen
- 1 Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,2 DZHK (German Centre for Cardiovascular Research) , Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
225
|
Calderon D, Bardot E, Dubois N. Probing early heart development to instruct stem cell differentiation strategies. Dev Dyn 2016; 245:1130-1144. [PMID: 27580352 DOI: 10.1002/dvdy.24441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
Scientists have studied organs and their development for centuries and, along that path, described models and mechanisms explaining the developmental principles of organogenesis. In particular, with respect to the heart, new fundamental discoveries are reported continuously that keep changing the way we think about early cardiac development. These discoveries are driven by the need to answer long-standing questions regarding the origin of the earliest cells specified to the cardiac lineage, the differentiation potential of distinct cardiac progenitor cells, and, very importantly, the molecular mechanisms underlying these specification events. As evidenced by numerous examples, the wealth of developmental knowledge collected over the years has had an invaluable impact on establishing efficient strategies to generate cardiovascular cell types ex vivo, from either pluripotent stem cells or via direct reprogramming approaches. The ability to generate functional cardiovascular cells in an efficient and reliable manner will contribute to therapeutic strategies aimed at alleviating the increasing burden of cardiovascular disease and morbidity. Here we will discuss the recent discoveries in the field of cardiac progenitor biology and their translation to the pluripotent stem cell model to illustrate how developmental concepts have instructed regenerative model systems in the past and promise to do so in the future. Developmental Dynamics 245:1130-1144, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Damelys Calderon
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Evan Bardot
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Nicole Dubois
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
226
|
Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, Ebner D, Montoya MC, Östling P, Pietiäinen V, Price LS, Shorte SL, Turcatti G, von Schantz C, Carragher NO. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 2016; 15:751-769. [PMID: 27616293 DOI: 10.1038/nrd.2016.175] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell- and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates.
Collapse
Affiliation(s)
- Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged H-6726, Hungary; and at the Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Nathalie Aulner
- Imagopole-Citech, Institut Pasteur, Paris 75015, France.,European Cell-Based Assays Interest Group
| | - Marc Bickle
- Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.,European Cell-Based Assays Interest Group
| | - Anthony M Davies
- Translational Cell Imaging Queensland (TCIQ), Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane 4102 QLD, Australia; and The Irish National Centre for High Content Screening and Analysis, Trinity Translational Medicine Institute, Trinity College Dublin, Phase 3 Trinity Health Sciences 1.20, St James Hospital, Dublin D8, Republic of Ireland.,European Cell-Based Assays Interest Group
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Department of Translational Research, The Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France.,European Cell-Based Assays Interest Group
| | - Daniel Ebner
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK.,European Cell-Based Assays Interest Group
| | - Maria C Montoya
- Cellomics Unit, Cell Biology &Physiology Program, Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.,European Cell-Based Assays Interest Group
| | - Päivi Östling
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm 17165, Sweden.,European Cell-Based Assays Interest Group
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Leo S Price
- Faculty of Science, Leiden Academic Centre for Drug Research, Toxicology, Universiteit Leiden, The Netherlands; and at OcellO, J.H Oortweg 21, 2333 CH, Leiden, The Netherlands.,European Cell-Based Assays Interest Group
| | - Spencer L Shorte
- Imagopole-Citech, Institut Pasteur, Paris 75015, France.,European Cell-Based Assays Interest Group
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland.,European Cell-Based Assays Interest Group
| | - Carina von Schantz
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00290, Finland.,European Cell-Based Assays Interest Group
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.,European Cell-Based Assays Interest Group
| |
Collapse
|
227
|
Dai X, Zhou W, Gao T, Liu J, Lieber CM. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. NATURE NANOTECHNOLOGY 2016; 11:776-82. [PMID: 27347837 PMCID: PMC5014560 DOI: 10.1038/nnano.2016.96] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/10/2016] [Indexed: 05/19/2023]
Abstract
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.
Collapse
Affiliation(s)
- Xiaochuan Dai
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Wei Zhou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Teng Gao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jia Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
228
|
Visone R, Gilardi M, Marsano A, Rasponi M, Bersini S, Moretti M. Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering. Molecules 2016; 21:E1128. [PMID: 27571058 PMCID: PMC6274098 DOI: 10.3390/molecules21091128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022] Open
Abstract
In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of biochemical, mechanical, and electrical stimulations, which are usually applied to enhance the functionality of the engineered tissues. Since the functionality of muscle tissues relies on the 3D organization and on the perfect coupling between electrochemical stimulation and mechanical contraction, great efforts have been devoted to generate biomimetic skeletal and cardiac systems to allow high-throughput pathophysiological studies and drug screening. This review critically analyzes microfluidic platforms that were designed for skeletal and cardiac muscle tissue engineering. Our aim is to highlight which specific features of the engineered systems promoted a typical reorganization of the engineered construct and to discuss how promising design solutions exploited for skeletal muscle models could be applied to improve cardiac tissue models and vice versa.
Collapse
Affiliation(s)
- Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milano 20133, Italy.
| | - Mara Gilardi
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
- Department of Biotechnology and Biosciences, PhD School in Life Sciences, University of Milano-Bicocca, Milano 20126, Italy.
| | - Anna Marsano
- Departments of Surgery and Biomedicine, University Basel, University Hospital Basel, Basel 4065, Switzerland.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milano 20133, Italy.
| | - Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy.
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano 6900, Switzerland.
- Swiss Institute for Regenerative Medicine, Lugano 6900, Switzerland.
- Cardiocentro Ticino, Lugano 6900, Switzerland.
| |
Collapse
|
229
|
Argon Induces Protective Effects in Cardiomyocytes during the Second Window of Preconditioning. Int J Mol Sci 2016; 17:ijms17071159. [PMID: 27447611 PMCID: PMC4964531 DOI: 10.3390/ijms17071159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence indicates that argon has organoprotective properties. So far, the underlying mechanisms remain poorly understood. Therefore, we investigated the effect of argon preconditioning in cardiomyocytes within the first and second window of preconditioning. Primary isolated cardiomyocytes from neonatal rats were subjected to 50% argon for 1 h, and subsequently exposed to a sublethal dosage of hypoxia (<1% O2) for 5 h either within the first (0–3 h) or second window (24–48 h) of preconditioning. Subsequently, the cell viability and proliferation was measured. The argon-induced effects were assessed by evaluation of mRNA and protein expression after preconditioning. Argon preconditioning did not show any cardioprotective effects in the early window of preconditioning, whereas it leads to a significant increase of cell viability 24 h after preconditioning compared to untreated cells (p = 0.015) independent of proliferation. Argon-preconditioning significantly increased the mRNA expression of heat shock protein (HSP) B1 (HSP27) (p = 0.048), superoxide dismutase 2 (SOD2) (p = 0.001), vascular endothelial growth factor (VEGF) (p < 0.001) and inducible nitric oxide synthase (iNOS) (p = 0.001). No difference was found with respect to activation of pro-survival kinases in the early and late window of preconditioning. The findings provide the first evidence of argon-induced effects on the survival of cardiomyocytes during the second window of preconditioning, which may be mediated through the induction of HSP27, SOD2, VEGF and iNOS.
Collapse
|
230
|
Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4298945. [PMID: 27403231 PMCID: PMC4925993 DOI: 10.1155/2016/4298945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
Abstract
Background and Aims. Human embryonic stem cell- (hESC-) derived cardiomyocytes are one of the useful screening platforms of potential cardiocytoprotective molecules. However, little is known about the behavior of these cardiomyocytes in simulated ischemia/reperfusion conditions. In this study, we have tested the cytoprotective effect of an NO donor and the brain type natriuretic peptide (BNP) in a screening platform based first on differentiated embryonic bodies (EBs, 6 + 4 days) and then on more differentiated cardiomyocytes (6 + 24 days), both derived from hESCs. Methods. Both types of hESC-derived cells were exposed to 150 min simulated ischemia, followed by 120 min reperfusion. Cell viability was assessed by propidium iodide staining. The following treatments were applied during simulated ischemia in differentiated EBs: the NO-donor S-nitroso-N-acetylpenicillamine (SNAP) (10−7, 10−6, and 10−5 M), BNP (10−9, 10−8, and 10−7 M), and the nonspecific NO synthase inhibitor Nω-nitro-L-arginine (L-NNA, 10−5 M). Results. SNAP (10−6, 10−5 M) significantly attenuated cell death in differentiated EBs. However, simulated ischemia/reperfusion-induced cell death was not affected by BNP or by L-NNA. In separate experiments, SNAP (10−6 M) also protected hESC-derived cardiomyocytes. Conclusions. We conclude that SNAP, but not BNP, protects differentiated EBs or cardiomyocytes derived from hESCs against simulated ischemia/reperfusion injury. The present screening platform is a useful tool for discovery of cardiocytoprotective molecules and their cellular mechanisms.
Collapse
|
231
|
Mannhardt I, Breckwoldt K, Letuffe-Brenière D, Schaaf S, Schulz H, Neuber C, Benzin A, Werner T, Eder A, Schulze T, Klampe B, Christ T, Hirt MN, Huebner N, Moretti A, Eschenhagen T, Hansen A. Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports 2016; 7:29-42. [PMID: 27211213 PMCID: PMC4944531 DOI: 10.1016/j.stemcr.2016.04.011] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
Analyzing contractile force, the most important and best understood function of cardiomyocytes in vivo is not established in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). This study describes the generation of 3D, strip-format, force-generating engineered heart tissues (EHT) from hiPSC-CM and their physiological and pharmacological properties. CM were differentiated from hiPSC by a growth factor-based three-stage protocol. EHTs were generated and analyzed histologically and functionally. HiPSC-CM in EHTs showed well-developed sarcomeric organization and alignment, and frequent mitochondria. Systematic contractility analysis (26 concentration-response curves) reveals that EHTs replicated canonical response to physiological and pharmacological regulators of inotropy, membrane- and calcium-clock mediators of pacemaking, modulators of ion-channel currents, and proarrhythmic compounds with unprecedented precision. The analysis demonstrates a high degree of similarity between hiPSC-CM in EHT format and native human heart tissue, indicating that human EHTs are useful for preclinical drug testing and disease modeling. Engineered heart tissues (EHTs) from hiPSC-CM are generated with high reproducibility EHTs show aligned cardiomyocytes with organized sarcomeres and immature t tubules Spontaneous beating is regulated by both, membrane- and calcium-clock mechanisms EHTs respond to physiological and pharmacological interventions like human heart tissue
Collapse
Affiliation(s)
- Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - David Letuffe-Brenière
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Sebastian Schaaf
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Herbert Schulz
- Max-Delbrueck-Center for Molecular Medicine - MDC, DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 13092 Berlin, Germany; Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Christiane Neuber
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Anika Benzin
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Tessa Werner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Alexandra Eder
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Thomas Schulze
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Birgit Klampe
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Marc N Hirt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Norbert Huebner
- Max-Delbrueck-Center for Molecular Medicine - MDC, DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 13092 Berlin, Germany
| | - Alessandra Moretti
- I. Medical Department - Cardiology, Klinikum rechts der Isar - Technische Universität München, DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 81675 Munich, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
232
|
Polacheck WJ, Chen CS. Measuring cell-generated forces: a guide to the available tools. Nat Methods 2016; 13:415-23. [PMID: 27123817 PMCID: PMC5474291 DOI: 10.1038/nmeth.3834] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
Abstract
Forces generated by cells are critical regulators of cell adhesion, signaling, and function, and they are also essential drivers in the morphogenetic events of development. Over the past 20 years, several methods have been developed to measure these forces. However, despite recent substantial interest in understanding the contribution of these forces in biology, implementation and adoption of the developed methods by the broader biological community remain challenging because of the inherently multidisciplinary expertise required to conduct and interpret the measurements. In this review, we introduce the established methods and highlight the technical challenges associated with implementing each technique in a biological laboratory.
Collapse
Affiliation(s)
- William J. Polacheck
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
233
|
Wijnker PJM, Friedrich FW, Dutsch A, Reischmann S, Eder A, Mannhardt I, Mearini G, Eschenhagen T, van der Velden J, Carrier L. Comparison of the effects of a truncating and a missense MYBPC3 mutation on contractile parameters of engineered heart tissue. J Mol Cell Cardiol 2016; 97:82-92. [PMID: 27108529 DOI: 10.1016/j.yjmcc.2016.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. The most frequently mutated gene is MYBPC3, encoding cardiac myosin-binding protein-C (cMyBP-C). We compared the pathomechanisms of a truncating mutation (c.2373_2374insG) and a missense mutation (c.1591G>C) in MYBPC3 in engineered heart tissue (EHT). EHTs enable to study the direct effects of mutants without interference of secondary disease-related changes. EHTs were generated from Mybpc3-targeted knock-out (KO) and wild-type (WT) mouse cardiac cells. MYBPC3 WT and mutants were expressed in KO EHTs via adeno-associated virus. KO EHTs displayed higher maximal force and sensitivity to external [Ca(2+)] than WT EHTs. Expression of WT-Mybpc3 at MOI-100 resulted in ~73% cMyBP-C level but did not prevent the KO phenotype, whereas MOI-300 resulted in ≥95% cMyBP-C level and prevented the KO phenotype. Expression of the truncating or missense mutation (MOI-300) or their combination with WT (MOI-150 each), mimicking the homozygous or heterozygous disease state, respectively, failed to restore force to WT level. Immunofluorescence analysis revealed correct incorporation of WT and missense, but not of truncated cMyBP-C in the sarcomere. In conclusion, this study provides evidence in KO EHTs that i) haploinsufficiency affects EHT contractile function if WT cMyBP-C protein levels are ≤73%, ii) missense or truncating mutations, but not WT do not fully restore the disease phenotype and have different pathogenic mechanisms, e.g. sarcomere poisoning for the missense mutation, iii) the direct impact of (newly identified) MYBPC3 gene variants can be evaluated.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Felix W Friedrich
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Alexander Dutsch
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Silke Reischmann
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Alexandra Eder
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
234
|
Huebsch N, Loskill P, Deveshwar N, Spencer CI, Judge LM, Mandegar MA, Fox CB, Mohamed TMA, Ma Z, Mathur A, Sheehan AM, Truong A, Saxton M, Yoo J, Srivastava D, Desai TA, So PL, Healy KE, Conklin BR. Miniaturized iPS-Cell-Derived Cardiac Muscles for Physiologically Relevant Drug Response Analyses. Sci Rep 2016; 6:24726. [PMID: 27095412 PMCID: PMC4837370 DOI: 10.1038/srep24726] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/05/2016] [Indexed: 01/16/2023] Open
Abstract
Tissue engineering approaches have the potential to increase the physiologic relevance of human iPS-derived cells, such as cardiomyocytes (iPS-CM). However, forming Engineered Heart Muscle (EHM) typically requires >1 million cells per tissue. Existing miniaturization strategies involve complex approaches not amenable to mass production, limiting the ability to use EHM for iPS-based disease modeling and drug screening. Micro-scale cardiospheres are easily produced, but do not facilitate assembly of elongated muscle or direct force measurements. Here we describe an approach that combines features of EHM and cardiospheres: Micro-Heart Muscle (μHM) arrays, in which elongated muscle fibers are formed in an easily fabricated template, with as few as 2,000 iPS-CM per individual tissue. Within μHM, iPS-CM exhibit uniaxial contractility and alignment, robust sarcomere assembly, and reduced variability and hypersensitivity in drug responsiveness, compared to monolayers with the same cellular composition. μHM mounted onto standard force measurement apparatus exhibited a robust Frank-Starling response to external stretch, and a dose-dependent inotropic response to the β-adrenergic agonist isoproterenol. Based on the ease of fabrication, the potential for mass production and the small number of cells required to form μHM, this system provides a potentially powerful tool to study cardiomyocyte maturation, disease and cardiotoxicology in vitro.
Collapse
Affiliation(s)
- Nathaniel Huebsch
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158.,Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Peter Loskill
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA.,Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Nikhil Deveshwar
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA
| | - C Ian Spencer
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Luke M Judge
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158.,Department of Pediatrics, University of California, San Francisco, CA 94143
| | | | - Cade B Fox
- University of California, San Francisco, Schools of Pharmacy and Medicine, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA 94158
| | - Tamer M A Mohamed
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158.,Institute of Cardiovascular Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.,Faculty of Pharmacy, Zagazig University, EL-Sharkiak, Egypt
| | - Zhen Ma
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA.,Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Anurag Mathur
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA.,Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Alice M Sheehan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Annie Truong
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Mike Saxton
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Jennie Yoo
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158.,Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Tejal A Desai
- University of California, San Francisco, Schools of Pharmacy and Medicine, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA 94158
| | - Po-Lin So
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA.,Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158.,Departments of Medicine, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|
235
|
Gowran A, Rasponi M, Visone R, Nigro P, Perrucci GL, Righetti S, Zanobini M, Pompilio G. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:4287158. [PMID: 27110250 PMCID: PMC4823509 DOI: 10.1155/2016/4287158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/09/2016] [Indexed: 01/01/2023] Open
Abstract
A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Gianluca L. Perrucci
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Stefano Righetti
- Cardiology Unit, San Gerardo Hospital, Via Giambattista Pergolesi 33, 20052 Monza, Italy
| | - Marco Zanobini
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| |
Collapse
|
236
|
Cashman TJ, Josowitz R, Gelb BD, Li RA, Dubois NC, Costa KD. Construction of Defined Human Engineered Cardiac Tissues to Study Mechanisms of Cardiac Cell Therapy. J Vis Exp 2016:e53447. [PMID: 26967678 DOI: 10.3791/53447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human cardiac tissue engineering can fundamentally impact therapeutic discovery through the development of new species-specific screening systems that replicate the biofidelity of three-dimensional native human myocardium, while also enabling a controlled level of biological complexity, and allowing non-destructive longitudinal monitoring of tissue contractile function. Initially, human engineered cardiac tissues (hECT) were created using the entire cell population obtained from directed differentiation of human pluripotent stem cells, which typically yielded less than 50% cardiomyocytes. However, to create reliable predictive models of human myocardium, and to elucidate mechanisms of heterocellular interaction, it is essential to accurately control the biological composition in engineered tissues. To address this limitation, we utilize live cell sorting for the cardiac surface marker SIRPα and the fibroblast marker CD90 to create tissues containing a 3:1 ratio of these cell types, respectively, that are then mixed together and added to a collagen-based matrix solution. Resulting hECTs are, thus, completely defined in both their cellular and extracellular matrix composition. Here we describe the construction of defined hECTs as a model system to understand mechanisms of cell-cell interactions in cell therapies, using an example of human bone marrow-derived mesenchymal stem cells (hMSC) that are currently being used in human clinical trials. The defined tissue composition is imperative to understand how the hMSCs may be interacting with the endogenous cardiac cell types to enhance tissue function. A bioreactor system is also described that simultaneously cultures six hECTs in parallel, permitting more efficient use of the cells after sorting.
Collapse
Affiliation(s)
- Timothy J Cashman
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Rebecca Josowitz
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai
| | - Bruce D Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai
| | - Ronald A Li
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai; Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong
| | - Nicole C Dubois
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai;
| |
Collapse
|
237
|
Pecha S, Eschenhagen T, Reichenspurner H. Myocardial tissue engineering for cardiac repair. J Heart Lung Transplant 2016; 35:294-298. [DOI: 10.1016/j.healun.2015.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/24/2015] [Accepted: 12/21/2015] [Indexed: 01/17/2023] Open
|
238
|
Jacob F, Yonis AY, Cuello F, Luther P, Schulze T, Eder A, Streichert T, Mannhardt I, Hirt MN, Schaaf S, Stenzig J, Force T, Eschenhagen T, Hansen A. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue. PLoS One 2016; 11:e0145937. [PMID: 26840448 PMCID: PMC4740402 DOI: 10.1371/journal.pone.0145937] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022] Open
Abstract
Introduction Left ventricular dysfunction is a frequent and potentially severe side effect of many tyrosine kinase inhibitors (TKI). The mode of toxicity is not identified, but may include impairment of mitochondrial or sarcomeric function, autophagy or angiogenesis, either as an on-target or off-target mechanism. Methods and Results We studied concentration-response curves and time courses for nine TKIs in three-dimensional, force generating engineered heart tissue (EHT) from neonatal rat heart cells. We detected a concentration- and time-dependent decline in contractile force for gefitinib, lapatinib, sunitinib, imatinib, sorafenib, vandetanib and lestaurtinib and no decline in contractile force for erlotinib and dasatinib after 96 hours of incubation. The decline in contractile force was associated with an impairment of autophagy (LC3 Western blot) and appearance of autophagolysosomes (transmission electron microscopy). Conclusion This study demonstrates the feasibility to study TKI-mediated force effects in EHTs and identifies an association between a decline in contractility and inhibition of autophagic flux.
Collapse
Affiliation(s)
- Fabian Jacob
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Amina Y. Yonis
- Molecular Medicine Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Friederike Cuello
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Pradeep Luther
- Molecular Medicine Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Thomas Schulze
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Alexandra Eder
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry/Central Laboratories, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marc N. Hirt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sebastian Schaaf
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Justus Stenzig
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Force
- Center for Translational Medicine, Cardiology Division, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140, United States of America
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- * E-mail:
| |
Collapse
|
239
|
Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun 2016; 7:10312. [PMID: 26785135 PMCID: PMC4735644 DOI: 10.1038/ncomms10312] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration.
Collapse
|
240
|
Masuda S, Shimizu T. Three-dimensional cardiac tissue fabrication based on cell sheet technology. Adv Drug Deliv Rev 2016; 96:103-9. [PMID: 25980939 DOI: 10.1016/j.addr.2015.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
Abstract
Cardiac tissue engineering is a promising therapeutic strategy for severe heart failure. However, conventional tissue engineering methods by seeding cells into biodegradable scaffolds have intrinsic limitations such as inflammatory responses and fibrosis arising from the degradation of scaffolds. On the other hand, we have developed cell sheet engineering as a scaffold-free approach for cardiac tissue engineering. Confluent cultured cells are harvested as an intact cell sheet using a temperature-responsive culture surface. By layering cardiac cell sheets, it is possible to form electrically communicative three-dimensional cardiac constructs. Cell sheet transplantation onto damaged hearts in several animal models has revealed improvements in heart functions. Because of the lack of vasculature, the thickness of viable cardiac cell sheet-layered tissues is limited to three layers. Pre-vascularized structure formation within cardiac tissue and multi-step transplantation methods has enabled the formation of thick vascularized tissues in vivo. Furthermore, development of original bioreactor systems with vascular beds has allowed reconstruction of three-dimensional cardiac tissues with a functional vascular structure in vitro. Large-scale culture systems to generate pluripotent stem cell-derived cardiac cells can create large numbers of cardiac cell sheets. Three-dimensional cardiac tissues fabricated by cell sheet engineering may be applied to treat heart disease and tissue model construction.
Collapse
Affiliation(s)
- Shinako Masuda
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.
| |
Collapse
|
241
|
Stoppel WL, Kaplan DL, Black LD. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 2016; 96:135-55. [PMID: 26232525 DOI: 10.1016/j.addr.2015.07.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022]
Abstract
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.
Collapse
|
242
|
Kurokawa YK, George SC. Tissue engineering the cardiac microenvironment: Multicellular microphysiological systems for drug screening. Adv Drug Deliv Rev 2016; 96:225-33. [PMID: 26212156 PMCID: PMC4869857 DOI: 10.1016/j.addr.2015.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 12/29/2022]
Abstract
The ability to accurately detect cardiotoxicity has become increasingly important in the development of new drugs. Since the advent of human pluripotent stem cell-derived cardiomyocytes, researchers have explored their use in creating an in vitro drug screening platform. Recently, there has been increasing interest in creating 3D microphysiological models of the heart as a tool to detect cardiotoxic compounds. By recapitulating the complex microenvironment that exists in the native heart, cardiac microphysiological systems have the potential to provide a more accurate pharmacological response compared to current standards in preclinical drug screening. This review aims to provide an overview on the progress made in creating advanced models of the human heart, including the significance and contributions of the various cellular and extracellular components to cardiac function.
Collapse
Affiliation(s)
- Yosuke K Kurokawa
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Steven C George
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy, Environment, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
243
|
In vitro cardiac tissue models: Current status and future prospects. Adv Drug Deliv Rev 2016; 96:203-13. [PMID: 26428618 DOI: 10.1016/j.addr.2015.09.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/15/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Achieving the next phase of potential treatment strategies and better prognostic tools will require a concerted effort from interdisciplinary fields. Biomaterials-based cardiac tissue models are revolutionizing the area of preclinical research and translational applications. The goal of in vitro cardiac tissue modeling is to create physiological functional models of the human myocardium, which is a difficult task due to the complex structure and function of the human heart. This review describes the advances made in area of in vitro cardiac models using biomaterials and bioinspired platforms. The field has progressed extensively in the past decade, and we envision its applications in the areas of drug screening, disease modeling, and precision medicine.
Collapse
|
244
|
Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 2016; 96:110-34. [PMID: 25956564 DOI: 10.1016/j.addr.2015.04.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/19/2022]
Abstract
Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium. In this review, we focus on the maturation challenge in the context of hECTs, the present state of the art, and future perspectives in terms of regenerative medicine, drug discovery, preclinical safety testing and pathophysiological studies.
Collapse
|
245
|
Eder A, Vollert I, Hansen A, Eschenhagen T. Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev 2016; 96:214-24. [PMID: 26026976 DOI: 10.1016/j.addr.2015.05.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 12/29/2022]
Abstract
Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening.
Collapse
|
246
|
Aung A, Bhullar IS, Theprungsirikul J, Davey SK, Lim HL, Chiu YJ, Ma X, Dewan S, Lo YH, McCulloch A, Varghese S. 3D cardiac μtissues within a microfluidic device with real-time contractile stress readout. LAB ON A CHIP 2016; 16:153-62. [PMID: 26588203 PMCID: PMC4681661 DOI: 10.1039/c5lc00820d] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the development of three-dimensional (3D) cardiac microtissues within a microfluidic device with the ability to quantify real-time contractile stress measurements in situ. Using a 3D patterning technology that allows for the precise spatial distribution of cells within the device, we created an array of 3D cardiac microtissues from neonatal mouse cardiomyocytes. We integrated the 3D micropatterning technology with microfluidics to achieve perfused cell-laden structures. The cells were encapsulated within a degradable gelatin methacrylate hydrogel, which was sandwiched between two polyacrylamide hydrogels. The polyacrylamide hydrogels were used as "stress sensors" to acquire the contractile stresses generated by the beating cardiac cells. The cardiac-specific response of the engineered 3D system was examined by exposing it to epinephrine, an adrenergic neurotransmitter known to increase the magnitude and frequency of cardiac contractions. In response to exogenous epinephrine the engineered cardiac tissues exhibited an increased beating frequency and stress magnitude. Such cost-effective and easy-to-adapt 3D cardiac systems with real-time functional readout could be an attractive technological platform for drug discovery and development.
Collapse
Affiliation(s)
- Aereas Aung
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Schaefer JA, Tranquillo RT. Tissue Contraction Force Microscopy for Optimization of Engineered Cardiac Tissue. Tissue Eng Part C Methods 2016; 22:76-83. [PMID: 26538167 PMCID: PMC4722601 DOI: 10.1089/ten.tec.2015.0220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/23/2015] [Indexed: 01/08/2023] Open
Abstract
We developed a high-throughput screening assay that allows for relative comparison of the twitch force of millimeter-scale gel-based cardiac tissues. This assay is based on principles taken from traction force microscopy and uses fluorescent microspheres embedded in a soft polydimethylsiloxane (PDMS) substrate. A gel-forming cell suspension is simply pipetted onto the PDMS to form hemispherical cardiac tissue samples. Recordings of the fluorescent bead movement during tissue pacing are used to determine the maximum distance that the tissue can displace the elastic PDMS substrate. In this study, fibrin gel hemispheres containing human induced pluripotent stem cell-derived cardiomyocytes were formed on the PDMS and allowed to culture for 9 days. Bead displacement values were measured and compared to direct force measurements to validate the utility of the system. The amplitude of bead displacement correlated with direct force measurements, and the twitch force generated by the tissues was the same in 2 and 4 mg/mL fibrin gels, even though the 2 mg/mL samples visually appear more contractile if the assessment were made on free-floating samples. These results demonstrate the usefulness of this assay as a screening tool that allows for rapid sample preparation, data collection, and analysis in a simple and cost-effective platform.
Collapse
Affiliation(s)
- Jeremy A. Schaefer
- Department of Biomedical Engineering, University of Minnesota–Twin Cities, Minneapolis, Minnesota
| | - Robert T. Tranquillo
- Department of Biomedical Engineering, University of Minnesota–Twin Cities, Minneapolis, Minnesota
- Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
248
|
Jiang K, Dong C, Xu Y, Wang L. Microfluidic-based biomimetic models for life science research. RSC Adv 2016. [DOI: 10.1039/c6ra05691a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The advances in microfluidic technology have recently generated various microfluidic-based biomimetic models as novel 3D models for life science research, offering some great advantages over conventional models.
Collapse
Affiliation(s)
- Keqiu Jiang
- Division of Hepatobiliary and Pancreatic Surgery
- Department of General Surgery
- The Second Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery
- Department of General Surgery
- The Second Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Yakun Xu
- Division of Hepatobiliary and Pancreatic Surgery
- Department of General Surgery
- The Second Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery
- Department of General Surgery
- The Second Affiliated Hospital of Dalian Medical University
- Dalian
- China
| |
Collapse
|
249
|
Stenzig J, Hirt MN, Löser A, Bartholdt LM, Hensel JT, Werner TR, Riemenschneider M, Indenbirken D, Guenther T, Müller C, Hübner N, Stoll M, Eschenhagen T. DNA methylation in an engineered heart tissue model of cardiac hypertrophy: common signatures and effects of DNA methylation inhibitors. Basic Res Cardiol 2015; 111:9. [DOI: 10.1007/s00395-015-0528-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022]
|
250
|
Breckwoldt K, Weinberger F, Eschenhagen T. Heart regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1749-59. [PMID: 26597703 DOI: 10.1016/j.bbamcr.2015.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023]
Abstract
Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Florian Weinberger
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|