201
|
Schabinger N, Gillmeister H, Berti S, Michal M, Beutel ME, Adler J. Detached and distracted: ERP correlates of altered attentional function in depersonalisation. Biol Psychol 2018; 134:64-71. [DOI: 10.1016/j.biopsycho.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 10/18/2022]
|
202
|
Janetsian-Fritz SS, Timme NM, Timm MM, McCane AM, Baucum Ii AJ, O'Donnell BF, Lapish CC. Maternal deprivation induces alterations in cognitive and cortical function in adulthood. Transl Psychiatry 2018; 8:71. [PMID: 29581432 PMCID: PMC5913289 DOI: 10.1038/s41398-018-0119-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/24/2017] [Accepted: 01/08/2018] [Indexed: 11/09/2022] Open
Abstract
Early life trauma is a risk factor for a number of neuropsychiatric disorders, including schizophrenia (SZ). The current study assessed how an early life traumatic event, maternal deprivation (MD), alters cognition and brain function in rodents. Rats were maternally deprived in the early postnatal period and then recognition memory (RM) was tested in adulthood using the novel object recognition task. The expression of catechol-o-methyl transferase (COMT) and glutamic acid decarboxylase (GAD67) were quantified in the medial prefrontal cortex (mPFC), ventral striatum, and temporal cortex (TC). In addition, depth EEG recordings were obtained from the mPFC, vertex, and TC during a paired-click paradigm to assess the effects of MD on sensory gating. MD animals exhibited impaired RM, lower expression of COMT in the mPFC and TC, and lower expression of GAD67 in the TC. Increased bioelectric noise was observed at each recording site of MD animals. MD animals also exhibited altered information theoretic measures of stimulus encoding. These data indicate that a neurodevelopmental perturbation yields persistent alterations in cognition and brain function, and are consistent with human studies that identified relationships between allelic differences in COMT and GAD67 and bioelectric noise. These changes evoked by MD also lead to alterations in shared information between cognitive and primary sensory processing areas, which provides insight into how early life trauma confers a risk for neurodevelopmental disorders, such as SZ, later in life.
Collapse
Affiliation(s)
- Sarine S Janetsian-Fritz
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Nicholas M Timme
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Maureen M Timm
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Aqilah M McCane
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Anthony J Baucum Ii
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Christopher C Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana University School of Medicine Stark Neuroscience Institute, Indianapolis, IN, USA
- Indiana University-Purdue University Indianapolis School of Science Institute for Mathematical Modeling and Computational Sciences, Indianapolis, IN, USA
| |
Collapse
|
203
|
Berkovitch L, Del Cul A, Maheu M, Dehaene S. Impaired conscious access and abnormal attentional amplification in schizophrenia. NEUROIMAGE-CLINICAL 2018; 18:835-848. [PMID: 29876269 PMCID: PMC5988039 DOI: 10.1016/j.nicl.2018.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 11/25/2022]
Abstract
Previous research suggests that the conscious perception of a masked stimulus is impaired in schizophrenia, while unconscious bottom-up processing of the same stimulus, as assessed by subliminal priming, can be preserved. Here, we test this postulated dissociation between intact bottom-up and impaired top-down processing and evaluate its brain mechanisms using high-density recordings of event-related potentials. Sixteen patients with schizophrenia and sixteen controls were exposed to peripheral digits with various degrees of visibility, under conditions of either focused attention or distraction by another task. In the distraction condition, the brain activity evoked by masked digits was drastically reduced in both groups, but early bottom-up visual activation could still be detected and did not differ between patients and controls. By contrast, under focused top-down attention, a major impairment was observed: in patients, contrary to controls, the late non-linear ignition associated with the P3 component was reduced. Interestingly, the patients showed an essentially normal attentional amplification of the P1 and N2 components. These results suggest that some but not all top-down attentional amplification processes are impaired in schizophrenia, while bottom-up processing seems to be preserved. An elevated consciousness threshold is observed in schizophrenia. Under unattended conditions, brain activity was similarly reduced in schizophrenic patients and controls. Under attended conditions, the late ignition associated with the P3 component is impaired in patients. In schizophrenia, top-down attentional amplification is abnormal while bottom-up processing is essentially spared.
Collapse
Affiliation(s)
- L Berkovitch
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 place Jussieu, 75252 Paris Cedex 05, France.
| | - A Del Cul
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Psychiatrie d'Adultes, 75013 Paris, France; Inserm, CNRS, APHP, Institut du Cerveau et de la Moelle (ICM), Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, 75013 Paris, France
| | - M Maheu
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - S Dehaene
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
204
|
Zhou HY, Cai XL, Weigl M, Bang P, Cheung EF, Chan RC. Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev 2018; 86:66-76. [DOI: 10.1016/j.neubiorev.2017.12.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 11/28/2022]
|
205
|
Hornix BE, Havekes R, Kas MJH. Multisensory cortical processing and dysfunction across the neuropsychiatric spectrum. Neurosci Biobehav Rev 2018; 97:138-151. [PMID: 29496479 DOI: 10.1016/j.neubiorev.2018.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/25/2022]
Abstract
Sensory processing is affected in multiple neuropsychiatric disorders like schizophrenia and autism spectrum disorders. Genetic and environmental factors guide the formation and fine-tuning of brain circuitry necessary to receive, organize, and respond to sensory input in order to behave in a meaningful and consistent manner. During certain developmental stages the brain is sensitive to intrinsic and external factors. For example, disturbed expression levels of certain risk genes during critical neurodevelopmental periods may lead to exaggerated brain plasticity processes within the sensory circuits, and sensory stimulation immediately after birth contributes to fine-tuning of these circuits. Here, the neurodevelopmental trajectory of sensory circuit development will be described and related to some example risk gene mutations that are found in neuropsychiatric disorders. Subsequently, the flow of sensory information through these circuits and the relationship to synaptic plasticity will be described. Research focusing on the combined analyses of neural circuit development and functioning are necessary to expand our understanding of sensory processing and behavioral deficits that are relevant across the neuropsychiatric spectrum.
Collapse
Affiliation(s)
- Betty E Hornix
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
206
|
Reavis EA, Lee J, Wynn JK, Engel SA, Jimenez AM, Green MF. Cortical Thickness of Functionally Defined Visual Areas in Schizophrenia and Bipolar Disorder. Cereb Cortex 2018; 27:2984-2993. [PMID: 27226446 DOI: 10.1093/cercor/bhw151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with schizophrenia show specific abnormalities in visual perception, and patients with bipolar disorder may have related perceptual deficits. During tasks that highlight perceptual dysfunction, patients with schizophrenia show abnormal activity in visual brain areas, including the lateral occipital complex (LOC) and early retinotopic cortex. It is unclear whether the anatomical structure of those visual areas is atypical in schizophrenia and bipolar disorder. In members of those two patient groups and healthy controls, we localized LOC and early retinotopic cortex individually for each participant using functional magnetic resonance imaging (MRI), then measured the thickness of those regions of interest using structural MRI scans. In both regions, patients with schizophrenia had the thinnest cortex, controls had the thickest cortex, and bipolar patients had intermediate cortical thickness. A control region, motor cortex, did not show this pattern of group differences. The thickness of each visual region of interest was significantly correlated with performance on a visual object masking task, but only in schizophrenia patients. These findings suggest an anatomical substrate for visual processing abnormalities that have been found with both neural and behavioral measures in schizophrenia and other severe mental illnesses.
Collapse
Affiliation(s)
- Eric A Reavis
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA.,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Junghee Lee
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA.,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Jonathan K Wynn
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA.,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Stephen A Engel
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Amy M Jimenez
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA.,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Michael F Green
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA.,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
207
|
Liu M, Pei G, Peng Y, Wang C, Yan T, Wu J. Disordered high-frequency oscillation in face processing in schizophrenia patients. Medicine (Baltimore) 2018; 97:e9753. [PMID: 29419668 PMCID: PMC5944697 DOI: 10.1097/md.0000000000009753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a complex disorder characterized by marked social dysfunctions, but the neural mechanism underlying this deficit is unknown. To investigate whether face-specific perceptual processes are influenced in schizophrenia patients, both face detection and configural analysis were assessed in normal individuals and schizophrenia patients by recording electroencephalogram (EEG) data. Here, a face processing model was built based on the frequency oscillations, and the evoked power (theta, alpha, and beta bands) and the induced power (gamma bands) were recorded while the subjects passively viewed face and nonface images presented in upright and inverted orientations. The healthy adults showed a significant face-specific effect in the alpha, beta, and gamma bands, and an inversion effect was observed in the gamma band in the occipital lobe and right temporal lobe. Importantly, the schizophrenia patients showed face-specific deficits in the low-frequency beta and gamma bands, and the face inversion effect in the gamma band was absent from the occipital lobe. All these results revealed face-specific processing in patients due to the disorder of high-frequency EEG, providing additional evidence to enrich future studies investigating neural mechanisms and serving as a marked diagnostic basis.
Collapse
Affiliation(s)
- Miaomiao Liu
- Graduate School of Natural Science and Technology, Okayama
University, Okayama, Japan
| | - Guangying Pei
- Key Laboratory of Convergence Medical Engineering System and
Healthcare Technology. The Ministry of Industry and Information Technology, Beijing
Institute of Technology, Beijing
| | - Yinuo Peng
- Zhengzhou Foreign Language School, Zhengzhou
| | - Changming Wang
- Beijing key Laboratory of Mental Disorders, Beijing Anding
Hospital, Capital Medical University
| | - Tianyi Yan
- Key Laboratory of Convergence Medical Engineering System and
Healthcare Technology. The Ministry of Industry and Information Technology, Beijing
Institute of Technology, Beijing
- School of Life Science, Beijing Institute of Technology,
Beijing, China
| | - Jinglong Wu
- Graduate School of Natural Science and Technology, Okayama
University, Okayama, Japan
- Key Laboratory of Convergence Medical Engineering System and
Healthcare Technology. The Ministry of Industry and Information Technology, Beijing
Institute of Technology, Beijing
| |
Collapse
|
208
|
Martino M, Magioncalda P, Yu H, Li X, Wang Q, Meng Y, Deng W, Li Y, Li M, Ma X, Lane T, Duncan NW, Northoff G, Li T. Abnormal Resting-State Connectivity in a Substantia Nigra-Related Striato-Thalamo-Cortical Network in a Large Sample of First-Episode Drug-Naïve Patients With Schizophrenia. Schizophr Bull 2018; 44:419-431. [PMID: 28605528 PMCID: PMC5814905 DOI: 10.1093/schbul/sbx067] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The dopamine hypothesis is one of the most influential theories of the neurobiological background of schizophrenia (SCZ). However, direct evidence for abnormal dopamine-related subcortical-cortical circuitry disconnectivity is still lacking. The aim of this study was therefore to test dopamine-related substantia nigra (SN)-based striato-thalamo-cortical resting-state functional connectivity (FC) in SCZ. METHOD Based on our a priori hypothesis, we analyzed a large sample resting-state functional magnetic resonance imaging (fMRI) dataset from first-episode drug-naïve SCZ patients (n = 112) and healthy controls (n = 82) using the SN as the seed region for an investigation of striato-thalamo-cortical FC. This was done in the standard band of slow frequency oscillations and then in its subfrequency bands (Slow4 and Slow5). Results: The analysis showed in SCZ: (1) reciprocal functional hypo-connectivity between SN and striatum, with differential patterns for Slow5 and Slow4; (2) functional hypo-connectivity between striatum and thalamus, as well as functional hyper-connectivity between thalamus and sensorimotor cortical areas, specifically in Slow4; (3) correlation of thalamo-sensorimotor functional hyper-connectivity with psychopathological symptoms. Conclusions: We demonstrate abnormal dopamine-related SN-based striato-thalamo-cortical FC in slow frequency oscillations in first-episode drug-naive SCZ. This suggests that altered dopaminergic function in the SN leads to abnormal neuronal synchronization (as indexed by FC) within subcortical-cortical circuitry, complementing the dopamine hypothesis in SCZ on the regional level of resting-state activity.
Collapse
Affiliation(s)
- Matteo Martino
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Paola Magioncalda
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Hua Yu
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wang
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yajing Meng
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Deng
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinfei Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingli Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Timothy Lane
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Brain and Consciousness, Taipei, Taiwan
| | - Niall W Duncan
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Brain and Consciousness, Taipei, Taiwan,Centre for Cognition and Brain Disorders (CCBD), Hangzhou Normal University, Hangzhou, China
| | - Georg Northoff
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Brain and Consciousness, Taipei, Taiwan,Centre for Cognition and Brain Disorders (CCBD), Hangzhou Normal University, Hangzhou, China,Mind, Brain Imaging and Neuroethics, Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, Canada,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada,National Chengchi University, Research Center for Mind, Brain and Learning, Taipei, Taiwan,Zhejiang University, Dept of Philosophy and Cognition, Faculty of Medicine, Hangzhou, China
| | - Tao Li
- Mental Health Centre and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, China,To whom correspondence should be addressed; Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; tel: +86-2885423561, fax: +86-2885164019, e-mail:
| |
Collapse
|
209
|
Abstract
A large proportion of patients with substance use disorders have clinical comorbidities, either medical or psychiatric. An initial assessment is necessary initially for prompt identification and management of any psychiatric or medical emergency, and thereafter a more detailed assessment for the comprehensive understanding of the individual. This should be done keeping in mind the goals of both immediate and long term assessment so that a comprehensive but individualized, context and culture sensitive, reality based, recovery-oriented management plan can be formulated. Assessment should consist of not only history-taking, physical and mental status examination but also laboratory and instrument based assessment as needed. During assessment, collateral reports and past medical records are valuable additions along with self-report. Since substance use disorders influence various aspects of daily life, hence medical, social, occupational, religious, spiritual, financial and legal aspects should be evaluated. Overall, the assessment needs to be diagnosis and management focused, covering the various bio-psycho-social domains relevant to the individual.
Collapse
Affiliation(s)
- Debasish Basu
- Drug De-addiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Aniruddha Basu
- Drug De-addiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Abhishek Ghosh
- Drug De-addiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
210
|
Caudill MA, Strupp BJ, Muscalu L, Nevins JEH, Canfield RL. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. FASEB J 2018; 32:2172-2180. [PMID: 29217669 DOI: 10.1096/fj.201700692rr] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rodent studies demonstrate that supplementing the maternal diet with choline during pregnancy produces life-long cognitive benefits for the offspring. In contrast, the two experimental studies examining cognitive effects of maternal choline supplementation in humans produced inconsistent results, perhaps because of poor participant adherence and/or uncontrolled variation in intake of choline or other nutrients. We examined the effects of maternal choline supplementation during pregnancy on infant cognition, with intake of choline and other nutrients tightly controlled. Women entering their third trimester were randomized to consume, until delivery, either 480 mg choline/d ( n = 13) or 930 mg choline/d ( n = 13). Infant information processing speed and visuospatial memory were tested at 4, 7, 10, and 13 mo of age ( n = 24). Mean reaction time averaged across the four ages was significantly faster for infants born to mothers in the 930 ( vs. 480) mg choline/d group. This result indicates that maternal consumption of approximately twice the recommended amount of choline during the last trimester improves infant information processing speed. Furthermore, for the 480-mg choline/d group, there was a significant linear effect of exposure duration (infants exposed longer showed faster reaction times), suggesting that even modest increases in maternal choline intake during pregnancy may produce cognitive benefits for offspring.-Caudill, M. A., Strupp, B. J., Muscalu, L., Nevins, J. E. H., Canfield, R. L. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study.
Collapse
Affiliation(s)
- Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.,Department of Psychology, Cornell University, Ithaca, New York, USA; and
| | - Laura Muscalu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.,Department of Psychology, Ithaca College, Ithaca, New York, USA
| | - Julie E H Nevins
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Richard L Canfield
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
211
|
Lee M, Sehatpour P, Dias EC, Silipo GS, Kantrowitz JT, Martinez AM, Javitt DC. A tale of two sites: Differential impairment of frequency and duration mismatch negativity across a primarily inpatient versus a primarily outpatient site in schizophrenia. Schizophr Res 2018; 191:10-17. [PMID: 28779851 DOI: 10.1016/j.schres.2017.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
Deficits in mismatch negativity (MMN) generation are among the best replicated neurophysiological deficits in schizophrenia, with reduced amplitude reflecting impaired information processing at the level of supratemporal auditory cortex. Differential patterns of MMN dysfunction according to deviant types have been reported across studies, with some research groups showing impairment in duration MMN but not frequency MMN, and other research groups reporting both findings. We evaluate the hypothesis that recruitment setting, reflecting current functional status, might be an important determinant of the pattern of MMN dysfunction. Here, we evaluated patterns of MMN dysfunction, along with tone matching and neuropsychological performance in subjects drawn from 1) a predominant inpatient/residential care setting (Nathan Kline Institute) and 2) a predominant outpatient setting (Columbia University). As predicted, compared to healthy controls, deficits in duration MMN were observed across sites, whereas deficits in frequency MMN/tone matching were confined to the chronic inpatient setting. Within patients, the frequency MMN deficit was highly correlated with impairments in tone matching ability across sites (r=-0.52, p<0.0001), as well as impairments in verbal learning (r=-0.54, p<0.0001). Responses to standard stimuli in the MMN paradigm were assessed using measures of alpha evoked power and inter-trial coherence (ITC). While deficits in alpha ITC were observed across sites (both p<0.05), deficits in alpha power were observed at the inpatient (p=0.001) but not outpatient (p=0.2) site. Overall, these finding indicate that impairments of frequency MMN generation and response power to standard stimuli could be particularly linked to forms of schizophrenia that are associated with poor functional outcome.
Collapse
Affiliation(s)
- Migyung Lee
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States.
| | - Pejman Sehatpour
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States
| | - Elisa C Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States
| | - Gail S Silipo
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Joshua T Kantrowitz
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States
| | - Antigona M Martinez
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States
| | - Daniel C Javitt
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States
| |
Collapse
|
212
|
Kantrowitz JT, Epstein ML, Lee M, Lehrfeld N, Nolan KA, Shope C, Petkova E, Silipo G, Javitt DC. Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: Correlation with symptoms. Schizophr Res 2018; 191:70-79. [PMID: 28318835 DOI: 10.1016/j.schres.2017.02.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Deficits in N-methyl-d-aspartate-type (NMDAR) function contribute to symptoms and cognitive dysfunction in schizophrenia. The efficacy of NMDAR agonists in the treatment of persistent symptoms of schizophrenia has been variable, potentially reflecting limitations in functional target engagement. We recently demonstrated significant improvement in auditory mismatch negativity (MMN) with once-weekly treatment with d-serine, a naturally occurring NMDAR glycine-site agonist. This study investigates effects of continuous (daily) NMDAR agonists in schizophrenia/schizoaffective disorder. METHODS Primary analysis was on MMN after double-blind crossover (60mg/kg/d, n=16, 6weeks) treatment with d-serine/placebo. Secondary measures included clinical symptoms, neurocognition, and the effects of open-label (30-120mg/kg/d, n=21) d-serine and bitopertin/placebo (10mg, n=29), a glycine transport inhibitor. RESULTS Double-blind d-serine treatment led to significant improvement in MMN frequency (p=0.001, d=2.3) generation and clinical symptoms (p=0.023, d=0.80). MMN frequency correlated significantly with change in symptoms (r=-0.63, p=0.002) following co-variation for treatment type. d-Serine treatment led to a significant, large effect size increase vs. placebo in evoked α-power in response to standards (p=0.036, d=0.81), appearing to normalize evoked α power relative to previous findings with controls. While similar results were seen with open-label d-serine, no significant effects of bitopertin were observed for symptoms or MMN. CONCLUSIONS These findings represent the first randomized double-blind placebo-controlled study with 60mg/kg d-serine in schizophrenia, and are consistent with meta-analyses showing significant effects of d-serine in schizophrenia. Results overall support suggest that MMN may have negative, as well as positive, predictive value in predicting efficacy of novel compounds. CLINICAL TRIALS REGISTRATION Clinicaltrials.gov: NCT00322023/NCT00817336 (d-serine); NCT01116830 (bitopertin).
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States.
| | - Michael L Epstein
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States; Graduate Center, City University of New York, 365 5th Ave, New York, NY, United States
| | - Migyung Lee
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
| | - Nayla Lehrfeld
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Karen A Nolan
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Psychiatry, New York University School of Medicine, 1 Park Ave, New York, NY, United States
| | - Constance Shope
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Eva Petkova
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Child and Adolescent Psychiatry, New York University School of Medicine, 1 Park Ave, New York, NY, United States
| | - Gail Silipo
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Daniel C Javitt
- Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States; Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
| |
Collapse
|
213
|
Cardon GJ. Neural Correlates of Sensory Abnormalities Across Developmental Disabilities. INTERNATIONAL REVIEW OF RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 55:83-143. [PMID: 31799108 PMCID: PMC6889889 DOI: 10.1016/bs.irrdd.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abnormalities in sensory processing are a common feature of many developmental disabilities (DDs). Sensory dysfunction can contribute to deficits in brain maturation, as well as many vital functions. Unfortunately, while some patients with DD benefit from the currently available treatments for sensory dysfunction, many do not. Deficiencies in clinical practice surrounding sensory dysfunction may be related to lack of understanding of the neural mechanisms that underlie sensory abnormalities. Evidence of overlap in sensory symptoms between diagnoses suggests that there may be common neural mechanisms that mediate many aspects of sensory dysfunction. Thus, the current manuscript aims to review the extant literature regarding the neural correlates of sensory dysfunction across DD in order to identify patterns of abnormality that span diagnostic categories. Such anomalies in brain structure, function, and connectivity may eventually serve as targets for treatment.
Collapse
Affiliation(s)
- Garrett J Cardon
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
214
|
Retsa C, Knebel JF, Geiser E, Ferrari C, Jenni R, Fournier M, Alameda L, Baumann PS, Clarke S, Conus P, Do KQ, Murray MM. Treatment in early psychosis with N-acetyl-cysteine for 6months improves low-level auditory processing: Pilot study. Schizophr Res 2018; 191:80-86. [PMID: 28711476 DOI: 10.1016/j.schres.2017.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 02/03/2023]
Abstract
Sensory impairments constitute core dysfunctions in schizophrenia. In the auditory modality, impaired mismatch negativity (MMN) has been observed in chronic schizophrenia and may reflect N-methyl-d-aspartate (NMDA) hypo-function, consistent with models of schizophrenia based on oxidative stress. Moreover, a recent study demonstrated deficits in the N100 component of the auditory evoked potential (AEP) in early psychosis patients. Previous work has shown that add-on administration of the glutathione precursor N-acetyl-cysteine (NAC) improves the MMN and clinical symptoms in chronic schizophrenia. To date, it remains unknown whether NAC also improves general low-level auditory processing and if its efficacy would extend to early-phase psychosis. We addressed these issues with a randomized, double-blind study of a small sample (N=15) of early psychosis (EP) patients and 18 healthy controls from whom AEPs were recorded during an active, auditory oddball task. Patients were recorded twice: once prior to NAC/placebo administration and once after six months of treatment. The N100 component was significantly smaller in patients before NAC administration versus controls. Critically, NAC administration improved this AEP deficit. Source estimations revealed increased activity in the left temporo-parietal lobe in patients after NAC administration. Overall, the data from this pilot study, which call for replication in a larger sample, indicate that NAC improves low-level auditory processing in early psychosis.
Collapse
Affiliation(s)
- Chrysa Retsa
- The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Neuropsychology and Neurorehabilitation Service and Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Jean-François Knebel
- The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Neuropsychology and Neurorehabilitation Service and Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; The EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Eveline Geiser
- The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Neuropsychology and Neurorehabilitation Service and Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Carina Ferrari
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Margot Fournier
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Luis Alameda
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Psychiatric Liaison Service, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Stephanie Clarke
- The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Neuropsychology and Neurorehabilitation Service and Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Micah M Murray
- The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Neuropsychology and Neurorehabilitation Service and Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; The EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Lausanne, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
215
|
Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res 2018; 191:25-34. [PMID: 28709770 PMCID: PMC5745291 DOI: 10.1016/j.schres.2017.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022]
Abstract
Mismatch negativity (MMN) deficits in schizophrenia (SCZ) have been studied extensively since the early 1990s, with the vast majority of studies using simple auditory oddball task deviants that vary in a single acoustic dimension such as pitch or duration. There has been a growing interest in using more complex deviants that violate more abstract rules to probe higher order cognitive deficits. It is still unclear how sensory processing deficits compare to and contribute to higher order cognitive dysfunction, which can be investigated with later attention-dependent auditory event-related potential (ERP) components such as a subcomponent of P300, P3b. In this meta-analysis, we compared MMN deficits in SCZ using simple deviants to more complex deviants. We also pooled studies that measured MMN and P3b in the same study sample and examined the relationship between MMN and P3b deficits within study samples. Our analysis reveals that, to date, studies using simple deviants demonstrate larger deficits than those using complex deviants, with effect sizes in the range of moderate to large. The difference in effect sizes between deviant types was reduced significantly when accounting for magnitude of MMN measured in healthy controls. P3b deficits, while large, were only modestly greater than MMN deficits (d=0.21). Taken together, our findings suggest that MMN to simple deviants may still be optimal as a biomarker for SCZ and that sensory processing dysfunction contributes significantly to MMN deficit and disease pathophysiology.
Collapse
Affiliation(s)
- Michael Avissar
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States.
| | - Shanghong Xie
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Blair Vail
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Javier Lopez-Calderon
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Daniel C Javitt
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States; Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
216
|
Khan MM. Translational Significance of Selective Estrogen Receptor Modulators in Psychiatric Disorders. Int J Endocrinol 2018; 2018:9516592. [PMID: 30402099 PMCID: PMC6196929 DOI: 10.1155/2018/9516592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating data from various clinical trial studies suggests that adjuvant therapy with ovarian hormones (estrogens) could be effective in reducing cognitive deficit and psychopathological symptoms in women with psychiatric disorders. However, estrogen therapy poses serious limitations and health issues including feminization in men and increased risks of thromboembolism, hot flashes, breast hyperplasia, and endometrium hyperplasia when used for longer duration in older women (aged ≥ 60 years) or in women who have genetic predispositions. On the other hand, selective estrogen receptor modulators (SERMs), which may (or may not) carry some risks of hot flashes, thromboembolism, breast hyperplasia, and endometrial hyperplasia, are generally devoid of feminization effect. In clinical trial studies, adjuvant therapy with tamoxifen, a triphenylethylene class of SERM, has been found to reduce the frequency of manic episodes in patients with bipolar disorder, whereas addition of raloxifene, a benzothiophene class of SERM, to regular doses of antipsychotic drugs has been found to reduce cognitive deficit and psychological symptoms in men and women with schizophrenia, including women with treatment refractory psychosis. These outcomes together with potent neurocognitive, neuroprotective, and cardiometabolic properties suggest that SERMs could be the potential targets for designing effective and safer therapies for psychiatric disorders.
Collapse
Affiliation(s)
- Mohammad M. Khan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Zawia, P.O. Box 16418, Az-Zawiyah, Libya
| |
Collapse
|
217
|
Javitt DC, Lee M, Kantrowitz JT, Martinez A. Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophr Res 2018; 191:51-60. [PMID: 28666633 DOI: 10.1016/j.schres.2017.06.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 11/19/2022]
Abstract
Mismatch negativity (MMN) is among the best established biomarkers of cortical dysfunction in schizophrenia. MMN generators are localized primarily to primary and secondary auditory regions, and are known to reflect activity mediated by cortical N-methyl-d-aspartate-type glutamate receptors (NMDAR). Nevertheless, mechanisms underlying MMN generation at the local circuit level remain incompletely understood. This review synthesizes recent advances in circuit-level conceptualization of MMN based upon neuro-oscillatory findings. In the neuro-oscillatory (aka event-related spectral perturbation, ERSP) approach, responses to sensory stimuli are decomposed into underlying frequency bands prior to analysis. MMN reflects activity primarily in theta (4-7Hz) frequency band, which is thought to depend primarily upon interplay between cortical pyramidal neurons and somatostatin (SST)-type local circuit GABAergic interneurons. Schizophrenia-related deficits in theta generation are also observed not only in MMN, but also in other auditory and visual contexts. At the local circuit level, SST interneurons are known to maintain tonic inhibition over cortical pyramidal interneurons. SST interneurons, in turn, are inhibited by a class of interneurons expressing vasoactive intestinal polypeptide (VIP). In rodents, SST interneurons have been shown to respond differentially to deviant vs. standard stimuli, and inhibition of SST interneurons has been found to selectively inhibit deviance-related activity in rodent visual cortex. Here we propose that deficits in theta frequency generation, as exemplified by MMN, may contribute significantly to cortical dysfunction in schizophrenia, and may be tied to impaired interplay between cortical pyramidal neurons and local circuit SST-type GABAergic interneurons.
Collapse
Affiliation(s)
- Daniel C Javitt
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States.
| | - Migyung Lee
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Joshua T Kantrowitz
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Antigona Martinez
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| |
Collapse
|
218
|
Abstract
NMDAR encephalitis is a common cause of autoimmune encephalitis, predominantly affecting young adults. Current data supports the idea that autoantibodies targeting NMDARs are responsible for disease pathogenesis. While these autoantibodies occur in the setting of underlying malignancy in approximately half of all patients, initiating factors for the autoimmune response in the remainder of patients are unclear. While there is increasing evidence supporting viral triggers such as herpes simplex encephalitis, this association and the mechanism of action have not yet been fully described. Although the majority of patients achieve good outcomes, those without an underlying tumor consistently show worse outcomes, prolonged recovery, and more frequent relapses. The cloning of patient-specific autoantibodies from affected individuals has raised important questions as to disease pathophysiology and clinical heterogeneity. Further advances in our understanding of this disease and underlying triggers are necessary to develop treatments which improve outcomes in patients presenting in the absence of tumors.
Collapse
Affiliation(s)
- Arun Venkatesan
- Johns Hopkins Encephalitis
Center, Division of Neuroimmunology and Neuroinfectious Diseases,
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Krishma Adatia
- Johns Hopkins Encephalitis
Center, Division of Neuroimmunology and Neuroinfectious Diseases,
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
219
|
Reavis EA, Lee J, Wynn JK, Narr KL, Njau SN, Engel SA, Green MF. Linking optic radiation volume to visual perception in schizophrenia and bipolar disorder. Schizophr Res 2017; 190:102-106. [PMID: 28318839 PMCID: PMC5600632 DOI: 10.1016/j.schres.2017.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 11/29/2022]
Abstract
People with schizophrenia typically show visual processing deficits on masking tasks and other performance-based measures, while people with bipolar disorder may have related deficits. The etiology of these deficits is not well understood. Most neuroscientific studies of perception in schizophrenia and bipolar disorder have focused on visual processing areas in the cerebral cortex, but perception also depends on earlier components of the visual system that few studies have examined in these disorders. Using diffusion weighted imaging (DWI), we investigated the structure of the primary sensory input pathway to the cortical visual system: the optic radiations. We used probabilistic tractography to identify the optic radiations in 32 patients with schizophrenia, 31 patients with bipolar disorder, and 30 healthy controls. The same participants also performed a visual masking task outside the scanner. We characterized the optic radiations with three structural measures: fractional anisotropy, mean diffusivity, and tract volume. We did not find significant differences in those structural measures across groups. However, we did find a significant correlation between the volume of the optic radiations and visual masking thresholds that was unique to the schizophrenia group and explained variance in masking performance above and beyond that previously accounted for by differences in visual cortex. Thus, individual differences in the volume of the optic radiations explained more variance in visual masking performance in the schizophrenia group than the bipolar or control groups. This suggests that individual differences in the structure of the subcortical visual system have an important influence on visual processing in schizophrenia.
Collapse
Affiliation(s)
- Eric A. Reavis
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles: Los Angeles, CA 90024; USA,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System: Los Angeles, CA 90073; USA,Corresponding Author: ; phone: (310) 794-5586; fax: (310) 268-4056; 760 Westwood Plaza; Room 27-440; Los Angeles, CA 90024
| | - Junghee Lee
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA; Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA 90073, USA.
| | - Jonathan K. Wynn
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles: Los Angeles, CA 90024; USA,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System: Los Angeles, CA 90073; USA
| | - Katherine L. Narr
- Departments of Neurology, Psychiatry & Biobehavioral Sciences, University of California, Los Angeles: Los Angeles, CA 90024; USA
| | - Stephanie N. Njau
- Department of Neurology, University of California, Los Angeles: Los Angeles, CA 90024; USA
| | - Stephen A. Engel
- Department of Psychology University of Minnesota: Minneapolis, MN 55455; USA
| | - Michael F. Green
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles: Los Angeles, CA 90024; USA,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System: Los Angeles, CA 90073; USA
| |
Collapse
|
220
|
Berkovitch L, Dehaene S, Gaillard R. Disruption of Conscious Access in Schizophrenia. Trends Cogn Sci 2017; 21:878-892. [DOI: 10.1016/j.tics.2017.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
|
221
|
Neural mechanisms of mismatch negativity dysfunction in schizophrenia. Mol Psychiatry 2017; 22:1585-1593. [PMID: 28167837 PMCID: PMC5547016 DOI: 10.1038/mp.2017.3] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023]
Abstract
Schizophrenia is associated with cognitive deficits that reflect impaired cortical information processing. Mismatch negativity (MMN) indexes pre-attentive information processing dysfunction at the level of primary auditory cortex. This study investigates mechanisms underlying MMN impairments in schizophrenia using event-related potential, event-related spectral decomposition (ERSP) and resting state functional connectivity (rsfcMRI) approaches. For this study, MMN data to frequency, intensity and duration-deviants were analyzed from 69 schizophrenia patients and 38 healthy controls. rsfcMRI was obtained from a subsample of 38 patients and 23 controls. As expected, schizophrenia patients showed highly significant, large effect size (P=0.0004, d=1.0) deficits in MMN generation across deviant types. In ERSP analyses, responses to deviants occurred primarily the theta (4-7 Hz) frequency range consistent with distributed corticocortical processing, whereas responses to standards occurred primarily in alpha (8-12 Hz) range consistent with known frequencies of thalamocortical activation. Independent deficits in schizophrenia were observed in both the theta response to deviants (P=0.021) and the alpha-response to standards (P=0.003). At the single-trial level, differential patterns of response were observed for frequency vs duration/intensity deviants, along with At the network level, MMN deficits engaged canonical somatomotor, ventral attention and default networks, with a differential pattern of engagement across deviant types (P<0.0001). Findings indicate that deficits in thalamocortical, as well as corticocortical, connectivity contribute to auditory dysfunction in schizophrenia. In addition, differences in ERSP and rsfcMRI profiles across deviant types suggest potential differential engagement of underlying generator mechanisms.
Collapse
|
222
|
Voss P, Thomas ME, Cisneros-Franco JM, de Villers-Sidani É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front Psychol 2017; 8:1657. [PMID: 29085312 PMCID: PMC5649212 DOI: 10.3389/fpsyg.2017.01657] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
A growing number of research publications have illustrated the remarkable ability of the brain to reorganize itself in response to various sensory experiences. A traditional view of this plastic nature of the brain is that it is predominantly limited to short epochs during early development. Although examples showing that neuroplasticity exists outside of these finite time-windows have existed for some time, it is only recently that we have started to develop a fuller understanding of the different regulators that modulate and underlie plasticity. In this article, we will provide several lines of evidence indicating that mechanisms of neuroplasticity are extremely variable across individuals and throughout the lifetime. This variability is attributable to several factors including inhibitory network function, neuromodulator systems, age, sex, brain disease, and psychological traits. We will also provide evidence of how neuroplasticity can be manipulated in both the healthy and diseased brain, including recent data in both young and aged rats demonstrating how plasticity within auditory cortex can be manipulated pharmacologically and by varying the quality of sensory inputs. We propose that a better understanding of the individual differences that exist within the various mechanisms that govern experience-dependent neuroplasticity will improve our ability to harness brain plasticity for the development of personalized translational strategies for learning and recovery following brain injury or disease.
Collapse
Affiliation(s)
- Patrice Voss
- *Correspondence: Étienne de Villers-Sidani, Patrice Voss,
| | | | | | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealQC, Canada
| |
Collapse
|
223
|
Zhu J, Zhuo C, Xu L, Liu F, Qin W, Yu C. Altered Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity in Schizophrenia. Schizophr Bull 2017; 43:1363-1374. [PMID: 28521048 PMCID: PMC5737873 DOI: 10.1093/schbul/sbx051] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Respective changes in resting-state cerebral blood flow (CBF) and functional connectivity in schizophrenia have been reported. However, their coupling alterations in schizophrenia remain largely unknown. METHODS 89 schizophrenia patients and 90 sex- and age-matched healthy controls underwent resting-state functional MRI to calculate functional connectivity strength (FCS) and arterial spin labeling imaging to compute CBF. The CBF-FCS coupling of the whole gray matter and the CBF/FCS ratio (the amount of blood supply per unit of connectivity strength) of each voxel were compared between the 2 groups. RESULTS Whole gray matter CBF-FCS coupling was decreased in schizophrenia patients relative to healthy controls. In schizophrenia patients, the decreased CBF/FCS ratio was predominantly located in cognitive- and emotional-related brain regions, including the dorsolateral prefrontal cortex, insula, hippocampus and thalamus, whereas an increased CBF/FCS ratio was mainly identified in the sensorimotor regions, including the putamen, and sensorimotor, mid-cingulate and visual cortices. CONCLUSION These findings suggest that the neurovascular decoupling in the brain may be a possible neuropathological mechanism of schizophrenia.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chuanjun Zhuo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China,Department of Psychiatry Functional Neuroimaging Laboratory, Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin, China,Tianjin Anning Hospital, Tianjin, China
| | - Lixue Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China,To whom correspondence should be addressed; Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; tel: +86-22-63062026, fax: +86-22-63062290, e-mail:
| |
Collapse
|
224
|
Giersch A, Mishara AL. Is Schizophrenia a Disorder of Consciousness? Experimental and Phenomenological Support for Anomalous Unconscious Processing. Front Psychol 2017; 8:1659. [PMID: 29033868 PMCID: PMC5625017 DOI: 10.3389/fpsyg.2017.01659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Decades ago, several authors have proposed that disorders in automatic processing lead to intrusive symptoms or abnormal contents in the consciousness of people with schizophrenia. However, since then, studies have mainly highlighted difficulties in patients' conscious experiencing and processing but rarely explored how unconscious and conscious mechanisms may interact in producing this experience. We report three lines of research, focusing on the processing of spatial frequencies, unpleasant information, and time-event structure that suggest that impairments occur at both the unconscious and conscious level. We argue that focusing on unconscious, physiological and automatic processing of information in patients, while contrasting that processing with conscious processing, is a first required step before understanding how distortions or other impairments emerge at the conscious level. We then indicate that the phenomenological tradition of psychiatry supports a similar claim and provides a theoretical framework helping to understand the relationship between the impairments and clinical symptoms. We base our argument on the presence of disorders in the minimal self in patients with schizophrenia. The minimal self is tacit and non-verbal and refers to the sense of bodily presence. We argue this sense is shaped by unconscious processes, whose alteration may thus affect the feeling of being a unique individual. This justifies a focus on unconscious mechanisms and a distinction from those associated with consciousness.
Collapse
Affiliation(s)
- Anne Giersch
- INSERM U1114, Pôle de Psychiatrie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire of Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Aaron L. Mishara
- Department of Clinical Psychology, The Chicago School of Professional Psychology, Los Angeles, CA, United States
| |
Collapse
|
225
|
O'Donovan SM, Sullivan CR, McCullumsmith RE. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ SCHIZOPHRENIA 2017; 3:32. [PMID: 28935880 PMCID: PMC5608761 DOI: 10.1038/s41537-017-0037-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023]
Abstract
Altered glutamate transporter expression is a common feature of many neuropsychiatric conditions, including schizophrenia. Excitatory amino acid transporters (EAATs) are responsible for the reuptake of glutamate, preventing non-physiological spillover from the synapse. Postmortem studies have revealed significant dysregulation of EAAT expression in various brain regions at the cellular and subcellular level. Recent animal studies have also demonstrated a role for glutamate spillover as a mechanism of disease. In this review, we describe current evidence for the role of glutamate transporters in regulating synaptic plasticity and transmission. In neuropsychiatric conditions, EAAT splice variant expression is altered. There are changes in the localization of the transporters and disruption of the metabolic and structural protein network that supports EAAT activity. This results in aberrant neuroplasticity and excitatory signaling, contributing to the symptoms associated with neuropsychiatric disease. Understanding the complex functions of glutamate transporters will clarify the relevance of their role in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Courtney R Sullivan
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | |
Collapse
|
226
|
Belge JB, Maurage P, Mangelinckx C, Leleux D, Delatte B, Constant E. Facial decoding in schizophrenia is underpinned by basic visual processing impairments. Psychiatry Res 2017; 255:167-172. [PMID: 28554121 DOI: 10.1016/j.psychres.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/26/2017] [Accepted: 04/02/2017] [Indexed: 11/19/2022]
Abstract
Schizophrenia is associated with a strong deficit in the decoding of emotional facial expression (EFE). Nevertheless, it is still unclear whether this deficit is specific for emotions or due to a more general impairment for any type of facial processing. This study was designed to clarify this issue. Thirty patients suffering from schizophrenia and 30 matched healthy controls performed several tasks evaluating the recognition of both changeable (i.e. eyes orientation and emotions) and stable (i.e. gender, age) facial characteristics. Accuracy and reaction times were recorded. Schizophrenic patients presented a performance deficit (accuracy and reaction times) in the perception of both changeable and stable aspects of faces, without any specific deficit for emotional decoding. Our results demonstrate a generalized face recognition deficit in schizophrenic patients, probably caused by a perceptual deficit in basic visual processing. It seems that the deficit in the decoding of emotional facial expression (EFE) is not a specific deficit of emotion processing, but is at least partly related to a generalized perceptual deficit in lower-level perceptual processing, occurring before the stage of emotion processing, and underlying more complex cognitive dysfunctions. These findings should encourage future investigations to explore the neurophysiologic background of these generalized perceptual deficits, and stimulate a clinical approach focusing on more basic visual processing.
Collapse
Affiliation(s)
- Jan-Baptist Belge
- Department of Psychiatry, Saint-Luc University Hospital and Institute of Neuroscience (IoNS), Université catholique de Louvain, 10 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Pierre Maurage
- Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute, Université Catholique de Louvain, 10 Place C. Mercier, B-1348 Louvain-la-Neuve, Belgium
| | - Camille Mangelinckx
- Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute, Université Catholique de Louvain, 10 Place C. Mercier, B-1348 Louvain-la-Neuve, Belgium
| | - Dominique Leleux
- Psychiatric Hospital Sanatia, 27 Rue du Moulin, B-1210 Brussels, Belgium
| | - Benoît Delatte
- Beau Vallon Psychiatric Hospital, 205 Rue de Bricgniot, B- 5002 Namur, Belgium
| | - Eric Constant
- Department of Psychiatry, Saint-Luc University Hospital and Institute of Neuroscience (IoNS), Université catholique de Louvain, 10 Avenue Hippocrate, B-1200 Brussels, Belgium.
| |
Collapse
|
227
|
Reavis EA, Lee J, Wynn JK, Engel SA, Cohen MS, Nuechterlein KH, Glahn DC, Altshuler LL, Green MF. Assessing neural tuning for object perception in schizophrenia and bipolar disorder with multivariate pattern analysis of fMRI data. NEUROIMAGE-CLINICAL 2017; 16:491-497. [PMID: 28932681 PMCID: PMC5596305 DOI: 10.1016/j.nicl.2017.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Introduction Deficits in visual perception are well-established in schizophrenia and are linked to abnormal activity in the lateral occipital complex (LOC). Related deficits may exist in bipolar disorder. LOC contains neurons tuned to object features. It is unknown whether neural tuning in LOC or other visual areas is abnormal in patients, contributing to abnormal perception during visual tasks. This study used multivariate pattern analysis (MVPA) to investigate perceptual tuning for objects in schizophrenia and bipolar disorder. Methods Fifty schizophrenia participants, 51 bipolar disorder participants, and 47 matched healthy controls completed five functional magnetic resonance imaging (fMRI) runs of a perceptual task in which they viewed pictures of four different objects and an outdoor scene. We performed classification analyses designed to assess the distinctiveness of activity corresponding to perception of each stimulus in LOC (a functionally localized region of interest). We also performed similar classification analyses throughout the brain using a searchlight technique. We compared classification accuracy and patterns of classification errors across groups. Results Stimulus classification accuracy was significantly above chance in all groups in LOC and throughout visual cortex. Classification errors were mostly within-category confusions (e.g., misclassifying one chair as another chair). There were no group differences in classification accuracy or patterns of confusion. Conclusions The results show for the first time MVPA can be used successfully to classify individual perceptual stimuli in schizophrenia and bipolar disorder. However, the results do not provide evidence of abnormal neural tuning in schizophrenia and bipolar disorder. Abnormal visual perception exists in schizophrenia and, likely, bipolar disorder Neural processing abnormalities underlying those deficits are not well understood We used multivariate analyses of fMRI data to assess patients' visual processing We establish for the first time that such methods work well in these patient groups The analyses did not show group differences in neural processing of visual stimuli
Collapse
Affiliation(s)
- Eric A Reavis
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024; USA.,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA 90073, USA
| | - Junghee Lee
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024; USA.,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA 90073, USA
| | - Jonathan K Wynn
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024; USA.,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA 90073, USA
| | - Stephen A Engel
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455; USA
| | - Mark S Cohen
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024; USA
| | - Keith H Nuechterlein
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024; USA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Lori L Altshuler
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024; USA
| | - Michael F Green
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024; USA.,Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
228
|
Li M, Das T, Deng W, Wang Q, Li Y, Zhao L, Ma X, Wang Y, Yu H, Li X, Meng Y, Palaniyappan L, Li T. Clinical utility of a short resting-state MRI scan in differentiating bipolar from unipolar depression. Acta Psychiatr Scand 2017; 136:288-299. [PMID: 28504840 DOI: 10.1111/acps.12752] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Depression in bipolar disorder (BipD) requires a therapeutic approach that is from treating unipolar major depressive disorder (UniD), but to date, no reliable methods could separate these two disorders. The aim of this study was to establish the clinical validity and utility of a non-invasive functional MRI-based method to classify BipD from UniD. METHOD The degree of connectivity (degree centrality or DC) of every small unit (voxel) with every other unit of the brain was estimated in 22 patients with BipD and 22 age, gender, and depressive severity-matched patients with UniD and 22 healthy controls. Pattern classification analysis was carried out using a support-vector machine (SVM) approach. RESULTS Degree centrality pattern from 8-min resting fMRI discriminated BipD from UniD with an accuracy of 86% and diagnostic odds ratio of 9.6. DC was reduced in the left insula and increased in bilateral precuneus in BipD when compared to UniD. In this sample with a high degree of uncertainty (50% prior probability), positive predictive value of the DC test was 79%. CONCLUSION Degree centrality maps are potential candidate measures to separate bipolar depression from unipolar depression. Test performance reported here requires further pragmatic evaluation in regular clinical practice.
Collapse
Affiliation(s)
- M Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - T Das
- Robarts Research Institute & The Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| | - W Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Q Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Y Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - L Zhao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - X Ma
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Y Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - H Yu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - X Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Y Meng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - L Palaniyappan
- Robarts Research Institute & The Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| | - T Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
229
|
Nomura J, Kannan G, Takumi T. Rodent models of genetic and chromosomal variations in psychiatric disorders. Psychiatry Clin Neurosci 2017; 71:508-517. [PMID: 28317218 DOI: 10.1111/pcn.12524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Elucidating the molecular basis of complex human psychiatric disorders is challenging due to the multitude of factors that underpin these disorders. Genetic and chromosomal changes are two factors that have been suggested to be involved in psychiatric disorders. Indeed, numerous risk loci have been identified in autism spectrum disorders, schizophrenia, and related psychiatric disorders. Here, we introduce genetic animal models that disturb excitatory-inhibitory balance in the brain and animal models mirroring human chromosomal abnormalities, both of which may be implicated in autism spectrum disorder pathophysiology. In addition, we discuss recent unique translational research using rodent models, such as Cntnap2 knockout mouse, Mecp2 mutant mouse, Pick1 knockout mouse, and neonatal ventral hippocampal lesion rat. By using these models, several types of drugs are administered during the developmental period to see the effect on psychotic symptoms and neural activities in adults. The accumulating evidence from recent animal studies provides an informative intervention strategy as a translational research.
Collapse
Affiliation(s)
- Jun Nomura
- RIKEN Brain Science Institute, Saitama, Japan
| | - Geetha Kannan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, USA
| | - Toru Takumi
- RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
230
|
Altered Cortical Ensembles in Mouse Models of Schizophrenia. Neuron 2017; 94:153-167.e8. [PMID: 28384469 DOI: 10.1016/j.neuron.2017.03.019] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 10/07/2016] [Accepted: 03/10/2017] [Indexed: 01/26/2023]
Abstract
In schizophrenia, brain-wide alterations have been identified at the molecular and cellular levels, yet how these phenomena affect cortical circuit activity remains unclear. We studied two mouse models of schizophrenia-relevant disease processes: chronic ketamine (KET) administration and Df(16)A+/-, modeling 22q11.2 microdeletions, a genetic variant highly penetrant for schizophrenia. Local field potential recordings in visual cortex confirmed gamma-band abnormalities similar to patient studies. Two-photon calcium imaging of local cortical populations revealed in both models a deficit in the reliability of neuronal coactivity patterns (ensembles), which was not a simple consequence of altered single-neuron activity. This effect was present in ongoing and sensory-evoked activity and was not replicated by acute ketamine administration or pharmacogenetic parvalbumin-interneuron suppression. These results are consistent with the hypothesis that schizophrenia is an "attractor" disease and demonstrate that degraded neuronal ensembles are a common consequence of diverse genetic, cellular, and synaptic alterations seen in chronic schizophrenia.
Collapse
|
231
|
Forsyth JK, Lewis DA. Mapping the Consequences of Impaired Synaptic Plasticity in Schizophrenia through Development: An Integrative Model for Diverse Clinical Features. Trends Cogn Sci 2017; 21:760-778. [PMID: 28754595 DOI: 10.1016/j.tics.2017.06.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/13/2017] [Accepted: 06/09/2017] [Indexed: 01/19/2023]
Abstract
Schizophrenia is associated with alterations in sensory, motor, and cognitive functions that emerge before psychosis onset; identifying pathogenic processes that can account for this multi-faceted phenotype remains a challenge. Accumulating evidence suggests that synaptic plasticity is impaired in schizophrenia. Given the role of synaptic plasticity in learning, memory, and neural circuit maturation, impaired plasticity may underlie many features of the schizophrenia syndrome. Here, we summarize the neurobiology of synaptic plasticity, review evidence that plasticity is impaired in schizophrenia, and explore a framework in which impaired synaptic plasticity interacts with brain maturation to yield the emergence of sensory, motor, cognitive, and psychotic features at different times during development in schizophrenia. Key gaps in the literature and future directions for testing this framework are discussed.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA.
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
232
|
Dunn W, Rassovsky Y, Wynn J, Wu AD, Iacoboni M, Hellemann G, Green MF. The effect of bilateral transcranial direct current stimulation on early auditory processing in schizophrenia: a preliminary study. J Neural Transm (Vienna) 2017; 124:1145-1149. [PMID: 28687908 DOI: 10.1007/s00702-017-1752-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022]
Abstract
Transcranial direct current stimulation (tDCS) was applied bilaterally over the auditory cortex in 12 schizophrenia patients to modulate early auditory processing. Performance on a tone discrimination task (tone-matching task-TMT) and auditory mismatch negativity were assessed after counterbalanced anodal, cathodal, and sham tDCS. Cathodal stimulation improved TMT performance (p < 0.03) compared to sham condition. Post-hoc analyses revealed a stimulation condition by negative symptom interaction in which greater negative symptoms were associated with a better TMT performance after anodal tDCS.
Collapse
Affiliation(s)
- Walter Dunn
- Department of Veterans Affairs VISN-22 Mental Illness Research, Education and Clinical Center, Los Angeles, CA, USA. .,Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA. .,West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Los Angeles, CA, 90073, USA.
| | - Yuri Rassovsky
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA.,Department of Psychology and Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Jonathan Wynn
- Department of Veterans Affairs VISN-22 Mental Illness Research, Education and Clinical Center, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Allan D Wu
- Department of Neurology, University of California, Los Angeles, USA
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA.,Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, USA
| | - Gerhard Hellemann
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Michael F Green
- Department of Veterans Affairs VISN-22 Mental Illness Research, Education and Clinical Center, Los Angeles, CA, USA.,Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| |
Collapse
|
233
|
Armeanu R, Mokkonen M, Crespi B. Meta-Analysis of BDNF Levels in Autism. Cell Mol Neurobiol 2017; 37:949-954. [PMID: 27501933 DOI: 10.1007/s10571-016-0415-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/03/2016] [Indexed: 11/24/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) centrally mediates growth, differentiation and survival of neurons, and the synaptic plasticity that underlies learning and memory. Recent meta-analyses have reported significantly lower peripheral BDNF among individuals with schizophrenia, bipolar disorder, and depression, compared with controls. To evaluate the role of BDNF in autism, and to compare autism to psychotic-affective disorders with regard to BDNF, we conducted a meta-analysis of BDNF levels in autism. Inclusion criteria were met by 15 studies, which included 1242 participants. The meta-analysis estimated a significant summary effect size of 0.33 (95 % CI 0.21-0.45, P < 0.001), suggesting higher BDNF in autism than in controls. The studies showed notable heterogeneity, but no evidence of publication biases. Higher peripheral BDNF in autism is concordant with several neurological and psychological theories on the causes and symptoms of this condition, and it contrasts notably with the lower levels of BDNF found in schizophrenia, bipolar disorder, and depression.
Collapse
Affiliation(s)
- Raluca Armeanu
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Mikael Mokkonen
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
234
|
Skåtun KC, Kaufmann T, Doan NT, Alnæs D, Córdova-Palomera A, Jönsson EG, Fatouros-Bergman H, Flyckt L, Melle I, Andreassen OA, Agartz I, Westlye LT. Consistent Functional Connectivity Alterations in Schizophrenia Spectrum Disorder: A Multisite Study. Schizophr Bull 2017; 43:914-924. [PMID: 27872268 PMCID: PMC5515107 DOI: 10.1093/schbul/sbw145] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Schizophrenia (SZ) is a severe mental illness with high heritability and complex etiology. Mounting evidence from neuroimaging has implicated disrupted brain network connectivity in the pathophysiology. However, previous findings are inconsistent, likely due to a combination of methodological and clinical variability and relatively small sample sizes. Few studies have used a data-driven approach for characterizing pathological interactions between regions in the whole brain and evaluated the generalizability across independent samples. To overcome this issue, we collected resting-state functional magnetic resonance imaging data from 3 independent samples (1 from Norway and 2 from Sweden) consisting of 182 persons with a SZ spectrum diagnosis and 348 healthy controls. We used a whole-brain data-driven definition of network nodes and regularized partial correlations to evaluate and compare putatively direct brain network node interactions between groups. The clinical utility of the functional connectivity features and the generalizability of effects across samples were evaluated by training and testing multivariate classifiers in the independent samples using machine learning. Univariate analyses revealed 14 network edges with consistent reductions in functional connectivity encompassing frontal, somatomotor, visual, auditory, and subcortical brain nodes in patients with SZ. We found a high overall accuracy in classifying patients and controls (up to 80%) using independent training and test samples, strongly supporting the generalizability of connectivity alterations across different scanners and heterogeneous samples. Overall, our findings demonstrate robust reductions in functional connectivity in SZ spectrum disorders, indicating disrupted information flow in sensory, subcortical, and frontal brain regions.
Collapse
Affiliation(s)
- Kristina C Skåtun
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aldo Córdova-Palomera
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Helena Fatouros-Bergman
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Lena Flyckt
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
235
|
Takeuchi N, Sugiyama S, Inui K, Kanemoto K, Nishihara M. New paradigm for auditory paired pulse suppression. PLoS One 2017; 12:e0177747. [PMID: 28542290 PMCID: PMC5436751 DOI: 10.1371/journal.pone.0177747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Sensory gating is a mechanism of sensory processing used to prevent an overflow of irrelevant information, with some indexes, such as prepulse inhibition (PPI) and P50 suppression, often utilized for its evaluation. In addition, those are clinically important for diseases such as schizophrenia. In the present study, we investigated long-latency paired-pulse suppression of change-related cortical responses using magnetoencephalography. The test change-related response was evoked by an abrupt increase in sound pressure by 15 dB in a continuous sound composed of a train of 25-ms pure tones at 65 dB. By inserting a leading change stimulus (prepulse), we observed suppression of the test response. In Experiment 1, we examined the effects of conditioning-test intervals (CTI) using a 25-ms pure tone at 80 dB as both the test and prepulse. Our results showed clear suppression of the test response peaking at a CTI of 600 ms, while maximum inhibition was approximately 30%. In Experiment 2, the effects of sound pressure on prepulse were examined by inserting prepulses 600 ms prior to the test stimulus. We found that a paired-pulse suppression greater than 25% was obtained by prepulses larger than 77 dB, i.e., 12 dB louder than the background, suggesting that long latency suppression requires a relatively strong prepulse to obtain adequate suppression, different than short-latency paired-pulse suppression reported in previous studies. In Experiment 3, we confirmed similar levels of suppression using electroencephalography. These results suggested that two identical change stimuli spaced by 600 ms were appropriate for observing the long-latency inhibition. The present method requires only a short inspection time and is non-invasive.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, Japan
| | - Koji Inui
- Institute of Human Developmental Research, Aichi Human Service Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
236
|
Krystal JH, Anticevic A, Yang GJ, Dragoi G, Driesen NR, Wang XJ, Murray JD. Impaired Tuning of Neural Ensembles and the Pathophysiology of Schizophrenia: A Translational and Computational Neuroscience Perspective. Biol Psychiatry 2017; 81:874-885. [PMID: 28434616 PMCID: PMC5407407 DOI: 10.1016/j.biopsych.2017.01.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/14/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
The functional optimization of neural ensembles is central to human higher cognitive functions. When the functions through which neural activity is tuned fail to develop or break down, symptoms and cognitive impairments arise. This review considers ways in which disturbances in the balance of excitation and inhibition might develop and be expressed in cortical networks in association with schizophrenia. This presentation is framed within a developmental perspective that begins with disturbances in glutamate synaptic development in utero. It considers developmental correlates and consequences, including compensatory mechanisms that increase intrinsic excitability or reduce inhibitory tone. It also considers the possibility that these homeostatic increases in excitability have potential negative functional and structural consequences. These negative functional consequences of disinhibition may include reduced working memory-related cortical activity associated with the downslope of the "inverted-U" input-output curve, impaired spatial tuning of neural activity and impaired sparse coding of information, and deficits in the temporal tuning of neural activity and its implication for neural codes. The review concludes by considering the functional significance of noisy activity for neural network function. The presentation draws on computational neuroscience and pharmacologic and genetic studies in animals and humans, particularly those involving N-methyl-D-aspartate glutamate receptor antagonists, to illustrate principles of network regulation that give rise to features of neural dysfunction associated with schizophrenia. While this presentation focuses on schizophrenia, the general principles outlined in the review may have broad implications for considering disturbances in the regulation of neural ensembles in psychiatric disorders.
Collapse
Affiliation(s)
- John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT USA,Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Psychology, Yale University
| | - Genevieve J. Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - George Dragoi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Naomi R. Driesen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT USA
| | | | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
237
|
Kantrowitz JT, Epstein ML, Beggel O, Rohrig S, Lehrfeld JM, Revheim N, Lehrfeld NP, Reep J, Parker E, Silipo G, Ahissar M, Javitt DC. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine. Brain 2017; 139:3281-3295. [PMID: 27913408 DOI: 10.1093/brain/aww262] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/20/2016] [Accepted: 08/29/2016] [Indexed: 11/12/2022] Open
Abstract
Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time-frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908 Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that repeated NMDAR agonist administration may enhance cortical plasticity in schizophrenia.
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA .,2 Division of Experimental Therapeutics, Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
| | - Michael L Epstein
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA.,3 Graduate Center, City University of New York, New York, NY, USA
| | - Odeta Beggel
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Stephanie Rohrig
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Jonathan M Lehrfeld
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Nadine Revheim
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Nayla P Lehrfeld
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Jacob Reep
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Emily Parker
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Gail Silipo
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Merav Ahissar
- 4 Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel C Javitt
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA.,2 Division of Experimental Therapeutics, Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|
238
|
Abstract
BACKGROUND Sensory-processing deficits appear crucial to the clinical expression of symptoms of schizophrenia. The visual cortex displays both dysconnectivity and aberrant spontaneous activity in patients with persistent symptoms and cognitive deficits. In this paper, we examine visual cortex in the context of the remerging notion of thalamic dysfunction in schizophrenia. We examined specific regional and longer-range abnormalities in sensory and thalamic circuits in schizophrenia, and whether these patterns are strong enough to discriminate symptomatic patients from controls. METHOD Using publicly available resting fMRI data of 71 controls and 62 schizophrenia patients, we derived conjunction maps of regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF) to inform further seed-based Granger causality analysis (GCA) to study effective connectivity patterns. ReHo, fALFF and GCA maps were entered into a multiple kernel learning classifier, to determine whether patterns of local and effective connectivity can differentiate controls from patients. RESULTS Visual cortex shows both ReHo and fALFF reductions in patients. Visuothalamic effective connectivity in patients was significantly reduced. Local connectivity (ReHo) patterns discriminated patients from controls with the highest level of accuracy of 80.32%. CONCLUSIONS Both the inflow and outflow of Granger causal information between visual cortex and thalamus is affected in schizophrenia; this occurs in conjunction with highly discriminatory but localized dysconnectivity and reduced neural activity within the visual cortex. This may explain the visual-processing deficits that are present despite symptomatic remission in schizophrenia.
Collapse
Affiliation(s)
- S J Iwabuchi
- Translational Neuroimaging for Mental Health,Division of Psychiatry and Applied Psychology,University of Nottingham,Nottingham,UK
| | - L Palaniyappan
- Departments of Psychiatry & Medical Biophysics,University of Western Ontario,London,Ontario,Canada
| |
Collapse
|
239
|
Abstract
The specific efficacy of antipsychotics on negative symptoms is questionable, suggesting an urgent need for specific treatments for negative symptoms. This review includes studies published since 2014 with a primary or secondary focus on treating negative symptoms in schizophrenia. Special emphasis is given to recently published meta-analyses. Topics include novel pharmacological approaches, including glutamatergic-based and nicotinic-acetylcholinergic treatments, treatments approved for other indications by the US FDA (or other regulatory bodies) (antipsychotics, antidepressants, and mood stabilizers), brain stimulation, and behavioral- and activity-based approaches, including physical exercise. Potential complications regarding the design of current negative symptom trials are discussed and include inconsistent placebo effects, lack of reliable biomarkers, negative symptom scale and inclusion criteria variability, attempts to distinguish between primary and secondary negative symptoms, lack of focus on early psychosis, and the potential iatrogenic bias of clinical trials.
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA. .,Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY, 10032, USA. .,New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10023, USA.
| |
Collapse
|
240
|
Effects of nicotine on response inhibition and interference control. Psychopharmacology (Berl) 2017; 234:1093-1111. [PMID: 28150023 DOI: 10.1007/s00213-017-4542-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Nicotine is a cholinergic agonist with known pro-cognitive effects in the domains of alerting and orienting attention. However, its effects on attentional top-down functions such as response inhibition and interference control are less well characterised. Here, we investigated the effects of 7 mg transdermal nicotine on performance on a battery of response inhibition and interference control tasks. A sample of N = 44 healthy adult non-smokers performed antisaccade, stop signal, Stroop, go/no-go, flanker, shape matching and Simon tasks, as well as the attentional network test (ANT) and a continuous performance task (CPT). Nicotine was administered in a within-subjects, double-blind, placebo-controlled design, with order of drug administration counterbalanced. Relative to placebo, nicotine led to significantly shorter reaction times on a prosaccade task and on CPT hits but did not significantly improve inhibitory or interference control performance on any task. Instead, nicotine had a negative influence in increasing the interference effect on the Simon task. Nicotine did not alter inter-individual associations between reaction times on congruent trials and error rates on incongruent trials on any task. Finally, there were effects involving order of drug administration, suggesting practice effects but also beneficial nicotine effects when the compound was administered first. Overall, our findings support previous studies showing positive effects of nicotine on basic attentional functions but do not provide direct evidence for an improvement of top-down cognitive control through acute administration of nicotine at this dose in healthy non-smokers.
Collapse
|
241
|
Butler PD, Thompson JL, Seitz AR, Deveau J, Silverstein SM. Visual perceptual remediation for individuals with schizophrenia: Rationale, method, and three case studies. Psychiatr Rehabil J 2017; 40:43-52. [PMID: 27547852 PMCID: PMC5322250 DOI: 10.1037/prj0000212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Few studies have evaluated the effects of visual remediation strategies in schizophrenia despite abundant evidence of visual-processing alterations in this condition. We report preliminary, case-study-based evidence regarding the effects of visual remediation in this population. METHOD We describe implementation of a visual-perceptual training program called ULTIMEYES (UE) and initial results through 3 brief case studies of individuals with schizophrenia. UE targets broad-based visual function, including low-level processes (e.g., acuity, contrast sensitivity) as well as higher level visual functions. Three inpatients, recruited from a research unit, participated in at least 38 sessions 3 to 4 times per week for approximately 25 min per session. Contrast sensitivity (a trained task), as well as acuity and perceptual organization (untrained tasks), were assessed before and after the intervention. Levels of progression through the task are also reported. RESULTS UE was well tolerated by the participants and led to improvements in contrast sensitivity, as well as more generalized gains in visual acuity in all 3 participants and perceptual organization in 2 participants. Symptom profiles were somewhat different for each participant, but all were symptomatic during the intervention. Despite this, they were able to focus on and benefit from training. The adaptive nature of the training was well suited to the slower progression of 2 participants. CONCLUSIONS AND IMPLICATIONS FOR PRACTICE These case studies set the stage for further research, such as larger, randomized controlled trials of the intervention that include additional assessments of perceptual function and measures of cognition, social cognition, and functional outcomes. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Judy L Thompson
- Department of Psychiatric Rehabilitation and Counseling Professions, Rutgers University
| | | | - Jenni Deveau
- Department of Psychology, University of California
| | - Steven M Silverstein
- University Behavioral Health Care, Rutgers Biomedical and Health Sciences, Rutgers University
| |
Collapse
|
242
|
Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia. Schizophr Res 2017; 180:36-43. [PMID: 27269670 PMCID: PMC5423439 DOI: 10.1016/j.schres.2016.05.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022]
Abstract
Sleep disturbances have been reliably reported in patients with schizophrenia, thus suggesting that abnormal sleep may represent a core feature of this disorder. Traditional electroencephalographic studies investigating sleep architecture have found reduced deep non-rapid eye movement (NREM) sleep, or slow wave sleep (SWS), and increased REM density. However, these findings have been inconsistently observed, and have not survived meta-analysis. By contrast, several recent EEG studies exploring brain activity during sleep have established marked deficits in sleep spindles in schizophrenia, including first-episode and early-onset patients, compared to both healthy and psychiatric comparison subjects. Spindles are waxing and waning, 12-16Hz NREM sleep oscillations that are generated within the thalamus by the thalamic reticular nucleus (TRN), and are then synchronized and sustained in the cortex. While the functional role of sleep spindles still needs to be fully established, increasing evidence has shown that sleep spindles are implicated in learning and memory, including sleep dependent memory consolidation, and spindle parameters have been associated to general cognitive ability and IQ. In this article we will review the EEG studies demonstrating sleep spindle deficits in patients with schizophrenia, and show that spindle deficits can predict their reduced cognitive performance. We will then present data indicating that spindle impairments point to a TRN-MD thalamus-prefrontal cortex circuit deficit, and discuss about the possible molecular mechanisms underlying thalamo-cortical sleep spindle abnormalities in schizophrenia.
Collapse
|
243
|
Korostil M, Remington G, McIntosh AR. Practice and Learning: Spatiotemporal Differences in Thalamo-Cortical-Cerebellar Networks Engagement across Learning Phases in Schizophrenia. Front Psychiatry 2017; 7:212. [PMID: 28167919 PMCID: PMC5256117 DOI: 10.3389/fpsyt.2016.00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Understanding how practice mediates the transition of brain-behavior networks between early and later stages of learning is constrained by the common approach to analysis of fMRI data. Prior imaging studies have mostly relied on a single scan, and parametric, task-related analyses. Our experiment incorporates a multisession fMRI lexicon-learning experiment with multivariate, whole-brain analysis to further knowledge of the distributed networks supporting practice-related learning in schizophrenia (SZ). METHODS Participants with SZ were compared with healthy control (HC) participants as they learned a novel lexicon during two fMRI scans over a several day period. All participants were trained to equal task proficiency prior to scanning. Behavioral-Partial Least Squares, a multivariate analytic approach, was used to analyze the imaging data. Permutation testing was used to determine statistical significance and bootstrap resampling to determine the reliability of the findings. RESULTS With practice, HC participants transitioned to a brain-accuracy network incorporating dorsostriatal regions in late-learning stages. The SZ participants did not transition to this pattern despite comparable behavioral results. Instead, successful learners with SZ were differentiated primarily on the basis of greater engagement of perceptual and perceptual-integration brain regions. CONCLUSION There is a different spatiotemporal unfolding of brain-learning relationships in SZ. In SZ, given the same amount of practice, the movement from networks suggestive of effortful learning toward subcortically driven procedural one differs from HC participants. Learning performance in SZ is driven by varying levels of engagement in perceptual regions, which suggests perception itself is impaired and may impact downstream, "higher level" cognition.
Collapse
Affiliation(s)
- Michele Korostil
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Rotman Research Institute of Baycrest Health Sciences, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Anthony Randal McIntosh
- Rotman Research Institute of Baycrest Health Sciences, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| |
Collapse
|
244
|
Balz J, Roa Romero Y, Keil J, Krebber M, Niedeggen M, Gallinat J, Senkowski D. Beta/Gamma Oscillations and Event-Related Potentials Indicate Aberrant Multisensory Processing in Schizophrenia. Front Psychol 2016; 7:1896. [PMID: 27999553 PMCID: PMC5138197 DOI: 10.3389/fpsyg.2016.01896] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022] Open
Abstract
Recent behavioral and neuroimaging studies have suggested multisensory processing deficits in patients with schizophrenia (SCZ). Thus far, the neural mechanisms underlying these deficits are not well understood. Previous studies with unisensory stimulation have shown altered neural oscillations in SCZ. As such, altered oscillations could contribute to aberrant multisensory processing in this patient group. To test this assumption, we conducted an electroencephalography (EEG) study in 15 SCZ and 15 control participants in whom we examined neural oscillations and event-related potentials (ERPs) in the sound-induced flash illusion (SIFI). In the SIFI multiple auditory stimuli that are presented alongside a single visual stimulus can induce the illusory percept of multiple visual stimuli. In SCZ and control participants we compared ERPs and neural oscillations between trials that induced an illusion and trials that did not induce an illusion. On the behavioral level, SCZ (55.7%) and control participants (55.4%) did not significantly differ in illusion rates. The analysis of ERPs revealed diminished amplitudes and altered multisensory processing in SCZ compared to controls around 135 ms after stimulus onset. Moreover, the analysis of neural oscillations revealed altered 25–35 Hz power after 100 to 150 ms over occipital scalp for SCZ compared to controls. Our findings extend previous observations of aberrant neural oscillations in unisensory perception paradigms. They suggest that altered ERPs and altered occipital beta/gamma band power reflect aberrant multisensory processing in SCZ.
Collapse
Affiliation(s)
- Johanna Balz
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Yadira Roa Romero
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Julian Keil
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Martin Krebber
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Michael Niedeggen
- Department of Education and Psychology, Freie Universität Berlin Berlin, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Daniel Senkowski
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
245
|
Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets. Neuroimage 2016; 147:243-252. [PMID: 27916665 DOI: 10.1016/j.neuroimage.2016.11.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE An abundance of experimental studies have motivated a range of models concerning the cognitive underpinnings of severe mental disorders, yet the conception that cognitive and brain dysfunction is confined to specific cognitive domains and contexts has limited ecological validity. Schizophrenia and bipolar spectrum disorders have been conceptualized as disorders of brain connectivity; yet little is known about the pervasiveness across cognitive tasks. METHODS To address this outstanding issue of context specificity, we estimated functional network connectivity from fMRI data obtained during five cognitive tasks (0-back, 2-back, go/no-go, recognition of positive faces, negative faces) in 90 patients with schizophrenia spectrum, 97 patients with bipolar spectrum disorder, and 136 healthy controls, including 1615 fMRI datasets in total. We tested for main effects of task and group, and their interactions, and used machine learning to classify task labels and predict cognitive domain scores from brain connectivity. RESULTS Connectivity profiles were positively correlated across tasks, supporting the existence of a core functional connectivity backbone common to all tasks. However, 76.2% of all network links also showed significant task-related alterations, robust on the single subject level as evidenced by high machine-learning performance when classifying task labels. Independent of such task-specific modulations, 9.5% of all network links showed significant group effects, particularly including sensory (sensorimotor, visual, auditory) and cognitive (frontoparietal, default-mode, dorsal attention) networks. A lack of group by task interactions revealed that the pathophysiological sensitivity remained across tasks. Such pervasiveness across tasks was further supported by significant predictions of cognitive domain scores from the connectivity backbone obtained across tasks. CONCLUSIONS The high accuracies obtained when classifying cognitive tasks support that brain connectivity indices provide sensitive and specific measures of cognitive states. Importantly, we provide evidence that brain network dysfunction in severe mental disorders is not confined to specific cognitive tasks and show that the connectivity backbone common to all tasks is predictive of cognitive domain traits. Such pervasiveness across tasks may support a generalization of pathophysiological models from different domains, thereby reducing their complexity and increasing their ecological validity. Future research incorporating a wider range of cognitive tasks, involving other sensory modalities (auditory, somatosensory, motor) and requirements (learning, perceptual inference, decision making, etc.), is needed to assess if under certain circumstances, context dependent aberrations may evolve. Our results provide further evidence from a large sample that fMRI based functional network connectivity can be used to reveal both, state and trait effects in the connectome.
Collapse
|
246
|
Vanes LD, White TP, Wigton RL, Joyce D, Collier T, Shergill SS. Reduced susceptibility to the sound-induced flash fusion illusion in schizophrenia. Psychiatry Res 2016; 245:58-65. [PMID: 27526318 DOI: 10.1016/j.psychres.2016.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/12/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022]
Abstract
Schizophrenia is characterised by the presence of abnormal complex sensory perceptual experiences. Such experiences could arise as a consequence of dysfunctional multisensory integration. We used the sound-induced flash illusion paradigm, which probes audiovisual integration using elementary visual and auditory cues, in a sample of individuals with schizophrenia (n=40) and matched controls (n=22). Signal detection theory analyses were performed to characterise patients' and controls' sensitivity in distinguishing 1 and 2 flashes under varying auditory conditions. Both groups experienced significant fission illusions (whereby one visual flash, accompanied by two auditory beeps, is misperceived as two flashes) and fusion illusions (whereby two flashes, accompanied by one beep, are perceived as one flash). Patients showed significantly lower fusion illusion rates compared to HC, while the fission illusion occurred similarly frequently in both groups. However, using an SDT approach, we compared illusion conditions with unimodal visual conditions, and found that illusory visual perception was overall more strongly influenced by auditory input in HC compared to patients for both illusions. This suggests that multisensory integration may be impaired on a low perceptual level in SZ.
Collapse
Affiliation(s)
- Lucy D Vanes
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London SE5 8AF, United Kingdom.
| | - Thomas P White
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London SE5 8AF, United Kingdom; School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rebekah L Wigton
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London SE5 8AF, United Kingdom
| | - Dan Joyce
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London SE5 8AF, United Kingdom
| | - Tracy Collier
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London SE5 8AF, United Kingdom
| | - Sukhi S Shergill
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London SE5 8AF, United Kingdom
| |
Collapse
|
247
|
Drinkenburg WHIM, Ruigt GSF, Ahnaou A. Pharmaco-EEG Studies in Animals: An Overview of Contemporary Translational Applications. Neuropsychobiology 2016; 72:151-64. [PMID: 26901596 DOI: 10.1159/000442210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The contemporary value of animal pharmaco-electroencephalography (p-EEG)-based applications are strongly interlinked with progress in recording and neuroscience analysis methodology. While p-EEG in humans and animals has been shown to be closely related in terms of underlying neuronal substrates, both translational and back-translational approaches are being used to address extrapolation issues and optimize the translational validity of preclinical animal p-EEG paradigms and data. Present applications build further on animal p-EEG and pharmaco-sleep EEG findings, but also on stimulation protocols, more specifically pharmaco-event-related potentials. Pharmaceutical research into novel treatments for neurological and psychiatric diseases has employed an increasing number of pharmacological as well as transgenic models to assess the potential therapeutic involvement of different neurochemical systems and novel drug targets as well as underlying neuronal connectivity and synaptic function. Consequently, p-EEG studies, now also readily applied in modeled animals, continue to have an important role in drug discovery and development, with progressively more emphasis on its potential as a central readout for target engagement and as a (translational) functional marker of neuronal circuit processes underlying normal and pathological brain functioning. In a similar vein as was done for human p-EEG studies, the contribution of animal p-EEG studies can further benefit by adherence to guidelines for methodological standardization, which are presently under construction by the International Pharmaco-EEG Society (IPEG).
Collapse
|
248
|
Ferrarelli F, Tononi G. What Are Sleep Spindle Deficits Telling Us About Schizophrenia? Biol Psychiatry 2016; 80:577-8. [PMID: 27663065 DOI: 10.1016/j.biopsych.2016.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
249
|
Anxiety modulates cognitive deficits in a perinatal glutathione deficit animal model of schizophrenia. Brain Res 2016; 1648:459-468. [PMID: 27485658 DOI: 10.1016/j.brainres.2016.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/05/2016] [Accepted: 07/29/2016] [Indexed: 11/23/2022]
Abstract
In this study, we investigated long-term repercussion of early glutathione deficit by l-buthionine-(S,R)-sulfoximine (BSO) injections as a rat model of schizophrenia. BSO rats were tested through various behavioral tasks requiring animals to take into account previously delivered information. We showed that relative to controls, BSO rats (1) were less active and more anxious in an Elevated Plus Maze test, allowing us to split them into two subgroups with high and low anxiety levels; (2) demonstrated normal abilities of behavioral flexibility tested with a rat-adapted version of the Wisconsin Card Sorting Test (WCST), with even higher abilities in anxious BSO rats suggesting reduced interference of previously acquired rules; (3) did not forage normally in radial arm mazes and mainly used clockwise strategies; (4) exhibited a lack of habituation during a startle response task; and (5) showed a normal prepulse inhibition of the startle response (PPI) and a normal conditioned taste aversion (CTA). All these results indicate that early glutathione deficit provokes persistent changes in adulthood and improves the validity of this animal model of schizophrenia. They further suggest difficulties binding temporally separated events (WCST), except when the salience of this information is very strong (CTA). We propose that the transient glutathione deficit during cerebral development could alter a "cognitive binding" process in interaction with the emotional state that could possibly account for the disruption of integrative function that characterizes schizophrenia.
Collapse
|
250
|
Skåtun KC, Kaufmann T, Tønnesen S, Biele G, Melle I, Agartz I, Alnæs D, Andreassen OA, Westlye LT. Global brain connectivity alterations in patients with schizophrenia and bipolar spectrum disorders. J Psychiatry Neurosci 2016; 41:331-41. [PMID: 26854755 PMCID: PMC5008922 DOI: 10.1503/jpn.150159] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The human brain is organized into functionally distinct modules of which interactions constitute the human functional connectome. Accumulating evidence has implicated perturbations in the patterns of brain connectivity across a range of neurologic and neuropsychiatric disorders, but little is known about diagnostic specificity. Schizophrenia and bipolar disorders are severe mental disorders with partly overlapping symptomatology. Neuroimaging has demonstrated brain network disintegration in the pathophysiologies; however, to which degree the 2 diagnoses present with overlapping abnormalities remains unclear. METHODS We collected resting-state fMRI data from patients with schizophrenia or bipolar disorder and from healthy controls. Aiming to characterize connectivity differences across 2 severe mental disorders, we derived global functional connectivity using eigenvector centrality mapping, which allows for regional inference of centrality or importance in the brain network. RESULTS Seventy-one patients with schizophrenia, 43 with bipolar disorder and 196 healthy controls participated in our study. We found significant effects of diagnosis in 12 clusters, where pairwise comparisons showed decreased global connectivity in high-centrality clusters: sensory regions in patients with schizophrenia and subcortical regions in both patient groups. Increased connectivity occurred in frontal and parietal clusters in patients with schizophrenia, with intermediate effects in those with bipolar disorder. Patient groups differed in most cortical clusters, with the strongest effects in sensory regions. LIMITATIONS Methodological concerns of in-scanner motion and the use of full correlation measures may make analyses more vulnerable to noise. CONCLUSION Our results show decreased eigenvector centrality of limbic structures in both patient groups and in sensory regions in patients with schizophrenia as well as increased centrality in frontal and parietal regions in both groups, with stronger effects in patients with schizophrenia.
Collapse
Affiliation(s)
- Kristina C. Skåtun
- Correspondence to: K.C. Skåtun, Norment, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Ullevål, Kirkeveien 166, PO Box 4956 Nydalen, 0424 Oslo, Norway;
| | | | | | | | | | | | | | | | | |
Collapse
|