201
|
Wen Y, Wang X, Cahya S, Anderson P, Velasquez C, Torres C, Ferrante A, Kaliyaperumal A. Comparability study of monocyte derived dendritic cells, primary monocytes, and THP1 cells for innate immune responses. J Immunol Methods 2021; 498:113147. [PMID: 34508774 DOI: 10.1016/j.jim.2021.113147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 01/23/2023]
Abstract
Immunogenicity is one major challenge to the successful development of biotherapeutics because it could adversely affect PK/PD, safety, and efficacy. Preclinical immunogenicity risk assessment strategies and assays have been developed and implemented to screen and optimize discovery molecules. Internalization by antigen presenting cells (APC) and innate immune activation are initial prerequisite steps in eliciting immune responses to biotherapeutics. Dendritic cells (DC)- and monocyte-based assays are employed to interrogate such risks, and their value has been well documented in the literature. However, these assays have limited throughput, exhibit higher variability, and entail lengthy and complex procedures as they are based on primary cells such as peripheral blood mononuclear cells (PBMC) from individual donors. Herein, we investigated THP1 cells as surrogate cells to study APC internalization and innate immune activation. Comparability studies showed that THP1 cells could resemble innate immune responses of monocyte-derived DC and primary CD14+ monocytes using a panel of therapeutic antibodies. In addition, an automated high throughput THP1 internalization assay was qualified to enable risk assessment at pre‑lead stages. The results demonstrated that THP1 cells can be utilized to assess immunogenicity risk in a high throughput manner.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xiaoli Wang
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Suntara Cahya
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Paul Anderson
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Candyd Velasquez
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Carina Torres
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Andrea Ferrante
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | | |
Collapse
|
202
|
Zhong C, Jiang W, Wang Y, Sun J, Wu X, Zhuang Y, Xiao X. Repeated systemic dosing of AAV vectors in immunocompetent mice after blockade of T-cell costimulatory pathways. Hum Gene Ther 2021; 33:290-300. [PMID: 34486389 DOI: 10.1089/hum.2021.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neutralizing antibodies (NAbs) strongly limit adeno-associated virus (AAV) vector transduction and repeated administration. Previous studies have shown that NAbs induced by AAVs are associated with T and B cell activation and that the B7/CD28 and CD40/CD40L costimulation signaling pathways are involved. CTLA4 and CD40 are vital molecules that participate in the costimulatory pathway. In this study, we evaluated CTLA4-Ig and CD40-Ig immunosuppressive efficacies through AAV and investigated their effects on the feasibility for multiple systemic administrations of AAV vectors. The results showed that a single administration of AAV vector carrying either CTLA4-Ig alone or with CD40-Ig could greatly reduce the level of NAbs. An AAV serotype-specific immune tolerance could be successfully established, which enabled repeated, i.e., second and third, systemic administration of AAV vectors in the same mice. A combination of CTLA4-Ig and CD40-Ig delivered via AAV vectors significantly inhibited T and B cell activations without affecting immune response to the total immunoglobulin G (IgG) production and cytokines. Interestingly, exogenous gene expression significantly improved after multiple administrations of AAV vector in vivo. Our study generates a reliable and effective method for repeated dosing of AAV vectors that is needed on gene therapy.
Collapse
Affiliation(s)
- Chen Zhong
- East China University of Science and Technology, 47860, State Key Laboratory of Bioreactor Engineering, School of Biotechnology, shanghai, China;
| | - Wei Jiang
- East China University of Science and Technology, 47860, Shanghai, Shanghai, China;
| | - Yefan Wang
- East China University of Science and Technology, 47860, Shanghai, Shanghai, China;
| | - Junjiang Sun
- The University of North Carolina at Chapel Hill, 2331, Gene Therapy Center, Chapel Hill, North Carolina, United States.,University of North Carolina at Chapel Hill Eshelman School of Pharmacy, 15521, Division of Molecular Pharmaceutics, Chapel Hill, North Carolina, United States;
| | - Xia Wu
- East China University of Science and Technology, 47860, School of Pharmacy, Shanghai, Shanghai, China;
| | - Yingping Zhuang
- East China University of Science and Technology, 47860, State Key Laboratory of Bioreactor Engineering, School of Biotechnology, Shanghai, Shanghai, China;
| | - Xiao Xiao
- East China University of Science and Technology, 47860, School of Pharmacy, Shanghai, Shanghai, China;
| |
Collapse
|
203
|
Wagner DL, Peter L, Schmueck-Henneresse M. Cas9-directed immune tolerance in humans-a model to evaluate regulatory T cells in gene therapy? Gene Ther 2021; 28:549-559. [PMID: 33574580 PMCID: PMC8455332 DOI: 10.1038/s41434-021-00232-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The dichotomic nature of the adaptive immune response governs the outcome of clinical gene therapy. On the one hand, neutralizing antibodies and cytotoxic T cells can have a dramatic impact on the efficacy and safety of human gene therapies. On the other hand, regulatory T cells (Treg) can promote tolerance toward transgenes thereby enabling long-term benefits of in vivo gene therapy after a single administration. Pre-existing antibodies and T cell immunity has been a major obstacle for in vivo gene therapies with viral vectors. As CRISPR-Cas9 gene editing advances toward the clinics, the technology's inherent immunogenicity must be addressed in order to guide clinical treatment decisions. This review summarizes the recent evidence on Cas9-specific immunity in humans-including early results from clinical trials-and discusses the risks for in vivo gene therapies. Finally, we focus on solutions and highlight the potential role of Cas9-specific Treg cells to promote immune tolerance. As a "beneficial alliance" beyond Cas9-immunity, antigen-specific Treg cells may serve as a living and targeted immunosuppressant to increase safety and efficacy of gene therapy.
Collapse
Affiliation(s)
- Dimitrios Laurin Wagner
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lena Peter
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
204
|
Bell RD. Considerations When Developing Blood-Brain Barrier Crossing Drug Delivery Technology. Handb Exp Pharmacol 2021; 273:83-95. [PMID: 34463850 DOI: 10.1007/164_2021_453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Efficient therapeutic transport across the neurovasculature remains a challenge for developing medicine to treat central nervous system (CNS) disorders (Bell and Ehlers, Neuron 81:1-3, 2014). This chapter is meant to provide some insight and key considerations for developing and evaluating various technologies and approaches to CNS drug delivery. First, a brief review of various biological barriers, including the immune system, cellular and protein components of the blood-brain barrier (BBB), and clearance mechanisms in peripheral organs is provided. Next, a few examples and learnings from existing BBB-crossing modalities will be reviewed. Insight from "BBBomic" databases and thoughts on basic requirements for successful in vivo validation studies are discussed. Finally, an additional engineering barrier, namely manufacturing and product scalability, is highlighted as it relates to clinical translation and feasibility for developing BBB-crossing delivery technologies. A goal of this chapter is to provide an overview of the many barriers to the successful delivery of medicines into the brain. An emphasis will be placed on biotherapeutic and gene therapy applications for the treatment of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Robert D Bell
- Rare Disease Research Unit, Pfizer Worldwide Research, Development and Medicine, Cambridge, MA, USA.
| |
Collapse
|
205
|
Gene Therapy for Neuronopathic Mucopolysaccharidoses: State of the Art. Int J Mol Sci 2021; 22:ijms22179200. [PMID: 34502108 PMCID: PMC8430935 DOI: 10.3390/ijms22179200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
The need for long-lasting and transformative therapies for mucopolysaccharidoses (MPS) cannot be understated. Currently, many forms of MPS lack a specific treatment and in other cases available therapies, such as enzyme replacement therapy (ERT), do not reach important areas such as the central nervous system (CNS). The advent of newborn screening procedures represents a major step forward in early identification and treatment of individuals with MPS. However, the treatment of brain disease in neuronopathic MPS has been a major challenge to date, mainly because the blood brain barrier (BBB) prevents penetration of the brain by large molecules, including enzymes. Over the last years several novel experimental therapies for neuronopathic MPS have been investigated. Gene therapy and gene editing constitute potentially curative treatments. However, despite recent progress in the field, several considerations should be taken into account. This review focuses on the state of the art of in vivo and ex vivo gene therapy-based approaches targeting the CNS in neuronopathic MPS, discusses clinical trials conducted to date, and provides a vision for the future implications of these therapies for the medical community. Recent advances in the field, as well as limitations relating to efficacy, potential toxicity, and immunogenicity, are also discussed.
Collapse
|
206
|
Guggino WB, Yanda MK, Cebotaru CV, Cebotaru L. Transduction of Surface and Basal Cells in Rhesus Macaque Lung Following Repeat Dosing with AAV1CFTR. Hum Gene Ther 2021; 31:1010-1023. [PMID: 32862701 DOI: 10.1089/hum.2020.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To test the effectiveness of repeat dosing, we sprayed two doses (1013 vg each) of AAV1Δ27-264-CFTR into airways of four rhesus monkeys at 0 and 30 days, followed by a single dose of 1013 vg of AAV1GFP on day 60. Monkeys were sacrificed on day 90. No adverse events occurred, indicating that AAV1 vectors are safe. An elevated anti-AAV1 neutralizing titer was established by the third dose. A positive ELISPOT to the adeno-associated virus (AAV) capsid but not to cystic fibrosis transmembrane conductance regulator (CFTR) occurred after the third dose in three monkeys. AAV1-CFTR and GFP vectors were detectable in all lung sections and in the heart, liver, and spleen. The CFTR protein was higher in treated monkeys than in an untreated monkey. GFP protein was detected in treated lungs. Lung surface and keratin 5-positive basal cells showed higher CFTR staining than in the uninfected monkey and were positive for GFP staining, indicating widespread gene transduction by AAV1CFTR and GFP. AAV1 safely and effectively transduces monkey airway and basal cells. Both the significant numbers of vector genomes and transduction from AAV1CFTR and GFP virus seen in the monkeys 3 months after the first instillation suggest that repeat dosing with AAV1-based vectors is achievable.
Collapse
Affiliation(s)
- William B Guggino
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Murali K Yanda
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cristina V Cebotaru
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
207
|
Guggino WB, Cebotaru L. Gene Therapy for Cystic Fibrosis Paved the Way for the Use of Adeno-Associated Virus in Gene Therapy. Hum Gene Ther 2021; 31:538-541. [PMID: 32283956 DOI: 10.1089/hum.2020.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shortly after the cystic fibrosis (CF) gene was identified in 1989, the race began to develop a gene therapy for this condition. Major efforts utilized full-length cystic fibrosis transmembrane conductance regulator packaged into adenovirus, adeno-associated virus (AAV), or liposomes and delivered to the airways. The drive to find a treatment for CF based on gene therapy drove the early stages of gene therapy in general, particularly those involving AAV gene therapy. Since general overviews of CF gene therapy have already been published, this review considers specifically the efforts using AAV and is focused on honoring the contributions of Dr. Barrie Carter.
Collapse
Affiliation(s)
- William B Guggino
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
208
|
Interleukin-30 Suppresses Not Only CD4 + T Cells but Also Regulatory T Cells in Murine Primary Biliary Cholangitis. Biomedicines 2021; 9:biomedicines9081031. [PMID: 34440235 PMCID: PMC8392158 DOI: 10.3390/biomedicines9081031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic liver autoimmune disease with augmented T helper (Th) 1 and corresponding cytokine IFN-γ immune responses. Using 2-octynoic acid (2-OA) coupled to OVA (2-OA-OVA)-induced mouse models of autoimmune cholangitis (inducible chemical xenobiotic models of PBC), our previous study demonstrated that overexpression of IFN-γ in the model mice enhanced liver inflammation upon disease initiation, but subsequently led to the suppression of chronic inflammation with an increase in interleukin-30 (IL-30) levels. In this study, we investigated whether IL-30 had an immunosuppressive function and whether it could be part of an immune therapeutic regimen for PBC, by treating model mice with murine IL-30-expressing recombinant adeno-associated virus (AAV-mIL-30). We first defined the effects of AAV-mIL-30 in vivo by administering it to a well-known concanavalin A (ConA)-induced hepatitis model of mice and found that AAV-mIL-30 reduced the numbers of activated CD25+CD4+ T cells and the levels of serum IFN-γ and IL-12. In autoimmune cholangitis, decreased numbers of activated CD4+ T cells and Foxp3+ regulatory T cells were noted in the mice treated with AAV-mIL-30 at 3 weeks after the 2-OA-OVA immunization. Treatment with IL-30 did not change the features of autoimmune cholangitis including autoantibodies, cell infiltration, and collagen deposition in the liver at 11 weeks of examination. However, increased levels of cytokines and chemokines were observed. These results suggest that IL-30 suppresses not only CD4+ T cells but also regulatory T cells. Additionally, the administration of IL-30 did not suppress liver inflammation in the murine model of PBC.
Collapse
|
209
|
Lisowski L, Staber JM, Wright JF, Valentino LA. The intersection of vector biology, gene therapy, and hemophilia. Res Pract Thromb Haemost 2021; 5:e12586. [PMID: 34485808 PMCID: PMC8410952 DOI: 10.1002/rth2.12586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy is at the forefront of the drive to bring the potential of cure to patients with genetic diseases. Multiple mechanisms of effective and efficient gene therapy delivery (eg, lentiviral, adeno-associated) for transgene expression as well as gene editing have been explored to improve vector and construct attributes and achieve therapeutic success. Recent clinical research has focused on recombinant adeno-associated viral (rAAV) vectors as a preferred method owing to their naturally occurring vector biology characteristics, such as serotypes with specific tissue tropisms, facilitated in vivo delivery, and stable physicochemical properties. For those living with hereditary diseases like hemophilia, this potential curative approach is balanced against the need to provide safe, predictable, effective, and durable factor expression. While in vivo studies of rAAV gene therapy have demonstrated amelioration of the bleeding phenotype in adults, long-term safety and effectiveness remain to be established. This review discusses vector biology in the context of rAAV-based liver-directed gene therapy for hemophilia and provides an overview of the types of viral vectors and vector components that are under investigation, as well as an assessment of the challenges associated with gene therapy delivery and durability of expression.
Collapse
Affiliation(s)
- Leszek Lisowski
- Translational Vectorology Research UnitFaculty of Medicine and HealthChildren's Medical Research InstituteThe University of SydneyWestmeadAustralia
- Laboratory of Molecular Oncology and Innovative TherapiesMilitary Institute of MedicineWarsawPoland
| | - Janice M. Staber
- Stead Family Department of PediatricsUniversity of IowaIowa CityIAUSA
- Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - J. Fraser Wright
- Department of PediatricsDivision of Hematology, OncologyStem Cell Transplantation and Regenerative MedicineCenter for Definitive and Curative MedicineStanford University School of MedicineStanfordCAUSA
| | | |
Collapse
|
210
|
Tustian AD, Bak H. Assessment of quality attributes for adeno-associated viral vectors. Biotechnol Bioeng 2021; 118:4186-4203. [PMID: 34309017 DOI: 10.1002/bit.27905] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022]
Abstract
There is a strong and growing interest in the development and production of gene therapy products, including those utilizing adeno-associated virus (AAV) particles. This is evident with the increase in the number of clinical trials and agency approvals for AAV therapeutics. As bioproduction of AAV viral vectors matures, a quality by design (QbD) approach to process development can aid in process robustness and product quality. Furthermore, it may become a regulatory expectation. The first step in any QbD approach is to determine what physical, chemical, biological, or microbiological property or characteristic product attributes should be controlled within an appropriate limit, range, or distribution to ensure the desired product quality. Then predefined goals are set to allow proactive process development to design in quality. This review lists typical quality attributes used for release testing of AAV viral vectors and discusses these and selected attributes important to extended characterization studies in terms of safety, efficacy, and impact upon the patient immune response.
Collapse
Affiliation(s)
| | - Hanne Bak
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
211
|
Zhang Y, Li M. Genome Editing Technologies as Cellular Defense Against Viral Pathogens. Front Cell Dev Biol 2021; 9:716344. [PMID: 34336867 PMCID: PMC8320169 DOI: 10.3389/fcell.2021.716344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Viral infectious diseases are significant threats to the welfare of world populations. Besides the widespread acute viral infections (e.g., dengue fever) and chronic infections [e.g., those by the human immunodeficiency virus (HIV) and hepatitis B virus (HBV)], emerging viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose great challenges to the world. Genome editing technologies, including clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), have played essential roles in the study of new treatment for viral infectious diseases in cell lines, animal models, and clinical trials. Genome editing tools have been used to eliminate latent infections and provide resistance to new infections. Increasing evidence has shown that genome editing-based antiviral strategy is simple to design and can be quickly adapted to combat infections by a wide spectrum of viral pathogens, including the emerging coronaviruses. Here we review the development and applications of genome editing technologies for preventing or eliminating infections caused by HIV, HBV, HPV, HSV, and SARS-CoV-2, and discuss how the latest advances could enlighten further development of genome editing into a novel therapy for viral infectious diseases.
Collapse
|
212
|
Dhoke NR, Kim H, Selvaraj S, Azzag K, Zhou H, Oliveira NAJ, Tungtur S, Ortiz-Cordero C, Kiley J, Lu QL, Bang AG, Perlingeiro RCR. A universal gene correction approach for FKRP-associated dystroglycanopathies to enable autologous cell therapy. Cell Rep 2021; 36:109360. [PMID: 34260922 PMCID: PMC8327854 DOI: 10.1016/j.celrep.2021.109360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 01/24/2023] Open
Abstract
Mutations in the fukutin-related protein (FKRP) gene result in a broad spectrum of muscular dystrophy (MD) phenotypes, including the severe Walker-Warburg syndrome (WWS). Here, we develop a gene-editing approach that replaces the entire mutant open reading frame with the wild-type sequence to universally correct all FKRP mutations. We apply this approach to correct FKRP mutations in induced pluripotent stem (iPS) cells derived from patients displaying broad clinical severity. Our findings show rescue of functional α-dystroglycan (α-DG) glycosylation in gene-edited WWS iPS cell-derived myotubes. Transplantation of gene-corrected myogenic progenitors in the FKRPP448L-NSG mouse model gives rise to myofiber and satellite cell engraftment and, importantly, restoration of α-DG functional glycosylation in vivo. These findings suggest the potential feasibility of using CRISPR-Cas9 technology in combination with patient-specific iPS cells for the future development of autologous cell transplantation for FKRP-associated MDs.
Collapse
Affiliation(s)
- Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Hyunkee Kim
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nelio A J Oliveira
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sudheer Tungtur
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Kiley
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
213
|
Gene Therapy for Hemophilia: a review on clinical benefit, limitations and remaining issues. Blood 2021; 138:923-931. [PMID: 34232980 DOI: 10.1182/blood.2019003777] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/06/2021] [Indexed: 01/19/2023] Open
Abstract
In the past decade enormous progress has been made in the development of gene therapy for hemophilia A and B. After the first encouraging results of intravenously administered AAV-based liver-directed gene therapy in patients with severe hemophilia B were reported in 2011, many gene therapy studies have been initiated. Most of these studies, using AAV vectors with various gene constructs, showed sufficient FVIII and FIX expression in patients to significantly reduce the number of bleeds and the need for prophylaxis in the fast majority of the severe hemophilia patients. This resulted in great clinical benefit for nearly all patients. In this review we will summarize the most recent findings of reported and ongoing gene therapy trials. We will highlight the successful outcome of trials with focus on the results of recently reported phase 1 trials and preliminary results of phase 2b/3 trials for hemophilia A and B. These new reports also reveal the impact of side effects and drawbacks associated with gene therapy. We will therefore also discuss the limitations and remaining issues of the current gene therapy approaches. These issues have to be resolved before gene therapy will be widely available for the hemophilia patient population.
Collapse
|
214
|
Laird NZ, Acri TM, Tingle K, Salem AK. Gene- and RNAi-activated scaffolds for bone tissue engineering: Current progress and future directions. Adv Drug Deliv Rev 2021; 174:613-627. [PMID: 34015421 PMCID: PMC8217358 DOI: 10.1016/j.addr.2021.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023]
Abstract
Large bone defects are usually managed by replacing lost bone with non-biological prostheses or with bone grafts that come from the patient or a donor. Bone tissue engineering, as a field, offers the potential to regenerate bone within these large defects without the need for grafts or prosthetics. Such therapies could provide improved long- and short-term outcomes in patients with critical-sized bone defects. Bone tissue engineering has long relied on the administration of growth factors in protein form to stimulate bone regeneration, though clinical applications have shown that using such proteins as therapeutics can lead to concerning off-target effects due to the large amounts required for prolonged therapeutic action. Gene-based therapies offer an alternative to protein-based therapeutics where the genetic material encoding the desired protein is used and thus loading large doses of protein into the scaffolds is avoided. Gene- and RNAi-activated scaffolds are tissue engineering devices loaded with nucleic acids aimed at promoting local tissue repair. A variety of different approaches to formulating gene- and RNAi-activated scaffolds for bone tissue engineering have been explored, and include the activation of scaffolds with plasmid DNA, viruses, RNA transcripts, or interfering RNAs. This review will discuss recent progress in the field of bone tissue engineering, with specific focus on the different approaches employed by researchers to implement gene-activated scaffolds as a means of facilitating bone tissue repair.
Collapse
Affiliation(s)
- Noah Z Laird
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Timothy M Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Kelsie Tingle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
215
|
Croze RH, Kotterman M, Burns CH, Schmitt CE, Quezada M, Schaffer D, Kirn D, Francis P. Viral Vector Technologies and Strategies: Improving on Nature. Int Ophthalmol Clin 2021; 61:59-89. [PMID: 34196318 PMCID: PMC8253506 DOI: 10.1097/iio.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
216
|
Mehta N, Robbins DA, Yiu G. Ocular Inflammation and Treatment Emergent Adverse Events in Retinal Gene Therapy. Int Ophthalmol Clin 2021; 61:151-177. [PMID: 34196322 PMCID: PMC8259781 DOI: 10.1097/iio.0000000000000366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Neesurg Mehta
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Deborah Ahn Robbins
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| |
Collapse
|
217
|
Sherpa C, Le Grice SFJ. Adeno-Associated Viral Vector Mediated Expression of Broadly- Neutralizing Antibodies Against HIV-Hitting a Fast-Moving Target. Curr HIV Res 2021; 18:114-131. [PMID: 32039686 DOI: 10.2174/1570162x18666200210121339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/05/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
The vast genetic variability of HIV has impeded efforts towards a cure for HIV. Lifelong administration of combined antiretroviral therapy (cART) is highly effective against HIV and has markedly increased the life expectancy of HIV infected individuals. However, the long-term usage of cART is associated with co-morbidities and the emergence of multidrug-resistant escape mutants necessitating the development of alternative approaches to combat HIV/AIDS. In the past decade, the development of single-cell antibody cloning methods has facilitated the characterization of a diverse array of highly potent neutralizing antibodies against a broad range of HIV strains. Although the passive transfer of these broadly neutralizing antibodies (bnAbs) in both animal models and humans has been shown to elicit significant antiviral effects, long term virologic suppression requires repeated administration of these antibodies. Adeno-associated virus (AAV) mediated antibody gene transfer provides a long-term expression of these antibodies from a single administration of the recombinant vector. Therefore, this vectored approach holds promises in the treatment and prevention of a chronic disease like HIV infection. Here, we provide an overview of HIV genetic diversity, AAV vectorology, and anti-HIV bnAbs and summarize the promises and challenges of the application of AAV in the delivery of bnAbs for HIV prevention and therapy.
Collapse
Affiliation(s)
- Chringma Sherpa
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland, 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland, 21702, United States
| |
Collapse
|
218
|
Trautmann EM, O'Shea DJ, Sun X, Marshel JH, Crow A, Hsueh B, Vesuna S, Cofer L, Bohner G, Allen W, Kauvar I, Quirin S, MacDougall M, Chen Y, Whitmire MP, Ramakrishnan C, Sahani M, Seidemann E, Ryu SI, Deisseroth K, Shenoy KV. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nat Commun 2021; 12:3689. [PMID: 34140486 PMCID: PMC8211867 DOI: 10.1038/s41467-021-23884-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.
Collapse
Affiliation(s)
- Eric M Trautmann
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Daniel J O'Shea
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Xulu Sun
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ailey Crow
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Brian Hsueh
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lucas Cofer
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gergő Bohner
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Will Allen
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Isaac Kauvar
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Yuzhi Chen
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Matthew P Whitmire
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | | | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Eyal Seidemann
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Karl Deisseroth
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| | - Krishna V Shenoy
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
219
|
Meng Y, Sun D, Qin Y, Dong X, Luo G, Liu Y. Cell-penetrating peptides enhance the transduction of adeno-associated virus serotype 9 in the central nervous system. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:28-41. [PMID: 33768127 PMCID: PMC7960505 DOI: 10.1016/j.omtm.2021.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) have been widely used in the gene therapy field for decades. However, because of the challenge of effectively delivering rAAV vectors through the blood-brain barrier (BBB), their applications for treatment of central nervous system (CNS) diseases are quite limited. In this study, we found that several cell-penetrating peptides (CPPs) can significantly enhance the in vitro transduction efficiency of AAV serotype 9 (AAV9), a promising AAV vector for treatment of CNS diseases, the best of which was the LAH4 peptide. The enhancement of AAV9 transduction by LAH4 relied on binding of the AAV9 capsid to the peptide. Furthermore, we demonstrated that the LAH4 peptide increased the AAV9 transduction in the CNS in vitro and in vivo after systemic administration. Taken together, our results suggest that CPP peptides can interact directly with AAV9 and increase the ability of this AAV vector to cross the BBB, which further induces higher expression of target genes in the brain. Our study will help to improve the applications of AAV gene delivery vectors for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Dong Sun
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Yiyan Qin
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Xiaoyi Dong
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
- Corresponding author: Guangzuo Luo, Institute of Translational Medicine, China Medical University, Shenyang 110122, China.
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
- Corresponding author: Ying Liu, Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
220
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
221
|
Emerging Immunogenicity and Genotoxicity Considerations of Adeno-Associated Virus Vector Gene Therapy for Hemophilia. J Clin Med 2021; 10:jcm10112471. [PMID: 34199563 PMCID: PMC8199697 DOI: 10.3390/jcm10112471] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Adeno-associated viral (AAV) vector gene therapy has shown promise as a possible cure for hemophilia. However, immune responses directed against AAV vectors remain a hurdle to the broader use of this gene transfer platform. Both innate and adaptive immune responses can affect the safety and efficacy of AAV vector-mediated gene transfer in humans. These immune responses may be triggered by the viral capsid, the vector's nucleic acid payload, or other vector contaminants or excipients, or by the transgene product encoded by the vector itself. Various preclinical and clinical strategies have been explored to overcome the issues of AAV vector immunogenicity and transgene-related immune responses. Although results of these strategies are encouraging, more efficient approaches are needed to deliver safe, predictable, and durable outcomes for people with hemophilia. In addition to durability, long-term follow-up of gene therapy trial participants will allow us to address potential safety concerns related to vector integration. Herein, we describe the challenges with current methodologies to deliver optimal outcomes for people with hemophilia who choose to undergo AAV vector gene therapy and the potential opportunities to improve on the results.
Collapse
|
222
|
Stepankova K, Jendelova P, Machova Urdzikova L. Planet of the AAVs: The Spinal Cord Injury Episode. Biomedicines 2021; 9:613. [PMID: 34071245 PMCID: PMC8228984 DOI: 10.3390/biomedicines9060613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The spinal cord injury (SCI) is a medical and life-disrupting condition with devastating consequences for the physical, social, and professional welfare of patients, and there is no adequate treatment for it. At the same time, gene therapy has been studied as a promising approach for the treatment of neurological and neurodegenerative disorders by delivering remedial genes to the central nervous system (CNS), of which the spinal cord is a part. For gene therapy, multiple vectors have been introduced, including integrating lentiviral vectors and non-integrating adeno-associated virus (AAV) vectors. AAV vectors are a promising system for transgene delivery into the CNS due to their safety profile as well as long-term gene expression. Gene therapy mediated by AAV vectors shows potential for treating SCI by delivering certain genetic information to specific cell types. This review has focused on a potential treatment of SCI by gene therapy using AAV vectors.
Collapse
Affiliation(s)
- Katerina Stepankova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| |
Collapse
|
223
|
Canfield SL. Decoding gene therapy: Current impact and future considerations for health-system and specialty pharmacy practice. Am J Health Syst Pharm 2021; 78:953-961. [PMID: 33677501 DOI: 10.1093/ajhp/zxab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To provide health systems with baseline knowledge on existing and pipeline gene therapy treatments, including considerations that health-system pharmacies and specialty pharmacy programs may reference when evaluating and implementing services around gene therapies. SUMMARY Advancements in research and biotechnology have recently led to the development and launch of the first commercially available gene therapy treatments in the United States. These treatments have the ability to significantly alter and even effectively cure diseases. Alongside these significant advances and clinical benefits, these therapies present unique challenges due to their cost and complexity. Given the large number of additional gene therapy treatments that are currently in late-stage clinical development, stakeholders across the healthcare industry must increasingly adapt and ready themselves to meet these challenges. The diagnosis and treatment of patients with diseases being targeted by gene therapies largely occurs within health systems, and judging by the gene therapy pipeline, this trend is likely to continue. To prepare for these novel treatments, health systems must understand and consider the methods in which gene therapies are developed, procured, reimbursed, administered, and monitored. CONCLUSION The future of health-system pharmacy practice must include comprehensive gene therapy services and stakeholder engagement strategies to ensure patients have access to these life-changing treatments.
Collapse
|
224
|
Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. J Mol Med (Berl) 2021; 99:1057-1071. [PMID: 34021360 DOI: 10.1007/s00109-021-02086-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Gene therapy of genetically determined diseases, including some pathologies of the respiratory system, requires an efficient method for transgene delivery. Recombinant adeno-associated viral (rAAV) vectors are well studied and employed in gene therapy, as they are relatively simple and low immunogenic and able to efficiently transduce eukaryotic cells. To date, many natural and artificial (with modified capsids) AAV serotypes have been isolated, demonstrating preferential tropism toward different tissues and cells in accordance with the prevalent receptors on the cell surface. However, rAAV-mediated delivery is not strictly specific due to wide tropism of some viral serotypes. Thus, the development of the methods allowing modulating specificity of these vectors could be beneficial in some cases. This review describes various approaches for retargeting rAAV to respiratory cells, for example, using different types of capsid modifications and regulation of a transgene expression by tissue-specific promoters. Part of the review is devoted to the issues of transduction of stem and progenitor lung cells using AAV, which is a complicated task today.
Collapse
|
225
|
Shen L, Estrada AH, Meurs KM, Sleeper M, Vulpe C, Martyniuk CJ, Pacak CA. A review of the underlying genetics and emerging therapies for canine cardiomyopathies. J Vet Cardiol 2021; 40:2-14. [PMID: 34147413 DOI: 10.1016/j.jvc.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Cardiomyopathies such as dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy are common in large breed dogs and carry an overall poor prognosis. Research shows that these diseases have strong breed predilections, and selective breeding has historically been recommended to reduce the disease prevalence in affected breeds. Treatment of these diseases is typically palliative and aimed at slowing disease progression and managing clinical signs of heart failure as they develop. The discovery of specific genetic mutations underlying cardiomyopathies, such as the striatin mutation in Boxer arrhythmogenic right ventricular cardiomyopathy and the pyruvate dehydrogenase kinase 4 and titin mutations in Doberman Pinschers, has strengthened our ability to screen and selectively breed individuals in an attempt to produce unaffected offspring. The discovery of these disease-linked mutations has also opened avenues for the development of gene therapies, including gene transfer and genome-editing approaches. This review article discusses the known genetics of cardiomyopathies in dogs, reviews existing gene therapy strategies and the status of their development in canines, and discusses ongoing challenges in the clinical translation of these technologies for treating heart disease. While challenges remain in using these emerging technologies, the exponential growth of the gene therapy field holds great promise for future clinical applications.
Collapse
Affiliation(s)
- L Shen
- Program for Applied Research and Development in Genomic Medicine, College of Pharmacy, University of Florida, 1225 Center Drive, Gainesville, FL, 32610, USA.
| | - A H Estrada
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - K M Meurs
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - M Sleeper
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL, 32610, USA
| | - C Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Dr, Gainesville, FL, 32603, USA
| | - C J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Dr, Gainesville, FL, 32603, USA
| | - C A Pacak
- Department of Neurology, College of Medicine, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
226
|
Hamilton BA, Wright JF. Challenges Posed by Immune Responses to AAV Vectors: Addressing Root Causes. Front Immunol 2021; 12:675897. [PMID: 34084173 PMCID: PMC8168460 DOI: 10.3389/fimmu.2021.675897] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Host immune responses that limit durable therapeutic gene expression and cause clinically significant inflammation remain a major barrier to broadly successful development of adeno-associated virus (AAV)-based human gene therapies. In this article, mechanisms of humoral and cellular immune responses to the viral vector are discussed. A perspective is provided that removal of pathogen-associated molecular patterns in AAV vector genomes to prevent the generation of innate immune danger signals following administration is a key strategy to overcome immunological barriers.
Collapse
Affiliation(s)
- Bradley A Hamilton
- Center for Definitive and Curative Medicine, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - J Fraser Wright
- Center for Definitive and Curative Medicine, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
227
|
Cameron AD, Even KM, Linardi RL, Berglund AK, Schnabel LV, Engiles JB, Ortved KF. Adeno-Associated Virus-Mediated Overexpression of Interleukin-10 Affects the Immunomodulatory Properties of Equine Bone Marrow-Derived Mesenchymal Stem Cells. Hum Gene Ther 2021; 32:907-918. [PMID: 33843261 DOI: 10.1089/hum.2020.319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Joint injury can cause posttraumatic inflammation, which if severe enough can lead to posttraumatic osteoarthritis (PTOA), a progressive and debilitating condition. Posttraumatic inflammation is characterized by an influx of T lymphocytes and upregulation of inflammatory cytokines and degradative enzymes by activated chondrocytes and synoviocytes. Intra-articular bone marrow-derived mesenchymal stem cell (BM-MSC) injection for the treatment of osteoarthritis (OA) has been of interest due to the immunomodulatory properties of these cells. Interleukin (IL)-10, a potent immunomodulatory cytokine, has also been investigated as an OA therapeutic. Therefore, the objective of this study was to evaluate the combinatorial effects of BM-MSCs and IL-10 in OA using a gene therapy approach. We hypothesized that BM-MSCs overexpressing IL-10 would have superior immunomodulatory effects leading to increased suppression of T cell proliferation and decreased production of proinflammatory cytokines, providing protection of the extracellular matrix (ECM) in a stimulated, co-culture OA model. Treatment groups included the following: untransduced BM-MSC, adeno-associated virus (AAV)-IL10-transduced BM-MSC, and AAV-null transduced BM-MSC, which were unstimulated or stimulated with IL-1β/tumor necrosis factor-α (TNF-α). T cell proliferation was significantly decreased by the presence of BM-MSCs, especially when these BM-MSCs were AAV transduced. There was no significant difference in T cell suppression when cells were cultured with AAV-IL10-transduced or AAV-null transduced BM-MSCs. AAV transduction itself was associated with decreased synthesis of IL-1β, IL-6, and TNF-α. Expression of IL-1β and MMP13 was downregulated in AAV-transduced BM-MSCs and MMP13 expression was downregulated in cartilage explants co-cultured with AAV-transduced BM-MSCs. Despite mitigation of some proinflammatory cascades, rescue of ECM loss, as determined by glycosaminoglycan quantification and histological evaluation, did not occur in either AAV-IL10-transduced or AAV-null transduced co-cultures. Although IL-10 overexpression may enhance BM-MSC-mediated T cell suppression, we did not observe significant modulation of inflammation-driven cartilage degradation in cultures containing AAV-IL10-transduced BM-MSCs. AAV transduction itself does appear to affect paracrine signaling by BM-MSCs, which warrants further investigation.
Collapse
Affiliation(s)
- Ashley D Cameron
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Kayla M Even
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Renata L Linardi
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| | - Alix K Berglund
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Lauren V Schnabel
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Julie B Engiles
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA.,Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Kyla F Ortved
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania, USA
| |
Collapse
|
228
|
Gougeon ML, Poirier-Beaudouin B, Ausseil J, Zérah M, Artaud C, Heard JM, Deiva K, Tardieu M. Cell-Mediated Immunity to NAGLU Transgene Following Intracerebral Gene Therapy in Children With Mucopolysaccharidosis Type IIIB Syndrome. Front Immunol 2021; 12:655478. [PMID: 34040605 PMCID: PMC8141743 DOI: 10.3389/fimmu.2021.655478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type IIIB syndrome (Sanfilippo disease) is a rare autosomic recessif disorder caused by mutations in the α-N-acetylglucosaminidase (NAGLU) gene coding for a lysosomal enzyme, leading to neurodegeneration and progressive deterioration of cognitive abilities in affected children. To supply the missing enzyme, several recent human gene therapy trials relied on the deposit of adeno-associated virus (AAV) vectors directly into the brain. We reported safety and efficacy of an intracerebral therapy in a phase 1/2 clinical trial (https://clinicaltrials.gov/ct2/show/NCT03300453), with a recombinant AAV serotype 2/5 (rAAV2/5) coding human NAGLU in four children with MPS IIIB syndrome receiving immunosuppression. It was reported that AAV-mediated gene therapies might elicit a strong host immune response resulting in decreased transgene expression. To address this issue, we performed a comprehensive analysis of cellular immunity and cytokine patterns generated against the therapeutic enzyme in the four treated children over 5.5 years of follow-up. We report the emergence of memory and polyfunctional CD4+ and CD8+ T lymphocytes sensitized to the transgene soon after the start of therapy, and appearing in peripheral blood in waves throughout the follow-up. However, this response had no apparent impact on CNS transgene expression, which remained stable 66 months after surgery, possibly a consequence of the long-term immunosuppressive treatment. We also report that gene therapy did not trigger neuroinflammation, evaluated through the expression of cytokines and chemokines in patients’ CSF. Milder disease progression in the youngest patient was found associated with low level and less differentiated circulating NAGLU-specific T cells, together with the lack of proinflammatory cytokines in the CSF. Findings in this study support a systematic and comprehensive immunomonitoring approach for understanding the impact immune reactions might have on treatment safety and efficacy of gene therapies.
Collapse
Affiliation(s)
- Marie-Lise Gougeon
- Institut Pasteur, Innate Immunity and Viruses Unit, Infection and Epidemiology Department, Paris, France
| | - Béatrice Poirier-Beaudouin
- Institut Pasteur, Innate Immunity and Viruses Unit, Infection and Epidemiology Department, Paris, France
| | - Jérome Ausseil
- Service de Biochimie Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Michel Zérah
- Pediatric Neurosurgery Department, Assistance Publique-Hôpitaux de Paris, Hôpital Necker; Institut Imagine, Université René Descartes; NeuroGenCell, Institut du cerveau et de la moelle, Paris, France
| | - Cécile Artaud
- Institut Pasteur, Centre for Translational Science, Clinical Core, Paris, France
| | - Jean-Michel Heard
- Institut Pasteur, Biotherapy and Neurodegenerative Diseases Unit, Neuroscience Department, INSERM U1115, Paris, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Bicêtre Hospital and INSERM UMR 1184, Immunology of Viral Infections and Autoimmune Diseases, CEA, IDMIT, Le Kremlin-Bicêtre, France
| | - Marc Tardieu
- Pediatric Neurology Department, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Bicêtre Hospital and INSERM UMR 1184, Immunology of Viral Infections and Autoimmune Diseases, CEA, IDMIT, Le Kremlin-Bicêtre, France
| |
Collapse
|
229
|
Discussing investigational AAV gene therapy with hemophilia patients: A guide. Blood Rev 2021; 47:100759. [DOI: 10.1016/j.blre.2020.100759] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 01/19/2023]
|
230
|
Gupta V, Lourenço SP, Hidalgo IJ. Development of Gene Therapy Vectors: Remaining Challenges. J Pharm Sci 2021; 110:1915-1920. [DOI: 10.1016/j.xphs.2020.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
|
231
|
Poth KM, Texakalidis P, Boulis NM. Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery 2021; 89:185-195. [PMID: 33913505 PMCID: PMC8279839 DOI: 10.1093/neuros/nyab147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
The field of chemogenetics has rapidly expanded over the last decade, and engineered receptors are currently utilized in the lab to better understand molecular interactions in the nervous system. We propose that chemogenetic receptors can be used for far more than investigational purposes. The potential benefit of adding chemogenetic neuromodulation to the current neurosurgical toolkit is substantial. There are several conditions currently treated surgically, electrically, and pharmacologically in clinic, and this review highlights how chemogenetic neuromodulation could improve patient outcomes over current neurosurgical techniques. We aim to emphasize the need to take these techniques from bench to bedside.
Collapse
Affiliation(s)
- Kelly M Poth
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
232
|
Knox S, Wissner R, Piszkiewicz S, Schepartz A. Cytosolic Delivery of Argininosuccinate Synthetase Using a Cell-Permeant Miniature Protein. ACS CENTRAL SCIENCE 2021; 7:641-649. [PMID: 34056094 PMCID: PMC8155463 DOI: 10.1021/acscentsci.0c01603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 05/04/2023]
Abstract
Citrullinemia type I (CTLN-I) results from the absence or deficiency of argininosuccinate synthetase (AS), a 46 kDa enzyme that acts in the cytosol of hepatocytes to convert aspartic acid and citrulline into argininosuccinic acid. AS is an essential component of the urea cycle, and its absence or deficiency results in the harmful accumulation of ammonia in blood and cerebrospinal fluid. No disease-modifying treatment of CTLN-I exists. Here we report that the cell-permeant miniature protein (CPMP) ZF5.3 (ZF) can deliver AS to the cytosol of cells in culture and the livers of healthy mice. The fusion protein ZF-AS is catalytically active in vitro, stabilized in plasma, and traffics successfully to the cytosol of cultured Saos-2 and SK-HEP-1 cells, achieving cytosolic concentrations greater than 100 nM. This value is 3-10-fold higher than the concentration of endogenous AS (11 ± 1 to 44 ± 5 nM). When injected into healthy C57BL/6 mice, ZF-AS reaches the mouse liver to establish concentrations almost 200 nM above baseline. These studies demonstrate that ZF5.3 can deliver a complex enzyme to the cytosol at therapeutically relevant concentrations and support its application as an improved delivery vehicle for therapeutic proteins that function in the cytosol, including enzyme replacement therapies.
Collapse
Affiliation(s)
- Susan
L. Knox
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Rebecca Wissner
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Samantha Piszkiewicz
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alanna Schepartz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- E-mail:
| |
Collapse
|
233
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
234
|
AAV2/9-mediated silencing of PMP22 prevents the development of pathological features in a rat model of Charcot-Marie-Tooth disease 1 A. Nat Commun 2021; 12:2356. [PMID: 33883545 PMCID: PMC8060274 DOI: 10.1038/s41467-021-22593-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
Charcot-Marie-Tooth disease 1 A (CMT1A) results from a duplication of the PMP22 gene in Schwann cells and a deficit of myelination in peripheral nerves. Patients with CMT1A have reduced nerve conduction velocity, muscle wasting, hand and foot deformations and foot drop walking. Here, we evaluate the safety and efficacy of recombinant adeno-associated viral vector serotype 9 (AAV2/9) expressing GFP and shRNAs targeting Pmp22 mRNA in animal models of Charcot-Marie-Tooth disease 1 A. Intra-nerve delivery of AAV2/9 in the sciatic nerve allowed widespread transgene expression in resident myelinating Schwann cells in mice, rats and non-human primates. A bilateral treatment restore expression levels of PMP22 comparable to wild-type conditions, resulting in increased myelination and prevention of motor and sensory impairments over a twelve-months period in a rat model of CMT1A. We observed limited off-target transduction and immune response using the intra-nerve delivery route. A combination of previously characterized human skin biomarkers is able to discriminate between treated and untreated animals, indicating their potential use as part of outcome measures.
Collapse
|
235
|
Massaro G, Geard AF, Liu W, Coombe-Tennant O, Waddington SN, Baruteau J, Gissen P, Rahim AA. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021; 11:611. [PMID: 33924076 PMCID: PMC8074255 DOI: 10.3390/biom11040611] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Amy F. Geard
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Wenfei Liu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Oliver Coombe-Tennant
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Simon N. Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Gene Transfer Technology Group, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK;
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| |
Collapse
|
236
|
Lu X, Wu X, Wu T, Han L, Liu J, Ding B. Efficient construction of a stable linear gene based on a TNA loop modified primer pair for gene delivery. Chem Commun (Camb) 2021; 56:9894-9897. [PMID: 32720666 DOI: 10.1039/d0cc04356g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A terminal-closed linear gene with strong exonuclease resistance and serum stability was successfully constructed by polymerase chain reaction (PCR) with an α-l-threose nucleic acid (TNA) loop modified primer pair, which can be used as an efficient gene expression system in eukaryotic cells for gene delivery.
Collapse
Affiliation(s)
- Xuehe Lu
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Han
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
237
|
de Joya EM, Colbert BM, Tang PC, Lam BL, Yang J, Blanton SH, Dykxhoorn DM, Liu X. Usher Syndrome in the Inner Ear: Etiologies and Advances in Gene Therapy. Int J Mol Sci 2021; 22:3910. [PMID: 33920085 PMCID: PMC8068832 DOI: 10.3390/ijms22083910] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.
Collapse
Affiliation(s)
- Evan M. de Joya
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Brett M. Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pei-Ciao Tang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Jun Yang
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA;
| | - Susan H. Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
238
|
Wang T, Li Y, Guo M, Dong X, Liao M, Du M, Wang X, Yin H, Yan H. Exosome-Mediated Delivery of the Neuroprotective Peptide PACAP38 Promotes Retinal Ganglion Cell Survival and Axon Regeneration in Rats With Traumatic Optic Neuropathy. Front Cell Dev Biol 2021; 9:659783. [PMID: 33889576 PMCID: PMC8055942 DOI: 10.3389/fcell.2021.659783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic optic neuropathy (TON) refers to optic nerve damage caused by trauma, leading to partial or complete loss of vision. The primary treatment options, such as hormonal therapy and surgery, have limited efficacy. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), a functional endogenous neuroprotective peptide, has emerged as a promising therapeutic agent. In this study, we used rat retinal ganglion cell (RGC) exosomes as nanosized vesicles for the delivery of PACAP38 loaded via the exosomal anchor peptide CP05 (EXO PACAP38 ). EXO PACAP38 showed greater uptake efficiency in vitro and in vivo than PACAP38. The results showed that EXO PACAP38 significantly enhanced the RGC survival rate and retinal nerve fiber layer thickness in a rat TON model. Moreover, EXO PACAP38 significantly promoted axon regeneration and optic nerve function after injury. These findings indicate that EXO PACAP38 can be used as a treatment option and may have therapeutic implications for patients with TON.
Collapse
Affiliation(s)
- Tian Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yiming Li
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Miao Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammation Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammation Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammation Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haifang Yin
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
239
|
Hashemzadeh MS, Tapeh BE, Mirhosseini SA. The Role of Bacterial Superantigens in the Immune Response: From Biology to Cancer Treatment. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666200812150402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
Encouraging results have been indicated preclinically and in patients using the
bacterial superantigen. This review article intends to summarize the role of the superantigens that
have been recently used in the treatment of cancer. In addition, the vector systems, including lentiviral
vectors, adeno-associated vector systems and retroviral vectors that are increasingly being
used in basic and applied research, were discussed. Most importantly, the new CRISPR technique
has also been discussed in this literature review.
Discussion:
More successful therapies can be achieved by manipulating bacterial vector systems
through incorporating genes related to the superantigens and cytokines. The products of SAg and
cytokine genes contribute to the strong stimulation of the immune system against tumor cells. They
bind to MHC II molecules as well as the V beta regions of TCR and lead to the production of IL2
and other cytokines, the activation of antigen-presenting cells and T lymphocytes. Additionally, superantigens
can be used to eradicate tumor cells. Better results in cancer treatment can be achieved
by transferring superantigen genes and subsequent strong immune stimulation along with other cancer
immunotherapy agents.
Conclusion:
Superantigens induce the proliferation of T lymphocytes and antigen-presenting cells
by binding to MHCII molecules and V beta regions in T cell receptors. Therefore, the presentation
of tumor cell antigens is increased. Additionally, the production of important cytokines by T cells
and APCs contributes to the stimulation of immune response against tumor cells. The manipulation
of bacterial vector systems through incorporating genesrelated to SAgs and other immune response
factors is a good strategy for the immune system stimulating and eradicating tumor cells along with
other immunotherapy agents.
Collapse
Affiliation(s)
- Mohammad S. Hashemzadeh
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behnam E.G. Tapeh
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed A. Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
240
|
Goodspeed K, Feng C, Laine M, Lund TC. Aspartylglucosaminuria: Clinical Presentation and Potential Therapies. J Child Neurol 2021; 36:403-414. [PMID: 33439067 DOI: 10.1177/0883073820980904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Aspartylglucosaminuria (AGU) is a recessively inherited neurodegenerative lysosomal storage disease characterized by progressive intellectual disability, skeletal abnormalities, connective tissue overgrowth, gait disturbance, and seizures followed by premature death. AGU is caused by pathogenic variants in the aspartylglucosaminidase (AGA) gene, leading to glycoasparagine accumulation and cellular dysfunction. Although more prevalent in the Finnish population, more than 30 AGA variants have been identified worldwide. Owing to its rarity, AGU may be largely underdiagnosed. Recognition of the following early clinical features may aid in AGU diagnosis: developmental delays, hyperactivity, early growth spurt, inguinal and abdominal hernias, clumsiness, characteristic facial features, recurring upper respiratory and ear infections, tonsillectomy, multiple sets of tympanostomy tube placement, and sleep problems. Although no curative therapies currently exist, early diagnosis may provide benefit through the provision of anticipatory guidance, management of expectations, early interventions, and prophylaxis; it will also be crucial for increased clinical benefits of future AGU disease-modifying therapies.
Collapse
Affiliation(s)
- Kimberly Goodspeed
- 7067University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, TX, USA
| | | | - Minna Laine
- Division of Child Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Troy C Lund
- 5635University of Minnesota, Department of Pediatrics, Minneapolis, MN, USA
| |
Collapse
|
241
|
Chu WS, Ng J. Immunomodulation in Administration of rAAV: Preclinical and Clinical Adjuvant Pharmacotherapies. Front Immunol 2021; 12:658038. [PMID: 33868303 PMCID: PMC8049138 DOI: 10.3389/fimmu.2021.658038] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) has attracted a significant research focus for delivering genetic therapies to target cells. This non-enveloped virus has been trialed in many clinical-stage therapeutic strategies but important obstacle in clinical translation is the activation of both innate and adaptive immune response to the protein capsid, vector genome and transgene product. In addition, the normal population has pre-existing neutralizing antibodies against wild-type AAV, and cross-reactivity is observed between different rAAV serotypes. While extent of response can be influenced by dosing, administration route and target organ(s), these pose concerns over reduction or complete loss of efficacy, options for re-administration, and other unwanted immunological sequalae such as local tissue damage. To reduce said immunological risks, patients are excluded if they harbor anti-AAV antibodies or have received gene therapy previously. Studies have incorporated immunomodulating or suppressive regimens to block cellular and humoral immune responses such as systemic corticosteroids pre- and post-administration of Luxturna® and Zolgensma®, the two rAAV products with licensed regulatory approval in Europe and the United States. In this review, we will introduce the current pharmacological strategies to immunosuppress or immunomodulate the host immune response to rAAV gene therapy.
Collapse
Affiliation(s)
- Wing Sum Chu
- Pharmacy Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Joanne Ng
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
242
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
243
|
Tomeo F, Mariz S, Brunetta AL, Stoyanova-Beninska V, Penttila K, Magrelli A. Haemophilia, state of the art and new therapeutic opportunities, a regulatory perspective. Br J Clin Pharmacol 2021; 87:4183-4196. [PMID: 33772837 PMCID: PMC8596702 DOI: 10.1111/bcp.14838] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Haemophilia A and B are rare bleeding disorders. Over the past decades, they have been transformed from debilitating diseases to manageable conditions in the Western world. However, optimizing haemophilia care remains challenging in developing countries. Several challenges and unmet needs remain in the treatment of the haemophilia limiting the QoL of patients. These challenges are now being addressed by extended half‐life recombinant factors, rebalancing and substitution therapies. Gene therapy and genome editing show promise for a definite clinical cure. Here, we provide an overview of new therapeutic opportunities for haemophilia and their advances and limitations from a regulatory perspective. The database on human medicines from the European Medicines Agency (EMA) was used and data from rare disease (orphan) designations and EPARs were retrieved for the analysis. Clinical trial databases were used to query all active studies on haemophilia. Gene therapy medicinal products based on AAV and lentiviral vectors are in development and clinical trials have reported substantial success in ameliorating bleeding tendency in haemophilia patients. The prospect of gene editing for correction of the underlying mutation is on the horizon and has considerable potential. With regard to the benefit of the gene therapy medicinal products, more long‐term efficacy and safety data are awaited. We are entering an era of innovation and abundance in treatment options for those affected by bleeding disorders, but issues remain about the affordability and accessibility to patients.
Collapse
Affiliation(s)
| | - Segundo Mariz
- Orphan Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Angelo Loris Brunetta
- Italian Foundation 'L.Giambrone' for the cure of Thalassemia, Castel Volturno, Italy
| | | | | | - Armando Magrelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
244
|
Fazal S, Bisserier M, Hadri L. Molecular and Genetic Profiling for Precision Medicines in Pulmonary Arterial Hypertension. Cells 2021; 10:cells10030638. [PMID: 33805595 PMCID: PMC7999465 DOI: 10.3390/cells10030638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and chronic lung disease characterized by progressive occlusion of the small pulmonary arteries, which is associated with structural and functional alteration of the smooth muscle cells and endothelial cells within the pulmonary vasculature. Excessive vascular remodeling is, in part, responsible for high pulmonary vascular resistance and the mean pulmonary arterial pressure, increasing the transpulmonary gradient and the right ventricular “pressure overload”, which may result in right ventricular (RV) dysfunction and failure. Current technological advances in multi-omics approaches, high-throughput sequencing, and computational methods have provided valuable tools in molecular profiling and led to the identification of numerous genetic variants in PAH patients. In this review, we summarized the pathogenesis, classification, and current treatments of the PAH disease. Additionally, we outlined the latest next-generation sequencing technologies and the consequences of common genetic variants underlying PAH susceptibility and disease progression. Finally, we discuss the importance of molecular genetic testing for precision medicine in PAH and the future of genomic medicines, including gene-editing technologies and gene therapies, as emerging alternative approaches to overcome genetic disorders in PAH.
Collapse
|
245
|
Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:209-236. [PMID: 33850952 PMCID: PMC8010215 DOI: 10.1016/j.omtm.2021.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Generotti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Hwa
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Medicine, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
246
|
Genome editing in the human liver: Progress and translational considerations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:257-288. [PMID: 34175044 DOI: 10.1016/bs.pmbts.2021.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Liver-targeted genome editing offers the prospect of life-long therapeutic benefit following a single treatment and is set to rapidly supplant conventional gene addition approaches. Combining progress in liver-targeted gene delivery with genome editing technology, makes this not only feasible but realistically achievable in the near term. However, important challenges remain to be addressed. These include achieving therapeutic levels of editing, particularly in vivo, avoidance of off-target effects on the genome and the potential impact of pre-existing immunity to bacteria-derived nucleases, when used to improve editing rates. In this chapter, we outline the unique features of the liver that make it an attractive target for genome editing, the impact of liver biology on therapeutic efficacy, and disease specific challenges, including whether the approach targets a cell autonomous or non-cell autonomous disease. We also discuss strategies that have been used successfully to achieve genome editing outcomes in the liver and address translational considerations as genome editing technology moves into the clinic.
Collapse
|
247
|
Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol 2021; 14:24. [PMID: 33579329 PMCID: PMC7880217 DOI: 10.1186/s13045-021-01037-x] [Citation(s) in RCA: 303] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have been intensely investigated for clinical applications within the last decades. However, the majority of registered clinical trials applying MSC therapy for diverse human diseases have fallen short of expectations, despite the encouraging pre-clinical outcomes in varied animal disease models. This can be attributable to inconsistent criteria for MSCs identity across studies and their inherited heterogeneity. Nowadays, with the emergence of advanced biological techniques and substantial improvements in bio-engineered materials, strategies have been developed to overcome clinical challenges in MSC application. Here in this review, we will discuss the major challenges of MSC therapies in clinical application, the factors impacting the diversity of MSCs, the potential approaches that modify MSC products with the highest therapeutic potential, and finally the usage of MSCs for COVID-19 pandemic disease.
Collapse
|
248
|
Hemophilia Gene Therapy: Approaching the First Licensed Product. Hemasphere 2021; 5:e540. [PMID: 33604517 PMCID: PMC7886458 DOI: 10.1097/hs9.0000000000000540] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
The clinical potential of hemophilia gene therapy has now been pursued for the past 30 years, and there is a realistic expectation that this goal will be achieved within the next couple of years with the licensing of a gene therapy product. While recent late phase clinical trials of hemophilia gene therapy have shown promising results, there remain a number of issues that require further attention with regard to both efficacy and safety of this therapeutic approach. In this review, we present information relating to the current status of the field and focus attention on the unanswered questions for hemophilia gene therapy and the future challenges that need to be overcome to enable the widespread application of this treatment paradigm.
Collapse
|
249
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 566] [Impact Index Per Article: 188.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
250
|
Ilyinskii PO, Michaud AM, Roy CJ, Rizzo GL, Elkins SL, Capela T, Chowdhury AC, Leung SS, Kishimoto TK. Enhancement of liver-directed transgene expression at initial and repeat doses of AAV vectors admixed with ImmTOR nanoparticles. SCIENCE ADVANCES 2021; 7:7/9/eabd0321. [PMID: 33627416 PMCID: PMC7904260 DOI: 10.1126/sciadv.abd0321] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/12/2021] [Indexed: 05/04/2023]
Abstract
Systemic AAV (adeno-associated virus) gene therapy is a promising approach for the treatment of inborn errors of metabolism, but questions remain regarding its potency and durability. Tolerogenic ImmTOR nanoparticles encapsulating rapamycin have been shown to block the formation of neutralizing anti-capsid antibodies, thereby enabling vector re-administration. Here, we further demonstrate that ImmTOR admixed with AAV vectors also enhances hepatic transgene expression at the initial dose of AAV vector, independent of its effects on adaptive immunity. ImmTOR enhances AAV trafficking to the liver, resulting in increased hepatic vector copy numbers and transgene mRNA expression. Enhanced transgene expression occurs through a mechanism independent of the AAV receptor and cannot be replicated in vivo with free rapamycin or empty nanoparticles. The multipronged mechanism of ImmTOR action makes it an attractive candidate to enable more efficient transgene expression at first dose while simultaneously inhibiting adaptive responses against AAV to enable repeat dosing.
Collapse
|