201
|
Imanishi M, Cheng H, Kotla S, Deswal A, Le NT, Chini E, Ko KA, Samanthapudi VSK, Lee LL, Herrmann J, Xu X, Reyes-Gibby C, Yeung SCJ, Schadler KL, Yusuf SW, Liao Z, Nurieva R, Amir EAD, Burks JK, Palaskas NL, Cooke JP, Lin SH, Kobayashi M, Yoshimoto M, Abe JI. Radiation therapy induces immunosenescence mediated by p90RSK. Front Cardiovasc Med 2022; 9:988713. [PMID: 36426217 PMCID: PMC9680092 DOI: 10.3389/fcvm.2022.988713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Radiation therapy (RT) to the chest increases the patients' risk of cardiovascular disease (CVD). A complete understanding of the mechanisms by which RT induces CVD could lead to specific preventive, therapeutic approaches. It is becoming evident that both genotoxic chemotherapy agents and radiation induce mitochondrial dysfunction and cellular senescence. Notably, one of the common phenotypes observed in cancer survivors is accelerated senescence, and immunosenescence is closely related to both cancer risk and CVD development. Therefore, suppression of immunosenescence can be an ideal target to prevent cancer treatment-induced CVD. However, the mechanism(s) by which cancer treatments induce immunosenescence are incompletely characterized. We isolated peripheral blood mononuclear cells (PBMCs) before and 3 months after RT from 16 thoracic cancer patients. We characterized human immune cell lineages and markers of senescence, DNA damage response (DDR), efferocytosis, and determinants of clonal hematopoiesis of indeterminant potential (CHIP), using mass cytometry (CyTOF). We found that the frequency of the B cell subtype was decreased after RT. Unsupervised clustering of the CyTOF data identified 138 functional subsets of PBMCs. Compared with baseline, RT increased TBX21 (T-bet) expression in the largest B cell subset of Ki67-/DNMT3a+naïve B cells, and T-bet expression was correlated with phosphorylation of p90RSK expression. CD38 expression was also increased in naïve B cells (CD27-) and CD8+ effector memory CD45RA T cells (TEMRA). In vitro, we found the critical role of p90RSK activation in upregulating (1) CD38+/T-bet+ memory and naïve B, and myeloid cells, (2) senescence-associated β-gal staining, and (3) mitochondrial reactive oxygen species (ROS) after ionizing radiation (IR). These data suggest the crucial role of p90RSK activation in immunosenescence. The critical role of p90RSK activation in immune cells and T-bet induction in upregulating atherosclerosis formation has been reported. Furthermore, T-bet directly binds to the CD38 promoter region and upregulates CD38 expression. Since both T-bet and CD38 play a significant role in the process of immunosenescence, our data provide a cellular and molecular mechanism that links RT-induced p90RSK activation and the immunosenescence with T-bet and CD38 induction observed in thoracic cancer patients treated by RT and suggests that targeting the p90RSK/T-bet/CD38 pathway could play a role in preventing the radiation-associated CVD and improving cancer prognosis by inhibiting immunosenescence.
Collapse
Affiliation(s)
- Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Haizi Cheng
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Eduardo Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Ling-Ling Lee
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joerg Herrmann
- Division of Preventive Cardiology, Cardio Oncology Clinic, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Cielito Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keri L. Schadler
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roza Nurieva
- Division of Basic Science, Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Jared K. Burks
- Division of Center Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John P. Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Steven H. Lin
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michihiro Kobayashi
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Momoko Yoshimoto
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
202
|
Qin Y, Cai ML, Jin HZ, Huang W, Zhu C, Bozec A, Huang J, Chen Z. Age-associated B cells contribute to the pathogenesis of rheumatoid arthritis by inducing activation of fibroblast-like synoviocytes via TNF-α-mediated ERK1/2 and JAK-STAT1 pathways. Ann Rheum Dis 2022; 81:1504-1514. [PMID: 35760450 DOI: 10.1136/ard-2022-222605] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/17/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Age-associated B cells (ABCs) are a recently identified B cell subset, whose expansion has been increasingly linked to the pathogenesis of autoimmune disorders. This study aimed to investigate whether ABCs are involved in the pathogenesis and underlying mechanisms of rheumatoid arthritis (RA). METHODS ABCs were assessed in collagen-induced arthritis (CIA) mice and patients with RA using flow cytometry. Transcriptomic features of RA ABCs were explored using RNA-seq. Primary fibroblast-like synoviocytes (FLS) derived from the synovial tissue of patients with RA were cocultured with ABCs or ABCs-conditioned medium (ABCsCM). IL-6, MMP-1, MMP-3 and MMP-13 levels in the coculture supernatant were detected by ELISA. Signalling pathways related to ABCs-induced FLS activation were examined using western blotting. RESULTS Increased ABCs levels in the blood, spleen and inflammatory joints of CIA mice were observed. Notably, ABCs were elevated in the blood, synovial fluid and synovial tissue of patients with RA and positively correlated with disease activity. RNA-seq revealed upregulated chemotaxis-related genes in RA ABCs compared with those in naive and memory B cells. Coculture of FLS with RA ABCs or ABCsCM led to an active phenotype of FLS, with increased production of IL-6, MMP-1, MMP-3 and MMP-13. Mechanistically, ABCsCM-derived TNF-α promoted the upregulation of interferon-stimulated genes in FLS, with elevated phosphorylation of ERK1/2 and STAT1. Furthermore, blockage of ERK1/2 and Janus Kinase (JAK)-STAT1 pathways inhibited the activation of FLS induced by ABCsCM. CONCLUSIONS Our results suggest that ABCs contribute to the pathogenesis of RA by inducing the activation of FLS via TNF-α-mediated ERK1/2 and JAK-STAT1 pathways.
Collapse
Affiliation(s)
- Yi Qin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming-Long Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui-Zhi Jin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aline Bozec
- Department of Internal Medicine III, Institute for Clinical Immunology University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jingang Huang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhu Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
203
|
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is a chronic rheumatic disease that is characterized by immune activation, vasculopathy and fibrosis of the skin and internal organs. It has been proposed that premature onset of ageing pathways and associated senescent changes in cells contribute to the clinical and pathological features of SSc. The aim of this review is to critically review recent insights into the involvement of cellular senescence in SSc. RECENT FINDINGS Cellular senescence plays a critical role in SSc pathogenesis, particularly involving endothelial cells and fibroblasts. Immunosenescence could also contribute to SSc pathogenesis by direct alteration of cellular functions or indirect promotion of defective immune surveillance. Molecular studies have shed some light on how cellular senescence contributes to fibrosis. Recent and planned proof-of-concept trials using senotherapeutics showed promising results in fibrotic diseases, including SSc. SUMMARY There is increasing evidence implicating cellular senescence in SSc. The mechanisms underlying premature cellular senescence in SSc, and its potential role in pathogenesis, merit further investigation. Emerging drugs targeting senescence-related pathways might be potential therapeutic options for SSc.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Bo Shi
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
204
|
Leffler J, Trend S, Hart PH, French MA. Epstein-Barr virus infection, B-cell dysfunction and other risk factors converge in gut-associated lymphoid tissue to drive the immunopathogenesis of multiple sclerosis: a hypothesis. Clin Transl Immunology 2022; 11:e1418. [PMID: 36325491 PMCID: PMC9621333 DOI: 10.1002/cti2.1418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Multiple sclerosis is associated with Epstein-Barr virus (EBV) infection, B-cell dysfunction, gut dysbiosis, and environmental and genetic risk factors, including female sex. A disease model incorporating all these factors remains elusive. Here, we hypothesise that EBV-infected memory B cells (MBCs) migrate to gut-associated lymphoid tissue (GALT) through EBV-induced expression of LPAM-1, where they are subsequently activated by gut microbes and/or their products resulting in EBV reactivation and compartmentalised anti-EBV immune responses. These responses involve marginal zone (MZ) B cells that activate CD4+ T-cell responses, via HLA-DRB1, which promote downstream B-cell differentiation towards CD11c+/T-bet+ MBCs, as well as conventional MBCs. Intrinsic expression of low-affinity B-cell receptors (BCRs) by MZ B cells and CD11c+/T-bet+ MBCs promotes polyreactive BCR/antibody responses against EBV proteins (e.g. EBNA-1) that cross-react with central nervous system (CNS) autoantigens (e.g. GlialCAM). EBV protein/autoantigen-specific CD11c+/T-bet+ MBCs migrate to the meningeal immune system and CNS, facilitated by their expression of CXCR3, and induce cytotoxic CD8+ T-cell responses against CNS autoantigens amplified by BAFF, released from EBV-infected MBCs. An increased abundance of circulating IgA+ MBCs, observed in MS patients, might also reflect GALT-derived immune responses, including disease-enhancing IgA antibody responses against EBV and gut microbiota-specific regulatory IgA+ plasma cells. Female sex increases MZ B-cell and CD11c+/T-bet+ MBC activity while environmental risk factors affect gut dysbiosis. Thus, EBV infection, B-cell dysfunction and other risk factors converge in GALT to generate aberrant B-cell responses that drive pathogenic T-cell responses in the CNS.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Stephanie Trend
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia,Perron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Prue H Hart
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Martyn A French
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia,Immunology DivisionPathWest Laboratory MedicinePerthWAAustralia
| |
Collapse
|
205
|
The ABC-associated Immunosenescence and Lifestyle Interventions in Autoimmune Disease. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:128-135. [PMID: 36788975 PMCID: PMC9895871 DOI: 10.2478/rir-2022-0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 02/16/2023]
Abstract
Aging-associated immune changes, termed immunosenescence, occur with impaired robust immune responses. This immune response is closely related to a greater risk of development of autoimmune disease (AID), which results in increased levels of autoantibodies and increased morbidity and mortality. In addition, lifestyle-related risk factors play a pivotal role in AID, which may be probable via senescence-related immune cell subsets. Age-associated B cell (ABC) subsets have been observed in those who have rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and multiple sclerosis (MS). Here, this review aims to highlight the mechanisms of ABCs with lifestyle interventions in AID, especially how immunosenescence affects the pathogenesis of AID and the future of aging-associated lifestyle interventions in immunosenescence of AID.
Collapse
|
206
|
Yoshikawa T, Lee YH, Sato Y, Yanagita M. Tertiary lymphoid tissues in kidney diseases: a perspective for the pediatric nephrologist. Pediatr Nephrol 2022; 38:1399-1409. [PMID: 36251070 DOI: 10.1007/s00467-022-05770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Chronic kidney disease (CKD) is a major public health problem worldwide. In the pediatric population, CKD is also an important health issue because it causes several comorbid conditions that can have long-term consequences beyond the pediatric age. Chronic inflammation is a common pathological feature of CKD, irrespective of etiology, and leads to maladaptive repair and kidney dysfunction. Tertiary lymphoid tissues (TLTs) are ectopic lymphoid structures that develop in non-lymphoid organs under chronic inflammation caused by pathological conditions, including infections, autoimmune diseases, and cancers. TLTs in the kidneys have been poorly researched due to the lack of an animal model. We have recently found that, in aged but not young mice, TLTs develop in multiple kidney injury models, and the analysis of age-dependent TLTs has brought about several novel insights into the development and pathogenic impacts of TLTs in the kidney. Age-dependent TLT formation is also observed in human kidneys. In addition to aged kidneys, TLT development is also reported in several human kidney diseases including kidney allografts, lupus nephritis, and IgA nephropathy in both adults and children. In this review, we describe the novel findings on TLTs in the kidney obtained mainly from the analysis of age-dependent TLTs and discuss the clinical relevance of TLTs in kidney diseases.
Collapse
Affiliation(s)
- Takahisa Yoshikawa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. .,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
207
|
Pluta R, Jabłoński M, Januszewski S, Czuczwar SJ. Crosstalk between the aging intestinal microflora and the brain in ischemic stroke. Front Aging Neurosci 2022; 14:998049. [PMID: 36275012 PMCID: PMC9582537 DOI: 10.3389/fnagi.2022.998049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Aging is an inevitable phenomenon experienced by animals and humans, and its intensity varies from one individual to another. Aging has been identified as a risk factor for neurodegenerative disorders by influencing the composition of the gut microbiota, microglia activity and cognitive performance. The microbiota-gut-brain axis is a two-way communication path between the gut microbes and the host brain. The aging intestinal microbiota communicates with the brain through secreted metabolites (neurotransmitters), and this phenomenon leads to the destruction of neuronal cells. Numerous external factors, such as living conditions and internal factors related to the age of the host, affect the condition of the intestinal microflora in the form of dysbiosis. Dysbiosis is defined as changes in the composition and function of the gut microflora that affect the pathogenesis, progress, and response to treatment of a disease entity. Dysbiosis occurs when changes in the composition and function of the microbiota exceed the ability of the microflora and its host to restore equilibrium. Dysbiosis leading to dysfunction of the microbiota-gut-brain axis regulates the development and functioning of the host’s nervous, immune, and metabolic systems. Dysbiosis, which causes disturbances in the microbiota-gut-brain axis, is seen with age and with the onset of stroke, and is closely related to the development of risk factors for stroke. The review presents and summarizes the basic elements of the microbiota-gut-brain axis to better understand age-related changes in signaling along the microbiota-gut-brain axis and its dysfunction after stroke. We focused on the relationship between the microbiota-gut-brain axis and aging, emphasizing that all elements of the microbiota-gut-brain axis are subject to age-related changes. We also discuss the interaction between microbiota, microglia and neurons in the aged individuals in the brain after ischemic stroke. Finally, we presented preclinical and clinical studies on the role of the aged microbiota-gut-brain axis in the development of risk factors for stroke and changes in the post-stroke microflora.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Ryszard Pluta,
| | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
208
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
209
|
Kugler‐Umana O, Zhang W, Kuang Y, Liang J, Castonguay CH, Tonkonogy SL, Marshak‐Rothstein A, Devarajan P, Swain SL. IgD + age-associated B cells are the progenitors of the main T-independent B cell response to infection that generates protective Ab and can be induced by an inactivated vaccine in the aged. Aging Cell 2022; 21:e13705. [PMID: 36056604 PMCID: PMC9577953 DOI: 10.1111/acel.13705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Age-associated B cells (ABC) accumulate with age and are associated with autoimmunity and chronic infection. However, their contributions to acute infection in the aged and their developmental pathways are unclear. We find that the response against influenza A virus infection in aged mice is dominated by a Fas+ GL7- effector B cell population we call infection-induced ABC (iABC). Most iABC express IgM and include antibody-secreting cells in the spleen, lung, and bone marrow. We find that in response to influenza, IgD+ CD21- CD23- ABC are the precursors of iABC and become memory B cells. These IgD+ ABC develop in germ-free mice, so are independent of foreign antigen recognition. The response of ABC to influenza infection, resulting in iABC, is T cell independent and requires both extrinsic TLR7 and TLR9 signals. In response to influenza infection, IgD+ ABC can induce a faster recovery of weight and higher total anti-influenza IgG and IgM titers that can neutralize virus. Immunization with whole inactivated virus also generates iABC in aged mice. Thus, in unimmunized aged mice, whose other B and T cell responses have waned, IgD+ ABC are likely the naive B cells with the potential to become Ab-secreting cells and to provide protection from infection in the aged.
Collapse
Affiliation(s)
- Olivia Kugler‐Umana
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Wenliang Zhang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Yi Kuang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Jialing Liang
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Catherine H. Castonguay
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Susan L. Tonkonogy
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ann Marshak‐Rothstein
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Susan L. Swain
- Department of PathologyUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
210
|
SoRelle ED, Reinoso-Vizcaino NM, Horn GQ, Luftig MA. Epstein-Barr virus perpetuates B cell germinal center dynamics and generation of autoimmune-associated phenotypes in vitro. Front Immunol 2022; 13:1001145. [PMID: 36248899 PMCID: PMC9554744 DOI: 10.3389/fimmu.2022.1001145] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 02/03/2023] Open
Abstract
Human B cells encompass functionally diverse lineages and phenotypic states that contribute to protective as well as pathogenic responses. Epstein-Barr virus (EBV) provides a unique lens for studying heterogeneous B cell responses, given its adaptation to manipulate intrinsic cell programming. EBV promotes the activation, proliferation, and eventual outgrowth of host B cells as immortalized lymphoblastoid cell lines (LCLs) in vitro, which provide a foundational model of viral latency and lymphomagenesis. Although cellular responses and outcomes of infection can vary significantly within populations, investigations that capture genome-wide perspectives of this variation at single-cell resolution are in nascent stages. We have recently used single-cell approaches to identify EBV-mediated B cell heterogeneity in de novo infection and within LCLs, underscoring the dynamic and complex qualities of latent infection rather than a singular, static infection state. Here, we expand upon these findings with functional characterizations of EBV-induced dynamic phenotypes that mimic B cell immune responses. We found that distinct subpopulations isolated from LCLs could completely reconstitute the full phenotypic spectrum of their parental lines. In conjunction with conserved patterns of cell state diversity identified within scRNA-seq data, these data support a model in which EBV continuously drives recurrent B cell entry, progression through, and egress from the Germinal Center (GC) reaction. This "perpetual GC" also generates tangent cell fate trajectories including terminal plasmablast differentiation, which constitutes a replicative cul-de-sac for EBV from which lytic reactivation provides escape. Furthermore, we found that both established EBV latency and de novo infection support the development of cells with features of atypical memory B cells, which have been broadly associated with autoimmune disorders. Treatment of LCLs with TLR7 agonist or IL-21 was sufficient to generate an increased frequency of IgD-/CD27-/CD23-/CD38+/CD138+ plasmablasts. Separately, de novo EBV infection led to the development of CXCR3+/CD11c+/FCRL4+ B cells within days, providing evidence for possible T cell-independent origins of a recently described EBV-associated neuroinvasive CXCR3+ B cell subset in patients with multiple sclerosis. Collectively, this work reveals unexpected virus-driven complexity across infected cell populations and highlights potential roles of EBV in mediating or priming foundational aspects of virus-associated immune cell dysfunction in disease.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, United States
| | | | - Gillian Q. Horn
- Department of Immunology, Duke University, Durham, NC, United States
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
211
|
Zhang Y, Zhang F, Gao Y, Wang M, Gao Y, Li H, Sun J, Wen C, Xie Z. Triptolide in the treatment of systemic lupus erythematosus - regulatory effects on miR-146a in B cell TLR7 signaling pathway in mice. Front Pharmacol 2022; 13:952775. [PMID: 36210830 PMCID: PMC9539794 DOI: 10.3389/fphar.2022.952775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: To clarify the mechanism of triptolide (TP) in alleviating the conditions underlying SLE. Methods: Eight-week-old MRL/lpr mice were randomly divided into a model group (n = 5), low-dose TP (TP-L) group (n = 5), and high-dose TP (TP-H) group (n = 5). Mice in these groups were gavaged with normal saline, low-dose TP solution, and high-dose TP solution for 8 weeks, respectively. The expression levels of anti-dsDNA, IgG, IgM, IgA, C3, C4, and CREA, BUN, ALT, AST, ALB, and ALP indexes in the serum of mice were detected. The proportion of CD19+CD138+B220− cells in the spleen and the pathological changes of kidney tissue in the mice were also evaluated. The possible signaling pathways and microRNA (miRNA) targets of TP in the treatment of SLE were analyzed using network pharmacology. The expressions of TLR7 mRNA and miR-146a in Raji cells (a B lymphocyte line) were detected using qPCR before and after intervention with a miR-146a inhibitor. The protein expression levels of TLR7, MyD88, p-IRAK1, and p-NF-κBp65 were detected using western blot analysis. Results: TP could significantly decrease the levels of ds-DNA and IgG, alleviate pathological injury in renal tissue, and upregulate miR-146a expression in the B cells of MRL/lpr mice without obvious liver and kidney toxicity. Network pharmacology analysis showed that TP could mainly regulate the Toll-like receptor signaling pathway, and NF-κB signaling pathway, among others. miRNA target prediction suggested that TP could regulate miRNAs such as miR-146a. In vitro cell experiments further confirmed that TP could significantly upregulate miR-146a expression and downregulate the expression of TLR7 mRNA and protein levels TLR7, MyD88, p-IRAK1, and p-NF-κBp65. After intervention with a miR-146a inhibitor, TP had no obvious inhibitory effects on TLR7, MyD88, p-IRAK1, and p-NF-κBp65 expression. Conclusion: TP may exert therapeutic effects on SLE by regulating miR-146a expression, inhibiting the TLR7/NF-κB signaling pathway, and affecting B cell activation.
Collapse
Affiliation(s)
- Yi Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - FengQi Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - YiNi Gao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - MeiJiao Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Gao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - HaiChang Li
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Sun
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ChengPing Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: ChengPing Wen, ; ZhiJun Xie,
| | - ZhiJun Xie
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: ChengPing Wen, ; ZhiJun Xie,
| |
Collapse
|
212
|
cis interaction of CD153 with TCR/CD3 is crucial for the pathogenic activation of senescence-associated T cells. Cell Rep 2022; 40:111373. [PMID: 36130493 DOI: 10.1016/j.celrep.2022.111373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
With age, senescence-associated (SA) CD4+ T cells that are refractory to T cell receptor (TCR) stimulation are increased along with spontaneous germinal center (Spt-GC) development prone to autoantibody production. We demonstrate that CD153 and its receptor CD30 are expressed in SA-T and Spt-GC B cells, respectively, and deficiency of either CD153 or CD30 results in the compromised increase of both cell types. CD153 engagement on SA-T cells upon TCR stimulation causes association of CD153 with the TCR/CD3 complex and restores TCR signaling, whereas CD30 engagement on GC B cells induces their expansion. Administration of an anti-CD153 antibody blocking the interaction with CD30 suppresses the increase in both SA-T and Spt-GC B cells with age and ameliorates lupus in lupus-prone mice. These results suggest that the molecular interaction of CD153 and CD30 plays a central role in the reciprocal activation of SA-T and Spt-GC B cells, leading to immunosenescent phenotypes and autoimmunity.
Collapse
|
213
|
Jenkins D, Phalke S, Bell R, Lessard S, Gupta S, Youssef M, Tam K, Nocon A, Rivera-Correa J, Wright T, Sculco T, Otero M, Pernis AB, Sculco P. Adaptive immune responses in patients requiring revision after total knee arthroplasty. J Orthop Res 2022; 41:984-993. [PMID: 36121317 DOI: 10.1002/jor.25445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Dissatisfaction occurs in nearly 20% of patients after total knee arthroplasty (TKA); however, there remains only limited understanding of the biologic mechanisms that may contribute to suboptimal postoperative outcomes requiring revision surgery. Expansion of effector T and B cells, could promote an abnormal healing response via local or peripheral immune system mechanisms and contribute to inferior outcomes necessitating revision TKA. In this pilot study, we hypothesized that patients suffering from complications of arthrofibrosis or instability may exhibit differences in adaptive immune function. Patients (n = 31) undergoing revision TKA for an indication of arthrofibrosis or instability were prospectively enrolled. Whole blood and synovial fluid (SF) from the operative knee were collected at time of surgery. Peripheral blood mononuclear cells were isolated and analyzed by flow cytometry. Serum and SF were assessed for immunoglobulin levels by Luminex and antiphospholipid antibodies by enzyme-linked immunoassay. No significant differences were observed in peripheral blood T/B cell populations or serum immunoglobulins levels between groups. SF analysis demonstrated significant differences between the two groups, with higher levels of immunoglobulin G1 (IgG1) (p = 0.0184), IgG3 (p = 0.0084) and antiphosphatidyl serine IgG (p = 0.034) in arthrofibrosis relative to instability patients. Increased levels of both IgG subclasses and antiphospholipid antibodies in the SF suggest that intra-articular T-B cell interactions, potentially triggered by exposure to apoptotic components generated during post-op healing, could be functioning as a source of immune complexes that fuel fibrous tissue growth in arthrofibrotic patients.
Collapse
Affiliation(s)
- Daniel Jenkins
- HSS Research Institute, Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York City, New York, USA
| | - Swati Phalke
- HSS Research Institute, Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York City, New York, USA
| | - Richard Bell
- HSS Research Institute, Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York City, New York, USA
- HSS Research Institute, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York City, New York, USA
| | - Samantha Lessard
- HSS Research Institute, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York City, New York, USA
| | - Sanjay Gupta
- HSS Research Institute, Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York City, New York, USA
| | - Mark Youssef
- Department of Orthopedic Surgery, Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York City, New York, USA
| | - Kathleen Tam
- Department of Orthopedic Surgery, Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York City, New York, USA
| | - Allina Nocon
- Department of Orthopedic Surgery, Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York City, New York, USA
| | - Juan Rivera-Correa
- HSS Research Institute, Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York City, New York, USA
| | - Timothy Wright
- Department of Biomechanics, Hospital for Special Surgery, New York City, New York, USA
| | - Thomas Sculco
- Department of Orthopedic Surgery, Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York City, New York, USA
| | - Miguel Otero
- HSS Research Institute, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York City, New York, USA
- HSS Research Institute, Orthopedic Soft Tissue Research Program, Weill Cornell Medical College, New York City, New York, USA
| | - Alessandra B Pernis
- HSS Research Institute, Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York City, New York, USA
- HSS Research Institute, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York City, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York City, New York, USA
- Department of Medicine, Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York City, New York, USA
| | - Peter Sculco
- Department of Orthopedic Surgery, Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York City, New York, USA
| |
Collapse
|
214
|
Itotagawa E, Tomofuji Y, Kato Y, Konaka H, Tsujimoto K, Park J, Nagira D, Hirayama T, Jo T, Hirano T, Morita T, Nishide M, Nishida S, Shima Y, Narazaki M, Okada Y, Takamatsu H, Kumanogoh A. SLE stratification based on BAFF and IFN-I bioactivity for biologics and implications of BAFF produced by glomeruli in lupus nephritis. Rheumatology (Oxford) 2022; 62:1988-1997. [PMID: 36094336 PMCID: PMC10152287 DOI: 10.1093/rheumatology/keac528] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE B-cell activating factor (BAFF) is implicated in systemic lupus erythematosus (SLE) pathogenesis. Blocking BAFF signaling has contributed to reducing glucocorticoid dosage and preventing organ damage. However, clinical characteristics of patients who may benefit from this therapy are not yet fully elucidated. Therefore, we identified patients with high BAFF-bioactivity to investigate their clinical characteristics and BAFF-producing cells. METHODS We established the reporter cell for BAFF and investigated the clinical characteristics of SLE patients with high BAFF-bioactivity. We identified BAFF-expressing kidney cells using publicly available scRNA-seq data and immunohistological analysis. SLE patients were stratified based on the bioactivity of BAFF and type-I interferon (IFN-I) to identify associated characteristic clinical manifestations. RESULTS SLE patients, especially patients with lupus nephritis (LN), had significantly higher serum BAFF-bioactivity than healthy controls (HC) and non-LN patients. Additionally, single-cell-RNA-seq data and immunohistological analysis of kidney samples from LN patients revealed that BAFF is expressed in glomerular macrophages and mesangial cells. Notably, BAFF bioactivity was elevated in the urine of LN patients compared to that of non-LN patients, while no IFN-I bioactivity was detected in the urine. Furthermore, SLE stratification based on bioactivities of serum BAFF and IFN-I revealed the clinical characteristics of patients: high BAFF represented patients with LN and high IFN-I represented patients with blood and skin manifestations. CONCLUSIONS Monitoring urinary BAFF-bioactivity may be valuable in diagnosing LN. Furthermore, stratification based on serum BAFF and IFN-I bioactivities may allow the identification of appropriate patients for biologics targeting BAFF and IFN-I.
Collapse
Affiliation(s)
- Eri Itotagawa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiko Tomofuji
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hachiro Konaka
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of internal medicine, Nippon life Hospital, 2-1-54 Enokojima, Nishi-ku, Osaka, Osaka 550-0006, Japan
| | - Kohei Tsujimoto
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - JeongHoon Park
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of internal medicine, Daini Osaka Police Hospital, Osaka, 543-8922, Japan
| | - Daiki Nagira
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takehiro Hirayama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsunori Jo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Hirano
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Rheumatology, Nishinomiya municipal central hospital, 8-24 Hayashida-cho, Nishinomiya, Hyogo, 663-8014, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihito Shima
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Division of Thermo-Therapeutics for Vascular Dysfunction, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan.,Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi 230-0045, Japan.,Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
| |
Collapse
|
215
|
Chen Z, Flores Castro D, Gupta S, Phalke S, Manni M, Rivera-Correa J, Jessberger R, Zaghouani H, Giannopoulou E, Pannellini T, Pernis AB. Interleukin-13 Receptor α1-Mediated Signaling Regulates Age-Associated/Autoimmune B Cell Expansion and Lupus Pathogenesis. Arthritis Rheumatol 2022; 74:1544-1555. [PMID: 35438841 PMCID: PMC9427689 DOI: 10.1002/art.42146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Age-associated/autoimmune B cells (ABCs) are an emerging B cell subset with aberrant expansion in systemic lupus erythematosus. ABC generation and differentiation exhibit marked sexual dimorphism, and Toll-like receptor 7 (TLR-7) engagement is a key contributor to these sex differences. ABC generation is also controlled by interleukin-21 (IL-21) and its interplay with interferon-γ and IL-4. This study was undertaken to investigate whether IL-13 receptor α1 (IL-13Rα1), an X-linked receptor that transmits IL-4/IL-13 signals, regulates ABCs and lupus pathogenesis. METHODS Mice lacking DEF-6 and switch-associated protein 70 (double-knockout [DKO]), which preferentially develop lupus in females, were crossed with IL-13Rα1-knockout mice. IL-13Rα1-knockout male mice were also crossed with Y chromosome autoimmune accelerator (Yaa) DKO mice, which overexpress TLR-7 and develop severe disease. ABCs were assessed using flow cytometry and RNA-Seq. Lupus pathogenesis was evaluated using serologic and histologic analyses. RESULTS ABCs expressed higher levels of IL-13Rα1 than follicular B cells. The absence of IL-13Rα1 in either DKO female mice or Yaa DKO male mice decreased the accumulation of ABCs, the differentiation of ABCs into plasmablasts, and autoantibody production. Lack of IL-13Rα1 also prolonged survival and delayed the development of tissue inflammation. IL-13Rα1 deficiency diminished in vitro generation of ABCs, an effect that, surprisingly, could be observed in response to IL-21 alone. RNA-Seq revealed that ABCs lacking IL-13Rα1 down-regulated some histologic characteristics of B cells but up-regulated myeloid markers and proinflammatory mediators. CONCLUSION Our findings indicate a novel role for IL-13Rα1 in controlling ABC generation and differentiation, suggesting that IL-13Rα1 contributes to these effects by regulating a subset of IL-21-mediated signaling events. These results also suggest that X-linked genes besides TLR7 participate in the regulation of ABCs in lupus.
Collapse
Affiliation(s)
- Zhu Chen
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty, Technische Universitat, Dresden, Germany
| | - Habib Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO
- Department of Neurology, University of Missouri School of Medicine, Columbia, MO
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO
| | - Evgenia Giannopoulou
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY, USA
| | - Tania Pannellini
- Research Division and Precision Medicine Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
216
|
Torrance BL, Haynes L. Cellular senescence is a key mediator of lung aging and susceptibility to infection. Front Immunol 2022; 13:1006710. [PMID: 36119079 PMCID: PMC9473698 DOI: 10.3389/fimmu.2022.1006710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Aging results in systemic changes that leave older adults at much higher risk for adverse outcomes following respiratory infections. Much work has been done over the years to characterize and describe the varied changes that occur with aging from the molecular/cellular up to the organismal level. In recent years, the systemic accumulation of senescent cells has emerged as a key mediator of many age-related declines and diseases of aging. Many of these age-related changes can impair the normal function of the respiratory system and its capability to respond appropriately to potential pathogens that are encountered daily. In this review, we aim to establish the effects of cellular senescence on the disruption of normal lung function with aging and describe how these effects compound to leave an aged respiratory system at great risk when exposed to a pathogen. We will also discuss the role cellular senescence may play in the inability of most vaccines to confer protection against respiratory infections when administered to older adults. We posit that cellular senescence may be the point of convergence of many age-related immunological declines. Enhanced investigation into this area could provide much needed insight to understand the aging immune system and how to effectively ameliorate responses to pathogens that continue to disproportionately harm this vulnerable population.
Collapse
Affiliation(s)
| | - Laura Haynes
- UConn Center on Aging and Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
217
|
Gao X, Cockburn IA. The development and function of CD11c+ atypical B cells - insights from single cell analysis. Front Immunol 2022; 13:979060. [PMID: 36072594 PMCID: PMC9441955 DOI: 10.3389/fimmu.2022.979060] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
CD11c+ T-bet+ atypical B cells (ABCs) have been identified in the context of vaccination, acute and chronic infections and autoimmune disease. However, the origins and functions of ABCs remain elusive. A major obstacle in the study of ABCs, and human MBCs more generally, has been the use of different phenotypic markers in different contexts to identify what appear to be phenotypically similar cells. Advances in single-cell RNA sequencing (scRNA-seq) technology have allowed researchers to accurately identify ABCs in different immune contexts such as diseases and tissues. Notably, recent studies utilizing single cell techniques have demonstrated ABCs are a highly conserved memory B cell lineage. This analysis has also revealed that ABCs are more abundant in ostensibly healthy donors than previously thought. Nonetheless, the normal function of these cells remains elusive. In this review, we will focus on scRNA-seq studies to discuss recent advances in our understanding about the development and functions of ABCs.
Collapse
|
218
|
Liang Z, Zhang T, Liu H, Li Z, Peng L, Wang C, Wang T. Inflammaging: The ground for sarcopenia? Exp Gerontol 2022; 168:111931. [PMID: 35985553 DOI: 10.1016/j.exger.2022.111931] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Sarcopenia is a progressive skeletal muscle disease that occurs most commonly in the elderly population, contributing to increased costs and hospitalization. Exercise and nutritional therapy have been proven to be effective for sarcopenia, and some drugs can also alleviate declines in muscle mass and function due to sarcopenia. However, there is no specific pharmacological treatment for sarcopenia at present. This review will mainly discuss the relationship between inflammaging and sarcopenia. The increased secretion of proinflammatory cytokines with aging may be because of cellular senescence, immunosenescence, alterations in adipose tissue, damage-associated molecular patterns (DAMPs), and gut microbes due to aging. These sources of inflammaging can impact the sarcopenia process through direct or indirect pathways. Conversely, sarcopenia can also aggravate the process of inflammaging, creating a vicious cycle. Targeting sources of inflammaging can influence muscle function, which could be considered a therapeutic target for sarcopenia. Moreover, not only proinflammatory cytokines but also anti-inflammatory cytokines can influence muscle and inflammation and participate in the progression of sarcopenia. This review focuses on the effects of TNF-α, IL-6, and IL-10, which can be detected in plasma. Therefore, clearing chronic inflammation by targeting proinflammatory cytokines (TNF-α, IL-1, IL-6) and the inflammatory pathway (JAK/STAT, autophagy, NF-κB) may be effective in treating sarcopenia.
Collapse
Affiliation(s)
- Zejun Liang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tianxiao Zhang
- School of Healthcare Sciences, Cardiff University, Health Park, CF14 4XN Wales, UK
| | - Honghong Liu
- West China School of Nursing/West China Hospital, Sichuan University, NO.37 Alley, Chengdu 610041, Sichuan, PR China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lihong Peng
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, PR China
| | - Changyi Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
219
|
Hägglöf T, Vanz C, Kumagai A, Dudley E, Ortega V, Siller M, Parthasarathy R, Keegan J, Koenigs A, Shute T, Leadbetter EA. T-bet + B cells accumulate in adipose tissue and exacerbate metabolic disorder during obesity. Cell Metab 2022; 34:1121-1136.e6. [PMID: 35868310 PMCID: PMC9357106 DOI: 10.1016/j.cmet.2022.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 01/12/2023]
Abstract
Obesity is accompanied by inflammation in adipose tissue, impaired glucose tolerance, and changes in adipose leukocyte populations. These studies of adipose tissue from humans and mice revealed that increased frequencies of T-bet+ B cells in adipose tissue depend on invariant NKT cells and correlate with weight gain during obesity. Transfer of B cells enriched for T-bet+ cells exacerbates metabolic disorder in obesity, while ablation of Tbx21 specifically in B cells reduces serum IgG2c levels, inflammatory cytokines, and inflammatory macrophages in adipose tissue, ameliorating metabolic symptoms. Furthermore, transfer of serum or purified IgG from HFD mice restores metabolic disease in T-bet+ B cell-deficient mice, confirming T-bet+ B cell-derived IgG as a key mediator of inflammation during obesity. Together, these findings reveal an important pathological role for T-bet+ B cells that should inform future immunotherapy design in type 2 diabetes and other inflammatory conditions.
Collapse
Affiliation(s)
- Thomas Hägglöf
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Carlo Vanz
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Abigail Kumagai
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Elizabeth Dudley
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Vanessa Ortega
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - McKenzie Siller
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Raksha Parthasarathy
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Josh Keegan
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Abigail Koenigs
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Travis Shute
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Elizabeth A Leadbetter
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
220
|
Wang Y, Dong C, Han Y, Gu Z, Sun C. Immunosenescence, aging and successful aging. Front Immunol 2022; 13:942796. [PMID: 35983061 PMCID: PMC9379926 DOI: 10.3389/fimmu.2022.942796] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Aging induces a series of immune related changes, which is called immunosenescence, playing important roles in many age-related diseases, especially neurodegenerative diseases, tumors, cardiovascular diseases, autoimmune diseases and coronavirus disease 2019(COVID-19). However, the mechanism of immunosenescence, the association with aging and successful aging, and the effects on diseases are not revealed obviously. In order to provide theoretical basis for preventing or controlling diseases effectively and achieve successful aging, we conducted the review and found that changes of aging-related phenotypes, deterioration of immune organ function and alterations of immune cell subsets participated in the process of immunosenescence, which had great effects on the occurrence and development of age-related diseases.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yudian Han
- Information Center, The First People’s Hospital of Nantong City, Nantong, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| |
Collapse
|
221
|
Song A, Jang J, Lee A, Min SY, Lee SG, Kim SC, Shin J, Kim JH. Clinical impact and a prognostic marker of early rituximab treatment after rituximab reimbursement in Korean pemphigus patients. Front Immunol 2022; 13:932909. [PMID: 35983042 PMCID: PMC9379325 DOI: 10.3389/fimmu.2022.932909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus is an autoimmune mucocutaneous blistering disease caused by autoantibodies against desmogleins. Rituximab effectively treats pemphigus by inducing remission and rapidly reducing corticosteroid dosage. In Korea, the high cost of rituximab had been a burden until the National Health Insurance began to cover 90% of rituximab costs via reimbursement for severe pemphigus patients. We analyzed 214 patients with pemphigus who were treated with their first round of rituximab. The time to initiate rituximab and the time to partial remission under minimal therapy (PRMT) were both significantly shorter after the rituximab reimbursement policy. The total steroid intake for PRMT and complete remission (CR) was less in patients who were diagnosed after the reimbursement. The interrupted time series (ITS) model, a novel analysis method to evaluate the effects of an intervention, showed a decrease in total systemic corticosteroid intake until PRMT after reimbursement began. In peripheral blood mononuclear cells from patients with pemphigus vulgaris, the relative frequencies of desmoglein 3-specific CD11c+CD27−IgD− atypical memory B cells positively correlated with the periods from disease onset to rituximab treatment and to PRMT and the total systemic corticosteroid intake until PRMT. We found that early rituximab therapy, induced by the reimbursement policy, shortened the disease course and reduced the total corticosteroid use by pemphigus patients. The decreased frequency of circulating desmoglein-specific atypical memory B cells can be used as a surrogate marker for a good prognosis after rituximab.
Collapse
Affiliation(s)
- Ahreum Song
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jieun Jang
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, United States
- Department of Hospital Administration, Yonsei University Graduate School of Public Health, Seoul, South Korea
| | - Ayeong Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Seo Yeon Min
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Gyun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo-Chan Kim
- Department of Dermatology, Yongin Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaeyong Shin
- Department of Preventive Medicine and Institute of Health Services Research, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jaeyong Shin, ; Jong Hoon Kim,
| | - Jong Hoon Kim
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jaeyong Shin, ; Jong Hoon Kim,
| |
Collapse
|
222
|
Cancro MP. T-bet B or not T-bet B, is that the question in obesity-related metabolic disease? Cell Metab 2022; 34:1081-1082. [PMID: 35921814 DOI: 10.1016/j.cmet.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Obesity is linked to inflammation and downstream metabolic dysregulation. In this issue of Cell Metabolism, Hägglöf et al. show that iNKT cells enable the accumulation of T-bet+ B cells in white adipose tissue, which in turn produce chemokine and antibody mediators that exacerbate the onset and severity of metabolic disease.
Collapse
Affiliation(s)
- Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
223
|
Abstract
Ageing leads to profound alterations in the immune system and increases susceptibility to some chronic, infectious and autoimmune diseases. In recent years, widespread application of single-cell techniques has enabled substantial progress in our understanding of the ageing immune system. These comprehensive approaches have expanded and detailed the current views of ageing and immunity. Here we review a body of recent studies that explored how the immune system ages using unbiased profiling techniques at single-cell resolution. Specifically, we discuss an emergent understanding of age-related alterations in innate and adaptive immune cell populations, antigen receptor repertoires and immune cell-supporting microenvironments of the peripheral tissues. Focusing on the results obtained in mice and humans, we describe the multidimensional data that align with established concepts of immune ageing as well as novel insights emerging from these studies. We further discuss outstanding questions in the field and highlight techniques that will advance our understanding of immune ageing in the future.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
224
|
Csomos K, Ujhazi B, Blazso P, Herrera JL, Tipton CM, Kawai T, Gordon S, Ellison M, Wu K, Stowell M, Haynes L, Cruz R, Zakota B, Nguyen J, Altrich M, Geier CB, Sharapova S, Dasso JF, Leiding JW, Smith G, Al-Herz W, de Barros Dorna M, Fadugba O, Fronkova E, Kanderova V, Svaton M, Henrickson SE, Hernandez JD, Kuijpers T, Kandilarova SM, Naumova E, Milota T, Sediva A, Moshous D, Neven B, Saco T, Sargur R, Savic S, Sleasman J, Sunkersett G, Ward BR, Komatsu M, Pittaluga S, Kumanovics A, Butte MJ, Cancro MP, Pillai S, Meffre E, Notarangelo LD, Walter JE. Partial RAG deficiency in humans induces dysregulated peripheral lymphocyte development and humoral tolerance defect with accumulation of T-bet + B cells. Nat Immunol 2022; 23:1256-1272. [PMID: 35902638 PMCID: PMC9355881 DOI: 10.1038/s41590-022-01271-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/16/2022] [Indexed: 12/22/2022]
Abstract
The recombination-activating genes (RAG) 1 and 2 are indispensable for diversifying the primary B cell receptor repertoire and pruning self-reactive clones via receptor editing in the bone marrow; however, the impact of RAG1/RAG2 on peripheral tolerance is unknown. Partial RAG deficiency (pRD) manifesting with late-onset immune dysregulation represents an ‘experiment of nature’ to explore this conundrum. By studying B cell development and subset-specific repertoires in pRD, we demonstrate that reduced RAG activity impinges on peripheral tolerance through the generation of a restricted primary B cell repertoire, persistent antigenic stimulation and an inflammatory milieu with elevated B cell-activating factor. This unique environment gradually provokes profound B cell dysregulation with widespread activation, remarkable extrafollicular maturation and persistence, expansion and somatic diversification of self-reactive clones. Through the model of pRD, we reveal a RAG-dependent ‘domino effect’ that impacts stringency of tolerance and B cell fate in the periphery. Patients with partial recombination-activating gene (RAG) deficiency (pRD) present variable late-onset autoimmune clinical phenotypes. Walter and colleagues identified a restricted primary B cell antigen receptor repertoire enriched for autoreactivity and clonal persistence in pRD. They described dysregulated B cell maturation with expansion of T-bet+ B cells revealing how RAG impacts stringency of tolerance and B cell fate in the periphery.
Collapse
Affiliation(s)
- Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Peter Blazso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Jose L Herrera
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, GA, USA
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Sumai Gordon
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Maryssa Ellison
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Kevin Wu
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Matthew Stowell
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Lauren Haynes
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Rachel Cruz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Bence Zakota
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Johnny Nguyen
- Department of Pathology & Laboratory Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| | | | | | | | - Joseph F Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jennifer W Leiding
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Grace Smith
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mayra de Barros Dorna
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Olajumoke Fadugba
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Eva Fronkova
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Veronika Kanderova
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michael Svaton
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Sarah E Henrickson
- Allergy Immunology Division, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Institute for Immunology, the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Taco Kuijpers
- Deptartment of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, Netherlands
| | | | - Elizaveta Naumova
- Department of Clinical Immunology, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Despina Moshous
- Université de Paris, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Université Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Institut Imagine, Paris, France
| | - Benedicte Neven
- Université de Paris, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Université Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR1163, Institut Imagine, Paris, France
| | - Tara Saco
- Windom Allergy, Asthma and Sinus, Sarasota, FL, USA
| | - Ravishankar Sargur
- Department of Immunology and Allergy, Sheffield Teaching Hospitals, Sheffield, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK.,National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - John Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Gauri Sunkersett
- Cancer and Blood Disorder Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Brant R Ward
- Division of Allergy and Immunology, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, VA, USA
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and Jeffrey Modell Diagnostic and Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael P Cancro
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of technology and Harvard University, Cambridge, MA, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University, New Haven, CT, USA.,Section of Rheumatology, Allergy and Clinical Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA. .,Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
225
|
Yang R, Avery DT, Jackson KJL, Ogishi M, Benhsaien I, Du L, Ye X, Han J, Rosain J, Peel JN, Alyanakian MA, Neven B, Winter S, Puel A, Boisson B, Payne KJ, Wong M, Russell AJ, Mizoguchi Y, Okada S, Uzel G, Goodnow CC, Latour S, Bakkouri JE, Bousfiha A, Preece K, Gray PE, Keller B, Warnatz K, Boisson-Dupuis S, Abel L, Pan-Hammarström Q, Bustamante J, Ma CS, Casanova JL, Tangye SG. Human T-bet governs the generation of a distinct subset of CD11c highCD21 low B cells. Sci Immunol 2022; 7:eabq3277. [PMID: 35867801 PMCID: PMC9413977 DOI: 10.1126/sciimmunol.abq3277] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High-level expression of the transcription factor T-bet characterizes a phenotypically distinct murine B cell population known as "age-associated B cells" (ABCs). T-bet-deficient mice have reduced ABCs and impaired humoral immunity. We describe a patient with inherited T-bet deficiency and largely normal humoral immunity including intact somatic hypermutation, affinity maturation and memory B cell formation in vivo, and B cell differentiation into Ig-producing plasmablasts in vitro. Nevertheless, the patient exhibited skewed class switching to IgG1, IgG4, and IgE, along with reduced IgG2, both in vivo and in vitro. Moreover, T-bet was required for the in vivo and in vitro development of a distinct subset of human B cells characterized by reduced expression of CD21 and the concomitantly high expression of CD19, CD20, CD11c, FCRL5, and T-bet, a phenotype that shares many features with murine ABCs. Mechanistically, human T-bet governed CD21loCD11chi B cell differentiation by controlling the chromatin accessibility of lineage-defining genes in these cells: FAS, IL21R, SEC61B, DUSP4, DAPP1, SOX5, CD79B, and CXCR4. Thus, human T-bet is largely redundant for long-lived protective humoral immunity but is essential for the development of a distinct subset of human CD11chiCD21lo B cells.
Collapse
Affiliation(s)
- Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA,Corresponding authors: Rui Yang (); Jean-Laurent Casanova (); Stuart Tangye ()
| | - Danielle T. Avery
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia
| | | | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Ibtihal Benhsaien
- Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden, EU
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden, EU
| | - Jing Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Jessica N. Peel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Marie-Alexandra Alyanakian
- Immunology Laboratory, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France, EU
| | - Bénédicte Neven
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Sarah Winter
- Paris Cité University, Imagine Institute, 75015 Paris, France,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, 75015 Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Kathryn J. Payne
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia
| | - Melanie Wong
- Children’s Hospital at Westmead, NSW, Australia,Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Amanda J. Russell
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia,St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, Australia
| | - Sylvain Latour
- Paris Cité University, Imagine Institute, 75015 Paris, France,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, 75015 Paris, France
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, 20460 Casablanca, Morocco,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, CHU Averroes, 20460 Casablanca, Morocco
| | - Kahn Preece
- John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Paul E. Gray
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Stockholm, Sweden, EU
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia,St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, Australia
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France,Paris Cité University, Imagine Institute, 75015 Paris, France,Howard Hughes Medical Institute, New York, NY, USA,Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France,Corresponding authors: Rui Yang (); Jean-Laurent Casanova (); Stuart Tangye ()
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst 2010, NSW Australia,St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst 2010, Australia,Corresponding authors: Rui Yang (); Jean-Laurent Casanova (); Stuart Tangye ()
| |
Collapse
|
226
|
Korf JM, Honarpisheh P, Mohan EC, Banerjee A, Blasco-Conesa MP, Honarpisheh P, Guzman GU, Khan R, Ganesh BP, Hazen AL, Lee J, Kumar A, McCullough LD, Chauhan A. CD11b high B Cells Increase after Stroke and Regulate Microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:288-300. [PMID: 35732342 PMCID: PMC9446461 DOI: 10.4049/jimmunol.2100884] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/22/2022] [Indexed: 06/02/2023]
Abstract
Recent studies have highlighted the deleterious contributions of B cells to post-stroke recovery and cognitive decline. Different B cell subsets have been proposed on the basis of expression levels of transcription factors (e.g., T-bet) as well as specific surface proteins. CD11b (α-chain of integrin) is expressed by several immune cell types and is involved in regulation of cell motility, phagocytosis, and other essential functions of host immunity. Although B cells express CD11b, the CD11bhigh subset of B cells has not been well characterized, especially in immune dysregulation seen with aging and after stroke. Here, we investigate the role of CD11bhigh B cells in immune responses after stroke in young and aged mice. We evaluated the ability of CD11bhigh B cells to influence pro- and anti-inflammatory phenotypes of young and aged microglia (MG). We hypothesized that CD11bhigh B cells accumulate in the brain and contribute to neuroinflammation in aging and after stroke. We found that CD11bhigh B cells are a heterogeneous subpopulation of B cells predominantly present in naive aged mice. Their frequency increases in the brain after stroke in young and aged mice. Importantly, CD11bhigh B cells regulate MG phenotype and increase MG phagocytosis in both ex vivo and in vivo settings, likely by production of regulatory cytokines (e.g., TNF-α). As both APCs and adaptive immune cells with long-term memory function, B cells are uniquely positioned to regulate acute and chronic phases of the post-stroke immune response, and their influence is subset specific.
Collapse
Affiliation(s)
- Janelle M Korf
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Eric C Mohan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Anik Banerjee
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | | | - Parisa Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Gary U Guzman
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Romeesa Khan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Bhanu P Ganesh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Amy L Hazen
- University of Texas McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, TX
| | - Juneyoung Lee
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Aditya Kumar
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX;
| |
Collapse
|
227
|
Lázničková P, Bendíčková K, Kepák T, Frič J. Immunosenescence in Childhood Cancer Survivors and in Elderly: A Comparison and Implication for Risk Stratification. FRONTIERS IN AGING 2022; 2:708788. [PMID: 35822014 PMCID: PMC9261368 DOI: 10.3389/fragi.2021.708788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The population of childhood cancer survivors (CCS) has grown rapidly in recent decades. Although cured of their original malignancy, these individuals are at increased risk of serious late effects, including age-associated complications. An impaired immune system has been linked to the emergence of these conditions in the elderly and CCS, likely due to senescent immune cell phenotypes accompanied by low-grade inflammation, which in the elderly is known as "inflammaging." Whether these observations in the elderly and CCS are underpinned by similar mechanisms is unclear. If so, existing knowledge on immunosenescent phenotypes and inflammaging might potentially serve to benefit CCS. We summarize recent findings on the immune changes in CCS and the elderly, and highlight the similarities and identify areas for future research. Improving our understanding of the underlying mechanisms and immunosenescent markers of accelerated immune aging might help us to identify individuals at increased risk of serious health complications.
Collapse
Affiliation(s)
- Petra Lázničková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tomáš Kepák
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Pediatric Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
228
|
Yoshitomi H. Peripheral Helper T Cell Responses in Human Diseases. Front Immunol 2022; 13:946786. [PMID: 35880181 PMCID: PMC9307902 DOI: 10.3389/fimmu.2022.946786] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
A series of rheumatoid arthritis (RA) studies established a PD-1hiCXCR5-CD4+ T-cell subset that was coined peripheral helper T (Tph) cells. CXCL13 production is a key feature of Tph cells and may contribute to the formation of tertiary lymphoid structures (TLS) in inflamed tissues. In addition, Tph cells provide help to B cells in situ as efficiently as follicular helper T (Tfh) cells, and these features would implicate Tph cells in the pathogenesis of RA. Subsequent studies have revealed that Tph cells are involved in various human diseases such as autoimmune diseases, infectious diseases, and cancers. Although the analysis of human immunity has various limitations, accumulating evidence demonstrated the expansion of B cells with low somatic hypermutation and a link between TLS and immune functions in these diseases. We discuss about the emerging roles of the Tph cell and its relevant immune responses in peripheral tissues including B-cell expansion with atypical features.
Collapse
|
229
|
Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune diseases. Cell Mol Life Sci 2022; 79:402. [PMID: 35798993 PMCID: PMC9263041 DOI: 10.1007/s00018-022-04433-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
Age-associated B cells (ABCs) are a transcriptionally and functionally unique B cell population. In addition to arising with age and following infection, ABCs are expanded during autoimmune disease, including those with systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. The exact nature of how ABCs impact disease remains unclear. Here, we review what is known regarding ABC development and distribution during diseases including systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. We discuss possible mechanisms by which ABCs could contribute to disease, including the production of cytokines and autoantibodies or stimulation of T cells. Finally, we speculate on how ABCs might act as mediators between sex, infection, and autoimmune disease, and discuss avenues for further research.
Collapse
Affiliation(s)
- Isobel C Mouat
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Erin Goldberg
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
230
|
Noval Rivas M, Porritt RA, Cheng MH, Bahar I, Arditi M. Multisystem Inflammatory Syndrome in Children and Long COVID: The SARS-CoV-2 Viral Superantigen Hypothesis. Front Immunol 2022; 13:941009. [PMID: 35874696 PMCID: PMC9300823 DOI: 10.3389/fimmu.2022.941009] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a febrile pediatric inflammatory disease that may develop weeks after initial SARS-CoV-2 infection or exposure. MIS-C involves systemic hyperinflammation and multiorgan involvement, including severe cardiovascular, gastrointestinal (GI) and neurological symptoms. Some clinical attributes of MIS-C-such as persistent fever, rashes, conjunctivitis and oral mucosa changes (red fissured lips and strawberry tongue)-overlap with features of Kawasaki disease (KD). In addition, MIS-C shares striking clinical similarities with toxic shock syndrome (TSS), which is triggered by bacterial superantigens (SAgs). The remarkable similarities between MIS-C and TSS prompted a search for SAg-like structures in the SARS-CoV-2 virus and the discovery of a unique SAg-like motif highly similar to a Staphylococcal enterotoxin B (SEB) fragment in the SARS-CoV-2 spike 1 (S1) glycoprotein. Computational studies suggest that the SAg-like motif has a high affinity for binding T-cell receptors (TCRs) and MHC Class II proteins. Immunosequencing of peripheral blood samples from MIS-C patients revealed a profound expansion of TCR β variable gene 11-2 (TRBV11-2), which correlates with MIS-C severity and serum cytokine levels, consistent with a SAg-triggered immune response. Computational sequence analysis of SARS-CoV-2 spike further identified conserved neurotoxin-like motifs which may alter neuronal cell function and contribute to neurological symptoms in COVID-19 and MIS-C patients. Additionally, autoantibodies are detected during MIS-C, which may indicate development of post-SARS-CoV-2 autoreactive and autoimmune responses. Finally, prolonged persistence of SARS-CoV-2 RNA in the gut, increased gut permeability and elevated levels of circulating S1 have been observed in children with MIS-C. Accordingly, we hypothesize that continuous and prolonged exposure to the viral SAg-like and neurotoxin-like motifs in SARS-CoV-2 spike may promote autoimmunity leading to the development of post-acute COVID-19 syndromes, including MIS-C and long COVID, as well as the neurological complications resulting from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rebecca A Porritt
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
231
|
Tedeschi SK, Stratton J, Ellrodt JE, Whelan MG, Hayashi K, Yoshida K, Chen L, Adejoorin I, Marks KE, Jonsson AH, Rao DA, Solomon DH. Rheumatoid arthritis disease activity assessed by patient-reported outcomes and flow cytometry before and after an additional dose of COVID-19 vaccine. Ann Rheum Dis 2022; 81:1045-1048. [PMID: 35168944 PMCID: PMC10019444 DOI: 10.1136/annrheumdis-2022-222232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Sara K Tedeschi
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA .,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacklyn Stratton
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jack Elias Ellrodt
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mary Grace Whelan
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Keigo Hayashi
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kazuki Yoshida
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Lin Chen
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ifeoluwakiisi Adejoorin
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kathryne Elizabeth Marks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - A Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel H Solomon
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
232
|
Plantone D, Pardini M, Locci S, Nobili F, De Stefano N. B Lymphocytes in Alzheimer's Disease-A Comprehensive Review. J Alzheimers Dis 2022; 88:1241-1262. [PMID: 35754274 DOI: 10.3233/jad-220261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) represents the most common type of neurodegenerative dementia and is characterized by extracellular amyloid-β (Aβ) deposition, pathologic intracellular tau protein tangles, and neuronal loss. Increasing evidence has been accumulating over the past years, supporting a pivotal role of inflammation in the pathogenesis of AD. Microglia, monocytes, astrocytes, and neurons have been shown to play a major role in AD-associated inflammation. However recent studies showed that the role of both T and B lymphocytes may be important. In particular, B lymphocytes are the cornerstone of humoral immunity, they constitute a heterogenous population of immune cells, being their mature subsets significantly impacted by the inflammatory milieu. The role of B lymphocytes on AD pathogenesis is gaining interest for several reasons. Indeed, the majority of elderly people develop the process of "inflammaging", which is characterized by increased blood levels of proinflammatory molecules associated with an elevated susceptibility to chronic diseases. Epitope-specific alteration pattern of naturally occurring antibodies targeting the amino-terminus and the mid-domain of Aβ in both plasma and cerebrospinal fluid has been described in AD patients. Moreover, a possible therapeutic role of B lymphocytes depletion was recently demonstrated in murine AD models. Interestingly, active immunization against Aβ and tau, one of the main therapeutic strategies under investigation, depend on B lymphocytes. Finally. several molecules being tested in AD clinical trials can modify the homeostasis of B cells. This review summarizes the evidence supporting the role of B lymphocytes in AD from the pathogenesis to the possible therapeutic implications.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
233
|
Jia X, Bene J, Balázs N, Szabó K, Berta G, Herczeg R, Gyenesei A, Balogh P. Age-Associated B Cell Features of the Murine High-Grade B Cell Lymphoma Bc.DLFL1 and Its Extranodal Expansion in Abdominal Adipose Tissues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2866-2876. [PMID: 35867673 DOI: 10.4049/jimmunol.2100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/16/2022] [Indexed: 11/19/2022]
Abstract
Diffuse large B cell lymphoma comprises a heterogeneous group of B cell-derived tumors, with different degrees of aggressiveness, as defined by their cellular origin and tissue microenvironment. Using the spontaneous Bc.DLFL1 lymphoma originating from a BALB/c mouse as a diffuse large B cell lymphoma model, in this study we demonstrate that the lymphoma cells display surface phenotype, IgH V-region somatic mutations, transcription factor characteristics and in vivo location to splenic extrafollicular regions of age-associated B cells (ABCs), corresponding to T-bet+ and Blimp-1+/CD138- plasmablasts derivation. The expansion of lymphoma cells within lymphoid tissues took place in a close arrangement with CD11c+ dendritic cells, whereas the extranodal infiltration occurred selectively in the mesentery and omentum containing resident gp38/podoplanin+ fibroblastic reticular cells. Antagonizing BAFF-R activity by mBR3-Fc soluble receptor fusion protein led to a significant delay of disease progression. The extranodal expansion of Bc.DLFL1 lymphoma within the omental and mesenteric adipose tissues was coupled with a significant change of the tissue cytokine landscape, including both shared alterations and tissue-specific variations. Our findings indicate that while Bc.DLFL1 cells of ABC origin retain the positioning pattern within lymphoid tissues of their physiological counterpart, they also expand in non-lymphoid tissues in a BAFF-dependent manner, where they may alter the adipose tissue microenvironment to support their extranodal growth.
Collapse
Affiliation(s)
- Xinkai Jia
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, University of Pécs, Pécs, Hungary
| | - Noémi Balázs
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
| | - Katalin Szabó
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary; and
| | - Róbert Herczeg
- Bioinformatics Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- Bioinformatics Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary;
- Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
234
|
Newell KL, Cox J, Waickman AT, Wilmore JR, Winslow GM. T-bet + B cells Dominate the Peritoneal Cavity B Cell Response during Murine Intracellular Bacterial Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2749-2760. [PMID: 35867676 PMCID: PMC9309898 DOI: 10.4049/jimmunol.2101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
T-bet+ B cells have emerged as a major B cell subset associated with both protective immunity and immunopathogenesis. T-bet is a transcription factor associated with the type I adaptive immune response to intracellular pathogens, driving an effector program characterized by the production of IFN-γ. Murine infection with the intracellular bacterium, Ehrlichia muris, generates protective extrafollicular T cell-independent T-bet+ IgM-secreting plasmablasts, as well as T-bet+ IgM memory cells. Although T-bet is a signature transcription factor for this subset, it is dispensable for splenic CD11c+ memory B cell development, but not for class switching to IgG2c. In addition to the T-bet+ plasmablasts found in the spleen, we show that Ab-secreting cells can also be found within the mouse peritoneal cavity; these cells, as well as their CD138- counterparts, also expressed T-bet. A large fraction of the T-bet+ peritoneal B cells detected during early infection were highly proliferative and expressed CXCR3 and CD11b, but, unlike in the spleen, they did not express CD11c. T-bet+ CD11b+ memory B cells were the dominant B cell population in the peritoneal cavity at 30 d postinfection, and although they expressed high levels of T-bet, they did not require B cell-intrinsic T-bet expression for their generation. Our data uncover a niche for T-bet+ B cells within the peritoneal cavity during intracellular bacterial infection, and they identify this site as a reservoir for T-bet+ B cell memory.
Collapse
Affiliation(s)
- Krista L Newell
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Justin Cox
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Adam T Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Joel R Wilmore
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Gary M Winslow
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
235
|
Belyaeva IV, Kosova AN, Vasiliev AG. Tuberculosis and Autoimmunity. PATHOPHYSIOLOGY 2022; 29:298-318. [PMID: 35736650 PMCID: PMC9228380 DOI: 10.3390/pathophysiology29020022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis remains a common and dangerous chronic bacterial infection worldwide. It is long-established that pathogenesis of many autoimmune diseases is mainly promoted by inadequate immune responses to bacterial agents, among them Mycobacterium tuberculosis. Tuberculosis is a multifaceted process having many different outcomes and complications. Autoimmunity is one of the processes characteristic of tuberculosis; the presence of autoantibodies was documented by a large amount of evidence. The role of autoantibodies in pathogenesis of tuberculosis is not quite clear and widely disputed. They are regarded as: (1) a result of imbalanced immune response being reactive in nature, (2) a critical part of TB pathogenicity, (3) a beginning of autoimmune disease, (4) a protective mechanism helping to eliminate microbes and infected cells, and (5) playing dual role, pathogenic and protective. There is no single autoimmunity-mechanism development in tuberculosis; different pathways may be suggested. It may be excessive cell death and insufficient clearance of dead cells, impaired autophagy, enhanced activation of macrophages and dendritic cells, environmental influences such as vitamin D insufficiency, and genetic polymorphism, both of Mycobacterium tuberculosis and host.
Collapse
|
236
|
Jiwrajka N, Anguera MC. The X in seX-biased immunity and autoimmune rheumatic disease. J Exp Med 2022; 219:e20211487. [PMID: 35510951 PMCID: PMC9075790 DOI: 10.1084/jem.20211487] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023] Open
Abstract
Sexual dimorphism in the composition and function of the human immune system has important clinical implications, as males and females differ in their susceptibility to infectious diseases, cancers, and especially systemic autoimmune rheumatic diseases. Both sex hormones and the X chromosome, which bears a number of immune-related genes, play critical roles in establishing the molecular basis for the observed sex differences in immune function and dysfunction. Here, we review our current understanding of sex differences in immune composition and function in health and disease, with a specific focus on the contribution of the X chromosome to the striking female bias of three autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Nikhil Jiwrajka
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Montserrat C. Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
237
|
Horisberger A, Humbel M, Fluder N, Bellanger F, Fenwick C, Ribi C, Comte D. Measurement of circulating CD21 -CD27 - B lymphocytes in SLE patients is associated with disease activity independently of conventional serological biomarkers. Sci Rep 2022; 12:9189. [PMID: 35654865 PMCID: PMC9163192 DOI: 10.1038/s41598-022-12775-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/16/2022] [Indexed: 12/17/2022] Open
Abstract
Determining disease activity in systemic lupus erythematosus (SLE) patients is challenging and limited by the lack of reliable biomarkers. Abnormally activated B cells play a key role in the pathogenesis of SLE, but their measure in clinical practice is currently not recommended. Here, we studied peripheral B cells to identify a valid biomarker. We analyzed peripheral B cells in a discovery cohort of 30 SLE patients compared to 30 healthy controls (HC) using mass cytometry and unsupervised clustering analysis. The relevant B cell populations were subsequently studied by flow cytometry in a validation cohort of 63 SLE patients, 28 autoimmune diseases controls and 39 HC. Our data show an increased frequency of B cell populations with activated phenotype in SLE compared to healthy and autoimmune diseases controls. These cells uniformly lacked the expression of CD21 and CD27. Measurement of CD21−CD27− B cells in the blood identified patients with active disease and their frequency correlated with disease severity. Interestingly, we did not observe an increase in the frequency of CD21−CD27− B cells in patients with clinically inactive disease but with elevated conventional biomarkers (anti-dsDNA and complement levels). Accordingly, measurement of CD21−CD27− B cells represents a robust and easily accessible biomarker to assess the activity of the disease in SLE patients.
Collapse
Affiliation(s)
- Alice Horisberger
- Department of Medicine, Service of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, 46, Rue du Bugnon, 1011, Lausanne, Switzerland
| | - Morgane Humbel
- Department of Medicine, Service of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, 46, Rue du Bugnon, 1011, Lausanne, Switzerland
| | - Natalia Fluder
- Department of Medicine, Service of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, 46, Rue du Bugnon, 1011, Lausanne, Switzerland
| | - Florence Bellanger
- Department of Medicine, Service of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, 46, Rue du Bugnon, 1011, Lausanne, Switzerland
| | - Craig Fenwick
- Department of Medicine, Service of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, 46, Rue du Bugnon, 1011, Lausanne, Switzerland
| | - Camillo Ribi
- Department of Medicine, Service of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, 46, Rue du Bugnon, 1011, Lausanne, Switzerland
| | - Denis Comte
- Department of Medicine, Service of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, 46, Rue du Bugnon, 1011, Lausanne, Switzerland.
| |
Collapse
|
238
|
Sachinidis A, Garyfallos A. Involvement of age-associated B cells in EBV-triggered autoimmunity. Immunol Res 2022; 70:546-549. [PMID: 35575824 PMCID: PMC9109436 DOI: 10.1007/s12026-022-09291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/08/2022] [Indexed: 11/24/2022]
Abstract
Abstract EBV infection has long been suspected to play a role in the development of autoimmune diseases. Interestingly, a recently published study has provided the strongest evidence to date that EBV is truly a trigger for multiple sclerosis, a well known inflammatory and neurodegenerative autoimmune disorder. Taking into account the data derived from mice models of autoimmune diseases that were also infected with a murine analog of EBV, in this commentary, we highlight the involvement of age-associated B cells, a B cell population defined as CD19+CD11c+CD21−T-bet+, in the process of EBV-triggered autoimmunity. Of note, the aforementioned B cell subset expands continuously with age in healthy individuals, whereas displays a premature strong accumulation in cases of autoimmune diseases. These cells contribute to autoimmune disease pathogenesis via a variety of functions, such as the production of autoantibodies and/or the formation of spontaneous germinal centers. Latent form of EBV seems to modify these B cells, so as to function pathogenically in cases of autoimmunity. Targeting of ABCs, as well as the elimination of EBV, may both be potential treatments for autoimmunity. Highlights Latent form of EBV potentially triggers autoimmune diseases ABCs expand in autoimmunity and contribute to disease pathogenesis EBV modifies ABCs, so as to function pathogenically in autoimmune diseases Apart from EBV elimination, targeting of ABCs may also bring therapeutic benefits to autoimmune patients
Collapse
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
239
|
Avalos A, Tietsort JT, Suwankitwat N, Woods JD, Jackson SW, Christodoulou A, Morrill C, Liggitt HD, Zhu C, Li QZ, Bui KK, Park H, Iritani BM. Hem-1 regulates protective humoral immunity and limits autoantibody production in a B cell-specific manner. JCI Insight 2022; 7:e153597. [PMID: 35531955 PMCID: PMC9090261 DOI: 10.1172/jci.insight.153597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic protein-1 (Hem-1) is a member of the actin-regulatory WASp family verprolin homolog (WAVE) complex. Loss-of-function variants in the NCKAP1L gene encoding Hem-1 were recently discovered to result in primary immunodeficiency disease (PID) in children, characterized by poor specific Ab responses, increased autoantibodies, and high mortality. However, the mechanisms of how Hem-1 deficiency results in PID are unclear. In this study, we utilized constitutive and B cell-specific Nckap1l-KO mice to dissect the importance of Hem-1 in B cell development and functions. B cell-specific disruption of Hem-1 resulted in reduced numbers of recirculating follicular (FO), marginal zone (MZ), and B1 B cells. B cell migration in response to CXCL12 and -13 were reduced. T-independent Ab responses were nearly abolished, resulting in failed protective immunity to Streptococcus pneumoniae challenge. In contrast, T-dependent IgM and IgG2c, memory B cell, and plasma cell responses were more robust relative to WT control mice. B cell-specific Hem-1-deficient mice had increased autoantibodies against multiple autoantigens, and this correlated with hyperresponsive BCR signaling and increased representation of CD11c+T-bet+ age-associated B cell (ABC cells) - alterations associated with autoimmune diseases. These results suggest that dysfunctional B cells may be part of a mechanism explaining why loss-of-function Hem-1 variants result in recurring infections and autoimmunity.
Collapse
Affiliation(s)
- Alan Avalos
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Jacob T. Tietsort
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Nutthakarn Suwankitwat
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | - Christopher Morrill
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - H. Denny Liggitt
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Quan-Zhen Li
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin K. Bui
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Heon Park
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Brian M. Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
240
|
Phalke S, Rivera-Correa J, Jenkins D, Flores Castro D, Giannopoulou E, Pernis AB. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol Rev 2022; 307:79-100. [PMID: 35102602 DOI: 10.1111/imr.13068] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Age-associated B cells (ABCs) have emerged as critical components of immune responses. Their inappropriate expansion and differentiation have increasingly been linked to the pathogenesis of autoimmune disorders, aging-associated diseases, and infections. ABCs exhibit a distinctive phenotype and, in addition to classical B cell markers, often express the transcription factor T-bet and myeloid markers like CD11c; hence, these cells are also commonly known as CD11c+ T-bet+ B cells. Formation of ABCs is promoted by distinctive combinations of innate and adaptive signals. In addition to producing antibodies, these cells display antigen-presenting and proinflammatory capabilities. It is becoming increasingly appreciated that the ABC compartment exhibits a high degree of heterogeneity, plasticity, and sex-specific regulation and that ABCs can differentiate into effector progeny via several routes particularly in autoimmune settings. In this review, we will discuss the initial insights that have been obtained on the molecular machinery that controls ABCs and we will highlight some of the unique aspects of this control system that may enable ABCs to fulfill their distinctive role in immune responses. Given the expanding array of autoimmune disorders and pathophysiological settings in which ABCs are being implicated, a deeper understanding of this machinery could have important and broad therapeutic implications for the successful, albeit daunting, task of targeting these cells.
Collapse
Affiliation(s)
- Swati Phalke
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Juan Rivera-Correa
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Daniel Jenkins
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Danny Flores Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Evgenia Giannopoulou
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
241
|
Marks KE, Rao DA. T peripheral helper cells in autoimmune diseases. Immunol Rev 2022; 307:191-202. [PMID: 35103314 PMCID: PMC9009135 DOI: 10.1111/imr.13069] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
Abstract
Pathologic T cell-B cell interactions underlie many autoimmune diseases. The T cells that help B cells in autoimmune diseases vary in phenotype and include T cells that lack typical features of T follicular helper cells, such as expression of CXCR5 and BCL6. A population of PD-1hi CXCR5- T peripheral helper (Tph) cells has now been recognized in multiple autoantibody-associated diseases. Tph cells display a distinctive set of features, merging the ability to provide B cell help with the capacity to migrate to inflamed peripheral tissues. Here, we review the scope of immune-related conditions in which Tph cells have been implicated and provide a perspective on their potential contributions to pathologic B cell activation in autoimmune diseases. We discuss Tph cells as a promising therapeutic strategy in autoimmunity and consider the utility of tracking Tph cells in blood as a biomarker to quantify aberrant T cell-B cell activation in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Kathryne E Marks
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
242
|
Age-associated B cells indicate disease activity in rheumatoid arthritis. Cell Immunol 2022; 377:104533. [DOI: 10.1016/j.cellimm.2022.104533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
|
243
|
Ekpruke CD, Silveyra P. Sex Differences in Airway Remodeling and Inflammation: Clinical and Biological Factors. FRONTIERS IN ALLERGY 2022; 3:875295. [PMID: 35769576 PMCID: PMC9234861 DOI: 10.3389/falgy.2022.875295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is characterized by an increase in the contraction and inflammation of airway muscles, resulting in airflow obstruction. The prevalence of asthma is lower in females than in males until the start of puberty, and higher in adult women than men. This sex disparity and switch at the onset of puberty has been an object of debate among many researchers. Hence, in this review, we have summarized these observations to pinpoint areas needing more research work and to provide better sex-specific diagnosis and management of asthma. While some researchers have attributed it to the anatomical and physiological differences in the male and female respiratory systems, the influences of hormonal interplay after puberty have also been stressed. Other hormones such as leptin have been linked to the sex differences in asthma in both obese and non-obese patients. Recently, many scientists have also demonstrated the influence of the sex-specific genomic framework as a key player, and others have linked it to environmental, social lifestyle, and occupational exposures. The majority of studies concluded that adult men are less susceptible to developing asthma than women and that women display more severe forms of the disease. Therefore, the understanding of the roles played by sex- and gender-specific factors, and the biological mechanisms involved will help develop novel and more accurate diagnostic and therapeutic plans for sex-specific asthma management.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University Bloomington School of Public Health, Bloomington, IN, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Patricia Silveyra
| |
Collapse
|
244
|
Faustini F, Sippl N, Stålesen R, Chemin K, Dunn N, Fogdell-Hahn A, Gunnarsson I, Malmström V. Rituximab in Systemic Lupus Erythematosus: Transient Effects on Autoimmunity Associated Lymphocyte Phenotypes and Implications for Immunogenicity. Front Immunol 2022; 13:826152. [PMID: 35464461 PMCID: PMC9027571 DOI: 10.3389/fimmu.2022.826152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
B cell abnormalities are common in systemic lupus erythematosus (SLE), and include expansion of double negative (DN) and age-associated-like B cells (ABC-like). We aimed to investigate rituximab (RTX) effects on DN and ABC-like B-cell subsets and, when possible, also secondary effects on T cells. Fifteen SLE patients, fulfilling the ACR 1982 criteria, starting RTX and followed longitudinally up to two years, were analyzed for B- and T- lymphocyte subsets using multicolor flow cytometry. DN were defined as IgD-CD27- and ABC-like as CD11c+CD21- within the DN gate. Additional phenotyping was performed adding CXCR5 in the B-cell panel. Cellular changes were further analyzed in the context of the generation of anti-drug antibodies (ADA) against RTX and clinical information. The SLE patients were mainly females (86.6%), of median age 36.7 (29.8-49.4) years and disease duration of 6.1 (1.6-11.8) years. Within the DN subset, ABC-like (IgD-CD27-CD11c+CD21-) B cell frequency reduced from baseline median level of 20.4% to 11.3% (p=0.03), at early follow-up. The DN B cells were further subdivided based on CXCR5 expression. Significant shifts were observed at the early follow-up in the DN2 sub-cluster (CD11c+CXCR5-), which reduced significantly (-15.4 percentage points, p=0.02) and in the recently described DN3 (CD11c-CXCR5-) which increased (+13 percentage points, p=0.03). SLE patients treated with RTX are at high risk of developing ADA. In our cohort, the presence of ADA at 6 months was associated with lower frequencies of DN cells and to a more pronounced expansion of plasmablasts at early follow-up. The frequency of follicular helper T cells (TFH, CD4+PD-1+CXCR5+) and of peripheral helper T cells (TPH, CD4+PD-1+CXCR5-) did not change after RTX. A sub-cluster of PD-1highCD4+ T cells showed a significant decrease at later follow-up compared to early follow-up (p=0.0039). It is well appreciated that RTX transiently influences B cells. Here, we extend these observations to cell phenotypes which are believed to directly contribute to autoimmunity in SLE. We show early transient effects of RTX on ABC-like memory B cells, later effects on PD-1high CD4+ cells, and possible implications for RTX immunogenicity. Further insight in such effects and their monitoring may be of clinical relevance.
Collapse
Affiliation(s)
- Francesca Faustini
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Natalie Sippl
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ragnhild Stålesen
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karine Chemin
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicky Dunn
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Fogdell-Hahn
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
245
|
Brian BF, Sauer ML, Greene JT, Senevirathne SE, Lindstedt AJ, Funk OL, Ruis BL, Ramirez LA, Auger JL, Swanson WL, Nunez MG, Moriarity BS, Lowell CA, Binstadt BA, Freedman TS. A dominant function of LynB kinase in preventing autoimmunity. SCIENCE ADVANCES 2022; 8:eabj5227. [PMID: 35452291 PMCID: PMC9032976 DOI: 10.1126/sciadv.abj5227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Here, we report that the LynB splice variant of the Src-family kinase Lyn exerts a dominant immunosuppressive function in vivo, whereas the LynA isoform is uniquely required to restrain autoimmunity in female mice. We used CRISPR-Cas9 gene editing to constrain lyn splicing and expression, generating single-isoform LynA knockout (LynAKO) or LynBKO mice. Autoimmune disease in total LynKO mice is characterized by production of antinuclear antibodies, glomerulonephritis, impaired B cell development, and overabundance of activated B cells and proinflammatory myeloid cells. Expression of LynA or LynB alone uncoupled the developmental phenotype from the autoimmune disease: B cell transitional populations were restored, but myeloid cells and differentiated B cells were dysregulated. These changes were isoform-specific, sexually dimorphic, and distinct from the complete LynKO. Despite the apparent differences in disease etiology and penetrance, loss of either LynA or LynB had the potential to induce severe autoimmune disease with parallels to human systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Ben F. Brian
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Monica L. Sauer
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - S. Erandika Senevirathne
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anders J. Lindstedt
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, MN 55455, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia L. Funk
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian L. Ruis
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luis A. Ramirez
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jennifer L. Auger
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Whitney L. Swanson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Myra G. Nunez
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryce A. Binstadt
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
246
|
Abstract
The microbiota-gut-brain-axis (MGBA) is a bidirectional communication network between gut microbes and their host. Many environmental and host-related factors affect the gut microbiota. Dysbiosis is defined as compositional and functional alterations of the gut microbiota that contribute to the pathogenesis, progression and treatment responses to disease. Dysbiosis occurs when perturbations of microbiota composition and function exceed the ability of microbiota and its host to restore a symbiotic state. Dysbiosis leads to dysfunctional signaling of the MGBA, which regulates the development and the function of the host's immune, metabolic, and nervous systems. Dysbiosis-induced dysfunction of the MGBA is seen with aging and stroke, and is linked to the development of common stroke risk factors such as obesity, diabetes, and atherosclerosis. Changes in the gut microbiota are also seen in response to stroke, and may impair recovery after injury. This review will begin with an overview of the tools used to study the MGBA with a discussion on limitations and potential experimental confounders. Relevant MGBA components are introduced and summarized for a better understanding of age-related changes in MGBA signaling and its dysfunction after stroke. We will then focus on the relationship between the MGBA and aging, highlighting that all components of the MGBA undergo age-related alterations that can be influenced by or even driven by the gut microbiota. In the final section, the current clinical and preclinical evidence for the role of MGBA signaling in the development of stroke risk factors such as obesity, diabetes, hypertension, and frailty are summarized, as well as microbiota changes with stroke in experimental and clinical populations. We conclude by describing the current understanding of microbiota-based therapies for stroke including the use of pre-/pro-biotics and supplementations with bacterial metabolites. Ongoing progress in this new frontier of biomedical sciences will lead to an improved understanding of the MGBA's impact on human health and disease.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX (R.M.B.)
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| |
Collapse
|
247
|
Myc-Interacting Zinc Finger Protein 1 (Miz-1) Is Essential to Maintain Homeostasis and Immunocompetence of the B Cell Lineage. BIOLOGY 2022; 11:biology11040504. [PMID: 35453704 PMCID: PMC9027237 DOI: 10.3390/biology11040504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Aging of the immune system is described as a progressive loss of the ability to respond to immunologic stimuli and is commonly referred to as immunosenescence. B cell immunosenescence is characterized by a decreased differentiation rate in the bone marrow and accumulation of antigen-experienced and age-associated B cells in secondary lymphoid organs (SLOs). A specific deletion of the POZ-domain of the transcription factor Miz-1 in pro-B cells, which is known to be involved in bone marrow hematopoiesis, leads to premature aging of the B cell lineage. In mice, this causes a severe reduction in bone marrow-derived B cells with a drastic decrease from the pre-B cell stage on. Further, mature, naïve cells in SLOs are reduced at an early age, while post-activation-associated subpopulations increase prematurely. We propose that Miz-1 interferes at several key regulatory checkpoints, critical during B cell aging, and counteracts a premature loss of immunocompetence. This enables the use of our mouse model to gain further insights into mechanisms of B cell aging and it can significantly contribute to understand molecular causes of impaired adaptive immune responses to counteract loss of immunocompetence and restore a functional immune response in the elderly.
Collapse
|
248
|
Marginal Zone B-Cell Populations and Their Regulatory Potential in the Context of HIV and Other Chronic Inflammatory Conditions. Int J Mol Sci 2022; 23:ijms23063372. [PMID: 35328792 PMCID: PMC8949885 DOI: 10.3390/ijms23063372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation in the context of Human Immunodeficiency Virus (HIV) establishes early and persists beyond antiretroviral therapy (ART). As such, we have shown excess B-cell activating factor (BAFF) in the blood of HIV-infected progressors, as soon as in the acute phase, and despite successful ART. Excess BAFF was associated with deregulation of the B-cell compartment; notably, with increased frequencies of a population sharing features of both transitional immature (TI) and marginal zone (MZ) B-cells, we termed Marginal Zone precursor-like (MZp). We have reported similar observations with HIV-transgenic mice, Simian Immunodeficiency Virus (SIV)-infected macaques, and more recently, with HIV-infected Beninese commercial sex workers, which suggests that excess BAFF and increased frequencies of MZp B-cells are reliable markers of inflammation in the context of HIV. Importantly, we have recently shown that in healthy individuals, MZps present an important regulatory B-cell (Breg) profile and function. Herein, we wish to review our current knowledge on MZ B-cell populations, especially their Breg status, and that of other B-cell populations sharing similar features. BAFF and its analog A Proliferation-Inducing Ligand (APRIL) are important in shaping the MZ B-cell pool; moreover, the impact that excess BAFF—encountered in the context of HIV and several chronic inflammatory conditions—may exert on MZ B-cell populations, Breg and antibody producing capacities is a threat to the self-integrity of their antibody responses and immune surveillance functions. As such, deregulations of MZ B-cell populations contribute to autoimmune manifestations and the development of MZ lymphomas (MZLs) in the context of HIV and other inflammatory diseases. Therefore, further comprehending the mechanisms regulating MZ B-cell populations and their functions could be beneficial to innovative therapeutic avenues that could be deployed to restore MZ B-cell immune competence in the context of chronic inflammation involving excess BAFF.
Collapse
|
249
|
Cao Y, Zhao X, You R, Zhang Y, Qu C, Huang Y, Yu Y, Gong Y, Cong T, Zhao E, Zhang L, Gao Y, Zhang J. CD11c+ B Cells Participate in the Pathogenesis of Graves’ Disease by Secreting Thyroid Autoantibodies and Cytokines. Front Immunol 2022; 13:836347. [PMID: 35386700 PMCID: PMC8977450 DOI: 10.3389/fimmu.2022.836347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Graves’ disease (GD) is a common autoimmune disorder with an elevation in pathogenic autoantibodies, specifically anti-thyrotropin receptor antibodies (TRAbs), which are secreted by autoreactive B cells. To date, there has been little research on self-reactive B cells in GD. In the current study, we reported that a unique B-cell subset, CD11c+ B cells, was expanded in the peripheral blood (PB) of GD patients, as detected by flow cytometry. The frequency of CD11c+ B cells was positively correlated with serum TRAb levels. The flow cytometry data showed that CD11c expression was higher in a variety of B-cell subsets and that CD11c+ B cells presented a distinct immunophenotype compared to paired CD11c- B cells. Immunohistochemical and immunofluorescence staining indicated the presence of CD11c+CD19+ B cells in lymphocyte infiltration areas of the GD thyroid. Flow cytometric analysis of PB and fine-needle aspiration (FNA) samples showed that compared to PB CD11c+ B cells, CD11c+ B cells in the thyroid accumulated and further differentiated. We found that CD11c+ B cells from the PB of GD patients were induced to differentiate into autoreactive antibody-secreting cells (ASCs) capable of secreting TRAbs in vitro. Luminex liquid suspension chip detection data showed that CD11c+ B cells also secreted a variety of cytokines, including proinflammatory cytokines, anti-inflammatory cytokines, and chemokines, which might play roles in regulating the local inflammatory response and infiltration of lymphocytes in the thyroid. In addition, we performed a chemotaxis assay in a Transwell chamber to verify that CD11c+ B cells were recruited by thyroid follicular cells (TFCs) via the CXCR3-CXCL10 axis. In conclusion, our study determined that CD11c+ B cells were involved in the pathogenesis of GD in multiple ways and might represent a promising immunotherapeutic target in the future.
Collapse
Affiliation(s)
- Yedi Cao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xue Zhao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ran You
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yang Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Chenxue Qu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Youyuan Huang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yang Yu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yan Gong
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Tiechuan Cong
- Department of Otolaryngology-Head and Neck Surgery, Beijing, China
| | - Enmin Zhao
- Department of Otolaryngology-Head and Neck Surgery, Beijing, China
| | - Lanbo Zhang
- Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
- *Correspondence: Ying Gao,
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
250
|
Zhu Y, Tang X, Xu Y, Wu S, Liu W, Geng L, Ma X, Tsao BP, Feng X, Sun L. RNASE2 Mediates Age-Associated B Cell Expansion Through Monocyte Derived IL-10 in Patients With Systemic Lupus Erythematosus. Front Immunol 2022; 13:752189. [PMID: 35265065 PMCID: PMC8899663 DOI: 10.3389/fimmu.2022.752189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by the production of pathogenic autoantibodies. Ribonuclease A family member 2 (RNase2) is known to have antiviral activity and immunomodulatory function. Although RNASE2 level has been reported to be elevated in SLE patients based on mRNA microarray detection, its pathologic mechanism remains unclear. Here, we confirmed that RNASE2 was highly expressed in PBMCs from SLE patients and associated with the proportion of CD11c+T-bet+ B cells, a class of autoreactive B cells also known as age-associated B cells (ABCs). We showed that reduction of RNASE2 expression by small interfering RNA led to the decrease of ABCs in vitro, accompanied by total IgG and IL-10 reduction. In addition, we demonstrated that both RNASE2 and IL-10 in peripheral blood of lupus patients were mainly derived from monocytes. RNASE2 silencing in monocytes down-regulated IL-10 production and consequently reduced ABCs numbers in monocyte-B cell co-cultures, which could be restored by the addition of recombinant IL-10. Based on above findings, we concluded that RNASE2 might induce the production of ABCs via IL-10 secreted from monocytes, thus contributing to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yantong Zhu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Xu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Si Wu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Weilin Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Ma
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Betty P Tsao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Xuebing Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|