201
|
Wood SR, Bigger BW. Delivering gene therapy for mucopolysaccharide diseases. Front Mol Biosci 2022; 9:965089. [PMID: 36172050 PMCID: PMC9511407 DOI: 10.3389/fmolb.2022.965089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Mucopolysaccharide diseases are a group of paediatric inherited lysosomal storage diseases that are caused by enzyme deficiencies, leading to a build-up of glycosaminoglycans (GAGs) throughout the body. Patients have severely shortened lifespans with a wide range of symptoms including inflammation, bone and joint, cardiac, respiratory and neurological disease. Current treatment approaches for MPS disorders revolve around two main strategies. Enzyme replacement therapy (ERT) is efficacious in treating somatic symptoms but its effect is limited for neurological functions. Haematopoietic stem cell transplant (HSCT) has the potential to cross the BBB through monocyte trafficking, however delivered enzyme doses limit its use almost exclusively to MPSI Hurler. Gene therapy is an emerging therapeutic strategy for the treatment of MPS disease. In this review, we will discuss the various vectors that are being utilised for gene therapy in MPS as well as some of the most recent gene-editing approaches undergoing pre-clinical and clinical development.
Collapse
|
202
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
203
|
AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat Neurosci 2022; 25:106-115. [PMID: 34887588 DOI: 10.1038/s41593-021-00969-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Genetic intervention is increasingly being explored as a therapeutic option for debilitating disorders of the central nervous system. The safety and efficacy of gene therapies rely upon expressing a transgene in affected cells while minimizing off-target expression. Here we show organ-specific targeting of adeno-associated virus (AAV) capsids after intravenous delivery, which we achieved by employing a Cre-transgenic-based screening platform and sequential engineering of AAV-PHP.eB between the surface-exposed AA452 and AA460 of VP3. From this selection, we identified capsid variants that were enriched in the brain and targeted away from the liver in C57BL/6J mice. This tropism extends to marmoset (Callithrix jacchus), enabling robust, non-invasive gene delivery to the marmoset brain after intravenous administration. Notably, the capsids identified result in distinct transgene expression profiles within the brain, with one exhibiting high specificity to neurons. The ability to cross the blood-brain barrier with neuronal specificity in rodents and non-human primates enables new avenues for basic research and therapeutic possibilities unattainable with naturally occurring serotypes.
Collapse
|
204
|
Duan J, Bao C, Xie Y, Guo H, Liu Y, Li J, Liu R, Li P, Bai J, Yan Y, Mu L, Li X, Wang G, Lu W. Targeted core-shell nanoparticles for precise CTCF gene insert in treatment of metastatic breast cancer. Bioact Mater 2021; 11:1-14. [PMID: 34938908 DOI: 10.1016/j.bioactmat.2021.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology emerges a remarkable potential for cure of refractory cancer like metastatic breast cancer. However, how to efficiently deliver the CRISPR system with non-viral carrier remains a major issue to be solved. Here, we report a kind of targeted core-shell nanoparticles (NPs) carrying dual plasmids (pHR-pCas9) for precise CCCTC-binding factor (CTCF) gene insert to circumvent metastatic breast cancer. The targeted core-shell NPs carrying pHR-pCas9 can accomplish γGTP-mediated cellular uptake and endosomal escape, facilitate the precise insert and stable expression of CTCF gene, inhibit the migration, metastasis, and colonization of metastatic breast cancer cells. Besides, the finding further reveals that the inhibitory mechanism of metastasis could be associated with up-regulating CTCF protein, followed by down-regulating stomatin (STOM) protein. The study offers a universal nanostrategy enabling the robust non-viral delivery of gene-editing system for treatment of severe illness.
Collapse
Affiliation(s)
- Jialun Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chunjie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haitao Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yixuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jianwei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100875, China
| | - Rui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Peishan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jing Bai
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yan Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Limin Mu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xueqi Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
205
|
Sydney-Smith JD, Spejo AB, Warren PM, Moon LDF. Peripherally delivered Adeno-associated viral vectors for spinal cord injury repair. Exp Neurol 2021; 348:113945. [PMID: 34896114 DOI: 10.1016/j.expneurol.2021.113945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Via the peripheral and autonomic nervous systems, the spinal cord directly or indirectly connects reciprocally with many body systems (muscular, intengumentary, respiratory, immune, digestive, excretory, reproductive, cardiovascular, etc). Accordingly, spinal cord injury (SCI) can result in catastrophe for multiple body systems including muscle paralysis affecting movement and loss of normal sensation, as well as neuropathic pain, spasticity, reduced fertility and autonomic dysreflexia. Treatments and cure for an injured spinal cord will likely require access of therapeutic agents across the blood-CNS (central nervous system) barrier. However, some types of repair within the CNS may be possible by targeting treatment to peripherally located cells or by delivering Adeno-Associated Viral vectors (AAVs) by peripheral routes (e.g., intrathecal, intravenous). This review will consider some future possibilities for SCI repair generated by therapeutic peripheral gene delivery. There are now six gene therapies approved worldwide as safe and effective medicines of which three were created by modification of the apparently nonpathogenic Adeno-Associated Virus. One of these AAVs, Zolgensma, is injected intrathecally for treatment of spinal muscular atrophy in children. One day, delivery of AAVs into peripheral tissues might improve recovery after spinal cord injury in humans; we discuss experiments by us and others delivering transgenes into nerves or muscles for sensorimotor recovery in animal models of SCI or of stroke including human Neurotrophin-3. We also describe ongoing efforts to develop AAVs that are delivered to particular targets within and without the CNS after peripheral administration using capsids with improved tropisms, promoters that are selective for particular cell types, and methods for controlling the dose and duration of expression of a transgene. In conclusion, in the future, minimally invasive administration of AAVs may improve recovery after SCI with minimal side effects.
Collapse
Affiliation(s)
- Jared D Sydney-Smith
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Aline B Spejo
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Philippa M Warren
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Lawrence D F Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom.
| |
Collapse
|
206
|
Hu H, Mosca R, Gomero E, van de Vlekkert D, Campos Y, Fremuth LE, Brown SA, Weesner JA, Annunziata I, d’Azzo A. AAV-mediated gene therapy for galactosialidosis: A long-term safety and efficacy study. Mol Ther Methods Clin Dev 2021; 23:644-658. [PMID: 34901309 PMCID: PMC8640647 DOI: 10.1016/j.omtm.2021.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 11/05/2022]
Abstract
AAV-mediated gene therapy holds promise for the treatment of lysosomal storage diseases (LSDs), some of which are already in clinical trials. Yet, ultra-rare subtypes of LSDs, such as some glycoproteinoses, have lagged. Here, we report on a long-term safety and efficacy preclinical study conducted in the murine model of galactosialidosis, a glycoproteinosis caused by a deficiency of protective protein/cathepsin A (PPCA). One-month-old Ctsa -/- mice were injected intravenously with a high dose of a self-complementary AAV2/8 vector expressing human CTSA in the liver. Treated mice, examined up to 12 months post injection, appeared grossly indistinguishable from their wild-type littermates. Sustained expression of scAAV2/8-CTSA in the liver resulted in the release of the therapeutic precursor protein in circulation and its widespread uptake by cells in visceral organs and the brain. Increased cathepsin A activity resolved lysosomal vacuolation throughout the affected organs and sialyl-oligosacchariduria. No signs of hyperplasia or inflammation were detected in the liver up to a year of age. Clinical chemistry panels, blood cell counts, and T cell immune responses were normal in all treated animals. These results warrant a close consideration of this gene therapy approach for the treatment of galactosialidosis, an orphan disease with no cure in sight.
Collapse
Affiliation(s)
- Huimin Hu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rosario Mosca
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elida Gomero
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Yvan Campos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Leigh E. Fremuth
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Scott A. Brown
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason A. Weesner
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
207
|
Iglesias-Lopez C, Agustí A, Vallano A, Obach M. Current landscape of clinical development and approval of advanced therapies. Mol Ther Methods Clin Dev 2021; 23:606-618. [PMID: 34901306 PMCID: PMC8626628 DOI: 10.1016/j.omtm.2021.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 11/07/2021] [Indexed: 01/26/2023]
Abstract
Advanced therapy medicinal products (ATMPs) are innovative therapies that mainly target orphan diseases and high unmet medical needs. The uncertainty about the product's benefit-risk balance at the time of approval, the limitations of nonclinical development, and the complex quality aspects of those highly individualized advanced therapies are playing a key role in the clinical development, approval, and post-marketing setting for these therapies. This article reviews the current landscape of clinical development of advanced therapies, its challenges, and some of the efforts several stakeholders are conducting to move forward within this field. Progressive iteration of the science, methodologically sound clinical developments, establishing new standards for ATMPs development with the aim to ensure consistency in clinical development, and the reproducibility of knowledge is required, not only to increase the evidence generation for approval but to set principles to achieve translational success in this field.
Collapse
Affiliation(s)
- Carolina Iglesias-Lopez
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonia Agustí
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Clinical Pharmacology Service, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Antoni Vallano
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Medicines Department, Catalan Healthcare Service, Barcelona, Spain
| | - Merce Obach
- Medicines Department, Catalan Healthcare Service, Barcelona, Spain
| |
Collapse
|
208
|
Pipe SW, Gonen-Yaacovi G, Segurado OG. Hemophilia A Gene Therapy: Current and Next-Generation Approaches. Expert Opin Biol Ther 2021; 22:1099-1115. [PMID: 34781798 DOI: 10.1080/14712598.2022.2002842] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION : Hemophilia comprises a group of X-linked hemorrhagic disorders that result from a deficiency of coagulation factors. The disorder affects mainly males and leads to chronic pain, joint deformity, reduced mobility, and increased mortality. Current therapies require frequent administration of replacement clotting factors, but the emergence of alloantibodies (inhibitors) diminishes their efficacy. New therapies are being developed to produce the deficient clotting factors and prevent the emergence of inhibitors. AREAS COVERED : This article provides an update on the characteristics and disease pathophysiology of hemophilia A, as well as current treatments, with a special focus on ongoing clinical trials related to gene replacement therapies. EXPERT OPINION : Gene replacement therapies provide safe, durable, and stable transgene expression while avoiding the challenges of clotting factor replacement therapies in patients with hemophilia. Improving the specificity of the viral construct and decreasing the therapeutic dose are critical toward minimizing cellular stress, induction of the unfolded protein response, and the resulting loss of protein production in liver cells. Next-generation gene therapies incorporating chimeric DNA sequences in the transgene can increase clotting factor synthesis and secretion, and advance the efficacy, safety, and durability of gene replacement therapy for hemophilia A as well as other blood clotting disorders.
Collapse
|
209
|
Structurally Mapping Antigenic Epitopes of Adeno-Associated Virus 9: Development of Antibody Escape Variants. J Virol 2021; 96:e0125121. [PMID: 34757842 DOI: 10.1128/jvi.01251-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAV) serve as vectors for therapeutic gene delivery. AAV9 vectors have been FDA approved, as Zolgensma®, for the treatment of spinal muscular atrophy and is being evaluated in clinical trials for the treatment of neurotropic and musculotropic diseases. A major hurdle for AAV-mediated gene delivery is the presence of pre-existing neutralizing antibodies in 40 to 80% of the general population. These pre-existing antibodies can reduce therapeutic efficacy through viral neutralization, and the size of the patient cohort eligible for treatment. In this study, cryo-electron microscopy and image reconstruction was used to define the epitopes of five anti-AAV9 monoclonal antibodies (MAbs); ADK9, HL2368, HL2370, HL2372, and HL2374, on the capsid surface. Three of these, ADK9, HL2370, and HL2374, bound on or near the icosahedral 3-fold axes, HL2368 to the 2/5-fold wall, and HL2372 to the region surrounding the 5-fold axes. Pseudo-atomic modeling enabled the mapping and identification of antibody contact amino acids on the capsid, including S454 and P659. These epitopes overlap with previously defined parvovirus antigenic sites. Capsid amino acids critical for the interactions were confirmed by mutagenesis followed by biochemical assays testing recombinant AAV9 (rAAV9) variants capable of escaping recognition and neutralization by the parental MAbs. These variants retained parental tropism and had similar or improved transduction efficiency compared to AAV9. These engineered rAAV9 variants could expand the patient cohort eligible for AAV9-mediated gene delivery by avoiding pre-existing circulating neutralizing antibodies. IMPORTANCE The use of recombinant AAVs (rAAVs) as delivery vectors for therapeutic genes is becoming increasingly popular, especially following the FDA approval of Luxturna® and Zolgensma®, based on serotypes AAV2 and AAV9, respectively. However, high titer anti-AAV neutralizing antibodies in the general population, exempts patients from treatment. The goal of this study is to circumvent this issue by creating AAV variant vectors not recognized by pre-existing neutralizing antibodies. The mapping of the antigenic epitopes of five different monoclonal antibodies (MAbs) on AAV9, to recapitulate a polyclonal response, enabled the rational design of escape variants with minimal disruption to cell tropism and gene expression. This study, which included four newly developed and now commercially available MAbs, provides a platform for the engineering of rAAV9 vectors that can be used to deliver genes to patients with pre-exiting AAV antibodies.
Collapse
|
210
|
Tyumentseva MA, Tyumentsev AI, Akimkin VG. Protocol for assessment of the efficiency of CRISPR/Cas RNP delivery to different types of target cells. PLoS One 2021; 16:e0259812. [PMID: 34752487 PMCID: PMC8577758 DOI: 10.1371/journal.pone.0259812] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Delivery of CRISPR/Cas RNPs to target cells still remains the biggest bottleneck to genome editing. Many efforts are made to develop efficient CRISPR/Cas RNP delivery methods that will not affect viability of target cell dramatically. Popular current methods and protocols of CRISPR/Cas RNP delivery include lipofection and electroporation, transduction by osmocytosis and reversible permeabilization and erythrocyte-based methods. METHODS In this study we will assess the efficiency and optimize current CRISPR/Cas RNP delivery protocols to target cells. We will conduct our work using molecular cloning, protein expression and purification, cell culture, flow cytometry (immunocytochemistry) and cellular imaging techniques. DISCUSSION This will be the first extensive comparative study of popular current methods and protocols of CRISPR/Cas RNP delivery to human cell lines and primary cells. All protocols will be optimized and characterized using the following criteria i) protein delivery and genome editing efficacy; ii) viability of target cells after delivery (post-transduction recovery); iii) scalability of delivery process; iv) cost-effectiveness of the delivery process and v) intellectual property rights. Some methods will be considered 'research-use only', others will be recommended for scaling and application in the development of cell-based therapies.
Collapse
|
211
|
Kontermann RE, Ungerechts G, Nettelbeck DM. Viro-antibody therapy: engineering oncolytic viruses for genetic delivery of diverse antibody-based biotherapeutics. MAbs 2021; 13:1982447. [PMID: 34747345 PMCID: PMC8583164 DOI: 10.1080/19420862.2021.1982447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer therapeutics approved for clinical application include oncolytic viruses and antibodies, which evolved by nature, but were improved by molecular engineering. Both facilitate outstanding tumor selectivity and pleiotropic activities, but also face challenges, such as tumor heterogeneity and limited tumor penetration. An innovative strategy to address these challenges combines both agents in a single, multitasking therapeutic, i.e., an oncolytic virus engineered to express therapeutic antibodies. Such viro-antibody therapies genetically deliver antibodies to tumors from amplified virus genomes, thereby complementing viral oncolysis with antibody-defined therapeutic action. Here, we review the strategies of viro-antibody therapy that have been pursued exploiting diverse virus platforms, antibody formats, and antibody-mediated modes of action. We provide a comprehensive overview of reported antibody-encoding oncolytic viruses and highlight the achievements of 13 years of viro-antibody research. It has been shown that functional therapeutic antibodies of different formats can be expressed in and released from cancer cells infected with different oncolytic viruses. Virus-encoded antibodies have implemented direct tumor cell killing, anti-angiogenesis, or activation of adaptive immune responses to kill tumor cells, tumor stroma cells or inhibitory immune cells. Importantly, numerous reports have shown therapeutic activity complementary to viral oncolysis for these modalities. Also, challenges for future research have been revealed. Established engineering technologies for both oncolytic viruses and antibodies will enable researchers to address these challenges, facilitating the development of effective viro-antibody therapeutics.
Collapse
Affiliation(s)
- Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dirk M Nettelbeck
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
212
|
Xiao P, Bai R, Zhang T, Wu R, Chen L, Hou Y, Shen B, Niu Y, Li S, Ji W, Chen Y. Extensive humoral immune response to AAVs and Cas proteins in nonhuman primates. Sci Bull (Beijing) 2021; 66:2061-2064. [PMID: 36654263 DOI: 10.1016/j.scib.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/03/2023]
Affiliation(s)
- Puhao Xiao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Raoxian Bai
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Ting Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruo Wu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Lijiao Chen
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yu Hou
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
213
|
Brown D, Altermatt M, Dobreva T, Chen S, Wang A, Thomson M, Gradinaru V. Deep Parallel Characterization of AAV Tropism and AAV-Mediated Transcriptional Changes via Single-Cell RNA Sequencing. Front Immunol 2021; 12:730825. [PMID: 34759919 PMCID: PMC8574206 DOI: 10.3389/fimmu.2021.730825] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Engineered variants of recombinant adeno-associated viruses (rAAVs) are being developed rapidly to meet the need for gene-therapy delivery vehicles with particular cell-type and tissue tropisms. While high-throughput AAV engineering and selection methods have generated numerous variants, subsequent tropism and response characterization have remained low throughput and lack resolution across the many relevant cell and tissue types. To fully leverage the output of these large screening paradigms across multiple targets, we have developed an experimental and computational single-cell RNA sequencing (scRNA-seq) pipeline for in vivo characterization of barcoded rAAV pools at high resolution. Using this platform, we have both corroborated previously reported viral tropisms and discovered unidentified AAV capsid targeting biases. As expected, we observed that the tropism profile of AAV.CAP-B10 in mice was shifted toward neurons and away from astrocytes when compared with AAV-PHP.eB. Transcriptomic analysis revealed that this neuronal bias is due mainly to increased targeting efficiency for glutamatergic neurons, which we confirmed by RNA fluorescence in situ hybridization. We further uncovered cell subtype tropisms of AAV variants in vascular and glial cells, such as low transduction of pericytes and Myoc+ astrocytes. Additionally, we have observed cell-type-specific transitory responses to systemic AAV-PHP.eB administration, such as upregulation of genes involved in p53 signaling in endothelial cells three days post-injection, which return to control levels by day twenty-five. The presented experimental and computational approaches for parallel characterization of AAV tropism will facilitate the advancement of safe and precise gene delivery vehicles, and showcase the power of understanding responses to gene therapies at the single-cell level.
Collapse
Affiliation(s)
- David Brown
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Michael Altermatt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Tatyana Dobreva
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sisi Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Alexander Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, United States
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
214
|
Hutt JA, Assaf BT, Bolon B, Cavagnaro J, Galbreath E, Grubor B, Kattenhorn LM, Romeike A, Whiteley LO. Scientific and Regulatory Policy Committee Points to Consider: Nonclinical Research and Development of In Vivo Gene Therapy Products, Emphasizing Adeno-Associated Virus Vectors. Toxicol Pathol 2021; 50:118-146. [PMID: 34657529 DOI: 10.1177/01926233211041962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sequencing of the human genome and numerous advances in molecular techniques have launched the era of genetic medicine. Increasingly precise technologies for genetic modification, manufacturing, and administration of pharmaceutical-grade biologics have proved the viability of in vivo gene therapy (GTx) as a therapeutic modality as shown in several thousand clinical trials and recent approval of several GTx products for treating rare diseases and cancers. In recognition of the rapidly advancing knowledge in this field, the regulatory landscape has evolved considerably to maintain appropriate monitoring of safety concerns associated with this modality. Nonetheless, GTx safety assessment remains complex and is designed on a case-by-case basis that is determined by the disease indication and product attributes. This article describes our current understanding of fundamental biological principles and possible procedures (emphasizing those related to toxicology and toxicologic pathology) needed to support research and development of in vivo GTx products. This article is not intended to provide comprehensive guidance on all GTx modalities but instead provides an overview relevant to in vivo GTx generally by utilizing recombinant adeno-associated virus-based GTx-the most common in vivo GTx platform-to exemplify the main points to be considered in nonclinical research and development of GTx products.
Collapse
Affiliation(s)
- Julie A Hutt
- Greenfield Pathology Services, Inc, Greenfield, IN, USA
| | - Basel T Assaf
- Drug Safety Research and Development, Pfizer Inc, Cambridge, MA, USA
| | | | | | | | - Branka Grubor
- Biogen, Preclinical Safety/Comparative Pathology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
215
|
Sevin C, Deiva K. Clinical Trials for Gene Therapy in Lysosomal Diseases With CNS Involvement. Front Mol Biosci 2021; 8:624988. [PMID: 34604300 PMCID: PMC8481654 DOI: 10.3389/fmolb.2021.624988] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
There are over 70 known lysosomal storage disorders (LSDs), most caused by mutations in genes encoding lysosomal hydrolases. Central nervous system involvement is a hallmark of the majority of LSDs and, if present, generally determines the prognosis of the disease. Nonetheless, brain disease is currently poorly targeted by available therapies, including systemic enzyme replacement therapy, mostly (but not only) due to the presence of the blood–brain barrier that restricts the access of orally or parenterally administered large molecules into the brain. Thus, one of the greatest and most exciting challenges over coming years will be to succeed in developing effective therapies for the treatment of central nervous system manifestations in LSDs. Over recent years, gene therapy (GT) has emerged as a promising therapeutic strategy for a variety of inherited neurodegenerative diseases. In LSDs, the ability of genetically corrected cells to cross-correct adjacent lysosomal enzyme-deficient cells in the brain after gene transfer might enhance the diffusion of the recombinant enzyme, making this group of diseases a strong candidate for such an approach. Both in vivo (using the administration of recombinant adeno-associated viral vectors) and ex vivo (auto-transplantation of lentiviral vector-modified hematopoietic stem cells-HSCs) strategies are feasible. Promising results have been obtained in an ever-increasing number of preclinical studies in rodents and large animal models of LSDs, and these give great hope of GT successfully correcting neurological defects, once translated to clinical practice. We are now at the stage of treating patients, and various clinical trials are underway, to assess the safety and efficacy of in vivo and ex vivo GT in several neuropathic LSDs. In this review, we summarize different approaches being developed and review the current clinical trials related to neuropathic LSDs, their results (if any), and their limitations. We will also discuss the pitfalls and the remaining challenges.
Collapse
Affiliation(s)
- Caroline Sevin
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
216
|
Yoo S, Geist GE, Pfenniger A, Rottmann M, Arora R. Recent advances in gene therapy for atrial fibrillation. J Cardiovasc Electrophysiol 2021; 32:2854-2864. [PMID: 34053133 PMCID: PMC9281901 DOI: 10.1111/jce.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke. Unfortunately, current treatments for AF are suboptimal as they are not targeting the molecular mechanisms underlying AF. In this regard, gene therapy is emerging as a promising approach for mechanism-based treatment of AF. In this review, we summarize recent advances and challenges in gene therapy for this important cardiovascular disease.
Collapse
Affiliation(s)
- Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gail Elizabeth Geist
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Markus Rottmann
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
217
|
Kalidasan V, Ng WH, Ishola OA, Ravichantar N, Tan JJ, Das KT. A guide in lentiviral vector production for hard-to-transfect cells, using cardiac-derived c-kit expressing cells as a model system. Sci Rep 2021; 11:19265. [PMID: 34584147 PMCID: PMC8478948 DOI: 10.1038/s41598-021-98657-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Gene therapy revolves around modifying genetic makeup by inserting foreign nucleic acids into targeted cells via gene delivery methods to treat a particular disease. While the genes targeted play a key role in gene therapy, the gene delivery system used is also of utmost importance as it determines the success of gene therapy. As primary cells and stem cells are often the target cells for gene therapy in clinical trials, the delivery system would need to be robust, and viral-based entries such as lentiviral vectors work best at transporting the transgene into the cells. However, even within lentiviral vectors, several parameters can affect the functionality of the delivery system. Using cardiac-derived c-kit expressing cells (CCs) as a model system, this study aims to optimize lentiviral production by investigating various experimental factors such as the generation of the lentiviral system, concentration method, and type of selection marker. Our findings showed that the 2nd generation system with pCMV-dR8.2 dvpr as the packaging plasmid produced a 7.3-fold higher yield of lentiviral production compared to psPAX2. Concentrating the virus with ultracentrifuge produced a higher viral titer at greater than 5 × 105 infectious unit values/ml (IFU/ml). And lastly, the minimum inhibitory concentration (MIC) of puromycin selection marker was 10 μg/mL and 7 μg/mL for HEK293T and CCs, demonstrating the suitability of antibiotic selection for all cell types. This encouraging data can be extrapolated and applied to other difficult-to-transfect cells, such as different types of stem cells or primary cells.
Collapse
Affiliation(s)
- V. Kalidasan
- grid.11875.3a0000 0001 2294 3534Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Wai Hoe Ng
- grid.11875.3a0000 0001 2294 3534Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Oluwaseun Ayodeji Ishola
- grid.11875.3a0000 0001 2294 3534Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia ,Helmholtz Research Zentrum, Munich, Germany
| | - Nithya Ravichantar
- grid.11875.3a0000 0001 2294 3534Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Jun Jie Tan
- grid.11875.3a0000 0001 2294 3534Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Kumitaa Theva Das
- grid.11875.3a0000 0001 2294 3534Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
218
|
Hwu WL, Muramatsu SI, Gidoni-Ben-Zeev B. Reduced Immunogenicity of Intraparenchymal Delivery of Adeno-Associated Virus Serotype 2 Vectors: Brief Overview. Curr Gene Ther 2021; 22:185-190. [PMID: 34551695 PMCID: PMC9178513 DOI: 10.2174/1566523221666210922155413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022]
Abstract
Pre existing immunity to adeno-associated virus (AAV) poses a concern in AAV vector–mediated gene therapy. Localized administration of low doses of carefully chosen AAV serotypes can mitigate the risk of an immune response. This article will illustrate the low risk of immune response to AAV serotype 2 vector–mediated gene therapy to the brain with support from clinical trial data in aromatic L-amino acid decarboxylase deficiency and Parkinson disease.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- Department of Medical Genetics and Pediatrics, 7 Chung-Shan S. Road, National Taiwan University Hospital, Taipei. Taiwan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Center for Open Innovation, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498. Japan.,Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato, Tokyo 108-0071, Japan
| | - Bruria Gidoni-Ben-Zeev
- Department of Pediatric Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, 6997801, Israel
| |
Collapse
|
219
|
Gorovits B, Azadeh M, Buchlis G, Harrison T, Havert M, Jawa V, Long B, McNally J, Milton M, Nelson R, O'Dell M, Richards K, Vettermann C, Wu B. Evaluation of the Humoral Response to Adeno-Associated Virus-Based Gene Therapy Modalities Using Total Antibody Assays. AAPS J 2021; 23:108. [PMID: 34529177 PMCID: PMC8445016 DOI: 10.1208/s12248-021-00628-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
The number of viral vector-based gene therapies (GTx) continues to grow with two products (Zolgensma® and Luxturna®) approved in the USA as of March 2021. To date, the most commonly used vectors are adeno-associated virus-based (AAV). The pre-existing humoral immunity against AAV (anti-AAV antibodies) has been well described and is expected as a consequence of prior AAV exposure. Anti-AAV antibodies may present an immune barrier to successful AAV transduction and hence negatively impact clinical efficacy and may also result in adverse events (AEs) due to the formation of large immune complexes. Patients may be screened for the presence of anti-AAV antibodies, including neutralizing (NAb) and total binding antibodies (TAb) prior to treatment with the GTx. Recommendations for the development and validation of anti-AAV NAb detection methods have been presented elsewhere. This manuscript covers considerations related to anti-AAV TAb-detecting protocols, including the advantages of the use of TAb methods, selection of assay controls and reagents, and parameters critical to monitoring assay performance. This manuscript was authored by a group of scientists involved in GTx development representing eleven organizations. It is our intent to provide recommendations and guidance to industry sponsors, academic laboratories, and regulatory agencies working on AAV-based GTx viral vector modalities with the goal of achieving a more consistent approach to anti-AAV TAb assessment. Graphical abstract ![]()
Collapse
Affiliation(s)
- Boris Gorovits
- Sana Biotechnology, Inc., Cambridge, Massachusetts, USA.
| | | | - George Buchlis
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Vibha Jawa
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Brian Long
- BioMarin Pharmaceutical Inc., Novato, California, USA
| | | | | | | | - Mark O'Dell
- Covance by Labcorp, Indianapolis, Indiana, USA
| | | | | | - Bonnie Wu
- Johnson & Johnson, Spring House, Pennsylvania, USA
| |
Collapse
|
220
|
Wen Y, Wang X, Cahya S, Anderson P, Velasquez C, Torres C, Ferrante A, Kaliyaperumal A. Comparability study of monocyte derived dendritic cells, primary monocytes, and THP1 cells for innate immune responses. J Immunol Methods 2021; 498:113147. [PMID: 34508774 DOI: 10.1016/j.jim.2021.113147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 01/23/2023]
Abstract
Immunogenicity is one major challenge to the successful development of biotherapeutics because it could adversely affect PK/PD, safety, and efficacy. Preclinical immunogenicity risk assessment strategies and assays have been developed and implemented to screen and optimize discovery molecules. Internalization by antigen presenting cells (APC) and innate immune activation are initial prerequisite steps in eliciting immune responses to biotherapeutics. Dendritic cells (DC)- and monocyte-based assays are employed to interrogate such risks, and their value has been well documented in the literature. However, these assays have limited throughput, exhibit higher variability, and entail lengthy and complex procedures as they are based on primary cells such as peripheral blood mononuclear cells (PBMC) from individual donors. Herein, we investigated THP1 cells as surrogate cells to study APC internalization and innate immune activation. Comparability studies showed that THP1 cells could resemble innate immune responses of monocyte-derived DC and primary CD14+ monocytes using a panel of therapeutic antibodies. In addition, an automated high throughput THP1 internalization assay was qualified to enable risk assessment at pre‑lead stages. The results demonstrated that THP1 cells can be utilized to assess immunogenicity risk in a high throughput manner.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xiaoli Wang
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Suntara Cahya
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Paul Anderson
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Candyd Velasquez
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Carina Torres
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Andrea Ferrante
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | | |
Collapse
|
221
|
Zhong C, Jiang W, Wang Y, Sun J, Wu X, Zhuang Y, Xiao X. Repeated systemic dosing of AAV vectors in immunocompetent mice after blockade of T-cell costimulatory pathways. Hum Gene Ther 2021; 33:290-300. [PMID: 34486389 DOI: 10.1089/hum.2021.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neutralizing antibodies (NAbs) strongly limit adeno-associated virus (AAV) vector transduction and repeated administration. Previous studies have shown that NAbs induced by AAVs are associated with T and B cell activation and that the B7/CD28 and CD40/CD40L costimulation signaling pathways are involved. CTLA4 and CD40 are vital molecules that participate in the costimulatory pathway. In this study, we evaluated CTLA4-Ig and CD40-Ig immunosuppressive efficacies through AAV and investigated their effects on the feasibility for multiple systemic administrations of AAV vectors. The results showed that a single administration of AAV vector carrying either CTLA4-Ig alone or with CD40-Ig could greatly reduce the level of NAbs. An AAV serotype-specific immune tolerance could be successfully established, which enabled repeated, i.e., second and third, systemic administration of AAV vectors in the same mice. A combination of CTLA4-Ig and CD40-Ig delivered via AAV vectors significantly inhibited T and B cell activations without affecting immune response to the total immunoglobulin G (IgG) production and cytokines. Interestingly, exogenous gene expression significantly improved after multiple administrations of AAV vector in vivo. Our study generates a reliable and effective method for repeated dosing of AAV vectors that is needed on gene therapy.
Collapse
Affiliation(s)
- Chen Zhong
- East China University of Science and Technology, 47860, State Key Laboratory of Bioreactor Engineering, School of Biotechnology, shanghai, China;
| | - Wei Jiang
- East China University of Science and Technology, 47860, Shanghai, Shanghai, China;
| | - Yefan Wang
- East China University of Science and Technology, 47860, Shanghai, Shanghai, China;
| | - Junjiang Sun
- The University of North Carolina at Chapel Hill, 2331, Gene Therapy Center, Chapel Hill, North Carolina, United States.,University of North Carolina at Chapel Hill Eshelman School of Pharmacy, 15521, Division of Molecular Pharmaceutics, Chapel Hill, North Carolina, United States;
| | - Xia Wu
- East China University of Science and Technology, 47860, School of Pharmacy, Shanghai, Shanghai, China;
| | - Yingping Zhuang
- East China University of Science and Technology, 47860, State Key Laboratory of Bioreactor Engineering, School of Biotechnology, Shanghai, Shanghai, China;
| | - Xiao Xiao
- East China University of Science and Technology, 47860, School of Pharmacy, Shanghai, Shanghai, China;
| |
Collapse
|
222
|
Wagner DL, Peter L, Schmueck-Henneresse M. Cas9-directed immune tolerance in humans-a model to evaluate regulatory T cells in gene therapy? Gene Ther 2021; 28:549-559. [PMID: 33574580 PMCID: PMC8455332 DOI: 10.1038/s41434-021-00232-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The dichotomic nature of the adaptive immune response governs the outcome of clinical gene therapy. On the one hand, neutralizing antibodies and cytotoxic T cells can have a dramatic impact on the efficacy and safety of human gene therapies. On the other hand, regulatory T cells (Treg) can promote tolerance toward transgenes thereby enabling long-term benefits of in vivo gene therapy after a single administration. Pre-existing antibodies and T cell immunity has been a major obstacle for in vivo gene therapies with viral vectors. As CRISPR-Cas9 gene editing advances toward the clinics, the technology's inherent immunogenicity must be addressed in order to guide clinical treatment decisions. This review summarizes the recent evidence on Cas9-specific immunity in humans-including early results from clinical trials-and discusses the risks for in vivo gene therapies. Finally, we focus on solutions and highlight the potential role of Cas9-specific Treg cells to promote immune tolerance. As a "beneficial alliance" beyond Cas9-immunity, antigen-specific Treg cells may serve as a living and targeted immunosuppressant to increase safety and efficacy of gene therapy.
Collapse
Affiliation(s)
- Dimitrios Laurin Wagner
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lena Peter
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
223
|
Bell RD. Considerations When Developing Blood-Brain Barrier Crossing Drug Delivery Technology. Handb Exp Pharmacol 2021; 273:83-95. [PMID: 34463850 DOI: 10.1007/164_2021_453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Efficient therapeutic transport across the neurovasculature remains a challenge for developing medicine to treat central nervous system (CNS) disorders (Bell and Ehlers, Neuron 81:1-3, 2014). This chapter is meant to provide some insight and key considerations for developing and evaluating various technologies and approaches to CNS drug delivery. First, a brief review of various biological barriers, including the immune system, cellular and protein components of the blood-brain barrier (BBB), and clearance mechanisms in peripheral organs is provided. Next, a few examples and learnings from existing BBB-crossing modalities will be reviewed. Insight from "BBBomic" databases and thoughts on basic requirements for successful in vivo validation studies are discussed. Finally, an additional engineering barrier, namely manufacturing and product scalability, is highlighted as it relates to clinical translation and feasibility for developing BBB-crossing delivery technologies. A goal of this chapter is to provide an overview of the many barriers to the successful delivery of medicines into the brain. An emphasis will be placed on biotherapeutic and gene therapy applications for the treatment of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Robert D Bell
- Rare Disease Research Unit, Pfizer Worldwide Research, Development and Medicine, Cambridge, MA, USA.
| |
Collapse
|
224
|
Gene Therapy for Neuronopathic Mucopolysaccharidoses: State of the Art. Int J Mol Sci 2021; 22:ijms22179200. [PMID: 34502108 PMCID: PMC8430935 DOI: 10.3390/ijms22179200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
The need for long-lasting and transformative therapies for mucopolysaccharidoses (MPS) cannot be understated. Currently, many forms of MPS lack a specific treatment and in other cases available therapies, such as enzyme replacement therapy (ERT), do not reach important areas such as the central nervous system (CNS). The advent of newborn screening procedures represents a major step forward in early identification and treatment of individuals with MPS. However, the treatment of brain disease in neuronopathic MPS has been a major challenge to date, mainly because the blood brain barrier (BBB) prevents penetration of the brain by large molecules, including enzymes. Over the last years several novel experimental therapies for neuronopathic MPS have been investigated. Gene therapy and gene editing constitute potentially curative treatments. However, despite recent progress in the field, several considerations should be taken into account. This review focuses on the state of the art of in vivo and ex vivo gene therapy-based approaches targeting the CNS in neuronopathic MPS, discusses clinical trials conducted to date, and provides a vision for the future implications of these therapies for the medical community. Recent advances in the field, as well as limitations relating to efficacy, potential toxicity, and immunogenicity, are also discussed.
Collapse
|
225
|
Guggino WB, Yanda MK, Cebotaru CV, Cebotaru L. Transduction of Surface and Basal Cells in Rhesus Macaque Lung Following Repeat Dosing with AAV1CFTR. Hum Gene Ther 2021; 31:1010-1023. [PMID: 32862701 DOI: 10.1089/hum.2020.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To test the effectiveness of repeat dosing, we sprayed two doses (1013 vg each) of AAV1Δ27-264-CFTR into airways of four rhesus monkeys at 0 and 30 days, followed by a single dose of 1013 vg of AAV1GFP on day 60. Monkeys were sacrificed on day 90. No adverse events occurred, indicating that AAV1 vectors are safe. An elevated anti-AAV1 neutralizing titer was established by the third dose. A positive ELISPOT to the adeno-associated virus (AAV) capsid but not to cystic fibrosis transmembrane conductance regulator (CFTR) occurred after the third dose in three monkeys. AAV1-CFTR and GFP vectors were detectable in all lung sections and in the heart, liver, and spleen. The CFTR protein was higher in treated monkeys than in an untreated monkey. GFP protein was detected in treated lungs. Lung surface and keratin 5-positive basal cells showed higher CFTR staining than in the uninfected monkey and were positive for GFP staining, indicating widespread gene transduction by AAV1CFTR and GFP. AAV1 safely and effectively transduces monkey airway and basal cells. Both the significant numbers of vector genomes and transduction from AAV1CFTR and GFP virus seen in the monkeys 3 months after the first instillation suggest that repeat dosing with AAV1-based vectors is achievable.
Collapse
Affiliation(s)
- William B Guggino
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Murali K Yanda
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cristina V Cebotaru
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
226
|
Guggino WB, Cebotaru L. Gene Therapy for Cystic Fibrosis Paved the Way for the Use of Adeno-Associated Virus in Gene Therapy. Hum Gene Ther 2021; 31:538-541. [PMID: 32283956 DOI: 10.1089/hum.2020.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shortly after the cystic fibrosis (CF) gene was identified in 1989, the race began to develop a gene therapy for this condition. Major efforts utilized full-length cystic fibrosis transmembrane conductance regulator packaged into adenovirus, adeno-associated virus (AAV), or liposomes and delivered to the airways. The drive to find a treatment for CF based on gene therapy drove the early stages of gene therapy in general, particularly those involving AAV gene therapy. Since general overviews of CF gene therapy have already been published, this review considers specifically the efforts using AAV and is focused on honoring the contributions of Dr. Barrie Carter.
Collapse
Affiliation(s)
- William B Guggino
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
227
|
Interleukin-30 Suppresses Not Only CD4 + T Cells but Also Regulatory T Cells in Murine Primary Biliary Cholangitis. Biomedicines 2021; 9:biomedicines9081031. [PMID: 34440235 PMCID: PMC8392158 DOI: 10.3390/biomedicines9081031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic liver autoimmune disease with augmented T helper (Th) 1 and corresponding cytokine IFN-γ immune responses. Using 2-octynoic acid (2-OA) coupled to OVA (2-OA-OVA)-induced mouse models of autoimmune cholangitis (inducible chemical xenobiotic models of PBC), our previous study demonstrated that overexpression of IFN-γ in the model mice enhanced liver inflammation upon disease initiation, but subsequently led to the suppression of chronic inflammation with an increase in interleukin-30 (IL-30) levels. In this study, we investigated whether IL-30 had an immunosuppressive function and whether it could be part of an immune therapeutic regimen for PBC, by treating model mice with murine IL-30-expressing recombinant adeno-associated virus (AAV-mIL-30). We first defined the effects of AAV-mIL-30 in vivo by administering it to a well-known concanavalin A (ConA)-induced hepatitis model of mice and found that AAV-mIL-30 reduced the numbers of activated CD25+CD4+ T cells and the levels of serum IFN-γ and IL-12. In autoimmune cholangitis, decreased numbers of activated CD4+ T cells and Foxp3+ regulatory T cells were noted in the mice treated with AAV-mIL-30 at 3 weeks after the 2-OA-OVA immunization. Treatment with IL-30 did not change the features of autoimmune cholangitis including autoantibodies, cell infiltration, and collagen deposition in the liver at 11 weeks of examination. However, increased levels of cytokines and chemokines were observed. These results suggest that IL-30 suppresses not only CD4+ T cells but also regulatory T cells. Additionally, the administration of IL-30 did not suppress liver inflammation in the murine model of PBC.
Collapse
|
228
|
Lisowski L, Staber JM, Wright JF, Valentino LA. The intersection of vector biology, gene therapy, and hemophilia. Res Pract Thromb Haemost 2021; 5:e12586. [PMID: 34485808 PMCID: PMC8410952 DOI: 10.1002/rth2.12586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy is at the forefront of the drive to bring the potential of cure to patients with genetic diseases. Multiple mechanisms of effective and efficient gene therapy delivery (eg, lentiviral, adeno-associated) for transgene expression as well as gene editing have been explored to improve vector and construct attributes and achieve therapeutic success. Recent clinical research has focused on recombinant adeno-associated viral (rAAV) vectors as a preferred method owing to their naturally occurring vector biology characteristics, such as serotypes with specific tissue tropisms, facilitated in vivo delivery, and stable physicochemical properties. For those living with hereditary diseases like hemophilia, this potential curative approach is balanced against the need to provide safe, predictable, effective, and durable factor expression. While in vivo studies of rAAV gene therapy have demonstrated amelioration of the bleeding phenotype in adults, long-term safety and effectiveness remain to be established. This review discusses vector biology in the context of rAAV-based liver-directed gene therapy for hemophilia and provides an overview of the types of viral vectors and vector components that are under investigation, as well as an assessment of the challenges associated with gene therapy delivery and durability of expression.
Collapse
Affiliation(s)
- Leszek Lisowski
- Translational Vectorology Research UnitFaculty of Medicine and HealthChildren's Medical Research InstituteThe University of SydneyWestmeadAustralia
- Laboratory of Molecular Oncology and Innovative TherapiesMilitary Institute of MedicineWarsawPoland
| | - Janice M. Staber
- Stead Family Department of PediatricsUniversity of IowaIowa CityIAUSA
- Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - J. Fraser Wright
- Department of PediatricsDivision of Hematology, OncologyStem Cell Transplantation and Regenerative MedicineCenter for Definitive and Curative MedicineStanford University School of MedicineStanfordCAUSA
| | | |
Collapse
|
229
|
Tustian AD, Bak H. Assessment of quality attributes for adeno-associated viral vectors. Biotechnol Bioeng 2021; 118:4186-4203. [PMID: 34309017 DOI: 10.1002/bit.27905] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022]
Abstract
There is a strong and growing interest in the development and production of gene therapy products, including those utilizing adeno-associated virus (AAV) particles. This is evident with the increase in the number of clinical trials and agency approvals for AAV therapeutics. As bioproduction of AAV viral vectors matures, a quality by design (QbD) approach to process development can aid in process robustness and product quality. Furthermore, it may become a regulatory expectation. The first step in any QbD approach is to determine what physical, chemical, biological, or microbiological property or characteristic product attributes should be controlled within an appropriate limit, range, or distribution to ensure the desired product quality. Then predefined goals are set to allow proactive process development to design in quality. This review lists typical quality attributes used for release testing of AAV viral vectors and discusses these and selected attributes important to extended characterization studies in terms of safety, efficacy, and impact upon the patient immune response.
Collapse
Affiliation(s)
| | - Hanne Bak
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
230
|
Zhang Y, Li M. Genome Editing Technologies as Cellular Defense Against Viral Pathogens. Front Cell Dev Biol 2021; 9:716344. [PMID: 34336867 PMCID: PMC8320169 DOI: 10.3389/fcell.2021.716344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Viral infectious diseases are significant threats to the welfare of world populations. Besides the widespread acute viral infections (e.g., dengue fever) and chronic infections [e.g., those by the human immunodeficiency virus (HIV) and hepatitis B virus (HBV)], emerging viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose great challenges to the world. Genome editing technologies, including clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), have played essential roles in the study of new treatment for viral infectious diseases in cell lines, animal models, and clinical trials. Genome editing tools have been used to eliminate latent infections and provide resistance to new infections. Increasing evidence has shown that genome editing-based antiviral strategy is simple to design and can be quickly adapted to combat infections by a wide spectrum of viral pathogens, including the emerging coronaviruses. Here we review the development and applications of genome editing technologies for preventing or eliminating infections caused by HIV, HBV, HPV, HSV, and SARS-CoV-2, and discuss how the latest advances could enlighten further development of genome editing into a novel therapy for viral infectious diseases.
Collapse
|
231
|
Dhoke NR, Kim H, Selvaraj S, Azzag K, Zhou H, Oliveira NAJ, Tungtur S, Ortiz-Cordero C, Kiley J, Lu QL, Bang AG, Perlingeiro RCR. A universal gene correction approach for FKRP-associated dystroglycanopathies to enable autologous cell therapy. Cell Rep 2021; 36:109360. [PMID: 34260922 PMCID: PMC8327854 DOI: 10.1016/j.celrep.2021.109360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 01/24/2023] Open
Abstract
Mutations in the fukutin-related protein (FKRP) gene result in a broad spectrum of muscular dystrophy (MD) phenotypes, including the severe Walker-Warburg syndrome (WWS). Here, we develop a gene-editing approach that replaces the entire mutant open reading frame with the wild-type sequence to universally correct all FKRP mutations. We apply this approach to correct FKRP mutations in induced pluripotent stem (iPS) cells derived from patients displaying broad clinical severity. Our findings show rescue of functional α-dystroglycan (α-DG) glycosylation in gene-edited WWS iPS cell-derived myotubes. Transplantation of gene-corrected myogenic progenitors in the FKRPP448L-NSG mouse model gives rise to myofiber and satellite cell engraftment and, importantly, restoration of α-DG functional glycosylation in vivo. These findings suggest the potential feasibility of using CRISPR-Cas9 technology in combination with patient-specific iPS cells for the future development of autologous cell transplantation for FKRP-associated MDs.
Collapse
Affiliation(s)
- Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Hyunkee Kim
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nelio A J Oliveira
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sudheer Tungtur
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Kiley
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
232
|
Gene Therapy for Hemophilia: a review on clinical benefit, limitations and remaining issues. Blood 2021; 138:923-931. [PMID: 34232980 DOI: 10.1182/blood.2019003777] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/06/2021] [Indexed: 01/19/2023] Open
Abstract
In the past decade enormous progress has been made in the development of gene therapy for hemophilia A and B. After the first encouraging results of intravenously administered AAV-based liver-directed gene therapy in patients with severe hemophilia B were reported in 2011, many gene therapy studies have been initiated. Most of these studies, using AAV vectors with various gene constructs, showed sufficient FVIII and FIX expression in patients to significantly reduce the number of bleeds and the need for prophylaxis in the fast majority of the severe hemophilia patients. This resulted in great clinical benefit for nearly all patients. In this review we will summarize the most recent findings of reported and ongoing gene therapy trials. We will highlight the successful outcome of trials with focus on the results of recently reported phase 1 trials and preliminary results of phase 2b/3 trials for hemophilia A and B. These new reports also reveal the impact of side effects and drawbacks associated with gene therapy. We will therefore also discuss the limitations and remaining issues of the current gene therapy approaches. These issues have to be resolved before gene therapy will be widely available for the hemophilia patient population.
Collapse
|
233
|
Laird NZ, Acri TM, Tingle K, Salem AK. Gene- and RNAi-activated scaffolds for bone tissue engineering: Current progress and future directions. Adv Drug Deliv Rev 2021; 174:613-627. [PMID: 34015421 PMCID: PMC8217358 DOI: 10.1016/j.addr.2021.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023]
Abstract
Large bone defects are usually managed by replacing lost bone with non-biological prostheses or with bone grafts that come from the patient or a donor. Bone tissue engineering, as a field, offers the potential to regenerate bone within these large defects without the need for grafts or prosthetics. Such therapies could provide improved long- and short-term outcomes in patients with critical-sized bone defects. Bone tissue engineering has long relied on the administration of growth factors in protein form to stimulate bone regeneration, though clinical applications have shown that using such proteins as therapeutics can lead to concerning off-target effects due to the large amounts required for prolonged therapeutic action. Gene-based therapies offer an alternative to protein-based therapeutics where the genetic material encoding the desired protein is used and thus loading large doses of protein into the scaffolds is avoided. Gene- and RNAi-activated scaffolds are tissue engineering devices loaded with nucleic acids aimed at promoting local tissue repair. A variety of different approaches to formulating gene- and RNAi-activated scaffolds for bone tissue engineering have been explored, and include the activation of scaffolds with plasmid DNA, viruses, RNA transcripts, or interfering RNAs. This review will discuss recent progress in the field of bone tissue engineering, with specific focus on the different approaches employed by researchers to implement gene-activated scaffolds as a means of facilitating bone tissue repair.
Collapse
Affiliation(s)
- Noah Z Laird
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Timothy M Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Kelsie Tingle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
234
|
Croze RH, Kotterman M, Burns CH, Schmitt CE, Quezada M, Schaffer D, Kirn D, Francis P. Viral Vector Technologies and Strategies: Improving on Nature. Int Ophthalmol Clin 2021; 61:59-89. [PMID: 34196318 PMCID: PMC8253506 DOI: 10.1097/iio.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
235
|
Mehta N, Robbins DA, Yiu G. Ocular Inflammation and Treatment Emergent Adverse Events in Retinal Gene Therapy. Int Ophthalmol Clin 2021; 61:151-177. [PMID: 34196322 PMCID: PMC8259781 DOI: 10.1097/iio.0000000000000366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Neesurg Mehta
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Deborah Ahn Robbins
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| |
Collapse
|
236
|
Sherpa C, Le Grice SFJ. Adeno-Associated Viral Vector Mediated Expression of Broadly- Neutralizing Antibodies Against HIV-Hitting a Fast-Moving Target. Curr HIV Res 2021; 18:114-131. [PMID: 32039686 DOI: 10.2174/1570162x18666200210121339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
The vast genetic variability of HIV has impeded efforts towards a cure for HIV. Lifelong administration of combined antiretroviral therapy (cART) is highly effective against HIV and has markedly increased the life expectancy of HIV infected individuals. However, the long-term usage of cART is associated with co-morbidities and the emergence of multidrug-resistant escape mutants necessitating the development of alternative approaches to combat HIV/AIDS. In the past decade, the development of single-cell antibody cloning methods has facilitated the characterization of a diverse array of highly potent neutralizing antibodies against a broad range of HIV strains. Although the passive transfer of these broadly neutralizing antibodies (bnAbs) in both animal models and humans has been shown to elicit significant antiviral effects, long term virologic suppression requires repeated administration of these antibodies. Adeno-associated virus (AAV) mediated antibody gene transfer provides a long-term expression of these antibodies from a single administration of the recombinant vector. Therefore, this vectored approach holds promises in the treatment and prevention of a chronic disease like HIV infection. Here, we provide an overview of HIV genetic diversity, AAV vectorology, and anti-HIV bnAbs and summarize the promises and challenges of the application of AAV in the delivery of bnAbs for HIV prevention and therapy.
Collapse
Affiliation(s)
- Chringma Sherpa
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland, 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland, 21702, United States
| |
Collapse
|
237
|
Trautmann EM, O'Shea DJ, Sun X, Marshel JH, Crow A, Hsueh B, Vesuna S, Cofer L, Bohner G, Allen W, Kauvar I, Quirin S, MacDougall M, Chen Y, Whitmire MP, Ramakrishnan C, Sahani M, Seidemann E, Ryu SI, Deisseroth K, Shenoy KV. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nat Commun 2021; 12:3689. [PMID: 34140486 PMCID: PMC8211867 DOI: 10.1038/s41467-021-23884-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.
Collapse
Affiliation(s)
- Eric M Trautmann
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Daniel J O'Shea
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Xulu Sun
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ailey Crow
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Brian Hsueh
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lucas Cofer
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gergő Bohner
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Will Allen
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Isaac Kauvar
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Yuzhi Chen
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Matthew P Whitmire
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | | | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Eyal Seidemann
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Karl Deisseroth
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| | - Krishna V Shenoy
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
238
|
Meng Y, Sun D, Qin Y, Dong X, Luo G, Liu Y. Cell-penetrating peptides enhance the transduction of adeno-associated virus serotype 9 in the central nervous system. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:28-41. [PMID: 33768127 PMCID: PMC7960505 DOI: 10.1016/j.omtm.2021.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) have been widely used in the gene therapy field for decades. However, because of the challenge of effectively delivering rAAV vectors through the blood-brain barrier (BBB), their applications for treatment of central nervous system (CNS) diseases are quite limited. In this study, we found that several cell-penetrating peptides (CPPs) can significantly enhance the in vitro transduction efficiency of AAV serotype 9 (AAV9), a promising AAV vector for treatment of CNS diseases, the best of which was the LAH4 peptide. The enhancement of AAV9 transduction by LAH4 relied on binding of the AAV9 capsid to the peptide. Furthermore, we demonstrated that the LAH4 peptide increased the AAV9 transduction in the CNS in vitro and in vivo after systemic administration. Taken together, our results suggest that CPP peptides can interact directly with AAV9 and increase the ability of this AAV vector to cross the BBB, which further induces higher expression of target genes in the brain. Our study will help to improve the applications of AAV gene delivery vectors for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Dong Sun
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Yiyan Qin
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Xiaoyi Dong
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
- Corresponding author: Guangzuo Luo, Institute of Translational Medicine, China Medical University, Shenyang 110122, China.
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
- Corresponding author: Ying Liu, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
239
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
240
|
Emerging Immunogenicity and Genotoxicity Considerations of Adeno-Associated Virus Vector Gene Therapy for Hemophilia. J Clin Med 2021; 10:jcm10112471. [PMID: 34199563 PMCID: PMC8199697 DOI: 10.3390/jcm10112471] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Adeno-associated viral (AAV) vector gene therapy has shown promise as a possible cure for hemophilia. However, immune responses directed against AAV vectors remain a hurdle to the broader use of this gene transfer platform. Both innate and adaptive immune responses can affect the safety and efficacy of AAV vector-mediated gene transfer in humans. These immune responses may be triggered by the viral capsid, the vector's nucleic acid payload, or other vector contaminants or excipients, or by the transgene product encoded by the vector itself. Various preclinical and clinical strategies have been explored to overcome the issues of AAV vector immunogenicity and transgene-related immune responses. Although results of these strategies are encouraging, more efficient approaches are needed to deliver safe, predictable, and durable outcomes for people with hemophilia. In addition to durability, long-term follow-up of gene therapy trial participants will allow us to address potential safety concerns related to vector integration. Herein, we describe the challenges with current methodologies to deliver optimal outcomes for people with hemophilia who choose to undergo AAV vector gene therapy and the potential opportunities to improve on the results.
Collapse
|
241
|
Stepankova K, Jendelova P, Machova Urdzikova L. Planet of the AAVs: The Spinal Cord Injury Episode. Biomedicines 2021; 9:613. [PMID: 34071245 PMCID: PMC8228984 DOI: 10.3390/biomedicines9060613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The spinal cord injury (SCI) is a medical and life-disrupting condition with devastating consequences for the physical, social, and professional welfare of patients, and there is no adequate treatment for it. At the same time, gene therapy has been studied as a promising approach for the treatment of neurological and neurodegenerative disorders by delivering remedial genes to the central nervous system (CNS), of which the spinal cord is a part. For gene therapy, multiple vectors have been introduced, including integrating lentiviral vectors and non-integrating adeno-associated virus (AAV) vectors. AAV vectors are a promising system for transgene delivery into the CNS due to their safety profile as well as long-term gene expression. Gene therapy mediated by AAV vectors shows potential for treating SCI by delivering certain genetic information to specific cell types. This review has focused on a potential treatment of SCI by gene therapy using AAV vectors.
Collapse
Affiliation(s)
- Katerina Stepankova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| |
Collapse
|
242
|
Canfield SL. Decoding gene therapy: Current impact and future considerations for health-system and specialty pharmacy practice. Am J Health Syst Pharm 2021; 78:953-961. [PMID: 33677501 DOI: 10.1093/ajhp/zxab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To provide health systems with baseline knowledge on existing and pipeline gene therapy treatments, including considerations that health-system pharmacies and specialty pharmacy programs may reference when evaluating and implementing services around gene therapies. SUMMARY Advancements in research and biotechnology have recently led to the development and launch of the first commercially available gene therapy treatments in the United States. These treatments have the ability to significantly alter and even effectively cure diseases. Alongside these significant advances and clinical benefits, these therapies present unique challenges due to their cost and complexity. Given the large number of additional gene therapy treatments that are currently in late-stage clinical development, stakeholders across the healthcare industry must increasingly adapt and ready themselves to meet these challenges. The diagnosis and treatment of patients with diseases being targeted by gene therapies largely occurs within health systems, and judging by the gene therapy pipeline, this trend is likely to continue. To prepare for these novel treatments, health systems must understand and consider the methods in which gene therapies are developed, procured, reimbursed, administered, and monitored. CONCLUSION The future of health-system pharmacy practice must include comprehensive gene therapy services and stakeholder engagement strategies to ensure patients have access to these life-changing treatments.
Collapse
|
243
|
Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. J Mol Med (Berl) 2021; 99:1057-1071. [PMID: 34021360 DOI: 10.1007/s00109-021-02086-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Gene therapy of genetically determined diseases, including some pathologies of the respiratory system, requires an efficient method for transgene delivery. Recombinant adeno-associated viral (rAAV) vectors are well studied and employed in gene therapy, as they are relatively simple and low immunogenic and able to efficiently transduce eukaryotic cells. To date, many natural and artificial (with modified capsids) AAV serotypes have been isolated, demonstrating preferential tropism toward different tissues and cells in accordance with the prevalent receptors on the cell surface. However, rAAV-mediated delivery is not strictly specific due to wide tropism of some viral serotypes. Thus, the development of the methods allowing modulating specificity of these vectors could be beneficial in some cases. This review describes various approaches for retargeting rAAV to respiratory cells, for example, using different types of capsid modifications and regulation of a transgene expression by tissue-specific promoters. Part of the review is devoted to the issues of transduction of stem and progenitor lung cells using AAV, which is a complicated task today.
Collapse
|
244
|
Shen L, Estrada AH, Meurs KM, Sleeper M, Vulpe C, Martyniuk CJ, Pacak CA. A review of the underlying genetics and emerging therapies for canine cardiomyopathies. J Vet Cardiol 2021; 40:2-14. [PMID: 34147413 DOI: 10.1016/j.jvc.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Cardiomyopathies such as dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy are common in large breed dogs and carry an overall poor prognosis. Research shows that these diseases have strong breed predilections, and selective breeding has historically been recommended to reduce the disease prevalence in affected breeds. Treatment of these diseases is typically palliative and aimed at slowing disease progression and managing clinical signs of heart failure as they develop. The discovery of specific genetic mutations underlying cardiomyopathies, such as the striatin mutation in Boxer arrhythmogenic right ventricular cardiomyopathy and the pyruvate dehydrogenase kinase 4 and titin mutations in Doberman Pinschers, has strengthened our ability to screen and selectively breed individuals in an attempt to produce unaffected offspring. The discovery of these disease-linked mutations has also opened avenues for the development of gene therapies, including gene transfer and genome-editing approaches. This review article discusses the known genetics of cardiomyopathies in dogs, reviews existing gene therapy strategies and the status of their development in canines, and discusses ongoing challenges in the clinical translation of these technologies for treating heart disease. While challenges remain in using these emerging technologies, the exponential growth of the gene therapy field holds great promise for future clinical applications.
Collapse
Affiliation(s)
- L Shen
- Program for Applied Research and Development in Genomic Medicine, College of Pharmacy, University of Florida, 1225 Center Drive, Gainesville, FL, 32610, USA.
| | - A H Estrada
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - K M Meurs
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - M Sleeper
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - C Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Dr, Gainesville, FL, 32603, USA
| | - C J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Dr, Gainesville, FL, 32603, USA
| | - C A Pacak
- Department of Neurology, College of Medicine, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
245
|
Hamilton BA, Wright JF. Challenges Posed by Immune Responses to AAV Vectors: Addressing Root Causes. Front Immunol 2021; 12:675897. [PMID: 34084173 PMCID: PMC8168460 DOI: 10.3389/fimmu.2021.675897] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Host immune responses that limit durable therapeutic gene expression and cause clinically significant inflammation remain a major barrier to broadly successful development of adeno-associated virus (AAV)-based human gene therapies. In this article, mechanisms of humoral and cellular immune responses to the viral vector are discussed. A perspective is provided that removal of pathogen-associated molecular patterns in AAV vector genomes to prevent the generation of innate immune danger signals following administration is a key strategy to overcome immunological barriers.
Collapse
Affiliation(s)
- Bradley A Hamilton
- Center for Definitive and Curative Medicine, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - J Fraser Wright
- Center for Definitive and Curative Medicine, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
246
|
Cameron AD, Even KM, Linardi RL, Berglund AK, Schnabel LV, Engiles JB, Ortved KF. Adeno-Associated Virus-Mediated Overexpression of Interleukin-10 Affects the Immunomodulatory Properties of Equine Bone Marrow-Derived Mesenchymal Stem Cells. Hum Gene Ther 2021; 32:907-918. [PMID: 33843261 DOI: 10.1089/hum.2020.319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Joint injury can cause posttraumatic inflammation, which if severe enough can lead to posttraumatic osteoarthritis (PTOA), a progressive and debilitating condition. Posttraumatic inflammation is characterized by an influx of T lymphocytes and upregulation of inflammatory cytokines and degradative enzymes by activated chondrocytes and synoviocytes. Intra-articular bone marrow-derived mesenchymal stem cell (BM-MSC) injection for the treatment of osteoarthritis (OA) has been of interest due to the immunomodulatory properties of these cells. Interleukin (IL)-10, a potent immunomodulatory cytokine, has also been investigated as an OA therapeutic. Therefore, the objective of this study was to evaluate the combinatorial effects of BM-MSCs and IL-10 in OA using a gene therapy approach. We hypothesized that BM-MSCs overexpressing IL-10 would have superior immunomodulatory effects leading to increased suppression of T cell proliferation and decreased production of proinflammatory cytokines, providing protection of the extracellular matrix (ECM) in a stimulated, co-culture OA model. Treatment groups included the following: untransduced BM-MSC, adeno-associated virus (AAV)-IL10-transduced BM-MSC, and AAV-null transduced BM-MSC, which were unstimulated or stimulated with IL-1β/tumor necrosis factor-α (TNF-α). T cell proliferation was significantly decreased by the presence of BM-MSCs, especially when these BM-MSCs were AAV transduced. There was no significant difference in T cell suppression when cells were cultured with AAV-IL10-transduced or AAV-null transduced BM-MSCs. AAV transduction itself was associated with decreased synthesis of IL-1β, IL-6, and TNF-α. Expression of IL-1β and MMP13 was downregulated in AAV-transduced BM-MSCs and MMP13 expression was downregulated in cartilage explants co-cultured with AAV-transduced BM-MSCs. Despite mitigation of some proinflammatory cascades, rescue of ECM loss, as determined by glycosaminoglycan quantification and histological evaluation, did not occur in either AAV-IL10-transduced or AAV-null transduced co-cultures. Although IL-10 overexpression may enhance BM-MSC-mediated T cell suppression, we did not observe significant modulation of inflammation-driven cartilage degradation in cultures containing AAV-IL10-transduced BM-MSCs. AAV transduction itself does appear to affect paracrine signaling by BM-MSCs, which warrants further investigation.
Collapse
Affiliation(s)
- Ashley D Cameron
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Kayla M Even
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Renata L Linardi
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Alix K Berglund
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Lauren V Schnabel
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Julie B Engiles
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA.,Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Kyla F Ortved
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| |
Collapse
|
247
|
Gougeon ML, Poirier-Beaudouin B, Ausseil J, Zérah M, Artaud C, Heard JM, Deiva K, Tardieu M. Cell-Mediated Immunity to NAGLU Transgene Following Intracerebral Gene Therapy in Children With Mucopolysaccharidosis Type IIIB Syndrome. Front Immunol 2021; 12:655478. [PMID: 34040605 PMCID: PMC8141743 DOI: 10.3389/fimmu.2021.655478] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type IIIB syndrome (Sanfilippo disease) is a rare autosomic recessif disorder caused by mutations in the α-N-acetylglucosaminidase (NAGLU) gene coding for a lysosomal enzyme, leading to neurodegeneration and progressive deterioration of cognitive abilities in affected children. To supply the missing enzyme, several recent human gene therapy trials relied on the deposit of adeno-associated virus (AAV) vectors directly into the brain. We reported safety and efficacy of an intracerebral therapy in a phase 1/2 clinical trial (https://clinicaltrials.gov/ct2/show/NCT03300453), with a recombinant AAV serotype 2/5 (rAAV2/5) coding human NAGLU in four children with MPS IIIB syndrome receiving immunosuppression. It was reported that AAV-mediated gene therapies might elicit a strong host immune response resulting in decreased transgene expression. To address this issue, we performed a comprehensive analysis of cellular immunity and cytokine patterns generated against the therapeutic enzyme in the four treated children over 5.5 years of follow-up. We report the emergence of memory and polyfunctional CD4+ and CD8+ T lymphocytes sensitized to the transgene soon after the start of therapy, and appearing in peripheral blood in waves throughout the follow-up. However, this response had no apparent impact on CNS transgene expression, which remained stable 66 months after surgery, possibly a consequence of the long-term immunosuppressive treatment. We also report that gene therapy did not trigger neuroinflammation, evaluated through the expression of cytokines and chemokines in patients’ CSF. Milder disease progression in the youngest patient was found associated with low level and less differentiated circulating NAGLU-specific T cells, together with the lack of proinflammatory cytokines in the CSF. Findings in this study support a systematic and comprehensive immunomonitoring approach for understanding the impact immune reactions might have on treatment safety and efficacy of gene therapies.
Collapse
Affiliation(s)
- Marie-Lise Gougeon
- Institut Pasteur, Innate Immunity and Viruses Unit, Infection and Epidemiology Department, Paris, France
| | - Béatrice Poirier-Beaudouin
- Institut Pasteur, Innate Immunity and Viruses Unit, Infection and Epidemiology Department, Paris, France
| | - Jérome Ausseil
- Service de Biochimie Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Michel Zérah
- Pediatric Neurosurgery Department, Assistance Publique-Hôpitaux de Paris, Hôpital Necker; Institut Imagine, Université René Descartes; NeuroGenCell, Institut du cerveau et de la moelle, Paris, France
| | - Cécile Artaud
- Institut Pasteur, Centre for Translational Science, Clinical Core, Paris, France
| | - Jean-Michel Heard
- Institut Pasteur, Biotherapy and Neurodegenerative Diseases Unit, Neuroscience Department, INSERM U1115, Paris, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Bicêtre Hospital and INSERM UMR 1184, Immunology of Viral Infections and Autoimmune Diseases, CEA, IDMIT, Le Kremlin-Bicêtre, France
| | - Marc Tardieu
- Pediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Bicêtre Hospital and INSERM UMR 1184, Immunology of Viral Infections and Autoimmune Diseases, CEA, IDMIT, Le Kremlin-Bicêtre, France
| |
Collapse
|
248
|
Discussing investigational AAV gene therapy with hemophilia patients: A guide. Blood Rev 2021; 47:100759. [DOI: 10.1016/j.blre.2020.100759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 01/19/2023]
|
249
|
Gupta V, Lourenço SP, Hidalgo IJ. Development of Gene Therapy Vectors: Remaining Challenges. J Pharm Sci 2021; 110:1915-1920. [DOI: 10.1016/j.xphs.2020.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
|
250
|
Poth KM, Texakalidis P, Boulis NM. Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery 2021; 89:185-195. [PMID: 33913505 PMCID: PMC8279839 DOI: 10.1093/neuros/nyab147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
The field of chemogenetics has rapidly expanded over the last decade, and engineered receptors are currently utilized in the lab to better understand molecular interactions in the nervous system. We propose that chemogenetic receptors can be used for far more than investigational purposes. The potential benefit of adding chemogenetic neuromodulation to the current neurosurgical toolkit is substantial. There are several conditions currently treated surgically, electrically, and pharmacologically in clinic, and this review highlights how chemogenetic neuromodulation could improve patient outcomes over current neurosurgical techniques. We aim to emphasize the need to take these techniques from bench to bedside.
Collapse
Affiliation(s)
- Kelly M Poth
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|