201
|
Sinefeld D, Xia F, Wang M, Wang T, Wu C, Yang X, Paudel HP, Ouzounov DG, Bifano TG, Xu C. Three-Photon Adaptive Optics for Mouse Brain Imaging. Front Neurosci 2022; 16:880859. [PMID: 35692424 PMCID: PMC9185169 DOI: 10.3389/fnins.2022.880859] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Three-photon microscopy (3PM) was shown to allow deeper imaging than two-photon microscopy (2PM) in scattering biological tissues, such as the mouse brain, since the longer excitation wavelength reduces tissue scattering and the higher-order non-linear excitation suppresses out-of-focus background fluorescence. Imaging depth and resolution can further be improved by aberration correction using adaptive optics (AO) techniques where a spatial light modulator (SLM) is used to correct wavefront aberrations. Here, we present and analyze a 3PM AO system for in vivo mouse brain imaging. We use a femtosecond source at 1300 nm to generate three-photon (3P) fluorescence in yellow fluorescent protein (YFP) labeled mouse brain and a microelectromechanical (MEMS) SLM to apply different Zernike phase patterns. The 3P fluorescence signal is used as feedback to calculate the amount of phase correction without direct phase measurement. We show signal improvement in the cortex and the hippocampus at greater than 1 mm depth and demonstrate close to diffraction-limited imaging in the cortical layers of the brain, including imaging of dendritic spines. In addition, we characterize the effective volume for AO correction within brain tissues, and discuss the limitations of AO correction in 3PM of mouse brain.
Collapse
Affiliation(s)
- David Sinefeld
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Department of Applied Physics, Electro-Optics Engineering Faculty, Jerusalem College of Technology, Jerusalem, Israel
- *Correspondence: David Sinefeld,
| | - Fei Xia
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Mengran Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Tianyu Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Chunyan Wu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Xusan Yang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | - Hari P. Paudel
- Photonics Center, Boston University, Boston, MA, United States
| | - Dimitre G. Ouzounov
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| | | | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
202
|
Barbara R, Nagathihalli Kantharaju M, Haruvi R, Harrington K, Kawashima T. PyZebrascope: An Open-Source Platform for Brain-Wide Neural Activity Imaging in Zebrafish. Front Cell Dev Biol 2022; 10:875044. [PMID: 35663407 PMCID: PMC9161555 DOI: 10.3389/fcell.2022.875044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding how neurons interact across the brain to control animal behaviors is one of the central goals in neuroscience. Recent developments in fluorescent microscopy and genetically-encoded calcium indicators led to the establishment of whole-brain imaging methods in zebrafish, which record neural activity across a brain-wide volume with single-cell resolution. Pioneering studies of whole-brain imaging used custom light-sheet microscopes, and their operation relied on commercially developed and maintained software not available globally. Hence it has been challenging to disseminate and develop the technology in the research community. Here, we present PyZebrascope, an open-source Python platform designed for neural activity imaging in zebrafish using light-sheet microscopy. PyZebrascope has intuitive user interfaces and supports essential features for whole-brain imaging, such as two orthogonal excitation beams and eye damage prevention. Its camera module can handle image data throughput of up to 800 MB/s from camera acquisition to file writing while maintaining stable CPU and memory usage. Its modular architecture allows the inclusion of advanced algorithms for microscope control and image processing. As a proof of concept, we implemented a novel automatic algorithm for maximizing the image resolution in the brain by precisely aligning the excitation beams to the image focal plane. PyZebrascope enables whole-brain neural activity imaging in fish behaving in a virtual reality environment. Thus, PyZebrascope will help disseminate and develop light-sheet microscopy techniques in the neuroscience community and advance our understanding of whole-brain neural dynamics during animal behaviors.
Collapse
Affiliation(s)
- Rani Barbara
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Madhu Nagathihalli Kantharaju
- Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Humboldt University of Berlin, Berlin, Germany
| | - Ravid Haruvi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Kyle Harrington
- Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
- *Correspondence: Kyle Harrington, ; Takashi Kawashima,
| | - Takashi Kawashima
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Kyle Harrington, ; Takashi Kawashima,
| |
Collapse
|
203
|
Diurnal changes in the efficiency of information transmission at a sensory synapse. Nat Commun 2022; 13:2613. [PMID: 35551183 PMCID: PMC9098879 DOI: 10.1038/s41467-022-30202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
Neuromodulators adapt sensory circuits to changes in the external world or the animal’s internal state and synapses are key control sites for such plasticity. Less clear is how neuromodulation alters the amount of information transmitted through the circuit. We investigated this question in the context of the diurnal regulation of visual processing in the retina of zebrafish, focusing on ribbon synapses of bipolar cells. We demonstrate that contrast-sensitivity peaks in the afternoon accompanied by a four-fold increase in the average Shannon information transmitted from an active zone. This increase reflects higher synaptic gain, lower spontaneous “noise” and reduced variability of evoked responses. Simultaneously, an increase in the probability of multivesicular events with larger information content increases the efficiency of transmission (bits per vesicle) by factors of 1.5-2.7. This study demonstrates the multiplicity of mechanisms by which a neuromodulator can adjust the synaptic transfer of sensory information. Neuromodulators can adjust how sensory signals are processed. In this study, the authors demonstrate how time of day affects the way information is transmitted in the zebrafish retina.
Collapse
|
204
|
Scholl B, Tepohl C, Ryan MA, Thomas CI, Kamasawa N, Fitzpatrick D. A binocular synaptic network supports interocular response alignment in visual cortical neurons. Neuron 2022; 110:1573-1584.e4. [PMID: 35123654 PMCID: PMC9081247 DOI: 10.1016/j.neuron.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/13/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
In visual cortex, signals from the two eyes merge to form a coherent binocular representation. Here we investigate the synaptic interactions underlying the binocular representation of stimulus orientation in ferret visual cortex with in vivo calcium imaging of layer 2/3 neurons and their dendritic spines. Individual neurons with aligned somatic responses received a mixture of monocular and binocular synaptic inputs. Surprisingly, monocular pathways alone could not account for somatic alignment because ipsilateral monocular inputs poorly matched somatic preference. Binocular inputs exhibited different degrees of interocular alignment, and those with a high degree of alignment (congruent) had greater selectivity and somatic specificity. While congruent inputs were similar to others in measures of strength, simulations show that the number of active congruent inputs predicts aligned somatic output. Our study suggests that coherent binocular responses derive from connectivity biases that support functional amplification of aligned signals within a heterogeneous binocular intracortical network.
Collapse
Affiliation(s)
- Benjamin Scholl
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Clara Tepohl
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - Melissa A Ryan
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - David Fitzpatrick
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| |
Collapse
|
205
|
Canton-Josh JE, Qin J, Salvo J, Kozorovitskiy Y. Dopaminergic regulation of vestibulo-cerebellar circuits through unipolar brush cells. eLife 2022; 11:e76912. [PMID: 35476632 PMCID: PMC9106328 DOI: 10.7554/elife.76912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
While multiple monoamines modulate cerebellar output, the mechanistic details of dopaminergic signaling in the cerebellum remain poorly understood. We show that dopamine type 1 receptors (Drd1) are expressed in unipolar brush cells (UBCs) of the mouse cerebellar vermis. Drd1 activation increases UBC firing rate and post-synaptic NMDAR -mediated currents. Using anatomical tracing and in situ hybridization, we test three hypotheses about the source of cerebellar dopamine. We exclude midbrain dopaminergic nuclei and tyrosine hydroxylase-positive Purkinje (Pkj) cells as potential sources, supporting the possibility of dopaminergic co-release from locus coeruleus (LC) axons. Using an optical dopamine sensor GRABDA2h, electrical stimulation, and optogenetic activation of LC fibers in the acute slice, we find evidence for monoamine release onto Drd1-expressing UBCs. Altogether, we propose that the LC regulates cerebellar cortex activity by co-releasing dopamine onto UBCs to modulate their response to cerebellar inputs. Pkj cells directly inhibit these Drd1-positive UBCs, forming a dopamine-sensitive recurrent vestibulo-cerebellar circuit.
Collapse
Affiliation(s)
| | - Joanna Qin
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Joseph Salvo
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | | |
Collapse
|
206
|
Melani R, Tritsch NX. Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake. Cell Rep 2022; 39:110716. [PMID: 35443174 PMCID: PMC9097974 DOI: 10.1016/j.celrep.2022.110716] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Dopamine (DA)-releasing neurons in the substantia nigra pars compacta (SNcDA) inhibit target cells in the striatum through postsynaptic activation of γ-aminobutyric acid (GABA) receptors. However, the molecular mechanisms responsible for GABAergic signaling remain unclear, as SNcDA neurons lack enzymes typically required to produce GABA or package it into synaptic vesicles. Here, we show that aldehyde dehydrogenase 1a1 (Aldh1a1), an enzyme proposed to function as a GABA synthetic enzyme in SNcDA neurons, does not produce GABA for synaptic transmission. Instead, we demonstrate that SNcDA axons obtain GABA exclusively through presynaptic uptake using the membrane GABA transporter Gat1 (encoded by Slc6a1). GABA is then packaged for vesicular release using the vesicular monoamine transporter Vmat2. Our data therefore show that presynaptic transmitter recycling can substitute for de novo GABA synthesis and that Vmat2 contributes to vesicular GABA transport, expanding the range of molecular mechanisms available to neurons to support inhibitory synaptic communication. Melani and Tritsch demonstrate that inhibitory co-transmission from midbrain dopaminergic neurons does not depend on cell-autonomous GABA synthesis but instead on presynaptic import from the extracellular space through the membrane transporter Gat1 and that GABA loading into synaptic vesicles relies on the vesicular monoamine transporter Vmat2.
Collapse
Affiliation(s)
- Riccardo Melani
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
207
|
A glibenclamide-sensitive TRPM4-mediated component of CA1 excitatory postsynaptic potentials appears in experimental autoimmune encephalomyelitis. Sci Rep 2022; 12:6000. [PMID: 35397639 PMCID: PMC8994783 DOI: 10.1038/s41598-022-09875-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/16/2022] [Indexed: 12/29/2022] Open
Abstract
The transient receptor potential melastatin 4 (TRPM4) channel contributes to disease severity in the murine experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and to neuronal cell death in models of excitotoxicity and traumatic brain injury. As TRPM4 is activated by intracellular calcium and conducts monovalent cations, we hypothesized that TRPM4 may contribute to and boost excitatory synaptic transmission in CA1 pyramidal neurons of the hippocampus. Using single-spine calcium imaging and electrophysiology, we found no effect of the TRPM4 antagonists 9-phenanthrol and glibenclamide on synaptic transmission in hippocampal slices from healthy mice. In contrast, glibenclamide but not 9-phenanthrol reduced excitatory synaptic potentials in slices from EAE mice, an effect that was absent in slices from EAE mice lacking TRPM4. We conclude that TRPM4 plays little role in basal hippocampal synaptic transmission, but a glibenclamide-sensitive TRPM4-mediated contribution to excitatory postsynaptic responses is upregulated at the acute phase of EAE.
Collapse
|
208
|
Kuang H, Liu T, Jiao C, Wang J, Wu S, Wu J, Peng S, Davidson AM, Zeng SX, Lu H, Mostany R. Genetic Deficiency of p53 Leads to Structural, Functional, and Synaptic Deficits in Primary Somatosensory Cortical Neurons of Adult Mice. Front Mol Neurosci 2022; 15:871974. [PMID: 35465090 PMCID: PMC9021533 DOI: 10.3389/fnmol.2022.871974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor p53 plays a crucial role in embryonic neuron development and neurite growth, and its involvement in neuronal homeostasis has been proposed. To better understand how the lack of the p53 gene function affects neuronal activity, spine development, and plasticity, we examined the electrophysiological and morphological properties of layer 5 (L5) pyramidal neurons in the primary somatosensory cortex barrel field (S1BF) by using in vitro whole-cell patch clamp and in vivo two-photon imaging techniques in p53 knockout (KO) mice. We found that the spiking frequency, excitatory inputs, and sag ratio were decreased in L5 pyramidal neurons of p53KO mice. In addition, both in vitro and in vivo morphological analyses demonstrated that dendritic spine density in the apical tuft is decreased in L5 pyramidal neurons of p53KO mice. Furthermore, chronic imaging showed that p53 deletion decreased dendritic spine turnover in steady-state conditions, and prevented the increase in spine turnover associated with whisker stimulation seen in wildtype mice. In addition, the sensitivity of whisker-dependent texture discrimination was impaired in p53KO mice compared with wildtype controls. Together, these results suggest that p53 plays an important role in regulating synaptic plasticity by reducing neuronal excitability and the number of excitatory synapses in S1BF.
Collapse
Affiliation(s)
- Haixia Kuang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Tao Liu Hua Lu Ricardo Mostany
| | - Cui Jiao
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianmei Wang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shinan Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sicong Peng
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew M. Davidson
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shelya X. Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Tao Liu Hua Lu Ricardo Mostany
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- *Correspondence: Tao Liu Hua Lu Ricardo Mostany
| |
Collapse
|
209
|
Hösli L, Zuend M, Bredell G, Zanker HS, Porto de Oliveira CE, Saab AS, Weber B. Direct vascular contact is a hallmark of cerebral astrocytes. Cell Rep 2022; 39:110599. [PMID: 35385728 DOI: 10.1016/j.celrep.2022.110599] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Astrocytes establish extensive networks via gap junctions that allow each astrocyte to connect indirectly to the vasculature. However, the proportion of astrocytes directly associated with blood vessels is unknown. Here, we quantify structural contacts of cortical astrocytes with the vasculature in vivo. We show that all cortical astrocytes are connected to at least one blood vessel. Moreover, astrocytes contact more vessels in deeper cortical layers where vessel density is known to be higher. Further examination of different brain regions reveals that only the hippocampus, which has the lowest vessel density of all investigated brain regions, harbors single astrocytes with no apparent vascular connection. In summary, we show that almost all gray matter astrocytes have direct contact to the vasculature. In addition to the glial network, a direct vascular access may represent a complementary pathway for metabolite uptake and distribution.
Collapse
Affiliation(s)
- Ladina Hösli
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Marc Zuend
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Gustav Bredell
- ETH Zurich, Computer Vision Laboratory, Department of Information Technology and Electrical Engineering, 8092 Zurich, Switzerland
| | - Henri S Zanker
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Carlos Eduardo Porto de Oliveira
- ETH Zurich, Computer Vision Laboratory, Department of Information Technology and Electrical Engineering, 8092 Zurich, Switzerland
| | - Aiman S Saab
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
210
|
Flores-Valle A, Seelig JD. Axial motion estimation and correction for simultaneous multi-plane two-photon calcium imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:2035-2049. [PMID: 35519241 PMCID: PMC9045928 DOI: 10.1364/boe.445775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Two-photon imaging in behaving animals is typically accompanied by brain motion. For functional imaging experiments, for example with genetically encoded calcium indicators, such brain motion induces changes in fluorescence intensity. These motion-related intensity changes or motion artifacts can typically not be separated from neural activity-induced signals. While lateral motion, within the focal plane, can be corrected by computationally aligning images, axial motion, out of the focal plane, cannot easily be corrected. Here, we developed an algorithm for axial motion correction for non-ratiometric calcium indicators taking advantage of simultaneous multi-plane imaging. Using temporally multiplexed beams, recording simultaneously from at least two focal planes at different z positions, and recording a z-stack for each beam as a calibration step, the algorithm separates motion-related and neural activity-induced changes in fluorescence intensity. The algorithm is based on a maximum likelihood optimisation approach; it assumes (as a first order approximation) that no distortions of the sample occurs during axial motion and that neural activity increases uniformly along the optical axis in each region of interest. The developed motion correction approach allows axial motion estimation and correction at high frame rates for isolated structures in the imaging volume in vivo, such as sparse expression patterns in the fruit fly brain.
Collapse
Affiliation(s)
- Andres Flores-Valle
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany
- International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Johannes D Seelig
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany
| |
Collapse
|
211
|
Zong W, Obenhaus HA, Skytøen ER, Eneqvist H, de Jong NL, Vale R, Jorge MR, Moser MB, Moser EI. Large-scale two-photon calcium imaging in freely moving mice. Cell 2022; 185:1240-1256.e30. [PMID: 35305313 PMCID: PMC8970296 DOI: 10.1016/j.cell.2022.02.017] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
We developed a miniaturized two-photon microscope (MINI2P) for fast, high-resolution, multiplane calcium imaging of over 1,000 neurons at a time in freely moving mice. With a microscope weight below 3 g and a highly flexible connection cable, MINI2P allowed stable imaging with no impediment of behavior in a variety of assays compared to untethered, unimplanted animals. The improved cell yield was achieved through a optical system design featuring an enlarged field of view (FOV) and a microtunable lens with increased z-scanning range and speed that allows fast and stable imaging of multiple interleaved planes, as well as 3D functional imaging. Successive imaging across multiple, adjacent FOVs enabled recordings from more than 10,000 neurons in the same animal. Large-scale proof-of-principle data were obtained from cell populations in visual cortex, medial entorhinal cortex, and hippocampus, revealing spatial tuning of cells in all areas.
Collapse
Affiliation(s)
- Weijian Zong
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway.
| | - Horst A Obenhaus
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Emilie R Skytøen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Hanna Eneqvist
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Nienke L de Jong
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Ruben Vale
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Marina R Jorge
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway.
| |
Collapse
|
212
|
Rieder P, Gobbo D, Stopper G, Welle A, Damo E, Kirchhoff F, Scheller A. Astrocytes and Microglia Exhibit Cell-Specific Ca2+ Signaling Dynamics in the Murine Spinal Cord. Front Mol Neurosci 2022; 15:840948. [PMID: 35431801 PMCID: PMC9006623 DOI: 10.3389/fnmol.2022.840948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/31/2022] Open
Abstract
The spinal cord is the main pathway connecting brain and peripheral nervous system. Its functionality relies on the orchestrated activity of both neurons and glial cells. To date, most advancement in understanding the spinal cord inner mechanisms has been made either by in vivo exposure of its dorsal surface through laminectomy or by acute ex vivo slice preparation, likely affecting spinal cord physiology in virtue of the necessary extensive manipulation of the spinal cord tissue. This is especially true of cells immediately responding to alterations of the surrounding environment, such as microglia and astrocytes, reacting within seconds or minutes and for up to several days after the original insult. Ca2+ signaling is considered one of the most immediate, versatile, and yet elusive cellular responses of glia. Here, we induced the cell-specific expression of the genetically encoded Ca2+ indicator GCaMP3 to evaluate spontaneous intracellular Ca2+ signaling in astrocytes and microglia. Ca2+ signals were then characterized in acute ex vivo (both gray and white matter) as well as in chronic in vivo (white matter) preparations using MSparkles, a MATLAB-based software for automatic detection and analysis of fluorescence events. As a result, we were able to segregate distinct astroglial and microglial Ca2+ signaling patterns along with method-specific Ca2+ signaling alterations, which must be taken into consideration in the reliable evaluation of any result obtained in physiological as well as pathological conditions. Our study revealed a high degree of Ca2+ signaling diversity in glial cells of the murine spinal cord, thus adding to the current knowledge of the astonishing glial heterogeneity and cell-specific Ca2+ dynamics in non-neuronal networks.
Collapse
Affiliation(s)
- Phillip Rieder
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Gebhard Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anna Welle
- Department of Genetics and Epigenetics, University of Saarland, Saarbrücken, Germany
| | - Elisa Damo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
- *Correspondence: Anja Scheller,
| |
Collapse
|
213
|
Formozov A, Chini M, Dieter A, Yang W, Pöpplau JA, Hanganu-Opatz IL, Wiegert JS. Calcium Imaging and Electrophysiology of hippocampal Activity under Anesthesia and natural Sleep in Mice. Sci Data 2022; 9:113. [PMID: 35351935 PMCID: PMC8964694 DOI: 10.1038/s41597-022-01244-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
The acute effects of anesthesia and their underlying mechanisms are still not fully understood. Thus, comprehensive analysis and efficient generalization require their description in various brain regions. Here we describe a large-scale, annotated collection of 2-photon calcium imaging data and multi-electrode, extracellular electrophysiological recordings in CA1 of the murine hippocampus under three distinct anesthetics (Isoflurane, Ketamine/Xylazine and Medetomidine/Midazolam/Fentanyl), during natural sleep, and wakefulness. We cover several aspects of data quality standardization and provide a set of tools for autonomous validation, along with analysis workflows for reuse and data exploration. The datasets described here capture various aspects of neural activity in hundreds of pyramidal cells at single cell resolution. In addition to relevance for basic biological research, the dataset may find utility in computational neuroscience as a benchmark for models of anesthesia and sleep.
Collapse
Affiliation(s)
- Andrey Formozov
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Alexander Dieter
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Wei Yang
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
214
|
Singh AP, Wu P, Ryabichko S, Raimundo J, Swan M, Wieschaus E, Gregor T, Toettcher JE. Optogenetic control of the Bicoid morphogen reveals fast and slow modes of gap gene regulation. Cell Rep 2022; 38:110543. [PMID: 35320726 PMCID: PMC9019726 DOI: 10.1016/j.celrep.2022.110543] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Developmental patterning networks are regulated by multiple inputs and feedback connections that rapidly reshape gene expression, limiting the information that can be gained solely from slow genetic perturbations. Here we show that fast optogenetic stimuli, real-time transcriptional reporters, and a simplified genetic background can be combined to reveal the kinetics of gene expression downstream of a developmental transcription factor in vivo. We engineer light-controlled versions of the Bicoid transcription factor and study their effects on downstream gap genes in embryos. Our results recapitulate known relationships, including rapid Bicoid-dependent transcription of giant and hunchback and delayed repression of Krüppel. In addition, we find that the posterior pattern of knirps exhibits a quick but inverted response to Bicoid perturbation, suggesting a noncanonical role for Bicoid in directly suppressing knirps transcription. Acute modulation of transcription factor concentration while recording output gene activity represents a powerful approach for studying developmental gene networks in vivo.
Collapse
Affiliation(s)
- Anand P Singh
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ping Wu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sergey Ryabichko
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - João Raimundo
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael Swan
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Eric Wieschaus
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Thomas Gregor
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Physics, Princeton University, Princeton, NJ 08544, USA.
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
215
|
Hösli L, Binini N, Ferrari KD, Thieren L, Looser ZJ, Zuend M, Zanker HS, Berry S, Holub M, Möbius W, Ruhwedel T, Nave KA, Giaume C, Weber B, Saab AS. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning. Cell Rep 2022; 38:110484. [PMID: 35263595 DOI: 10.1016/j.celrep.2022.110484] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity, and memory are still poorly explored. Astrocytes form large intercellular networks by gap junction coupling, mainly composed of two gap junction channel proteins, connexin 30 (Cx30) and connexin 43 (Cx43). To circumvent developmental perturbations and to test whether astrocytic gap junction coupling is required for hippocampal neural circuit function and behavior, we generate and study inducible, astrocyte-specific Cx30 and Cx43 double knockouts. Surprisingly, disrupting astrocytic coupling in adult mice results in broad activation of astrocytes and microglia, without obvious signs of pathology. We show that hippocampal CA1 neuron excitability, excitatory synaptic transmission, and long-term potentiation are significantly affected. Moreover, behavioral inspection reveals deficits in sensorimotor performance and a complete lack of spatial learning and memory. Together, our findings establish that astrocytic connexins and an intact astroglial network in the adult brain are vital for neural homeostasis, plasticity, and spatial cognition.
Collapse
Affiliation(s)
- Ladina Hösli
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Noemi Binini
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Laetitia Thieren
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Marc Zuend
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Henri S Zanker
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Stewart Berry
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Martin Holub
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Wiebke Möbius
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Torben Ruhwedel
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, 75231 Paris Cedex 05, France
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
216
|
Weiler S, Guggiana Nilo D, Bonhoeffer T, Hübener M, Rose T, Scheuss V. Orientation and direction tuning align with dendritic morphology and spatial connectivity in mouse visual cortex. Curr Biol 2022; 32:1743-1753.e7. [PMID: 35276098 DOI: 10.1016/j.cub.2022.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 01/21/2023]
Abstract
The functional properties of neocortical pyramidal cells (PCs), such as direction and orientation selectivity in visual cortex, predominantly derive from their excitatory and inhibitory inputs. For layer 2/3 (L2/3) PCs, the detailed relationship between their functional properties and how they sample and integrate information across cortical space is not fully understood. Here, we study this relationship by combining functional in vivo two-photon calcium imaging, in vitro functional circuit mapping, and dendritic reconstruction of the same L2/3 PCs in mouse visual cortex. Our work reveals direct correlations between dendritic morphology and functional input connectivity and the orientation as well as direction tuning of L2/3 PCs. First, the apical dendritic tree is elongated along the postsynaptic preferred orientation, considering the representation of visual space in the cortex as determined by its retinotopic organization. Additionally, sharply orientation-tuned cells show a less complex apical tree compared with broadly tuned cells. Second, in direction-selective L2/3 PCs, the spatial distribution of presynaptic partners is offset from the soma opposite to the preferred direction. Importantly, although the presynaptic excitatory and inhibitory input distributions spatially overlap on average, the excitatory input distribution is spatially skewed along the preferred direction, in contrast to the inhibitory distribution. Finally, the degree of asymmetry is positively correlated with the direction selectivity of the postsynaptic L2/3 PC. These results show that the dendritic architecture and the spatial arrangement of excitatory and inhibitory presynaptic cells of L2/3 PCs play important roles in shaping their orientation and direction tuning.
Collapse
Affiliation(s)
- Simon Weiler
- Max Planck Institute of Neurobiology, Martinsried, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg, Germany
| | | | | | - Mark Hübener
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Tobias Rose
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Volker Scheuss
- Max Planck Institute of Neurobiology, Martinsried, Germany; Department of Psychiatry, Ludwig-Maximilians-Universität München, Nussbaumstr. 7, 80336 München, Germany.
| |
Collapse
|
217
|
Handley EE, Reale LA, Chuckowree JA, Dyer MS, Barnett GL, Clark CM, Bennett W, Dickson TC, Blizzard CA. Estrogen Enhances Dendrite Spine Function and Recovers Deficits in Neuroplasticity in the prpTDP-43A315T Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:2962-2976. [PMID: 35249200 PMCID: PMC9016039 DOI: 10.1007/s12035-022-02742-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/09/2022] [Indexed: 10/31/2022]
Abstract
AbstractAmyotrophic lateral sclerosis (ALS) attacks the corticomotor system, with motor cortex function affected early in disease. Younger females have a lower relative risk of succumbing to ALS than males and older females, implicating a role for female sex hormones in disease progression. However, the mechanisms driving this dimorphic incidence are still largely unknown. We endeavoured to determine if estrogen mitigates disease progression and pathogenesis, focussing upon the dendritic spine as a site of action. Using two-photon live imaging we identify, in the prpTDP-43A315T mouse model of ALS, that dendritic spines in the male motor cortex have a reduced capacity for remodelling than their wild-type controls. In contrast, females show higher capacity for remodelling, with peak plasticity corresponding to highest estrogen levels during the estrous cycle. Estrogen manipulation through ovariectomies and estrogen replacement with 17β estradiol in vivo was found to significantly alter spine density and mitigate disease severity. Collectively, these findings reveal that synpatic plasticity is reduced in ALS, which can be amelioriated with estrogen, in conjuction with improved disease outcomes.
Collapse
|
218
|
Stress vulnerability shapes disruption of motor cortical neuroplasticity. Transl Psychiatry 2022; 12:91. [PMID: 35246507 PMCID: PMC8897461 DOI: 10.1038/s41398-022-01855-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic stress is a major cause of neuropsychiatric conditions such as depression. Stress vulnerability varies individually in mice and humans, measured by behavioral changes. In contrast to affective symptoms, motor retardation as a consequence of stress is not well understood. We repeatedly imaged dendritic spines of the motor cortex in Thy1-GFP M mice before and after chronic social defeat stress. Susceptible and resilient phenotypes were discriminated by symptom load and their motor learning abilities were assessed by a gross and fine motor task. Stress phenotypes presented individual short- and long-term changes in the hypothalamic-pituitary-adrenal axis as well as distinct patterns of altered motor learning. Importantly, stress was generally accompanied by a marked reduction of spine density in the motor cortex and spine dynamics depended on the stress phenotype. We found astrogliosis and altered microglia morphology along with increased microglia-neuron interaction in the motor cortex of susceptible mice. In cerebrospinal fluid, proteomic fingerprints link the behavioral changes and structural alterations in the brain to neurodegenerative disorders and dysregulated synaptic homeostasis. Our work emphasizes the importance of synaptic integrity and the risk of neurodegeneration within depression as a threat to brain health.
Collapse
|
219
|
Oda R, Shou J, Zhong W, Ozeki Y, Yasui M, Nuriya M. Direct visualization of general anesthetic propofol on neurons by stimulated Raman scattering microscopy. iScience 2022; 25:103936. [PMID: 35252821 PMCID: PMC8894261 DOI: 10.1016/j.isci.2022.103936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
The consensus for the precise mechanism of action of general anesthetics is through allosteric interactions with GABA receptors in neurons. However, it has been speculated that these anesthetics may also interact with the plasma membrane on some level. Owing to the small size of anesthetics, direct visualization of these interactions is difficult to achieve. We demonstrate the ability to directly visualize a deuterated analog of propofol in living cells using stimulated Raman scattering (SRS) microscopy. Our findings support the theory that propofol is highly concentrated and interacts primarily through non-specific binding to the plasma membrane of neurons. Additionally, we show that SRS microscopy can be used to monitor the dynamics of propofol binding using real-time, live-cell imaging. The strategy used to visualize propofol can be applied to other small molecule drugs that have been previously invisible to traditional imaging techniques Multi-modal SRS developed for real-time biological imaging of small molecule substances Propofol primarily concentrates at the cell membrane of neurons Anesthesia dynamics can be monitored in real-time with SRS
Collapse
Affiliation(s)
- Robert Oda
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Corresponding author
| | - Jingwen Shou
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Wenying Zhong
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mutsuo Nuriya
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-1 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Corresponding author
| |
Collapse
|
220
|
Cortical axon sub-population maintains density, but not turnover, of en passant boutons in the aged APP/PS1 amyloidosis model. Neurobiol Aging 2022; 115:29-38. [DOI: 10.1016/j.neurobiolaging.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022]
|
221
|
Zhou A, Engelmann SA, Mihelic SA, Tomar A, Hassan AM, Dunn AK. Evaluation of resonant scanning as a high-speed imaging technique for two-photon imaging of cortical vasculature. BIOMEDICAL OPTICS EXPRESS 2022; 13:1374-1385. [PMID: 35414984 PMCID: PMC8973172 DOI: 10.1364/boe.448473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 05/12/2023]
Abstract
We demonstrate a simple, low-cost two-photon microscope design with both galvo-galvo and resonant-galvo scanning capabilities. We quantify and compare the signal-to-noise ratios and imaging speeds of the galvo-galvo and resonant-galvo scanning modes when used for murine neurovascular imaging. The two scanning modes perform as expected under shot-noise limited detection and are found to achieve comparable signal-to-noise ratios. Resonant-galvo scanning is capable of reaching desired signal-to-noise ratios using less acquisition time when higher excitation power can be used. Given equal excitation power and total pixel dwell time between the two methods, galvo-galvo scanning outperforms resonant-galvo scanning in image quality when detection deviates from being shot-noise limited.
Collapse
Affiliation(s)
- Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Shaun A. Engelmann
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Samuel A. Mihelic
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Alankrit Tomar
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Ahmed M. Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| |
Collapse
|
222
|
Niemeyer JE, Gadamsetty P, Chun C, Sylvester S, Lucas JP, Ma H, Schwartz TH, Aksay ERF. Seizures initiate in zones of relative hyperexcitation in a zebrafish epilepsy model. Brain 2022; 145:2347-2360. [PMID: 35196385 DOI: 10.1093/brain/awac073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/12/2022] Open
Abstract
Seizures are thought to arise from an imbalance of excitatory and inhibitory neuronal activity. While most classical studies suggest excessive excitatory neural activity plays a generative role, some recent findings challenge this view and instead argue that excessive activity in inhibitory neurons initiates seizures. We investigated this question of imbalance in a zebrafish seizure model with two-photon imaging of excitatory and inhibitory neuronal activity throughout the brain using a nuclear-localized calcium sensor. We found that seizures consistently initiated in circumscribed zones of the midbrain before propagating to other brain regions. Excitatory neurons were both more prevalent and more likely to be recruited than inhibitory neurons in initiation as compared with propagation zones. These findings support a mechanistic picture whereby seizures initiate in a region of hyper-excitation, then propagate more broadly once inhibitory restraint in the surround is overcome.
Collapse
Affiliation(s)
- James E Niemeyer
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Poornima Gadamsetty
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chanwoo Chun
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sherika Sylvester
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jacob P Lucas
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emre R F Aksay
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
223
|
Murphy-Baum BL, Awatramani GB. Parallel processing in active dendrites during periods of intense spiking activity. Cell Rep 2022; 38:110412. [PMID: 35196499 DOI: 10.1016/j.celrep.2022.110412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
A neuron's ability to perform parallel computations throughout its dendritic arbor substantially improves its computational capacity. However, during natural patterns of activity, the degree to which computations remain compartmentalized, especially in neurons with active dendritic trees, is not clear. Here, we examine how the direction of moving objects is computed across the bistratified dendritic arbors of ON-OFF direction-selective ganglion cells (DSGCs) in the mouse retina. We find that although local synaptic signals propagate efficiently throughout their dendritic trees, direction-selective computations in one part of the dendritic arbor have little effect on those being made elsewhere. Independent dendritic processing allows DSGCs to compute the direction of moving objects multiple times as they traverse their receptive fields, enabling them to rapidly detect changes in motion direction on a sub-receptive-field basis. These results demonstrate that the parallel processing capacity of neurons can be maintained even during periods of intense synaptic activity.
Collapse
Affiliation(s)
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
224
|
Pulin M, Stockhausen KE, Masseck OA, Kubitschke M, Busse B, Wiegert JS, Oertner TG. Orthogonally-polarized excitation for improved two-photon and second-harmonic-generation microscopy, applied to neurotransmitter imaging with GPCR-based sensors. BIOMEDICAL OPTICS EXPRESS 2022; 13:777-790. [PMID: 35284188 PMCID: PMC8884218 DOI: 10.1364/boe.448760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Fluorescent proteins are excited by light that is polarized parallel to the dipole axis of the chromophore. In two-photon microscopy, polarized light is used for excitation. Here we reveal surprisingly strong polarization sensitivity in a class of genetically encoded, GPCR-based neurotransmitter sensors. In tubular structures such as dendrites, this effect led to a complete loss of membrane signal in dendrites running parallel to the polarization direction of the excitation beam. To reduce the sensitivity to dendritic orientation, we designed an optical device that generates interleaved pulse trains of orthogonal polarization. The passive device, which we inserted in the beam path of an existing two-photon microscope, removed the strong direction bias from fluorescence and second-harmonic (SHG) images. We conclude that for optical measurements of transmitter concentration with GPCR-based sensors, orthogonally polarized excitation is essential.
Collapse
Affiliation(s)
- Mauro Pulin
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Research Group Synaptic Wiring and Information Processing, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Kilian E. Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Olivia A. Masseck
- Synthetic Biology, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Martin Kubitschke
- Synthetic Biology, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - J. Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thomas G. Oertner
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
225
|
Fueser H, Pilger C, Kong C, Huser T, Traunspurger W. Polystyrene microbeads influence lipid storage distribution in C. elegans as revealed by coherent anti-Stokes Raman scattering (CARS) microscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118662. [PMID: 34896225 DOI: 10.1016/j.envpol.2021.118662] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The exposure of Caenorhabditis elegans to polystyrene (PS) beads of a wide range of sizes impedes feeding, by reducing food consumption, and has been linked to inhibitory effects on the reproductive capacity of this nematode, as determined in standardized toxicity tests. Lipid storage provides energy for longevity, growth, and reproduction and may influence the organismal response to stress, including the food deprivation resulting from microplastics exposure. However, the effects of microplastics on energy storage have not been investigated in detail. In this study, C. elegans was exposed to ingestible sizes of PS beads in a standardized toxicity test (96 h) and in a multigeneration test (∼21 days), after which lipid storage was quantitatively analyzed in individual adults using coherent anti-Stokes Raman scattering (CARS) microscopy. The results showed that lipid storage distribution in C. elegans was altered when worms were exposed to microplastics in form of PS beads. For example, when exposed to 0.1-μm PS beads, the lipid droplet count was 93% higher, the droplets were up to 56% larger, and the area of the nematode body covered by lipids was up to 79% higher than in unexposed nematodes. The measured values tended to increase as PS bead sizes decreased. Cultivating the nematodes for 96 h under restricted food conditions in the absence of beads reproduced the altered lipid storage and suggested that it was triggered by food deprivation, including that induced by the dilutional effects of PS bead exposure. Our study demonstrates the utility of CARS microscopy to comprehensively image the smaller microplastics (<10 μm) ingested by nematodes and possibly other biota in investigations of the effects at the level of the individual organism.
Collapse
Affiliation(s)
- Hendrik Fueser
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Christian Pilger
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Cihang Kong
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Thomas Huser
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Walter Traunspurger
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany
| |
Collapse
|
226
|
Aragon MJ, Mok AT, Shea J, Wang M, Kim H, Barkdull N, Xu C, Yapici N. Multiphoton imaging of neural structure and activity in Drosophila through the intact cuticle. eLife 2022; 11:e69094. [PMID: 35073257 PMCID: PMC8846588 DOI: 10.7554/elife.69094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 01/23/2022] [Indexed: 11/13/2022] Open
Abstract
We developed a multiphoton imaging method to capture neural structure and activity in behaving flies through the intact cuticle. Our measurements showed that the fly head cuticle has surprisingly high transmission at wavelengths >900nm, and the difficulty of through-cuticle imaging is due to the air sacs and/or fat tissue underneath the head cuticle. By compressing or removing the air sacs, we performed multiphoton imaging of the fly brain through the intact cuticle. Our anatomical and functional imaging results show that 2- and 3-photon imaging are comparable in superficial regions such as the mushroom body, but 3-photon imaging is superior in deeper regions such as the central complex and beyond. We further demonstrated 2-photon through-cuticle functional imaging of odor-evoked calcium responses from the mushroom body γ-lobes in behaving flies short term and long term. The through-cuticle imaging method developed here extends the time limits of in vivo imaging in flies and opens new ways to capture neural structure and activity from the fly brain.
Collapse
Affiliation(s)
- Max Jameson Aragon
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
| | - Aaron T Mok
- School of Applied and Engineering Physics, Cornell UniversityIthacaUnited States
| | - Jamien Shea
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
| | - Mengran Wang
- School of Applied and Engineering Physics, Cornell UniversityIthacaUnited States
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
| | - Nathan Barkdull
- Department of Physics, University of FloridaGainesvilleUnited States
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell UniversityIthacaUnited States
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
| |
Collapse
|
227
|
Zha F, Zhao J, Chen C, Ji X, Li M, Wu Y, Yao L. A High Neutrophil-to-Lymphocyte Ratio Predicts Higher Risk of Poststroke Cognitive Impairment: Development and Validation of a Clinical Prediction Model. Front Neurol 2022; 12:755011. [PMID: 35111122 PMCID: PMC8801879 DOI: 10.3389/fneur.2021.755011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022] Open
Abstract
ObjectivePoststroke cognitive impairment (PSCI) is a serious complication of stroke. The neutrophil-to-lymphocyte ratio (NLR) is a marker of peripheral inflammation. The relationship between the NLR and PSCI is far from well studied, and the thesis of this study was to assess the predictive value of the NLR in patients with PSCI, and establish and verify the corresponding prediction model based on this relationship.MethodsA total of 367 stroke patients were included in this study. Neutrophils, lymphocytes, and NLRs were measured at baseline, and clinical and neuropsychological assessments were conducted 3 months after stroke. The National Institutes of Health Scale (NIHSS) was used to assess the severity of stroke. A Chinese version of the Mini Mental State Examination (MMSE) was used for the assessment of cognitive function.ResultsAfter three months of follow-up, 87 (23.7%) patients were diagnosed with PSCI. The NLR was significantly higher in PSCI patients than in non-PSCI patients (P < 0.001). Patient age, sex, body mass index, NIHSS scores, and high-density lipoprotein levels also differed in the univariate analysis. In the logistic regression analysis, the NLR was an independent risk factor associated with the patients with PSCI after adjustment for potential confounders (OR = 1.67, 95%CI: 1.21–2.29, P = 0.002). The nomogram based on patient sex, age, NIHSS score, and NLR had good predictive power with an AUC of 0.807. In the validation group, the AUC was 0.816.ConclusionAn increased NLR at admission is associated with PSCI, and the model built with NLR as one of the predictors can increase prognostic information for the early detection of PSCI.
Collapse
|
228
|
Duchemin A, Privat M, Sumbre G. Fourier Motion Processing in the Optic Tectum and Pretectum of the Zebrafish Larva. Front Neural Circuits 2022; 15:814128. [PMID: 35069128 PMCID: PMC8777272 DOI: 10.3389/fncir.2021.814128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
In the presence of moving visual stimuli, the majority of animals follow the Fourier motion energy (luminance), independently of other stimulus features (edges, contrast, etc.). While the behavioral response to Fourier motion has been studied in the past, how Fourier motion is represented and processed by sensory brain areas remains elusive. Here, we investigated how visual moving stimuli with or without the first Fourier component (square-wave signal or missing fundamental signal) are represented in the main visual regions of the zebrafish brain. First, we monitored the larva's optokinetic response (OKR) induced by square-wave and missing fundamental signals. Then, we used two-photon microscopy and GCaMP6f zebrafish larvae to monitor neuronal circuit dynamics in the optic tectum and the pretectum. We observed that both the optic tectum and the pretectum circuits responded to the square-wave gratings. However, only the pretectum responded specifically to the direction of the missing-fundamental signal. In addition, a group of neurons in the pretectum responded to the direction of the behavioral output (OKR), independently of the type of stimulus presented. Our results suggest that the optic tectum responds to the different features of the stimulus (e.g., contrast, spatial frequency, direction, etc.), but does not respond to the direction of motion if the motion information is not coherent (e.g., the luminance and the edges and contrast in the missing-fundamental signal). On the other hand, the pretectum mainly responds to the motion of the stimulus based on the Fourier energy.
Collapse
|
229
|
Chronic neuronal excitation leads to dual metaplasticity in the signaling for structural long-term potentiation. Cell Rep 2022; 38:110153. [PMID: 34986356 DOI: 10.1016/j.celrep.2021.110153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Synaptic plasticity is long-lasting changes in synaptic currents and structure. When neurons are exposed to signals that induce aberrant neuronal excitation, they increase the threshold for the induction of long-term potentiation (LTP), known as metaplasticity. However, the metaplastic regulation of structural LTP (sLTP) remains unclear. We investigate glutamate uncaging/photoactivatable (pa)CaMKII-dependent sLTP induction in hippocampal CA1 neurons after chronic neuronal excitation by GABAA receptor antagonists. We find that the neuronal excitation decreases the glutamate uncaging-evoked Ca2+ influx mediated by GluN2B-containing NMDA receptors and suppresses sLTP induction. In addition, single-spine optogenetic stimulation using paCaMKII indicates the suppression of CaMKII signaling. While the inhibition of Ca2+ influx is protein synthesis independent, the paCaMKII-induced sLTP suppression depends on it. Our findings demonstrate that chronic neuronal excitation suppresses sLTP in two independent ways (i.e., dual inhibition of Ca2+ influx and CaMKII signaling). This dual inhibition mechanism may contribute to robust neuronal protection in excitable environments.
Collapse
|
230
|
Srivastava P, de Rosenroll G, Matsumoto A, Michaels T, Turple Z, Jain V, Sethuramanujam S, Murphy-Baum BL, Yonehara K, Awatramani GB. Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells. eLife 2022; 11:81533. [PMID: 36346388 PMCID: PMC9674338 DOI: 10.7554/elife.81533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The asymmetric summation of kinetically distinct glutamate inputs across the dendrites of retinal 'starburst' amacrine cells is one of the several mechanisms that have been proposed to underlie their direction-selective properties, but experimentally verifying input kinetics has been a challenge. Here, we used two-photon glutamate sensor (iGluSnFR) imaging to directly measure the input kinetics across individual starburst dendrites. We found that signals measured from proximal dendrites were relatively sustained compared to those measured from distal dendrites. These differences were observed across a range of stimulus sizes and appeared to be shaped mainly by excitatory rather than inhibitory network interactions. Temporal deconvolution analysis suggests that the steady-state vesicle release rate was ~3 times larger at proximal sites compared to distal sites. Using a connectomics-inspired computational model, we demonstrate that input kinetics play an important role in shaping direction selectivity at low stimulus velocities. Taken together, these results provide direct support for the 'space-time wiring' model for direction selectivity.
Collapse
Affiliation(s)
| | | | - Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | - Tracy Michaels
- Department of Biology, University of VictoriaVictoriaCanada
| | - Zachary Turple
- Department of Biology, University of VictoriaVictoriaCanada
| | - Varsha Jain
- Department of Biology, University of VictoriaVictoriaCanada
| | | | | | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | | |
Collapse
|
231
|
Lu J, Behbahani AH, Hamburg L, Westeinde EA, Dawson PM, Lyu C, Maimon G, Dickinson MH, Druckmann S, Wilson RI. Transforming representations of movement from body- to world-centric space. Nature 2022; 601:98-104. [PMID: 34912123 PMCID: PMC10759448 DOI: 10.1038/s41586-021-04191-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
When an animal moves through the world, its brain receives a stream of information about the body's translational velocity from motor commands and sensory feedback signals. These incoming signals are referenced to the body, but ultimately, they must be transformed into world-centric coordinates for navigation1,2. Here we show that this computation occurs in the fan-shaped body in the brain of Drosophila melanogaster. We identify two cell types, PFNd and PFNv3-5, that conjunctively encode translational velocity and heading as a fly walks. In these cells, velocity signals are acquired from locomotor brain regions6 and are multiplied with heading signals from the compass system. PFNd neurons prefer forward-ipsilateral movement, whereas PFNv neurons prefer backward-contralateral movement, and perturbing PFNd neurons disrupts idiothetic path integration in walking flies7. Downstream, PFNd and PFNv neurons converge onto hΔB neurons, with a connectivity pattern that pools together heading and translation direction combinations corresponding to the same movement in world-centric space. This network motif effectively performs a rotation of the brain's representation of body-centric translational velocity according to the current heading direction. Consistent with our predictions, we observe that hΔB neurons form a representation of translational velocity in world-centric coordinates. By integrating this representation over time, it should be possible for the brain to form a working memory of the path travelled through the environment8-10.
Collapse
Affiliation(s)
- Jenny Lu
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Amir H Behbahani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lydia Hamburg
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Elena A Westeinde
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Paul M Dawson
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Cheng Lyu
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Rachel I Wilson
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
232
|
Friedrichsen K, Ramakrishna P, Hsiang JC, Valkova K, Kerschensteiner D, Morgan JL. Reconstructing neural circuits using multiresolution correlated light and electron microscopy. Front Neural Circuits 2022; 16:753496. [PMID: 36338333 PMCID: PMC9635852 DOI: 10.3389/fncir.2022.753496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Correlated light and electron microscopy (CLEM) can be used to combine functional and molecular characterizations of neurons with detailed anatomical maps of their synaptic organization. Here we describe a multiresolution approach to CLEM (mrCLEM) that efficiently targets electron microscopy (EM) imaging to optically characterized cells while maintaining optimal tissue preparation for high-throughput EM reconstruction. This approach hinges on the ease with which arrays of sections collected on a solid substrate can be repeatedly imaged at different scales using scanning electron microscopy. We match this multiresolution EM imaging with multiresolution confocal mapping of the aldehyde-fixed tissue. Features visible in lower resolution EM correspond well to features visible in densely labeled optical maps of fixed tissue. Iterative feature matching, starting with gross anatomical correspondences and ending with subcellular structure, can then be used to target high-resolution EM image acquisition and annotation to cells of interest. To demonstrate this technique and range of images used to link live optical imaging to EM reconstructions, we provide a walkthrough of a mouse retinal light to EM experiment as well as some examples from mouse brain slices.
Collapse
Affiliation(s)
- Karl Friedrichsen
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States.,Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Pratyush Ramakrishna
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States.,Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Jen-Chun Hsiang
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States.,Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Katia Valkova
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States.,Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States.,Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Josh L Morgan
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States.,Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
233
|
Dürst CD, Oertner TG. Imaging Synaptic Glutamate Release with Two-Photon Microscopy in Organotypic Slice Cultures. Methods Mol Biol 2022; 2417:205-219. [PMID: 35099802 DOI: 10.1007/978-1-0716-1916-2_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The strength of an excitatory synapse relies on the amount of glutamate it releases and on the amount of postsynaptic receptors responding to the released glutamate. Here we describe a strategy to investigate presynaptic release independently of postsynaptic receptors, using a genetically encoded glutamate indicator (GEGI) such as iGluSnFR to measure synaptic transmission in rodent organotypic slice cultures. We express the iGluSnFR in CA3 pyramidal cells and perform two-photon glutamate imaging on individual Schaffer collateral boutons in CA1. Sparse labeling is achieved via transfection of pyramidal cells in organotypic hippocampal cultures, and imaging of evoked glutamate transients with two-photon laser scanning microscopy. A spiral scan path over an individual presynaptic bouton allows to sample at high temporal resolution the local release site in order to capture the peak of iGluSnFR transients.
Collapse
Affiliation(s)
- Céline D Dürst
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.
- Department of Basic Neurosciences, University Medical Center, Geneva, Switzerland.
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| |
Collapse
|
234
|
Porges E, Jenner D, Taylor AW, Harrison JS, De Grazia A, Hailes AR, Wright KM, Whelan AO, Norville IH, Prior JL, Mahajan S, Rowland CA, Newman TA, Evans ND. Antibiotic-Loaded Polymersomes for Clearance of Intracellular Burkholderia thailandensis. ACS NANO 2021; 15:19284-19297. [PMID: 34739227 PMCID: PMC7612142 DOI: 10.1021/acsnano.1c05309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Melioidosis caused by the facultative intracellular pathogen Burkholderia pseudomallei is difficult to treat due to poor intracellular bioavailability of antibiotics and antibiotic resistance. In the absence of novel compounds, polymersome (PM) encapsulation may increase the efficacy of existing antibiotics and reduce antibiotic resistance by promoting targeted, infection-specific intracellular uptake. In this study, we developed PMs composed of widely available poly(ethylene oxide)-polycaprolactone block copolymers and demonstrated their delivery to intracellular B. thailandensis infection using multispectral imaging flow cytometry (IFC) and coherent anti-Stokes Raman scattering microscopy. Antibiotics were tightly sequestered in PMs and did not inhibit the growth of free-living B. thailandensis. However, on uptake of antibiotic-loaded PMs by infected macrophages, IFC demonstrated PM colocalization with intracellular B. thailandensis and a significant inhibition of their growth. We conclude that PMs are a viable approach for the targeted antibiotic treatment of persistent intracellular Burkholderia infection.
Collapse
Affiliation(s)
- Eleanor Porges
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, SO16 6YD,United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Dominic Jenner
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Adam W. Taylor
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - James S.P. Harrison
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Antonio De Grazia
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Alethia R. Hailes
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, SO16 6YD,United Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Kimberley M. Wright
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Adam O. Whelan
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Isobel H. Norville
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Joann L. Prior
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Sumeet Mahajan
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Caroline A. Rowland
- Defence Science and Technology Laboratory, Chemical, Biological and Radiological Division, Porton Down, Salisbury, SP4 0JQ, United Kingdom
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Nicholas D. Evans
- Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, SO16 6YD,United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
235
|
Heuke S, Rimke I, Sarri B, Gasecka P, Appay R, Legoff L, Volz P, Büttner E, Rigneault H. Shot-noise limited tunable dual-vibrational frequency stimulated Raman scattering microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:7780-7789. [PMID: 35003866 PMCID: PMC8713670 DOI: 10.1364/boe.446348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
We present a shot-noise limited SRS implementation providing a >200 mW per excitation wavelength that is optimized for addressing two molecular vibrations simultaneously. As the key to producing a 3 ps laser of different colors out of a single fs-laser (15 nm FWHM), we use ultra-steep angle-tunable optical filters to extract 2 narrow-band Stokes laser beams (1-2 nm & 1-2 ps), which are separated by 100 cm-1. The center part of the fs-laser is frequency doubled to pump an optical parametric oscillator (OPO). The temporal width of the OPO's output (1 ps) is matched to the Stokes beams and can be tuned from 650-980 nm to address simultaneously two Raman shifts separated by 100 cm-1 that are located between 500 cm-1 and 5000 cm-1. We demonstrate background-free SRS imaging of C-D labeled biological samples (bacteria and Drosophila). Furthermore, high quality virtual stimulated Raman histology imaging of a brain adenocarcinoma is shown for pixel dwell times of 16 µs.
Collapse
Affiliation(s)
- Sandro Heuke
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- contributed equally to this work
| | - Ingo Rimke
- APE Angewandte Physik & Elektronik GmbH, Berlin, Germany
- contributed equally to this work
| | - Barbara Sarri
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- Lightcore Technologies, Cannes, France
| | - Paulina Gasecka
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Romain Appay
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- APHM, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Loic Legoff
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Peter Volz
- APE Angewandte Physik & Elektronik GmbH, Berlin, Germany
| | - Edlef Büttner
- APE Angewandte Physik & Elektronik GmbH, Berlin, Germany
| | - Hervé Rigneault
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- Lightcore Technologies, Cannes, France
| |
Collapse
|
236
|
Schneider-Mizell CM, Bodor AL, Collman F, Brittain D, Bleckert A, Dorkenwald S, Turner NL, Macrina T, Lee K, Lu R, Wu J, Zhuang J, Nandi A, Hu B, Buchanan J, Takeno MM, Torres R, Mahalingam G, Bumbarger DJ, Li Y, Chartrand T, Kemnitz N, Silversmith WM, Ih D, Zung J, Zlateski A, Tartavull I, Popovych S, Wong W, Castro M, Jordan CS, Froudarakis E, Becker L, Suckow S, Reimer J, Tolias AS, Anastassiou CA, Seung HS, Reid RC, da Costa NM. Structure and function of axo-axonic inhibition. eLife 2021; 10:e73783. [PMID: 34851292 PMCID: PMC8758143 DOI: 10.7554/elife.73783] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Inhibitory neurons in mammalian cortex exhibit diverse physiological, morphological, molecular, and connectivity signatures. While considerable work has measured the average connectivity of several interneuron classes, there remains a fundamental lack of understanding of the connectivity distribution of distinct inhibitory cell types with synaptic resolution, how it relates to properties of target cells, and how it affects function. Here, we used large-scale electron microscopy and functional imaging to address these questions for chandelier cells in layer 2/3 of the mouse visual cortex. With dense reconstructions from electron microscopy, we mapped the complete chandelier input onto 153 pyramidal neurons. We found that synapse number is highly variable across the population and is correlated with several structural features of the target neuron. This variability in the number of axo-axonic ChC synapses is higher than the variability seen in perisomatic inhibition. Biophysical simulations show that the observed pattern of axo-axonic inhibition is particularly effective in controlling excitatory output when excitation and inhibition are co-active. Finally, we measured chandelier cell activity in awake animals using a cell-type-specific calcium imaging approach and saw highly correlated activity across chandelier cells. In the same experiments, in vivo chandelier population activity correlated with pupil dilation, a proxy for arousal. Together, these results suggest that chandelier cells provide a circuit-wide signal whose strength is adjusted relative to the properties of target neurons.
Collapse
Affiliation(s)
| | - Agnes L Bodor
- Allen Institute for Brain SciencesSeattleUnited States
| | | | | | - Adam Bleckert
- Allen Institute for Brain SciencesSeattleUnited States
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Computer Science Department, Princeton UniversityPrincetonUnited States
| | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Computer Science Department, Princeton UniversityPrincetonUnited States
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Computer Science Department, Princeton UniversityPrincetonUnited States
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Brain & Cognitive Sciences Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jun Zhuang
- Allen Institute for Brain SciencesSeattleUnited States
| | - Anirban Nandi
- Allen Institute for Brain SciencesSeattleUnited States
| | - Brian Hu
- Allen Institute for Brain SciencesSeattleUnited States
| | | | - Marc M Takeno
- Allen Institute for Brain SciencesSeattleUnited States
| | - Russel Torres
- Allen Institute for Brain SciencesSeattleUnited States
| | | | | | - Yang Li
- Allen Institute for Brain SciencesSeattleUnited States
| | | | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | | | - Dodam Ih
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jonathan Zung
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Aleksandar Zlateski
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Ignacio Tartavull
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Computer Science Department, Princeton UniversityPrincetonUnited States
| | - William Wong
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Manuel Castro
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Lynne Becker
- Allen Institute for Brain SciencesSeattleUnited States
| | - Shelby Suckow
- Allen Institute for Brain SciencesSeattleUnited States
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
- Department of Electrical and Computer Engineering, Rice UniversityHoustonUnited States
| | - Costas A Anastassiou
- Allen Institute for Brain SciencesSeattleUnited States
- Department of Neurology, University of British ColumbiaVancouverCanada
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Computer Science Department, Princeton UniversityPrincetonUnited States
| | - R Clay Reid
- Allen Institute for Brain SciencesSeattleUnited States
| | | |
Collapse
|
237
|
Fratzl A, Koltchev AM, Vissers N, Tan YL, Marques-Smith A, Stempel AV, Branco T, Hofer SB. Flexible inhibitory control of visually evoked defensive behavior by the ventral lateral geniculate nucleus. Neuron 2021; 109:3810-3822.e9. [PMID: 34614420 PMCID: PMC8648186 DOI: 10.1016/j.neuron.2021.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2021] [Accepted: 09/01/2021] [Indexed: 01/23/2023]
Abstract
Animals can choose to act upon, or to ignore, sensory stimuli, depending on circumstance and prior knowledge. This flexibility is thought to depend on neural inhibition, through suppression of inappropriate and disinhibition of appropriate actions. Here, we identified the ventral lateral geniculate nucleus (vLGN), an inhibitory prethalamic area, as a critical node for control of visually evoked defensive responses in mice. The activity of vLGN projections to the medial superior colliculus (mSC) is modulated by previous experience of threatening stimuli, tracks the perceived threat level in the environment, and is low prior to escape from a visual threat. Optogenetic stimulation of the vLGN abolishes escape responses, and suppressing its activity lowers the threshold for escape and increases risk-avoidance behavior. The vLGN most strongly affects visual threat responses, potentially via modality-specific inhibition of mSC circuits. Thus, inhibitory vLGN circuits control defensive behavior, depending on an animal’s prior experience and its anticipation of danger in the environment. Activity of vLGN axons in the mSC reflects the previous experience of threat The vLGN bidirectionally controls escape from visual threat Activating the vLGN specifically reduces the activity of visual units in mSC Activating vLGN axons in the mSC specifically suppresses escape from visual threat
Collapse
Affiliation(s)
- Alex Fratzl
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Alice M Koltchev
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Nicole Vissers
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Yu Lin Tan
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Andre Marques-Smith
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - A Vanessa Stempel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
238
|
Valle AF, Honnef R, Seelig JD. Automated long-term two-photon imaging in head-fixed walking Drosophila. J Neurosci Methods 2021; 368:109432. [PMID: 34861285 DOI: 10.1016/j.jneumeth.2021.109432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The brain of Drosophila shows dynamics at multiple timescales, from the millisecond range of fast voltage or calcium transients to functional and structural changes occurring over multiple days. To relate such dynamics to behavior requires monitoring neural circuits across these multiple timescales in behaving animals. NEW METHOD Here, we develop a technique for automated long-term two-photon imaging in fruit flies, during wakefulness and extended bouts of immobility, as typically observed during sleep, navigating in virtual reality over up to seven days. The method is enabled by laser surgery, a microrobotic arm for controlling forceps for dissection assistance, an automated feeding robot, as well as volumetric, simultaneous multiplane imaging. RESULTS The approach is validated in the fly's head direction system and walking behavior as well a neural activity are recorded. The head direction system tracks the fly's walking direction over multiple days. COMPARISON WITH EXISTING METHODS In comparison with previous head-fixed preparations, the time span over which tethered behavior and neural activity can be recorded at the same time is extended from hours to days. Additionally, the reproducibility and ease of dissections are improved compared with manual approaches. Different from previous laser surgery approaches, only continuous wave lasers are required. Lastly, an automated feeding system allows continuously maintaining the fly for several days in the virtual reality setup without user intervention. CONCLUSIONS Imaging in behaving flies over multiple timescales will be useful for understanding circadian activity, learning and long-term memory, or sleep.
Collapse
Affiliation(s)
| | - Rolf Honnef
- Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - Johannes D Seelig
- Center of Advanced European Studies and Research (caesar), Bonn, Germany.
| |
Collapse
|
239
|
He XJ, Patel J, Weiss CE, Ma X, Bloodgood BL, Banghart MR. Convergent, functionally independent signaling by mu and delta opioid receptors in hippocampal parvalbumin interneurons. eLife 2021; 10:69746. [PMID: 34787079 PMCID: PMC8716102 DOI: 10.7554/elife.69746] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Functional interactions between G protein-coupled receptors are poised to enhance neuronal sensitivity to neuromodulators and therapeutic drugs. Mu and Delta opioid receptors (MORs and DORs) can interact when overexpressed in the same cells, but whether co-expression of endogenous MORs and DORs in neurons leads to functional interactions is unclear. Here, in mice, we show that both MORs and DORs inhibit parvalbumin-expressing basket cells (PV-BCs) in hippocampal CA1 through partially occlusive signaling pathways that terminate on somato-dendritic potassium channels and presynaptic calcium channels. Using photoactivatable opioid neuropeptides, we find that DORs dominate the response to enkephalin in terms of both ligand-sensitivity and kinetics, which may be due to relatively low expression levels of MOR. Opioid-activated potassium channels do not show heterologous desensitization, indicating that MORs and DORs signal independently. In a direct test for heteromeric functional interactions, the DOR antagonist TIPP-Psi does not alter the kinetics or potency of either the potassium channel or synaptic responses to photorelease of the MOR agonist DAMGO. Thus, aside from largely redundant and convergent signaling, MORs and DORs do not functionally interact in PV-BCs in a way that impacts somato-dendritic potassium currents or synaptic transmission. These findings imply that crosstalk between MORs and DORs, either in the form of physical interactions or synergistic intracellular signaling, is not a preordained outcome of co-expression in neurons.
Collapse
Affiliation(s)
- Xinyi Jenny He
- Biological Sciences, University of California San Diego, La Jolla, United States
| | - Janki Patel
- University of California San Diego, San Diego, United States
| | - Connor E Weiss
- University of California San Diego, San Diego, United States
| | - Xiang Ma
- University of California San Diego, San Diego, United States
| | - Brenda L Bloodgood
- Biological Sciences, University of California San Diego, La Jolla, United States
| | | |
Collapse
|
240
|
Koay SA, Charles AS, Thiberge SY, Brody CD, Tank DW. Sequential and efficient neural-population coding of complex task information. Neuron 2021; 110:328-349.e11. [PMID: 34776042 DOI: 10.1016/j.neuron.2021.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
Recent work has highlighted that many types of variables are represented in each neocortical area. How can these many neural representations be organized together without interference and coherently maintained/updated through time? We recorded from excitatory neural populations in posterior cortices as mice performed a complex, dynamic task involving multiple interrelated variables. The neural encoding implied that highly correlated task variables were represented by less-correlated neural population modes, while pairs of neurons exhibited a spectrum of signal correlations. This finding relates to principles of efficient coding, but notably utilizes neural population modes as the encoding unit and suggests partial whitening of task-specific information where different variables are represented with different signal-to-noise levels. Remarkably, this encoding function was multiplexed with sequential neural dynamics yet reliably followed changes in task-variable correlations throughout the trial. We suggest that neural circuits can implement time-dependent encodings in a simple way using random sequential dynamics as a temporal scaffold.
Collapse
Affiliation(s)
- Sue Ann Koay
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Adam S Charles
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Stephan Y Thiberge
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ 08544, USA
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
241
|
Melander JB, Nayebi A, Jongbloets BC, Fortin DA, Qin M, Ganguli S, Mao T, Zhong H. Distinct in vivo dynamics of excitatory synapses onto cortical pyramidal neurons and parvalbumin-positive interneurons. Cell Rep 2021; 37:109972. [PMID: 34758304 PMCID: PMC8631347 DOI: 10.1016/j.celrep.2021.109972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Cortical function relies on the balanced activation of excitatory and inhibitory neurons. However, little is known about the organization and dynamics of shaft excitatory synapses onto cortical inhibitory interneurons. Here, we use the excitatory postsynaptic marker PSD-95, fluorescently labeled at endogenous levels, as a proxy for excitatory synapses onto layer 2/3 pyramidal neurons and parvalbumin-positive (PV+) interneurons in the barrel cortex of adult mice. Longitudinal in vivo imaging under baseline conditions reveals that, although synaptic weights in both neuronal types are log-normally distributed, synapses onto PV+ neurons are less heterogeneous and more stable. Markov model analyses suggest that the synaptic weight distribution is set intrinsically by ongoing cell-type-specific dynamics, and substantial changes are due to accumulated gradual changes. Synaptic weight dynamics are multiplicative, i.e., changes scale with weights, although PV+ synapses also exhibit an additive component. These results reveal that cell-type-specific processes govern cortical synaptic strengths and dynamics. Melander et al. use a genetic strategy to visualize excitatory neuronal connections that cannot be inferred from morphology, and they monitor how the connections change over weeks in mice. They find distinct characteristics between synapses onto cells that “suppress” brain activity and those onto cells that “excite” brain activity.
Collapse
Affiliation(s)
- Joshua B Melander
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Neurosciences PhD Program, Stanford University, Stanford, CA 94305, USA
| | - Aran Nayebi
- Neurosciences PhD Program, Stanford University, Stanford, CA 94305, USA
| | - Bart C Jongbloets
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dale A Fortin
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
242
|
Thapa P, Stewart R, Sepela RJ, Vivas O, Parajuli LK, Lillya M, Fletcher-Taylor S, Cohen BE, Zito K, Sack JT. EVAP: A two-photon imaging tool to study conformational changes in endogenous Kv2 channels in live tissues. J Gen Physiol 2021; 153:212666. [PMID: 34581724 PMCID: PMC8480965 DOI: 10.1085/jgp.202012858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
A primary goal of molecular physiology is to understand how conformational changes of proteins affect the function of cells, tissues, and organisms. Here, we describe an imaging method for measuring the conformational changes of the voltage sensors of endogenous ion channel proteins within live tissue, without genetic modification. We synthesized GxTX-594, a variant of the peptidyl tarantula toxin guangxitoxin-1E, conjugated to a fluorophore optimal for two-photon excitation imaging through light-scattering tissue. We term this tool EVAP (Endogenous Voltage-sensor Activity Probe). GxTX-594 targets the voltage sensors of Kv2 proteins, which form potassium channels and plasma membrane–endoplasmic reticulum junctions. GxTX-594 dynamically labels Kv2 proteins on cell surfaces in response to voltage stimulation. To interpret dynamic changes in fluorescence intensity, we developed a statistical thermodynamic model that relates the conformational changes of Kv2 voltage sensors to degree of labeling. We used two-photon excitation imaging of rat brain slices to image Kv2 proteins in neurons. We found puncta of GxTX-594 on hippocampal CA1 neurons that responded to voltage stimulation and retain a voltage response roughly similar to heterologously expressed Kv2.1 protein. Our findings show that EVAP imaging methods enable the identification of conformational changes of endogenous Kv2 voltage sensors in tissue.
Collapse
Affiliation(s)
- Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Robert Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Rebecka J Sepela
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Oscar Vivas
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Laxmi K Parajuli
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Mark Lillya
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Sebastian Fletcher-Taylor
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA.,Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
243
|
Lee FK, Lee JC, Shui B, Reining S, Jibilian M, Small DM, Jones JS, Allan-Rahill NH, Lamont MR, Rizzo MA, Tajada S, Navedo MF, Santana LF, Nishimura N, Kotlikoff MI. Genetically engineered mice for combinatorial cardiovascular optobiology. eLife 2021; 10:67858. [PMID: 34711305 PMCID: PMC8555989 DOI: 10.7554/elife.67858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023] Open
Abstract
Optogenetic effectors and sensors provide a novel real-time window into complex physiological processes, enabling determination of molecular signaling processes within functioning cellular networks. However, the combination of these optical tools in mice is made practical by construction of genetic lines that are optically compatible and genetically tractable. We present a new toolbox of 21 mouse lines with lineage-specific expression of optogenetic effectors and sensors for direct biallelic combination, avoiding the multiallelic requirement of Cre recombinase -mediated DNA recombination, focusing on models relevant for cardiovascular biology. Optogenetic effectors (11 lines) or Ca2+ sensors (10 lines) were selectively expressed in cardiac pacemaker cells, cardiomyocytes, vascular endothelial and smooth muscle cells, alveolar epithelial cells, lymphocytes, glia, and other cell types. Optogenetic effector and sensor function was demonstrated in numerous tissues. Arterial/arteriolar tone was modulated by optical activation of the second messengers InsP3 (optoα1AR) and cAMP (optoß2AR), or Ca2+-permeant membrane channels (CatCh2) in smooth muscle (Acta2) and endothelium (Cdh5). Cardiac activation was separately controlled through activation of nodal/conducting cells or cardiac myocytes. We demonstrate combined effector and sensor function in biallelic mouse crosses: optical cardiac pacing and simultaneous cardiomyocyte Ca2+ imaging in Hcn4BAC-CatCh2/Myh6-GCaMP8 crosses. These experiments highlight the potential of these mice to explore cellular signaling in vivo, in complex tissue networks.
Collapse
Affiliation(s)
- Frank K Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Jane C Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Bo Shui
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Shaun Reining
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Megan Jibilian
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - David M Small
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Jason S Jones
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | | | - Michael Re Lamont
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Megan A Rizzo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Sendoa Tajada
- Departments of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Luis Fernando Santana
- Departments of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, United States
| | - Nozomi Nishimura
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| |
Collapse
|
244
|
Tang AD, Bennett W, Bindoff AD, Bolland S, Collins J, Langley RC, Garry MI, Summers JJ, Hinder MR, Rodger J, Canty AJ. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Brain Stimul 2021; 14:1498-1507. [PMID: 34653682 DOI: 10.1016/j.brs.2021.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool commonly used to drive neural plasticity in the young adult and aged brain. Recent data from mouse models have shown that even at subthreshold intensities (0.12 T), rTMS can drive neuronal and glial plasticity in the motor cortex. However, the physiological mechanisms underlying subthreshold rTMS induced plasticity and whether these are altered with normal ageing are unclear. OBJECTIVE To assess the effect of subthreshold rTMS, using the intermittent theta burst stimulation (iTBS) protocol on structural synaptic plasticity in the mouse motor cortex of young and aged mice. METHODS Longitudinal in vivo 2-photon microscopy was used to measure changes to the structural plasticity of pyramidal neuron dendritic spines in the motor cortex following a single train of subthreshold rTMS (in young adult and aged animals) or the same rTMS train administered on 4 consecutive days (in young adult animals only). Data were analysed with Bayesian hierarchical generalized linear regression models and interpreted with the aid of Bayes Factors (BF). RESULTS We found strong evidence (BF > 10) that subthreshold rTMS altered the rate of dendritic spine losses and gains, dependent on the number of stimulation sessions and that a single session of subthreshold rTMS was effective in driving structural synaptic plasticity in both young adult and aged mice. CONCLUSION These findings provide further evidence that rTMS drives synaptic plasticity in the brain and uncovers structural synaptic plasticity as a key mechanism of subthreshold rTMS induced plasticity.
Collapse
Affiliation(s)
- Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia.
| | - William Bennett
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Aidan D Bindoff
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Samuel Bolland
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Jessica Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Ross C Langley
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Michael I Garry
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jeffery J Summers
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, L3 3AF, Liverpool, United Kingdom
| | - Mark R Hinder
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Alison J Canty
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| |
Collapse
|
245
|
Zhuang J, Wang Y, Ouellette ND, Turschak EE, Larsen RS, Takasaki KT, Daigle TL, Tasic B, Waters J, Zeng H, Reid RC. Laminar distribution and arbor density of two functional classes of thalamic inputs to primary visual cortex. Cell Rep 2021; 37:109826. [PMID: 34644562 PMCID: PMC8572142 DOI: 10.1016/j.celrep.2021.109826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 11/02/2022] Open
Abstract
Motion/direction-sensitive and location-sensitive neurons are the two major functional types in mouse visual thalamus that project to the primary visual cortex (V1). It is under debate whether motion/direction-sensitive inputs preferentially target the superficial layers in V1, as opposed to the location-sensitive inputs, which preferentially target the middle layers. Here, by using calcium imaging to measure the activity of motion/direction-sensitive and location-sensitive axons in V1, we find evidence against these cell-type-specific laminar biases at the population level. Furthermore, using an approach to reconstruct axon arbors with identified in vivo response types, we show that, at the single-axon level, the motion/direction-sensitive axons project more densely to the middle layers than the location-sensitive axons. Overall, our results demonstrate that motion/direction-sensitive thalamic neurons project extensively to the middle layers of V1 at both the population and single-cell levels, providing further insight into the organization of thalamocortical projection in the mouse visual system.
Collapse
Affiliation(s)
- Jun Zhuang
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Yun Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Rylan S Larsen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
246
|
Cheriyamkunnel SJ, Rose S, Jacob PF, Blackburn LA, Glasgow S, Moorse J, Winstanley M, Moynihan PJ, Waddell S, Rezaval C. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Curr Biol 2021; 31:4231-4245.e4. [PMID: 34358444 PMCID: PMC8538064 DOI: 10.1016/j.cub.2021.07.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 01/28/2023]
Abstract
Animals must express the appropriate behavior that meets their most pressing physiological needs and their environmental context. However, it is currently unclear how alternative behavioral options are evaluated and appropriate actions are prioritized. Here, we describe how fruit flies choose between feeding and courtship; two behaviors necessary for survival and reproduction. We show that sex- and food-deprived male flies prioritize feeding over courtship initiation, and manipulation of food quality or the animal's internal state fine-tunes this decision. We identify the tyramine signaling pathway as an essential mediator of this decision. Tyramine biosynthesis is regulated by the fly's nutritional state and acts as a satiety signal, favoring courtship over feeding. Tyramine inhibits a subset of feeding-promoting tyramine receptor (TyrR)-expressing neurons and activates P1 neurons, a known command center for courtship. Conversely, the perception of a nutritious food source activates TyrR neurons and inhibits P1 neurons. Therefore, TyrR and P1 neurons are oppositely modulated by starvation, via tyramine levels, and food availability. We propose that antagonistic co-regulation of neurons controlling alternative actions is key to prioritizing competing drives in a context- dependent manner.
Collapse
Affiliation(s)
| | - Saloni Rose
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Pedro F Jacob
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | | | - Shaleen Glasgow
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jacob Moorse
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mike Winstanley
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
247
|
Abdolghader P, Ridsdale A, Grammatikopoulos T, Resch G, Légaré F, Stolow A, Pegoraro AF, Tamblyn I. Unsupervised hyperspectral stimulated Raman microscopy image enhancement: denoising and segmentation via one-shot deep learning. OPTICS EXPRESS 2021; 29:34205-34219. [PMID: 34809216 DOI: 10.1364/oe.439662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Hyperspectral stimulated Raman scattering (SRS) microscopy is a label-free technique for biomedical and mineralogical imaging which can suffer from low signal-to-noise ratios. Here we demonstrate the use of an unsupervised deep learning neural network for rapid and automatic denoising of SRS images: UHRED (Unsupervised Hyperspectral Resolution Enhancement and Denoising). UHRED is capable of "one-shot" learning; only one hyperspectral image is needed, with no requirements for training on previously labelled datasets or images. Furthermore, by applying a k-means clustering algorithm to the processed data, we demonstrate automatic, unsupervised image segmentation, yielding, without prior knowledge of the sample, intuitive chemical species maps, as shown here for a lithium ore sample.
Collapse
|
248
|
Susano Pinto DM, Phillips MA, Hall N, Mateos-Langerak J, Stoychev D, Susano Pinto T, Booth MJ, Davis I, Dobbie IM. Python-Microscope - a new open-source Python library for the control of microscopes. J Cell Sci 2021; 134:jcs258955. [PMID: 34448002 PMCID: PMC8520730 DOI: 10.1242/jcs.258955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/23/2021] [Indexed: 01/25/2023] Open
Abstract
Custom-built microscopes often require control of multiple hardware devices and precise hardware coordination. It is also desirable to have a solution that is scalable to complex systems and that is translatable between components from different manufacturers. Here we report Python-Microscope, a free and open-source Python library for high-performance control of arbitrarily complex and scalable custom microscope systems. Python-Microscope offers simple to use Python-based tools, abstracting differences between physical devices by providing a defined interface for different device types. Concrete implementations are provided for a range of specific hardware, and a framework exists for further expansion. Python-Microscope supports the distribution of devices over multiple computers while maintaining synchronisation via highly precise hardware triggers. We discuss the architectural features of Python-Microscope that overcome the performance problems often raised against Python and demonstrate the different use cases that drove its design: integration with user-facing projects, namely the Microscope-Cockpit project; control of complex microscopes at high speed while using the Python programming language; and use as a microscope simulation tool for software development.
Collapse
Affiliation(s)
- David Miguel Susano Pinto
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mick A. Phillips
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Nicholas Hall
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Julio Mateos-Langerak
- IGH, University of Montpellier, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Danail Stoychev
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tiago Susano Pinto
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Martin J. Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Ilan Davis
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ian M. Dobbie
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
249
|
Streich L, Boffi JC, Wang L, Alhalaseh K, Barbieri M, Rehm R, Deivasigamani S, Gross CT, Agarwal A, Prevedel R. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy. Nat Methods 2021; 18:1253-1258. [PMID: 34594033 PMCID: PMC8490155 DOI: 10.1038/s41592-021-01257-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Multiphoton microscopy has become a powerful tool with which to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. However, tissue scattering, optical aberrations and motion artifacts degrade the imaging performance at depth. Here we describe a minimally invasive intravital imaging methodology based on three-photon excitation, indirect adaptive optics (AO) and active electrocardiogram gating to advance deep-tissue imaging. Our modal-based, sensorless AO approach is robust to low signal-to-noise ratios as commonly encountered in deep scattering tissues such as the mouse brain, and permits AO correction over large axial fields of view. We demonstrate near-diffraction-limited imaging of deep cortical spines and (sub)cortical dendrites up to a depth of 1.4 mm (the edge of the mouse CA1 hippocampus). In addition, we show applications to deep-layer calcium imaging of astrocytes, including fibrous astrocytes that reside in the highly scattering corpus callosum.
Collapse
Affiliation(s)
- Lina Streich
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Juan Carlos Boffi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Khaleel Alhalaseh
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Matteo Barbieri
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ronja Rehm
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Cornelius T Gross
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Amit Agarwal
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
250
|
El Amki M, Glück C, Binder N, Middleham W, Wyss MT, Weiss T, Meister H, Luft A, Weller M, Weber B, Wegener S. Neutrophils Obstructing Brain Capillaries Are a Major Cause of No-Reflow in Ischemic Stroke. Cell Rep 2021; 33:108260. [PMID: 33053341 DOI: 10.1016/j.celrep.2020.108260] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Despite successful clot retrieval in large vessel occlusion stroke, ∼50% of patients have an unfavorable clinical outcome. The mechanisms underlying this functional reperfusion failure remain unknown, and therapeutic options are lacking. In the thrombin-model of middle cerebral artery (MCA) stroke in mice, we show that, despite successful thrombolytic recanalization of the proximal MCA, cortical blood flow does not fully recover. Using in vivo two-photon imaging, we demonstrate that this is due to microvascular obstruction of ∼20%-30% of capillaries in the infarct core and penumbra by neutrophils adhering to distal capillary segments. Depletion of circulating neutrophils using an anti-Ly6G antibody restores microvascular perfusion without increasing the rate of hemorrhagic complications. Strikingly, infarct size and functional deficits are smaller in mice treated with anti-Ly6G. Thus, we propose neutrophil stalling of brain capillaries to contribute to reperfusion failure, which offers promising therapeutic avenues for ischemic stroke.
Collapse
Affiliation(s)
- Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Chaim Glück
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Nadine Binder
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - William Middleham
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Matthias T Wyss
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Hanna Meister
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Andreas Luft
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland
| | - Bruno Weber
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland.
| | - Susanne Wegener
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, Switzerland.
| |
Collapse
|