201
|
Singh SK, Wu X, Shao C, Zhang H. Microbial enhancement of plant nutrient acquisition. STRESS BIOLOGY 2022; 2:3. [PMID: 37676341 PMCID: PMC10441942 DOI: 10.1007/s44154-021-00027-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 09/08/2023]
Abstract
Nutrient availability is a determining factor for crop yield and quality. While fertilization is a major approach for improving plant nutrition, its efficacy can be limited and the production and application of fertilizers frequently bring problems to the environment. A large number of soil microbes are capable of enhancing plant nutrient acquisition and thereby offer environmentally benign solutions to meet the requirements of plant nutrition. Herein we provide summations of how beneficial microbes enhance plant acquisition of macronutrients and micronutrients. We also review recent studies on nutrition-dependent plant-microbe interactions, which highlight the plant's initiative in establishing or deterring the plant-microbe association. By dissecting complex signaling interactions between microbes within the root microbiome, a greater understanding of microbe-enhanced plant nutrition under specific biotic and abiotic stresses will be possible.
Collapse
Affiliation(s)
- Sunil K Singh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xiaoxuan Wu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuyang Shao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
202
|
Cyanobacteria: A Natural Source for Controlling Agricultural Plant Diseases Caused by Fungi and Oomycetes and Improving Plant Growth. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cyanobacteria, also called blue-green algae, are a group of prokaryotic microorganisms largely distributed in both terrestrial and aquatic environments. They produce a wide range of bioactive compounds that are mostly used in cosmetics, animal feed and human food, nutraceutical and pharmaceutical industries, and the production of biofuels. Nowadays, the research concerning the use of cyanobacteria in agriculture has pointed out their potential as biofertilizers and as a source of bioactive compounds, such as phycobiliproteins, for plant pathogen control and as inducers of plant systemic resistance. The use of alternative products in place of synthetic ones for plant disease control is also encouraged by European Directive 2009/128/EC. The present up-to-date review gives an overall view of the recent results on the use of cyanobacteria for both their bioprotective effect against fungal and oomycete phytopathogens and their plant biostimulant properties. We highlight the need for considering several factors for a proper and sustainable management of agricultural crops, ranging from the mechanisms by which cyanobacteria reduce plant diseases and modulate plant resistance to the enhancement of plant growth.
Collapse
|
203
|
PGPR in Biofilm Formation and Antibiotic Production. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
204
|
De Zutter N, Ameye M, Bekaert B, Verwaeren J, De Gelder L, Audenaert K. Uncovering New Insights and Misconceptions on the Effectiveness of Phosphate Solubilizing Rhizobacteria in Plants: A Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:858804. [PMID: 35310667 PMCID: PMC8924522 DOI: 10.3389/fpls.2022.858804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 05/05/2023]
Abstract
As the awareness on the ecological impact of chemical phosphate fertilizers grows, research turns to sustainable alternatives such as the implementation of phosphate solubilizing bacteria (PSB), which make largely immobile phosphorous reserves in soils available for uptake by plants. In this review, we introduce the mechanisms by which plants facilitate P-uptake and illustrate how PSB improve the bioavailability of this nutrient. Next, the effectiveness of PSB on increasing plant biomass and P-uptake is assessed using a meta-analysis approach. Our review demonstrates that improved P-uptake does not always translate in improved plant height and biomass. We show that the effect of PSB on plants does not provide an added benefit when using bacterial consortia compared to single strains. Moreover, the commonly reported species for P-solubilization, Bacillus spp. and Pseudomonas spp., are outperformed by the scarcely implemented Burkholderia spp. Despite the similar responses to PSB in monocots and eudicots, species responsiveness to PSB varies within both clades. Remarkably, the meta-analysis challenges the common belief that PSB are less effective under field conditions compared to greenhouse conditions. This review provides innovative insights and identifies key questions for future research on PSB to promote their implementation in agriculture.
Collapse
Affiliation(s)
- Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Environmental Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- *Correspondence: Noémie De Zutter,
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Boris Bekaert
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan Verwaeren
- Research Unit Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Leen De Gelder
- Laboratory of Environmental Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
205
|
Chu LL, Bae H. Bacterial endophytes from ginseng and their biotechnological application. J Ginseng Res 2022; 46:1-10. [PMID: 35035239 PMCID: PMC8753428 DOI: 10.1016/j.jgr.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ginseng has been well-known as a medicinal plant for thousands of years. Bacterial endophytes ubiquitously colonize the inside tissues of ginseng without any disease symptoms. The identification of bacterial endophytes is conducted through either the internal transcribed spacer region combined with ribosomal sequences or metagenomics. Bacterial endophyte communities differ in their diversity and composition profile, depending on the geographical location, cultivation condition, and tissue, age, and species of ginseng. Bacterial endophytes have a significant effect on the growth of ginseng through indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and nitrogen fixation. Moreover, bacterial endophytes can protect ginseng by acting as biocontrol agents. Interestingly, bacterial endophytes isolated from Panax species have the potential to produce ginsenosides and bioactive metabolites, which can be used in the production of food and medicine. The ability of bacterial endophytes to transform major ginsenosides into minor ginsenosides using β-glucosidase is gaining increasing attention as a promising biotechnology. Recently, metabolic engineering has accelerated the possibilities for potential applications of bacterial endophytes in producing beneficial secondary metabolites.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, Viet Nam
- Bioresource Research Center, Phenikaa University, Hanoi, Viet Nam
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
206
|
Kapadia C, Patel N, Rana A, Vaidya H, Alfarraj S, Ansari MJ, Gafur A, Poczai P, Sayyed RZ. Evaluation of Plant Growth-Promoting and Salinity Ameliorating Potential of Halophilic Bacteria Isolated From Saline Soil. FRONTIERS IN PLANT SCIENCE 2022; 13:946217. [PMID: 35909789 PMCID: PMC9335293 DOI: 10.3389/fpls.2022.946217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 05/09/2023]
Abstract
Among the biotic and abiotic stress affecting the physical, chemical, and biological properties of soil, salinity is a major threat that leads to the desertification of cultivable land throughout the world. The existence of diverse and versatile microbial populations inhabiting the nutrient-rich soil and varied soil conditions affects the soil dynamism. A normal soil constitutes 600 million bacteria belonging to about 20,000 species, which is reduced to 1 million with 5,000-8,000 species in stress conditions. Plant growth-promoting rhizobacteria (PGPR) are in symbiotic association with the plant system, which helps in combating the abiotic stress and increases the overall productivity and yield. These microorganisms are actively associated with varied cellular communication processes through quorum sensing and secondary metabolites such as the production of Indole-3-acetic acid (IAA), exopolysaccharide (EPS) siderophore, ammonia, ACC deaminase, and solubilization of phosphate. The present study focused on the isolation, identification, and characterization of the microorganisms isolated from the seacoast of Dandi, Navsari. Twelve isolates exhibited PGP traits at a high salt concentration of 15-20%. AD9 isolate identified as Bacillus halotolerans showed a higher ammonia production (88 ± 1.73 μg/mL) and phosphate solubilization (86 ± 3.06 μg/mL) at 15% salt concentration, while AD32* (Bacillus sp. clone ADCNO) gave 42.67 ±1.20 μg/mL IAA production at 20% salt concentration. AD2 (Streptomyces sp. clone ADCNB) and AD26 (Achromobacter sp. clone ADCNI) showed ACC deaminase activity of 0.61 ± 0.12 and 0.60 ± 0.04 nM α-ketobutyrate/mg protein/h, respectively. AD32 (Bacillus sp. clone ADCNL) gave a high siderophore activity of 65.40 ± 1.65%. These isolates produced salinity ameliorating traits, total antioxidant activities, and antioxidant enzymes viz. superoxide dismutase (SOD), Glutathione oxidase (GSH), and catalase (CAT). Inoculation of the multipotent isolate that produced PGP traits and salinity ameliorating metabolites promoted the plant growth and development in rice under salinity stress conditions. These results in 50% more root length, 25.00% more plant dry weight, and 41% more tillers compared to its control.
Collapse
Affiliation(s)
- Chintan Kapadia
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
| | - Nafisa Patel
- Naran Lala College of Professional and Applied Sciences, Navsari, India
- *Correspondence: Nafisa Patel
| | - Ankita Rana
- Naran Lala College of Professional and Applied Sciences, Navsari, India
| | - Harihar Vaidya
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Peter Poczai
| | - R. Z. Sayyed
- Department of Entomology, Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL, United States
- Department of Microbiology, PSGVP Mandal's‘S I Patil Arts, G B Patel Science, and STKV Sangh Commerce College, Shahada, India
- R. Z. Sayyed
| |
Collapse
|
207
|
Dave A, Ingle S. Potential of Streptomyces and Its Secondary Metabolites for Biocontrol of Fungal Plant Pathogens. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
208
|
Plant Growth-Promoting Rhizobacteria as Antifungal Antibiotics Producers. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
209
|
Gamage A, Basnayake B, De Costa J, Merah O. Effects of Rice Husk Biochar Coated Urea and Anaerobically Digested Rice Straw Compost on the Soil Fertility, and Cyclic Effect of Phosphorus. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010075. [PMID: 35009079 PMCID: PMC8747290 DOI: 10.3390/plants11010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 05/19/2023]
Abstract
Fertilizer application in rice farming is an essential requirement. Most of the high-yielding varieties which are extensively grown throughout the country require recommended levels of fertilizers to obtain their potential yields. However, effective, and efficient ways of fertilizer application are of utmost importance. Coated fertilizers are used to reduce leaching nutrients and improve the efficiency of fertilizer. However, conventional coated fertilizers such as Sulphur coated urea and urea super granules are not popular among rice farmers in Sri Lanka owing to the high cost. Mixing urea-coated rice husk biochar causes a slow release of nitrogen fertilizer. This coated fertilizer and rice straw compost reduction the cost of importations of nitrogen-based fertilizers per unit area of cultivation. The study aimed to evaluate the effects of rice husk biochar coated urea and anaerobically digested rice straw compost on the soil fertility, and the cyclic effect of phosphorus. Concerning the pot experiment, rice grain yield was significantly higher in Rice husk biochar coated urea, triple super phosphate (TSP), and muriate of potash (MOP) with anaerobically digested rice straw compost. The lowest yield was observed in the control. The release of phosphate shows a cycle effect which is an important finding. Rice husk biochar coated urea can potentially be used as a slow-releasing nitrogen fertilizer. In addition, the urea coated with biochar is less costly and contributes to mitigating pollution of water bodies by inorganic fertilizers (NPK).
Collapse
Affiliation(s)
- Ashoka Gamage
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (A.G.); (O.M.); Tel.: +94-714-430-7141 (A.G.); +33-(0)5-34-32-35-23 (O.M.)
| | - Ben Basnayake
- Department of Agricultural Engineering, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Janendra De Costa
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, 31030 Toulouse, France
- Département Génie Biologique, Université Paul Sabatier, IUTA, 32000 Auch, France
- Correspondence: (A.G.); (O.M.); Tel.: +94-714-430-7141 (A.G.); +33-(0)5-34-32-35-23 (O.M.)
| |
Collapse
|
210
|
Maitra S, Brestic M, Bhadra P, Shankar T, Praharaj S, Palai JB, Shah MMR, Barek V, Ondrisik P, Skalický M, Hossain A. Bioinoculants-Natural Biological Resources for Sustainable Plant Production. Microorganisms 2021; 10:51. [PMID: 35056500 PMCID: PMC8780112 DOI: 10.3390/microorganisms10010051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Agricultural sustainability is of foremost importance for maintaining high food production. Irresponsible resource use not only negatively affects agroecology, but also reduces the economic profitability of the production system. Among different resources, soil is one of the most vital resources of agriculture. Soil fertility is the key to achieve high crop productivity. Maintaining soil fertility and soil health requires conscious management effort to avoid excessive nutrient loss, sustain organic carbon content, and minimize soil contamination. Though the use of chemical fertilizers have successfully improved crop production, its integration with organic manures and other bioinoculants helps in improving nutrient use efficiency, improves soil health and to some extent ameliorates some of the constraints associated with excessive fertilizer application. In addition to nutrient supplementation, bioinoculants have other beneficial effects such as plant growth-promoting activity, nutrient mobilization and solubilization, soil decontamination and/or detoxification, etc. During the present time, high energy based chemical inputs also caused havoc to agriculture because of the ill effects of global warming and climate change. Under the consequences of climate change, the use of bioinputs may be considered as a suitable mitigation option. Bioinoculants, as a concept, is not something new to agricultural science, however; it is one of the areas where consistent innovations have been made. Understanding the role of bioinoculants, the scope of their use, and analysing their performance in various environments are key to the successful adaptation of this technology in agriculture.
Collapse
Affiliation(s)
- Sagar Maitra
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Preetha Bhadra
- Department of Biotechnology, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India;
| | - Tanmoy Shankar
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | - Subhashisa Praharaj
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | - Jnana Bharati Palai
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | | | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Peter Ondrisik
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Milan Skalický
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Akbar Hossain
- Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh;
| |
Collapse
|
211
|
Nordstedt NP, Jones ML. Serratia plymuthica MBSA-MJ1 Increases Shoot Growth and Tissue Nutrient Concentration in Containerized Ornamentals Grown Under Low-Nutrient Conditions. Front Microbiol 2021; 12:788198. [PMID: 34925296 PMCID: PMC8675082 DOI: 10.3389/fmicb.2021.788198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
High fertilizer rates are often applied to horticulture crop production systems to produce high quality crops with minimal time in production. Much of the nutrients applied in fertilizers are not taken up by the plant and are leached out of the containers during regular irrigation. The application of plant growth promoting rhizobacteria (PGPR) can increase the availability and uptake of essential nutrients by plants, thereby reducing nutrient leaching and environmental contamination. Identification of PGPR can contribute to the formulation of biostimulant products for use in commercial greenhouse production. Here, we have identified Serratia plymuthica MBSA-MJ1 as a PGPR that can promote the growth of containerized horticulture crops grown with low fertilizer inputs. MBSA-MJ1 was applied weekly as a media drench to Petunia×hybrida (petunia), Impatiens walleriana (impatiens), and Viola×wittrockiana (pansy). Plant growth, quality, and tissue nutrient concentration were evaluated 8weeks after transplant. Application of MBSA-MJ1 increased the shoot biomass of all three species and increased the flower number of impatiens. Bacteria application also increased the concentration of certain essential nutrients in the shoots of different plant species. In vitro and genomic characterization identified multiple putative mechanisms that are likely contributing to the strain’s ability to increase the availability and uptake of these nutrients by plants. This work provides insight into the interconnectedness of beneficial PGPR mechanisms and how these bacteria can be utilized as potential biostimulants for sustainable crop production with reduced chemical fertilizer inputs.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
212
|
Raza A, Ejaz S, Saleem MS, Hejnak V, Ahmad F, Ahmed MAA, Alotaibi SS, El-Shehawi AM, Alsubeie MS, Zuan ATK. Plant growth promoting rhizobacteria improve growth and yield related attributes of chili under low nitrogen availability. PLoS One 2021; 16:e0261468. [PMID: 34919599 PMCID: PMC8683023 DOI: 10.1371/journal.pone.0261468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Nitrogen (N) is a macronutrient desired by crop plants in large quantities. However, hiking fertilizer prices need alternative N sources for reducing its requirements through appropriate management practices. Plant growth promoting rhizobacteria (PGPR) are well-known for their role in lowering N requirements of crop plants. This study assessed the impact of PGPR inoculation on growth, allometry and biochemical traits of chili under different N doses. Two PGPR, i.e., Azospirillum 'Er-20' (nitrogen fixing) and Agrobacterium 'Ca-18' (phosphorous solubilizing) were used for inoculation, while control treatment had no PGPR inoculation. Six N doses, i.e., 100, 80, 75, 70, 60 and 50% of the N required by chili were included in the study. Data relating to growth traits, biochemical attributes and yield related traits were recorded. Interaction among N doses and PGPR inoculation significantly altered all growth traits, biochemical attributes and yield related traits. The highest values of the recorded traits were observed for 100% N with and without PGPR inoculation and 75% N with PGPR inoculation. The lowest values of the recorded traits were noted for 50% N without PGPR inoculation. The PGPR inoculation improved the measured traits compared to the traits recorded noted in same N dose without PGPR inoculation. Results revealed that PGPR had the potential to lower 25% N requirement for chili. Therefore, it is recommended that PGPR must be used in chili cultivation to lower N requirements.
Collapse
Affiliation(s)
- Ali Raza
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Shaghef Ejaz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Furqan Ahmad
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Multan, Pakistan
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Moodi Saham Alsubeie
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
213
|
Shultana R, Kee Zuan AT, Yusop MR, Saud HM, El-Shehawi AM. Bacillus tequilensis strain 'UPMRB9' improves biochemical attributes and nutrient accumulation in different rice varieties under salinity stress. PLoS One 2021; 16:e0260869. [PMID: 34898612 PMCID: PMC8668098 DOI: 10.1371/journal.pone.0260869] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
Soil salinity exert negative impacts on agricultural production and regarded as a crucial issue in global wetland rice production (Oryza sativa L.). Indigenous salt-tolerant plant growth-promoting rhizobacteria (Bacillus sp.) could be used for improving rice productivity under salinity stress. This study screened potential salt-tolerant plant growth-promoting rhizobacteria (PGPR) collected from coastal salt-affected rice cultivation areas under laboratory and glasshouse conditions. Furthermore, the impacts of these PGPRs were tested on biochemical attributes and nutrient contents in various rice varieties under salt stress. The two most promising PGPR strains, i.e., 'UPMRB9' (Bacillus tequilensis 10b) and 'UPMRE6' (Bacillus aryabhattai B8W22) were selected for glasshouse trial. Results indicated that 'UPMRB9' improved osmoprotectant properties, i.e., proline and total soluble sugar (TSS), antioxidant enzymes like superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Moreover, 'UPMRB9' inoculated rice plants accumulated higher amount of nitrogen and calcium in tissues. Therefore, the indigenous salt-tolerant PGPR strain 'UPMRB9' could be used as a potential bio-augmentor for improving biochemical attributes and nutrient uptake in rice plants under salinity stress. This study could serve as a preliminary basis for future large-scale trials under glasshouse and field conditions.
Collapse
Affiliation(s)
- Rakiba Shultana
- Agronomy Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohd Rafii Yusop
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Halimi Mohd Saud
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
214
|
Pinheiro Machado Filho LC, Seó HLS, Daros RR, Enriquez-Hidalgo D, Wendling AV, Pinheiro Machado LC. Voisin Rational Grazing as a Sustainable Alternative for Livestock Production. Animals (Basel) 2021; 11:3494. [PMID: 34944271 PMCID: PMC8698051 DOI: 10.3390/ani11123494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Current livestock practices do not meet current real-world social and environmental requirements, pushing farmers away from rural areas and only sustaining high productivity through the overuse of fossil fuels, causing numerous environmental side effects. In this narrative review, we explore how the Voisin Rational Grazing (VRG) system responds to this problem. VRG is an agroecological system based on four principles that maximise pasture growth and ruminant intake, while, at the same time, maintaining system sustainability. It applies a wide range of regenerative agricultural practices, such as the use of multispecies swards combined with agroforestry. Planning allows grazing to take place when pastures reach their optimal resting period, thus promoting vigorous pasture regrowth. Moreover, paddocks are designed in a way that allow animals to have free access to water and shade, improving overall animal welfare. In combination, these practices result in increased soil C uptake and soil health, boost water retention, and protect water quality. VRG may be used to provide ecosystem services that mitigate some of the current global challenges and create opportunities for farmers to apply greener practices and become more resilient. It can be said that VRG practitioners are part of the initiatives that are rethinking modern livestock agriculture. Its main challenges, however, arise from social constraints. More specifically, local incentives and initiatives that encourage farmers to take an interest in the ecological processes involved in livestock farming are still lacking. Little research has been conducted to validate the empirical evidence of VRG benefits on animal performance or to overcome VRG limitations.
Collapse
Affiliation(s)
- Luiz C. Pinheiro Machado Filho
- LETA, Laboratory of Applied Ethology, Department of Zootechny and Rural Development, Federal University of Santa Catarina, Florianópolis 88034-001, Brazil; (H.L.S.S.); (L.C.P.M.)
| | - Hizumi L. S. Seó
- LETA, Laboratory of Applied Ethology, Department of Zootechny and Rural Development, Federal University of Santa Catarina, Florianópolis 88034-001, Brazil; (H.L.S.S.); (L.C.P.M.)
| | - Ruan R. Daros
- Graduate Program in Animal Science, School of Life Science, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil;
| | - Daniel Enriquez-Hidalgo
- Bristol Veterinary School, University of Bristol, North Somerset, Langford BS40 5DU, Somerset, UK;
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton EX20 2SB, Devon, UK
| | | | - Luiz C. Pinheiro Machado
- LETA, Laboratory of Applied Ethology, Department of Zootechny and Rural Development, Federal University of Santa Catarina, Florianópolis 88034-001, Brazil; (H.L.S.S.); (L.C.P.M.)
| |
Collapse
|
215
|
Narayanan M, Natarajan D, Kandasamy S, Chinnathambi A, Ali Alharbi S, Karuppusamy I, Kathirvel B. Pyrite biomining proficiency of sulfur dioxygenase (SDO) enzyme extracted from Acidithiobacillus thiooxidans. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
216
|
Rizvi A, Ahmed B, Khan MS, Umar S, Lee J. Psychrophilic Bacterial Phosphate-Biofertilizers: A Novel Extremophile for Sustainable Crop Production under Cold Environment. Microorganisms 2021; 9:2451. [PMID: 34946053 PMCID: PMC8704983 DOI: 10.3390/microorganisms9122451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Abiotic stresses, including low-temperature environments, adversely affect the structure, composition, and physiological activities of soil microbiomes. Also, low temperatures disturb physiological and metabolic processes, leading to major crop losses worldwide. Extreme cold temperature habitats are, however, an interesting source of psychrophilic and psychrotolerant phosphate solubilizing bacteria (PSB) that can ameliorate the low-temperature conditions while maintaining their physiological activities. The production of antifreeze proteins and expression of stress-induced genes at low temperatures favors the survival of such organisms during cold stress. The ability to facilitate plant growth by supplying a major plant nutrient, phosphorus, in P-deficient soil is one of the novel functional properties of cold-tolerant PSB. By contrast, plants growing under stress conditions require cold-tolerant rhizosphere bacteria to enhance their performance. To this end, the use of psychrophilic PSB formulations has been found effective in yield optimization under temperature-stressed conditions. Most of the research has been done on microbial P biofertilizers impacting plant growth under normal cultivation practices but little attention has been paid to the plant growth-promoting activities of cold-tolerant PSB on crops growing in low-temperature environments. This scientific gap formed the basis of the present manuscript and explains the rationale for the introduction of cold-tolerant PSB in competitive agronomic practices, including the mechanism of solubilization/mineralization, release of biosensor active biomolecules, molecular engineering of PSB for increasing both P solubilizing/mineralizing efficiency, and host range. The impact of extreme cold on the physiological activities of plants and how plants overcome such stresses is discussed briefly. It is time to enlarge the prospects of psychrophilic/psychrotolerant phosphate biofertilizers and take advantage of their precious, fundamental, and economical but enormous plant growth augmenting potential to ameliorate stress and facilitate crop production to satisfy the food demands of frighteningly growing human populations. The production and application of cold-tolerant P-biofertilizers will recuperate sustainable agriculture in cold adaptive agrosystems.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
217
|
Huang Y, Dai Z, Lin J, Qi Q, Luo Y, Dahlgren RA, Xu J. Contrasting effects of carbon source recalcitrance on soil phosphorus availability and communities of phosphorus solubilizing microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113426. [PMID: 34343746 DOI: 10.1016/j.jenvman.2021.113426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Carbon (C) additions to soil interact through chemical and microbiological processes to cause changes in soil phosphorus (P) availability. However, the response of soil P transformations and relevant microbial communities to C additions having different degrees of recalcitrance remains uncertain. We studied the effects of glucose, hemicellulose and lignin addition on soil P availability, P transformation processes and relevant microbial activity and communities in a P-deficient flooded soil. Lignin significantly increased soil available P concentrations, which was attributed to chemical release of inorganic P and increased alkaline phosphatase activity. Glucose and hemicellulose additions stimulated microbial metabolism of C thereby enhancing microbial demand for P, with increased soil P availability especially in the early incubation period. Glucose or hemicellulose addition changed soil microbial diversity and community composition, leading to enhanced growth and interactions of P solubilizing microorganisms such as Desulfitobacterium, Bacillus and Desulfosporosinus. Our results infer the importance of pH alteration and competitive sorption between PO4 and functional groups of recalcitrant C (e.g., lignin) with Fe/Al (hydr) oxides in regulating soil P availability. Further, the microbial response to labile C additions led to increased P availability in the P-deficient soil. This study provides important mechanistic information to guide microbially-regulated soil P management in agricultural ecosystems.
Collapse
Affiliation(s)
- Yanlan Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou, 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Qian Qi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
218
|
Rahmouni F, Saoudi M, Rebai T. Therapeutics studies and biological properties of Teucrium polium (Lamiaceae). Biofactors 2021; 47:952-963. [PMID: 34850466 DOI: 10.1002/biof.1782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 01/30/2023]
Abstract
Teucrium polium has been used in traditional medicine as antifungal, antipyretic, antispasmodic, and antibacterial. It is consumed by many jordanians for the treatment of many diseases. The effects of this plant have been investigated in kidney, liver, and brain. Its antidiabetic, antimicrobial, antioxidant, and anticancer effects have been introduced. Polyphenolic compound, flavonoids, monoterpenes, alkanoides, and essential oils were identified. Several studies revealed that this plant has a hypoglycemic effect and can help to control blood sugar. It was reported that plants containing flavonoids and phenolics compounds exhibit a large array of biological activities like genotoxicity (chromosomal aberrations and sister chromatid exchange) and oxidative stress damage. These phytochemicals are found in herbal and vegetables plants, as well as being reliably protective against oxidative stress damage and lipid peroxidation. In addition, T. polium has secondary effects on different organs, namely liver, kidney and at high doses this plant becomes toxic. In conclusion, this review investigates many pharmacologicals properties and side effects of T. polium.
Collapse
Affiliation(s)
- Fatma Rahmouni
- Laboratory of Histophysiology of Induced and Developmental Diseases, Medicine Faculty of Sfax University, Sfax, Tunisia
| | - Mongi Saoudi
- Laboratory of Animal Physiology, Sciences Faculty of Sfax University, Sfax, Tunisia
| | - Tarek Rebai
- Laboratory of Histophysiology of Induced and Developmental Diseases, Medicine Faculty of Sfax University, Sfax, Tunisia
| |
Collapse
|
219
|
Rodrigues GL, Matteoli FP, Gazara RK, Rodrigues PSL, Dos Santos ST, Alves AF, Pedrosa-Silva F, Oliveira-Pinheiro I, Canedo-Alvarenga D, Olivares FL, Venancio TM. Characterization of cellular, biochemical and genomic features of the diazotrophic plant growth-promoting bacterium Azospirillum sp. UENF-412522, a novel member of the Azospirillum genus. Microbiol Res 2021; 254:126896. [PMID: 34715447 DOI: 10.1016/j.micres.2021.126896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/11/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022]
Abstract
Given their remarkable beneficial effects on plant growth, several Azospirillum isolates currently integrate the formulations of various commercial inoculants. Our research group isolated a new strain, Azospirillum sp. UENF-412522, from passion fruit rhizoplane. This isolate uses carbon sources that are partially distinct from closely-related Azospirillum isolates. Scanning electron microscopy analysis and population counts demonstrate the ability of Azospirillum sp. UENF-412522 to colonize the surface of passion fruit roots. In vitro assays demonstrate the ability of Azospirillum sp. UENF-412522 to fix atmospheric nitrogen, to solubilize phosphate and to produce indole-acetic acid. Passion fruit plantlets inoculated with Azospirillum sp. UENF-41255 showed increased shoot and root fresh matter by 13,8% and 88,6% respectively, as well as root dry matter by 61,4%, further highlighting its biotechnological potential for agriculture. We sequenced the genome of Azospirillum sp. UENF-412522 to investigate the genetic basis of its plant-growth promotion properties. We identified the key nif genes for nitrogen fixation, the complete PQQ operon for phosphate solubilization, the acdS gene that alleviates ethylene effects on plant growth, and the napCAB operon, which produces nitrite under anoxic conditions. We also found several genes conferring resistance to common soil antibiotics, which are critical for Azospirillum sp. UENF-412522 survival in the rhizosphere. Finally, we also assessed the Azospirillum pangenome and highlighted key genes involved in plant growth promotion. A phylogenetic reconstruction of the genus was also conducted. Our results support Azospirillum sp. UENF-412522 as a good candidate for bioinoculant formulations focused on plant growth promotion in sustainable systems.
Collapse
Affiliation(s)
- Gustavo L Rodrigues
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Filipe P Matteoli
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Rajesh K Gazara
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | | | - Samuel T Dos Santos
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), UENF, Brazil
| | - Alice F Alves
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), UENF, Brazil; Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, UENF, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Isabella Oliveira-Pinheiro
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Daniella Canedo-Alvarenga
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Fabio L Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), UENF, Brazil; Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, UENF, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil.
| |
Collapse
|
220
|
Seenivasagan R, Babalola OO. Utilization of Microbial Consortia as Biofertilizers and Biopesticides for the Production of Feasible Agricultural Product. BIOLOGY 2021; 10:1111. [PMID: 34827104 PMCID: PMC8614680 DOI: 10.3390/biology10111111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023]
Abstract
Farmers are now facing a reduction in agricultural crop yield, due to the infertility of soils and poor farming. The application of chemical fertilizers distresses soil fertility and also human health. Inappropriate use of chemical fertilizer leads to the rapid decline in production levels in most parts of the world, and hence requires the necessary standards of good cultivation practice. Biofertilizers and biopesticides have been used in recent years by farmers worldwide to preserve natural soil conditions. Biofertilizer, a replacement for chemical fertilizer, is cost-effective and prevents environmental contamination to the atmosphere, and is a source of renewable energy. In contrast to chemical fertilizers, biofertilizers are cost-effective and a source of renewable energy that preserves long-term soil fertility. The use of biofertilizers is, therefore, inevitable to increase the earth's productivity. A low-input scheme is feasible to achieve farm sustainability through the use of biological and organic fertilizers. This study investigates the use of microbial inoculants as biofertilizers to increase crop production.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa;
| |
Collapse
|
221
|
Yahya M, Islam EU, Rasul M, Farooq I, Mahreen N, Tawab A, Irfan M, Rajput L, Amin I, Yasmin S. Differential Root Exudation and Architecture for Improved Growth of Wheat Mediated by Phosphate Solubilizing Bacteria. Front Microbiol 2021; 12:744094. [PMID: 34721342 PMCID: PMC8554232 DOI: 10.3389/fmicb.2021.744094] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 01/24/2023] Open
Abstract
Phosphorous (P) deficiency is a major challenge faced by global agriculture. Phosphate-solubilizing bacteria (PSB) provide a sustainable approach to supply available phosphates to plants with improved crop productivity through synergistic interaction with plant roots. The present study demonstrates an insight into this synergistic P-solubilizing mechanism of PSB isolated from rhizosphere soils of major wheat-growing agro-ecological zones of Pakistan. Seven isolates were the efficient P solubilizers based on in vitro P-solubilizing activity (233-365 μg ml-1) with a concomitant decrease in pH (up to 3.5) by the production of organic acids, predominantly acetic acid (∼182 μg ml-1) and gluconic acid (∼117 μg ml-1). Amplification and phylogenetic analysis of gcd, pqqE, and phy genes of Enterobacter sp. ZW32, Ochrobactrum sp. SSR, and Pantoea sp. S1 showed the potential of these PSB to release orthophosphate from recalcitrant forms of phosphorus. Principal component analysis indicates the inoculation response of PSB consortia on the differential composition of root exudation (amino acids, sugars, and organic acids) with subsequently modified root architecture of three wheat varieties grown hydroponically. Rhizoscanning showed a significant increase in root parameters, i.e., root tips, diameter, and surface area of PSB-inoculated plants as compared to uninoculated controls. Efficiency of PSB consortia was validated by significant increase in plant P and oxidative stress management under P-deficient conditions. Reactive oxygen species (ROS)-induced oxidative damages mainly indicated by elevated levels of malondialdehyde (MDA) and H2O2 contents were significantly reduced in inoculated plants by the production of antioxidant enzymes, i.e., superoxide dismutase, catalase, and peroxidase. Furthermore, the inoculation response of these PSB on respective wheat varieties grown in native soils under greenhouse conditions was positively correlated with improved plant growth and soil P contents. Additionally, grain yield (8%) and seed P (14%) were significantly increased in inoculated wheat plants with 20% reduced application of diammonium phosphate (DAP) fertilizer under net house conditions. Thus, PSB capable of such synergistic strategies can confer P biofortification in wheat by modulating root morphophysiology and root exudation and can alleviate oxidative stress under P deficit conditions.
Collapse
Affiliation(s)
- Mahreen Yahya
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ejaz ul Islam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Maria Rasul
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, South Korea
| | - Iqra Farooq
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Naima Mahreen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Abdul Tawab
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Irfan
- Sustainable Agriculture and Food Programme (SAFP), World Wildlife Fund, Khanewal, Pakistan
| | - Lubna Rajput
- Plant Physiology and Biotechnology Agricultural Research Centre, Tandojam, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
222
|
Zhan Y, Zhang Z, Ma T, Zhang X, Wang R, Liu Y, Sun B, Xu T, Ding G, Wei Y, Li J. Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting. BIORESOURCE TECHNOLOGY 2021; 337:125433. [PMID: 34171708 DOI: 10.1016/j.biortech.2021.125433] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the changes of phosphorus (P) fractions, bacterial community and their response to available P or carbon (C):P during composting with different rock phosphate (RP) addition levels. Results showed that adding RP at 10% or 15% promoted the rise of temperature, maturity and Olsen P accumulation in composting, which had a higher amount of RP solubilization than other groups. Available P changed bacterial composition and decreased diversity in composts. RP solubilization efficiency was negatively correlated to C:P ratio and the highest (22.7%) when 10% RP was added, in which bacterial community changed from "function redundancy" to "intensive P-solubilization". Low C:P ratio (〈300) increased the RP solubilization ratio especially within 135-160. Therefore, this study proposed that adding P-rich substrates to decrease C:P ratio could regulate P-solubilizers' activity for increasing RP solubilization efficiency during composting.
Collapse
Affiliation(s)
- Yabin Zhan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zeyu Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Tiantian Ma
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Xinjun Zhang
- Res. Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agriculture and Animal Husbandry University), Ministry of Education, Nyingchi 860000, China
| | - Ruihong Wang
- Res. Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agriculture and Animal Husbandry University), Ministry of Education, Nyingchi 860000, China
| | - Yongdi Liu
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Baoru Sun
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ting Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| |
Collapse
|
223
|
Hii YS, Law MC, Chan YS. Experimental and numerical study of the impinging aerosols method for the micro-encapsulation of phosphate solubilising microorganisms (PSMs). Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
224
|
Bilal S, Hazafa A, Ashraf I, Alamri S, Siddiqui MH, Ramzan A, Qamar N, Sher F, Naeem M. Comparative Effect of Inoculation of Phosphorus-Solubilizing Bacteria and Phosphorus as Sustainable Fertilizer on Yield and Quality of Mung Bean ( Vigna radiata L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102079. [PMID: 34685887 PMCID: PMC8539019 DOI: 10.3390/plants10102079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Globally, the availability of phosphorus (P) to crops remains limited in two-thirds of the soils, which makes it less accessible to plants and ultimately associated with low crop yields. The present study investigated the effect of phosphorus-solubilizing bacteria (PSB; Pseudomonas spp.) for the improvement of phosphorus in mung bean (Vigna radiata) varieties and growth of net grain and biological yields. Results showed that inoculation of mung bean varieties with PSB at the rate of 100 g/kg seed significantly improved the root and shoot dry weight of about 1.13 and 12.66 g, root and shoot length of 14.49 and 50.63 cm, root and shoot phosphorus content of 2629.39 and 4138.91 mg/kg, a biological yield of 9844.41 kg/ha, number of pods of 17 per plant, number of grains of 9 per pod, grain yield of 882.23 kg/ha, and 1000-grain weight of 46.18 g after 60 days of observation. It was also observed that PSB-treated varieties of mung bean showed the maximum photosynthetic yield, photosynthetic active radiation, electron transport rate, and momentary fluorescent rate of 0.75, 364.32, 96.12, and 365.33 μmol/m2 s, respectively. The highest harvest index of 13.28% was recorded by P-treated mung beans. Results disclosed that inoculation of seeds of mung bean with PSB exhibited different effects in measured parameters. It is concluded that PSB possessed remarkable results in measured parameters compared to the control and highlighted that PSB could be an effective natural sustainable fertilizer for mung bean cultivation in sandy soil.
Collapse
Affiliation(s)
- Shahid Bilal
- Department of Agronomy, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan; (S.B.); (I.A.)
| | - Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence: or (A.H.); (M.H.S.)
| | - Imran Ashraf
- Department of Agronomy, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan; (S.B.); (I.A.)
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: or (A.H.); (M.H.S.)
| | - Amina Ramzan
- Department of Botany, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan; (A.R.); (N.Q.)
| | - Nimra Qamar
- Department of Botany, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan; (A.R.); (N.Q.)
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050010, China;
| |
Collapse
|
225
|
Sarkar S, Dey A, Kumar V, Batiha GES, El-Esawi MA, Tomczyk M, Ray P. Fungal Endophyte: An Interactive Endosymbiont With the Capability of Modulating Host Physiology in Myriad Ways. FRONTIERS IN PLANT SCIENCE 2021; 12:701800. [PMID: 34659281 PMCID: PMC8514756 DOI: 10.3389/fpls.2021.701800] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 05/23/2023]
Abstract
Endophytic fungi ubiquitously dwell inside the tissue-spaces of plants, mostly asymptomatically. They grow either intercellularly or intracellularly in a particular host plant to complete the whole or part of their life cycle. They have been found to be associated with almost all the plants occurring in a natural ecosystem. Due to their important role in the survival of plants (modulate photosynthesis, increase nutrient uptake, alleviate the effect of various stresses) they have been selected to co-evolve with their hosts through the course of evolution. Many years of intense research have discovered their tremendous roles in increasing the fitness of the plants in both normal and stressed conditions. There are numerous literature regarding the involvement of various endophytic fungi in enhancing plant growth, nutrient uptake, stress tolerance, etc. But, there are scant reports documenting the specific mechanisms employed by fungal endophytes to manipulate plant physiology and exert their effects. In this review, we aim to document the probable ways undertaken by endophytic fungi to alter different physiological parameters of their host plants. Our objective is to present an in-depth elucidation about the impact of fungal endophytes on plant physiology to make this evolutionarily conserved symbiotic interaction understandable from a broader perspective.
Collapse
Affiliation(s)
- Sohini Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| | | | - Michał Tomczyk
- Departament of Pharmacognosy, Medical University of Białystok, Białystok, Poland
| | - Puja Ray
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
226
|
Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M, Mustafa A. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. Int J Mol Sci 2021; 22:10529. [PMID: 34638870 PMCID: PMC8509026 DOI: 10.3390/ijms221910529] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
Agriculture in the 21st century is facing multiple challenges, such as those related to soil fertility, climatic fluctuations, environmental degradation, urbanization, and the increase in food demand for the increasing world population. In the meanwhile, the scientific community is facing key challenges in increasing crop production from the existing land base. In this regard, traditional farming has witnessed enhanced per acre crop yields due to irregular and injudicious use of agrochemicals, including pesticides and synthetic fertilizers, but at a substantial environmental cost. Another major concern in modern agriculture is that crop pests are developing pesticide resistance. Therefore, the future of sustainable crop production requires the use of alternative strategies that can enhance crop yields in an environmentally sound manner. The application of rhizobacteria, specifically, plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides has gained much attention from the scientific community. These rhizobacteria harbor a number of mechanisms through which they promote plant growth, control plant pests, and induce resistance to various abiotic stresses. This review presents a comprehensive overview of the mechanisms of rhizobacteria involved in plant growth promotion, biocontrol of pests, and bioremediation of contaminated soils. It also focuses on the effects of PGPR inoculation on plant growth survival under environmental stress. Furthermore, the pros and cons of rhizobacterial application along with future directions for the sustainable use of rhizobacteria in agriculture are discussed in depth.
Collapse
Affiliation(s)
- Qudsia Saeed
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jiří Kučerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road, Lahore 54000, Pakistan;
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Munaza Naseem
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
- Agricultural Research, Ltd., Zahradni 400/1, 664 41 Troubsko, Czech Republic
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Adnan Mustafa
- Biology Center CAS, SoWa RI, Na Sadkach 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
227
|
Barrera-Galicia GC, Peniche-Pavía HA, Peña-Cabriales JJ, Covarrubias SA, Vera-Núñez JA, Délano-Frier JP. Metabolic Footprints of Burkholderia Sensu Lato Rhizosphere Bacteria Active against Maize Fusarium Pathogens. Microorganisms 2021; 9:microorganisms9102061. [PMID: 34683382 PMCID: PMC8538949 DOI: 10.3390/microorganisms9102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Consistent with their reported abundance in soils, several Burkholderia sensu lato strains were isolated from the rhizosphere of maize plants cultivated at different sites in central México. Comparative analysis of their 16S rRNA gene sequences permitted their separation into three distinctive clades, which were further subdivided into six other clusters by their close resemblance to (1) Trinickia dinghuensis; (2) Paraburkholderia kirstenboschensis, P. graminis, P. dilworthii and P. rhynchosiae; (3) B. gladioli; (4) B. arboris; (5) B. contaminans, or (6) B. metallica representative species. Direct confrontation assays revealed that these strains inhibited the growth of pathogenic Fusarium oxysporum f. sp. radicis-lycopersici, and F. verticillioides within a roughly 3-55% inhibition range. The use of a DIESI-based non-targeted mass spectroscopy experimental strategy further indicated that this method is an option for rapid determination of the pathogen inhibitory capacity of Burkholderia sensu lato strains based solely on the analysis of their exometabolome. Furthermore, it showed that the highest anti-fungal activity observed in B. contaminans and B. arboris was associated with a distinctive abundance of certain m/z ions, some of which were identified as components of the ornbactin and pyochelin siderophores. These results highlight the chemical diversity of Burkholderia sensu lato bacteria and suggest that their capacity to inhibit the Fusarium-related infection of maize in suppressive soils is associated with siderophore synthesis.
Collapse
Affiliation(s)
- Guadalupe C. Barrera-Galicia
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Héctor A. Peniche-Pavía
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Juan José Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
| | - Sergio A. Covarrubias
- Área de Ciencias de la Salud, Ciudad Universitaria Campus Siglo XXI, Universidad Autónoma de Zacatecas, Zacatecas 98160, Zacatecas, Mexico; (S.A.C.); (J.A.V.-N.)
| | - José A. Vera-Núñez
- Área de Ciencias de la Salud, Ciudad Universitaria Campus Siglo XXI, Universidad Autónoma de Zacatecas, Zacatecas 98160, Zacatecas, Mexico; (S.A.C.); (J.A.V.-N.)
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato 36824, Guanajuato, Mexico; (G.C.B.-G.); (H.A.P.-P.); (J.J.P.-C.)
- Correspondence: ; Tel.: +52-462-623-9600
| |
Collapse
|
228
|
Deng Q, Zhang T, Xie D, Yang Y. Rhizosphere Microbial Communities Are Significantly Affected by Optimized Phosphorus Management in a Slope Farming System. Front Microbiol 2021; 12:739844. [PMID: 34589078 PMCID: PMC8473901 DOI: 10.3389/fmicb.2021.739844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Soil rhizosphere microorganisms play crucial roles in promoting plant nutrient absorption and maintaining soil health. However, the effects of different phosphorus (P) managements on soil microbial communities in a slope farming system are poorly understood. Here, rhizosphere microbial communities under two P fertilization levels-conventional (125 kg P2O5 ha-1, P125) and optimal (90 kg P2O5 ha-1, P90)-were compared at four growth stages of maize in a typical sloped farming system. The richness and diversity of rhizosphere bacterial communities showed significant dynamic changes throughout the growth period of maize, while different results were observed in fungal communities. However, both the P fertilization levels and the growth stages influenced the structure and composition of the maize rhizosphere microbiota. Notably, compared to P125, Pseudomonas, Conexibacter, Mycobacterium, Acidothermus, Glomeromycota, and Talaromyces were significantly enriched in the different growth stages of maize under P90, while the relative abundance of Fusarium was significantly decreased during maize harvest. Soil total nitrogen (TN) and pH are the first environmental drivers of change in bacterial and fungal community structures, respectively. The abundance of Gemmatimonadota, Proteobacteria, and Cyanobacteria showed significant correlations with soil TN, while that of Basidiomycota and Mortierellomycota was significantly related to pH. Additionally, P90 strengthened the connection between bacteria, but reduced the links between fungi at the genus level. Our work helps in understanding the role of P fertilization levels in shaping the rhizosphere microbiota and may manipulate beneficial microorganisms for better P use efficiency.
Collapse
Affiliation(s)
- Qianxin Deng
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Tong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Deti Xie
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
229
|
Mei C, Chretien RL, Amaradasa BS, He Y, Turner A, Lowman S. Characterization of Phosphate Solubilizing Bacterial Endophytes and Plant Growth Promotion In Vitro and in Greenhouse. Microorganisms 2021; 9:microorganisms9091935. [PMID: 34576829 PMCID: PMC8469958 DOI: 10.3390/microorganisms9091935] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Phosphate is one of the most important nutrients for plant growth and development, and only 0.1% of the phosphate in soils is available to plants. Currently, the use of excess phosphate fertilizer has caused surface and ground water pollution and water eutrophication, resulting in algal blooms in lakes and oceans. Therefore, it is imperative to explore alternative ways to solve these problems for sustainable agricultural production and improvement of soil fertility, while protecting the environment. Microorganisms from the rhizosphere and within plants are able to solubilize insoluble soil phosphate, making it available to plants. Five high phosphate solubilizing bacteria from our bacterial endophyte library were chosen for this study and identified as Pantoea vagans IALR611, Pseudomonas psychrotolerans IALR632, Bacillus subtilis IALR1033, Bacillus safensis IALR1035 and Pantoea agglomerans IALR1325. All five bacteria significantly promoted tall fescue growth in vitro. Greenhouse experiments showed that IALR1325 significantly promoted pepper and tomato growth, and IALR632 was the best in promoting tomato growth. In addition, all these bacteria had extracellular acid phosphatase and phytase activities. One of the mechanisms for phosphate solubilization by bacteria is pH reduction caused by gluconic acid production. Our results indicate that P. agglomerans IALR1325 is a promising bacterium for future applications.
Collapse
|
230
|
Hinsu AT, Panchal KJ, Pandit RJ, Koringa PG, Kothari RK. Characterizing rhizosphere microbiota of peanut (Arachis hypogaea L.) from pre-sowing to post-harvest of crop under field conditions. Sci Rep 2021; 11:17457. [PMID: 34465845 PMCID: PMC8408145 DOI: 10.1038/s41598-021-97071-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
The rhizosphere, a narrow zone of soil near plant roots, is a hot spot for microbial activity. Rhizosphere microbiota directly or indirectly benefit plants by supplementing nutrients, producing beneficial chemicals, or suppressing pathogens. Plants attract and modulate bacteria within the rhizosphere by releasing exudates. Plants also tend to select the rhizosphere microbiota based on their needs; a phenomenon termed as “rhizosphere effect”. In this study, we characterized the rhizosphere microbiota of peanut plants across the crop development cycle from pre-sowing of seeds to post-harvest of crop under field conditions. The rhizosphere and bulk soil samples from different crop developmental stages were also compared. The composition of bulk soil microbiota resembled microbiota of pre-sowing and post-harvest soil and was markedly different from rhizosphere soil samples. Rhizosphere samples were enriched with multiple organisms mostly from the Proteobacteria, Firmicutes and Bacteroidota phyla. Differences in diversity were observed among the rhizosphere samples but not in bulk soil across different crop development stages. Pseudomonas_M indica was highly enriched during the germination of seeds. Furthermore, Plant Growth Promoting (PGP) bacteria like Bacillus were enriched during the middle stages of crop development but there was a decline in PGP organisms in the matured crop stage. We also observed a significant association of pH and Electrical Conductivity (EC) with the profiles of microbial community. Overall, this study portrayed the changes in rhizosphere microbiota of peanut during different developmental stages of crop and may help to design stage specific bio-strategies such as bio-fertilizer to improve crop yield.
Collapse
Affiliation(s)
- Ankit T Hinsu
- Department of Biosciences, Saurashtra University, Rajkot, 360005, India.,Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Ketankumar J Panchal
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Ramesh J Pandit
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Prakash G Koringa
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, 388001, India
| | - Ramesh K Kothari
- Department of Biosciences, Saurashtra University, Rajkot, 360005, India.
| |
Collapse
|
231
|
Khuna S, Suwannarach N, Kumla J, Frisvad JC, Matsui K, Nuangmek W, Lumyong S. Growth Enhancement of Arabidopsis ( Arabidopsis thaliana) and Onion ( Allium cepa) With Inoculation of Three Newly Identified Mineral-Solubilizing Fungi in the Genus Aspergillus Section Nigri. Front Microbiol 2021; 12:705896. [PMID: 34456888 PMCID: PMC8397495 DOI: 10.3389/fmicb.2021.705896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Some soil fungi play an important role in supplying elements to plants by the solubilizing of insoluble minerals in the soil. The present study was conducted to isolate the mineral-solubilizing fungi from rhizosphere soil in some agricultural areas in northern Thailand. Seven fungal strains were obtained and identified using a polyphasic taxonomic approach with multilocus phylogenetic and phenotypic (morphology and extrolite profile) analyses. All obtained fungal strains were newly identified in the genus Aspergillus section Nigri, Aspergillus chiangmaiensis (SDBR-CMUI4 and SDBR-CMU15), Aspergillus pseudopiperis (SDBR-CMUI1 and SDBR-CMUI7), and Aspergillus pseudotubingensis (SDBR-CMUO2, SDBR-CMUO8, and SDBR-CMU20). All fungal strains were able to solubilize the insoluble mineral form of calcium, copper, cobalt, iron, manganese, magnesium, zinc, phosphorus, feldspar, and kaolin in the agar plate assay. Consequently, the highest phosphate solubilization strains (SDBR-CMUI1, SDBR-CMUI4, and SDBR-CMUO2) of each fungal species were selected for evaluation of their plant growth enhancement ability on Arabidopsis and onion in laboratory and greenhouse experiments, respectively. Plant disease symptoms were not found in any treatment of fungal inoculation and control. All selected fungal strains significantly increased the leaf number, leaf length, dried biomass of shoot and root, chlorophyll content, and cellular inorganic phosphate content in both Arabidopsis and onion plants under supplementation with insoluble mineral phosphate. Additionally, the inoculation of selected fungal strains also improved the yield and quercetin content of onion bulb. Thus, the selected strains reveal the potential in plant growth promotion agents that can be applied as a biofertilizer in the future.
Collapse
Affiliation(s)
- Surapong Khuna
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jens Christian Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Wipornpan Nuangmek
- Faculty of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
232
|
Bargaz A, Elhaissoufi W, Khourchi S, Benmrid B, Borden KA, Rchiad Z. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiol Res 2021; 252:126842. [PMID: 34438221 DOI: 10.1016/j.micres.2021.126842] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Although research on plant growth promoting bacteria began in the 1950s, basic and applied research on bacteria improving use of phosphorus (P) continues to be a priority among many agricultural research institutions. Ultimately, identifying agriculturally beneficial microbes, notably P solubilizing bacteria (PSB), that enhance the efficient use of P supports more sustainable cropping systems and the judicious use of mineral nutrients. In parallel, there is more attention on improving crop root P acquisition of existing soil P pools as well as by increasing the proportion of fertilizer P that is taken up by crops. Today, new lines of research are emerging to investigate the co-optimization of PSB-fertilizer-crop root processes for improved P efficiency and agricultural performance. In this review, we compile and summarize available findings on the beneficial effects of PSB on crop production with a focus on crop P acquisition via root system responses at the structural, functional and transcriptional levels. We discuss the current state of knowledge on the mechanisms of PSB-mediated P availability, both soil- and root-associated, as well as crop uptake via P solubilization, mineralization and mobilization, mainly through the production of organic acids and P-hydrolyzing enzymes, and effects on phytohormone signaling for crop root developement. The systematic changes caused by PSB on crop roots are discussed and contextualized within promising functional trait-based frameworks. We also detail agronomic profitability of P (mineral and organic) and PSB co-application, in amended soils and inoculated crops, establishing the connection between the influence of PSB on agroecosystem production and the impact of P fertilization on microbial diversity and crop functional traits for P acquisition.
Collapse
Affiliation(s)
- Adnane Bargaz
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco.
| | - Wissal Elhaissoufi
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco; Cadi Ayyad University, Faculty of Sciences and Techniques, Biology Dep., Marrakech, Morocco
| | - Said Khourchi
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco; University of Liège, Gembloux Agro-Bio Tech, Liège, Belgium
| | - Bouchra Benmrid
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco
| | - Kira A Borden
- University of British Columbia, Faculty of Land and Food Systems, Vancouver, V6T 1Z4, Canada
| | - Zineb Rchiad
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco
| |
Collapse
|
233
|
Tian D, Wang L, Hu J, Zhang L, Zhou N, Xia J, Xu M, Yusef KK, Wang S, Li Z, Gao H. A study of P release from Fe-P and Ca-P via the organic acids secreted by Aspergillus niger. J Microbiol 2021; 59:819-826. [PMID: 34382148 DOI: 10.1007/s12275-021-1178-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022]
Abstract
Phosphate solubilizing fungi (PSF) have been widely applied to dissolve insoluble phosphates (IPs). However, the PSF usually demonstrates a different phosphate solubilizing capacity for various IPs. This study explored the mechanisms of Aspergillus niger for the dissolution of ferric phosphate (FePO4, Fe-P), and tricalcium phosphate (Ca3[PO4]2, Ca-P) regarding the tricarboxylic acid (TCA) cycle. Aspergillus niger has higher phosphorus (P) content released from Ca-P, reached the maximum value of 861 mg/L after seven days of incubation, compared with the 169 mg/L from Fe-P. Oxalic acid promoted the release of P from Ca-P through the formation of calcium oxalate. The presence of Fe-P can stimulate A. niger to secrete large amounts of citric acid, confirmed by the enhancement of citrate synthase (CS) activity. However, citric acid only promotes 0.5% of P released from Fe-P. Meanwhile, although oxalic acid still dominates the release of P from Fe-P, its abundance was significantly declined. In contrast, oxalic acid also shows a higher P release ratio in Ca-P than citric acid, i.e., 36% vs. 22%. This study points to the future usage of A. niger to dissolve IPs in soil required to enhance oxalic acid secretion.
Collapse
Affiliation(s)
- Da Tian
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China. .,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Liyan Wang
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Jun Hu
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Liangliang Zhang
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Ningning Zhou
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Jingjing Xia
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Meiyue Xu
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Kianpoor Kalkhajeh Yusef
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China.,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China.,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hongjian Gao
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China. .,Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, P. R. China.
| |
Collapse
|
234
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
235
|
Saadouli I, Mosbah A, Ferjani R, Stathopoulou P, Galiatsatos I, Asimakis E, Marasco R, Daffonchio D, Tsiamis G, Ouzari HI. The Impact of the Inoculation of Phosphate-Solubilizing Bacteria Pantoea agglomerans on Phosphorus Availability and Bacterial Community Dynamics of a Semi-Arid Soil. Microorganisms 2021; 9:1661. [PMID: 34442740 PMCID: PMC8400695 DOI: 10.3390/microorganisms9081661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/29/2022] Open
Abstract
The bacterial genus Pantoea has been widely evaluated as promising bacteria to increase phosphorus (P) availability in soil. The aim of this study was to characterize the phosphate solubilizing (PS) activity of a Pantoea agglomerans strain and to evaluate the impact of its application in a semi-arid soil on phosphate availability and structure of the bacterial communities as a whole. An incubation experiment under close-to-natural soil environmental conditions was conducted for 15 days at 30 °C. High-throughput sequencing of the bacterial 16S rRNA gene was used to characterize and to compare the bacterial community structure of P. agglomerans-inoculated soil with non-inoculated control. Furthermore, a qPCR-based method was developed for detection and quantification of the functional genes related to the expression of mineral phosphate solubilization (MPS) phenotype in P. agglomerans. The results showed that in vitro solubilization of Ca3(PO4)2 by P. agglomerans strain was very efficient (980 mg/L), and it was associated with a drop in pH due to the secretion of gluconic acid; these changes were concomitant with the detection of gdh and pqqC genes. Moreover, P. agglomerans inoculum application significantly increased the content of available P in semi-arid soil by 69%. Metagenomic analyses showed that P. agglomerans treatment modified the overall edaphic bacterial community, significantly impacting its structure and composition. In particular, during P. agglomerans inoculation the relative abundance of bacteria belonging to Firmicutes (mainly Bacilli class) significantly increased, whereas the abundance of Actinobacteria together with Acidobacteria and Chloroflexi phyla decreased. Furthermore, genera known for their phosphate solubilizing activity, such as Aneurinibacillus, Lysinibacillus, Enterococcus, and Pontibacter, were exclusively detected in P. agglomerans-treated soil. Pearson's correlation analysis revealed that changes in soil bacterial community composition were closely affected by soil characteristics, such as pH and available P. This study explores the effect of the inoculation of P. agglomerans on the bacterial community structure of a semi-arid soil. The effectiveness in improving the phosphate availability and modification in soil bacterial community suggested that P. agglomerans represent a promising environmental-friendly biofertilizer in arid and semi-arid ecosystems.
Collapse
Affiliation(s)
- Ilhem Saadouli
- Laboratoire de Microorganismes et Biomolécules Actives (LR03ES03), Facultédes Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia; (I.S.); (R.F.)
| | - Amor Mosbah
- Higher Institute for Biotechnology (ISBST), LR Biotechnology and Bio-Geo Resources Valorization, University of Manouba, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia;
| | - Raoudha Ferjani
- Laboratoire de Microorganismes et Biomolécules Actives (LR03ES03), Facultédes Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia; (I.S.); (R.F.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Ioannis Galiatsatos
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Ramona Marasco
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (R.M.); (D.D.)
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (R.M.); (D.D.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (P.S.); (I.G.); (E.A.)
| | - Hadda-Imene Ouzari
- Laboratoire de Microorganismes et Biomolécules Actives (LR03ES03), Facultédes Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia; (I.S.); (R.F.)
| |
Collapse
|
236
|
Elhaissoufi W, Ghoulam C, Barakat A, Zeroual Y, Bargaz A. Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. J Adv Res 2021; 38:13-28. [PMID: 35572398 PMCID: PMC9091742 DOI: 10.1016/j.jare.2021.08.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Phosphate bacteria bio-solubilization significantly increase crop P acquisition and productivity. Phosphate solubilizing bacteria increase RP agronomic efficiency as well as P fertilizers efficiency. This process can be optimized through a rational bacterial screening to assure efficient PSB are selected. Appropriate formulation of PSB is a sustainable approach to enhance P-fertilizers efficiency. Development of innovative PSB-Phosphate formulations is likely to sustain crop production.
Background Increasing crop production to feed a growing population has driven the use of mineral fertilizers to ensure nutrients availability and fertility of agricultural soils. After nitrogen, phosphorus (P) is the second most important nutrient for plant growth and productivity. However, P availability in most agricultural soils is often limited because P strongly binds to soil particles and divalent cations forming insoluble P-complexes. Therefore, there is a constant need to sustainably improve soil P availability. This may include, among other strategies, the application of microbial resources specialized in P cycling, such as phosphate solubilizing bacteria (PSB). This P-mediating bacterial component can improve soil biological fertility and crop production, and should be integrated in well-established formulations to enhance availability and efficiency in use of P. This is of importance to P fertilization, including both organic and mineral P such as rock phosphate (RP) aiming to improve its agronomic efficiency within an integrated crop nutrition system where agronomic profitability of P and PSB can synergistically occur. Aim of Review The purpose of this review is to discuss critically the important contribution of PSB to crop P nutrition in concert with P fertilizers, with a specific focus on RP. We also highlight the need for PSB bioformulations being a sustainable approach to enhance P fertilizer use efficiency and crop production. Key Scientific Concepts of Review We first recognize the important contribution of PSB to sustain crop production, which requires a rational approach for both screening and evaluation of PSB enabling an accurate assessment of the bacterial effects both alone and in intertwined interaction with plant roots. Furthermore, we propose new research ideas about the development of microbial bioformulations based on PSB with a particular focus on strains exhibiting synergetic effects with RP.
Collapse
|
237
|
Ibáñez A, Diez-Galán A, Cobos R, Calvo-Peña C, Barreiro C, Medina-Turienzo J, Sánchez-García M, Coque JJR. Using Rhizosphere Phosphate Solubilizing Bacteria to Improve Barley ( Hordeum vulgare) Plant Productivity. Microorganisms 2021; 9:microorganisms9081619. [PMID: 34442698 PMCID: PMC8401182 DOI: 10.3390/microorganisms9081619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
On average less than 1% of the total phosphorous present in soils is available to plants, making phosphorous one of the most limiting macronutrients for crop productivity worldwide. The aim of this work was to isolate and select phosphate solubilizing bacteria (PSB) from the barley rhizosphere, which has other growth promoting traits and can increase crop productivity. A total of 104 different bacterial isolates were extracted from the barley plant rhizosphere. In this case, 64 strains were able to solubilize phosphate in agar plates. The 24 strains exhibiting the highest solubilizing index belonged to 16 different species, of which 7 isolates were discarded since they were identified as putative phytopathogens. The remaining nine strains were tested for their ability to solubilize phosphate in liquid medium and in pot trials performed in a greenhouse. Several of the isolated strains (Advenella mimigardefordensis, Bacillus cereus, Bacillus megaterium and Burkholderia fungorum) were able to significantly improve levels of assimilated phosphate, dry weight of ears and total starch accumulated on ears compared to non-inoculated plants. Since these strains were able to increase the growth and productivity of barley crops, they could be potentially used as microbial inoculants (biofertilizers).
Collapse
Affiliation(s)
- Ana Ibáñez
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Alba Diez-Galán
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Carla Calvo-Peña
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1—Parque Científico de León, 24006 León, Spain;
- Área de Bioquímica, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Jesús Medina-Turienzo
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Mario Sánchez-García
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Juan José R. Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
- Correspondence:
| |
Collapse
|
238
|
Sompark C, Singkhonrat J, Sakkayawong N. Biotransformation of Reactive Red 141 by Paenibacillus terrigena KKW2-005 and Examination of Product Toxicity. J Microbiol Biotechnol 2021; 31:967-977. [PMID: 34099601 PMCID: PMC9705871 DOI: 10.4014/jmb.2104.04041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
A total of 37 bacterial isolates were obtained from dye-contaminated soil samples at a textile processing factory in Nakhon Ratchasima Province, Thailand, and the potential of the isolates to decolorize and biotransform azo dye Reactive Red 141 (RR141) was investigated. The most potent bacterium was identified as Paenibacillus terrigena KKW2-005, which showed the ability to decolorize 96.45% of RR141 (50 mg/l) within 20 h under static conditions at pH 8.0 and a broad temperature range of 30-40°C. The biotransformation products were analyzed by using UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy. Gas chromatography-mass spectroscopy analysis revealed four metabolites generated from the reductive biodegradation, namely sodium 3-diazenylnaphthalene-1,5-disulfonate (I), sodium naphthalene-2-sufonate (II), 4-chloro-1,3,5-triazin-2-amine (III) and N1-(1,3,5-triazin-2-yl) benzene-1,4-diamine (IV). Decolorization intermediates reduced phytotoxicity as compared with the untreated dye. However, they had phytotoxicity when compared with control, probably due to naphthalene and triazine derivatives. Moreover, genotoxicity testing by high annealing temperature-random amplified polymorphic DNA technique exhibited different DNA polymorphism bands in seedlings exposed to the metabolites. They compared to the bands found in seedlings subjected to the untreated dye or distilled water. The data from this study provide evidence that the biodegradation of Reactive Red 141 by P. terrigena KKW2-005 was genotoxic to the DNA seedlings.
Collapse
Affiliation(s)
- Chalermwoot Sompark
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand, 12120
| | - Jirada Singkhonrat
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand, 12120
| | - Niramol Sakkayawong
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand, 12120,Corresponding author Phone: +66-2564-4444 ext 2068 Fax: +66-2564-4500 E-mail:
| |
Collapse
|
239
|
Li JT, Lu JL, Wang HY, Fang Z, Wang XJ, Feng SW, Wang Z, Yuan T, Zhang SC, Ou SN, Yang XD, Wu ZH, Du XD, Tang LY, Liao B, Shu WS, Jia P, Liang JL. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol Rev Camb Philos Soc 2021; 96:2771-2793. [PMID: 34288351 PMCID: PMC9291587 DOI: 10.1111/brv.12779] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
Phosphate-solubilizing microbes (PSMs) drive the biogeochemical cycling of phosphorus (P) and hold promise for sustainable agriculture. However, their global distribution, overall diversity and application potential remain unknown. Here, we present the first synthesis of their biogeography, diversity and utility, employing data from 399 papers published between 1981 and 2017, the results of a nationwide field survey in China consisting of 367 soil samples, and a genetic analysis of 12986 genome-sequenced prokaryotic strains. We show that at continental to global scales, the population density of PSMs in environmental samples is correlated with total P rather than pH. Remarkably, positive relationships exist between the population density of soil PSMs and available P, nitrate-nitrogen and dissolved organic carbon in soil, reflecting functional couplings between PSMs and microbes driving biogeochemical cycles of nitrogen and carbon. More than 2704 strains affiliated with at least nine archaeal, 88 fungal and 336 bacterial species were reported as PSMs. Only 2.59% of these strains have been tested for their efficiencies in improving crop growth or yield under field conditions, providing evidence that PSMs are more likely to exert positive effects on wheat growing in alkaline P-deficient soils. Our systematic genetic analysis reveals five promising PSM genera deserving much more attention.
Collapse
Affiliation(s)
- Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Hong-Yu Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhou Fang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Juan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhang Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Ting Yuan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Sheng-Chang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shu-Ning Ou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Dan Yang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiang-Deng Du
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Ling-Yun Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou, 510006, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| |
Collapse
|
240
|
Wang Y, Peng S, Hua Q, Qiu C, Wu P, Liu X, Lin X. The Long-Term Effects of Using Phosphate-Solubilizing Bacteria and Photosynthetic Bacteria as Biofertilizers on Peanut Yield and Soil Bacteria Community. Front Microbiol 2021; 12:693535. [PMID: 34335521 PMCID: PMC8322663 DOI: 10.3389/fmicb.2021.693535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Microbial inoculation is a promising strategy to improve crop yields and reduce the use of chemical fertilizers, thereby creating environment-friendly agriculture. In this study, the long-term (5 years) effects of a phosphate-solubilizing bacterium Burkholderia cepacia ISOP5, a purple non-sulfur bacterium Rhodopseudomonas palustris ISP-1, and a mixed inoculation of these two bacteria (MB) on peanut yield, soil microbial community structure, and microbial metabolic functions were evaluated in a field experiment. After 5 years of inoculation, total peanut yield with B. cepacia ISOP5, R. palustris ISP-1, and MB treatments increased by 8.1%, 12.5%, and 19.5%, respectively. The treatments also significantly promoted the absorption of N and increased the protein content in peanut seeds. Nutrient content also increased to some extent in the bacteria-inoculum-treated soil. However, bacterial community diversity and richness were not significantly affected by bacterial inoculums, and only minor changes occurred in the bacterial community composition. Functional prediction revealed that bacterial inoculums reduced the relative abundance of those genes associated with P uptake and transport as well as increased the abundance of genes associated with inorganic P solubilization and organic P mineralization. Bacterial inoculums also increased the total relative abundance of genes associated with N metabolism. In addition to developing sustainable and eco-friendly agricultural practice, crop inoculation with B. cepacia ISOP5 and R. palustris ISP-1 would improve soil fertility, enhance microbial metabolic activity, and increase crop yield.
Collapse
Affiliation(s)
- Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
| | - Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,College of Environment and Ecology, Jiangsu Open University, Nanjing, China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Chongwen Qiu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Pan Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoli Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.,National Engineering and Technology Research Center for Red Soil Improvement, Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
241
|
Yang M, Yang H. Utilization of soil residual phosphorus and internal reuse of phosphorus by crops. PeerJ 2021; 9:e11704. [PMID: 34316395 PMCID: PMC8286700 DOI: 10.7717/peerj.11704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022] Open
Abstract
Phosphorus (P) participates in various assimilatory and metabolic processes in plants. Agricultural systems are facing P deficiency in many areas worldwide, while global P demand is increasing. Pioneering efforts have made us better understand the more complete use of residual P in soils and the link connecting plant P resorption to soil P deficiency, which will help to address the challenging issue of P deficiency. We summarized the state of soil "residual P" and the mechanisms of utilizing this P pool, the possible effects of planting and tillage patterns, various fertilization management practices and phosphate-solubilizing microorganisms on the release of soil residual P and the link connecting leaf P resorption to soil P deficiency and the regulatory mechanisms of leaf P resorption. The utilization of soil residual P represents a great challenge and a good chance to manage P well in agricultural systems. In production practices, the combination of "optimal fertilization and agronomic measures" can be adopted to utilize residual P in soils. Some agricultural practices, such as reduced or no tillage, crop rotation, stubble retention and utilization of biofertilizers-phosphate-solubilizing microorganisms should greatly improve the conversion of various P forms in the soil due to changes in the balance of individual nutrients in the soil or due to improvements in the phosphatase profile and activity in the soil. Leaf P resorption makes the plant less dependent on soil P availability, which can promote the use efficiency of plant P and enhance the adaptability to P-deficient environments. This idea provides new options for helping to ameliorate the global P dilemma.
Collapse
Affiliation(s)
- Mei Yang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Huimin Yang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
242
|
Prospecting catabolic diversity of microbial strains for developing microbial consortia and their synergistic effect on Lentil (Lens esculenta) growth, yield and iron biofortification. Arch Microbiol 2021; 203:4913-4928. [PMID: 34251477 DOI: 10.1007/s00203-021-02446-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Abstract
Carbon profiling of heterotrophic microbial inoculants is worthwhile strategy for formulating consortium-based biofertilizers. Consortium-based biofertilizers are better than single strain-based biofertilizers for sustaining agricultural productivity and enhancing micronutrient concentration in grains. Currently, we investigated catabolic diversity among microbes using different carbon sources and certain enzyme activities. A field experiment was also carried to evaluate the synergistic effect of selected lentil Rhizobia and plant growth promoting rhizobacteria strains on lentil growth, yield, nitrogen fixation, and Fe-content in seeds. On the basis of carbon profiling Bacillus sp. RB1 and Pseudomonas sp. RP1 were selected for synergistic study with lentil Rhizobium-Rhizobium leguminosarum subsp. viciae RR1. Co-inoculation of Rhizobium with Bacillus sp. RB1 and Pseudomonas sp. RP1 significantly enhanced the plant height, number of pods per plant, seed yield, number of nodules per plant, nitrogenase activity and Fe biofortification in seed over the single Rhizobium inoculation or dual combination of Rhizobium + RB1 or RP1.The response of single Rhizobium inoculation or co-inoculation of Rhizobium with RB1 and/or RP1 at 50% RDF was almost similar or higher than full dose of recommended N:P:K with respect to lentil yield and Fe biofortification in seed. This deciphered grouping of microbial strains for formulation of microbial consortia-based biofertilizers and revealed the promise of consortium of Rhizobium and plant growth promoting rhizobacteria in improving the biological yield and enhancing the Fe content of lentil seed.
Collapse
|
243
|
Gupta R, Anshu, Noureldeen A, Darwish H. Rhizosphere mediated growth enhancement using phosphate solubilizing rhizobacteria and their tri-calcium phosphate solubilization activity under pot culture assays in Rice ( Oryza sativa.). Saudi J Biol Sci 2021; 28:3692-3700. [PMID: 34220220 PMCID: PMC8241618 DOI: 10.1016/j.sjbs.2021.05.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/04/2022] Open
Abstract
Phosphate solubilizing rhizobacteria are considered as an important alternative to increase the availability of accumulated phosphates through solubilization. These increase the growth of plant by enhancing the efficiency of fixing biological nitrogen. This was studied through a pot experiment involving two Phosphate Solubilizing Rhizobacteria (PSRB) isolates, Pseudomonas aeruginosa and Bacillus subtilis along with Tri-calcium phosphate (TCP) on availibity of nutrients, biological composition of soil and yield attributes of rice crop at its growth stages. Experiment was laid in factorial completely randomized design (CRD) comprising of eight treatments replicated thrice with two factors viz. factor 1 with or without TCP (1 g−1soil) and factor 2 with single or combined inoculation of PSRB isolates. Considerable enhancement in available content of potassium (K), phosphorous (P), nitrogen (N) in soil was found with TCP 1 g−1soil (P1) and consortium of Pseudomonas aeruginosa and Bacillus subtilis broth culture at crop growth stages. Highest increase in available N (17.13% and 19.1%), available P (232% and 265%), available K (19.6% and 29.2%) over control were recorded in B3 (consortium of Pseudomonas aeruginosa and Bacillus subtilis broth culture). Similarly, maximum nutrient uptake N (6.4%), P (15.8%) and K (8.9%) were recorded with same treatment. A considerable growth in soil microbial biomass carbon and dehydrogenase activity at crop growth stages was recorded on application of TCP 1 g−1soil (P1) and consortium of PSRB isolates' Pseudomonas aeruginosa and Bacillus subtilis (B3). Highest increase in microbial biomass carbon (16.4% and 16.5%) and dehydrogenase activity 34.7% and 43.8% over control were recorded in B3 (consortium of PSRB isolates Pseudomonas aeruginosa and Bacillus subtilis) and was found best among all treatments in terms of yield (63.2%) and yield attributes; number of panicles−1plant (54.8%), number of grains−1panicle (156%) and average panicle length (63.9%).
Collapse
Affiliation(s)
- Renu Gupta
- Division of Soil Science and Agriculture Chemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Chatha, Jammu, India
| | - Anshu
- Division of Soil Science and Agriculture Chemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Chatha, Jammu, India
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
244
|
Shah A, Nazari M, Antar M, Msimbira LA, Naamala J, Lyu D, Rabileh M, Zajonc J, Smith DL. PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.667546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing environmental concerns are potentially narrowing global yield capacity of agricultural systems. Climate change is the most significant problem the world is currently facing. To meet global food demand, food production must be doubled by 2050; over exploitation of arable lands using unsustainable techniques might resolve food demand issues, but they have negative environmental effects. Current crop production systems are a major reason for changing global climate through diminishing biodiversity, physical and chemical soil degradation, and water pollution. The over application of fertilizers and pesticides contribute to climate change through greenhouse gas emissions (GHG) and toxic soil depositions. At this crucial time, there is a pressing need to transition to more sustainable crop production practices, ones that concentrate more on promoting sustainable mechanisms, which enable crops to grow well in resource limited and environmentally challenging environments, and also develop crops with greater resource use efficiency that have optimum sustainable yields across a wider array of environmental conditions. The phytomicrobiome is considered as one of the best strategies; a better alternative for sustainable agriculture, and a viable solution to meet the twin challenges of global food security and environmental stability. Use of the phytomicrobiome, due to its sustainable and environmentally friendly mechanisms of plant growth promotion, is becoming more widespread in the agricultural industry. Therefore, in this review, we emphasize the contribution of beneficial phytomicrobiome members, particularly plant growth promoting rhizobacteria (PGPR), as a strategy to sustainable improvement of plant growth and production in the face of climate change. Also, the roles of soil dwelling microbes in stress amelioration, nutrient supply (nitrogen fixation, phosphorus solubilization), and phytohormone production along with the factors that could potentially affect their efficiency have been discussed extensively. Lastly, limitations to expansion and use of biobased techniques, for instance, the perspective of crop producers, indigenous microbial competition and regulatory approval are discussed. This review largely focusses on the importance and need of sustainable and environmentally friendly approaches such as biobased/PGPR-based techniques in our agricultural systems, especially in the context of current climate change conditions, which are almost certain to worsen in near future.
Collapse
|
245
|
Fahsi N, Mahdi I, Mesfioui A, Biskri L, Allaoui A. Phosphate solubilizing rhizobacteria isolated from jujube ziziphus lotus plant stimulate wheat germination rate and seedlings growth. PeerJ 2021; 9:e11583. [PMID: 34249493 PMCID: PMC8256818 DOI: 10.7717/peerj.11583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
Jujube plant (Ziziphus lotus (L.) Desf.) can survive in arid climates and tolerates both biotic and abiotic stresses. Here, we isolated, for the first time in Morocco, nine phosphate solubilizing bacteria strains from jujube rhizosphere, designated J10 to J13, J15, & J153 to J156. Genotypic identification based on 16S rDNA sequencing, revealed six strains that belong to Pseudomonas (J10, J12, J13, J15, J153 and J154), two to Bacillus (J11 and J156), and one to Paenibacillus J155. Siderophores were produced by all strains. Proteases activity was missing in Pseudomonas sp. J153 & J154, whereas cellulase was restricted only to Pseudomonas sp. J10, Paenibacillus xylanexedens J155 and Bacillus cereus J156. Indole-3- acetic acid and ammonia were also produced by all strains, with a maxima of 204.28 µg mL−1 in Bacillus megaterium J11 and 0.33 µmol mL−1 in Pseudomonas sp. J153, respectively. Pseudomonas sp. J10 and B. cereus J156 grew on plates containing 1,500 µg mL−1 of nickel nitrate, while Pseudomonas sp. J153 withstood 1,500 µg mL−1 of either copper sulfate or cadmium sulfate. Phenotypic analysis of the potential of the isolates to promote early plant growth showed that wheat seeds inoculated with either P. moraviensis J12 or B. cereus J156 remarkably increased germination rate and seedlings growth. Lastly, antibiotic resistance profiling revealed that except for Pseudomonas sp. J11 and B. cereus J156, remaining strains displayed resistance at least to one of tested antibiotics. Collectively, Pseudomonas sp. J10, P. moraviensis J12, Pseudomonas sp. J153 and B. cereus J156, represent potential biofertilizers suitable for soils that are poor in P, and/or heavy metals contaminated.
Collapse
Affiliation(s)
- Nidal Fahsi
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Laboratory of Biologie & Sante, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Ismail Mahdi
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco.,Laboratory of Microbial Biotechnologies, Agrobiosciences and Environement (BioMAgE), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakesh, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biologie & Sante, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Latefa Biskri
- Molecular Microbiology laboratory, Coalition Center of Innovation and Prevention of Epidemies in Morocco (CIPEM), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco.,African Genome Center (AGC), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Abdelmounaaim Allaoui
- Molecular Microbiology laboratory, Coalition Center of Innovation and Prevention of Epidemies in Morocco (CIPEM), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
246
|
Etesami H, Jeong BR, Glick BR. Contribution of Arbuscular Mycorrhizal Fungi, Phosphate-Solubilizing Bacteria, and Silicon to P Uptake by Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:699618. [PMID: 34276750 PMCID: PMC8280758 DOI: 10.3389/fpls.2021.699618] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 05/22/2023]
Abstract
Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21+ Program), Graduate School, Gyeongsang National University, Jinju, South Korea
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
247
|
De Zutter N, Ameye M, Debode J, De Tender C, Ommeslag S, Verwaeren J, Vermeir P, Audenaert K, De Gelder L. Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microb Biotechnol 2021; 14:1594-1612. [PMID: 34021699 PMCID: PMC8313256 DOI: 10.1111/1751-7915.13824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Phosphorus (P) is despite its omnipresence in soils often unavailable for plants. Rhizobacteria able to solubilize P are therefore crucial to avoid P deficiency. Selection for phosphate-solubilizing bacteria (PSB) is frequently done in vitro; however, rhizosphere competence is herein overlooked. Therefore, we developed an in planta enrichment concept enabling simultaneous microbial selection for P-solubilization and rhizosphere competence. We used an ecologically relevant combination of iron- and aluminium phosphate to select for PSB in maize (Zea mays L.). In each consecutive enrichment, plant roots were inoculated with rhizobacterial suspensions from plants that had grown in substrate with insoluble P. To assess the plants' P statuses, non-destructive multispectral imaging was used for quantifying anthocyanins, a proxy for maize's P status. After the third consecutive enrichment, plants supplied with insoluble P and inoculated with rhizobacterial suspensions showed a P status similar to plants supplied with soluble P. A parallel metabarcoding approach uncovered that the improved P status in the third enrichment coincided with a shift in the rhizobiome towards bacteria with plant growth-promoting and P-solubilizing capacities. Finally, further consecutive enrichment led to a functional relapse hallmarked by plants with a low P status and a second shift in the rhizobiome at the level of Azospirillaceae and Rhizobiaceae.
Collapse
Affiliation(s)
- Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics (LAMP)Department of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityValentin Vaerwyckweg 1GhentB‐9000Belgium
- Laboratory of Environmental BiotechnologyDepartment of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityValentin Vaerwyckweg 1GhentB‐9000Belgium
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics (LAMP)Department of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityValentin Vaerwyckweg 1GhentB‐9000Belgium
| | - Jane Debode
- Plant Sciences UnitFlanders Research Institute for AgricultureFisheries and Food (ILVO)Burgemeester Van Gansberghelaan 96MerelbekeB‐9820Belgium
| | - Caroline De Tender
- Plant Sciences UnitFlanders Research Institute for AgricultureFisheries and Food (ILVO)Burgemeester Van Gansberghelaan 96MerelbekeB‐9820Belgium
- Department of Applied Mathematics, Computer Science and StatisticsGhent UniversityKrijgslaan 281 S9GhentB‐9000Belgium
| | - Sarah Ommeslag
- Plant Sciences UnitFlanders Research Institute for AgricultureFisheries and Food (ILVO)Burgemeester Van Gansberghelaan 96MerelbekeB‐9820Belgium
| | - Jan Verwaeren
- Research Unit Knowledge‐based Systems (KERMIT)Department of Data Analysis and Mathematical ModelingGhent UniversityCoupure links 653GhentB‐9000Belgium
| | - Pieter Vermeir
- Laboratory of Chemical Analysis (LCA)Faculty of Bioscience EngineeringGhent UniversityValentin Vaerwyckweg 1GhentB‐9000Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics (LAMP)Department of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityValentin Vaerwyckweg 1GhentB‐9000Belgium
| | - Leen De Gelder
- Laboratory of Environmental BiotechnologyDepartment of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityValentin Vaerwyckweg 1GhentB‐9000Belgium
| |
Collapse
|
248
|
Phosphate-Solubilizing Bacteria as a Panacea to Alleviate Stress Effects of High Soil CaCO3 Content in Phaseolus vulgaris with Special Reference to P-Releasing Enzymes. SUSTAINABILITY 2021. [DOI: 10.3390/su13137063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The present study examines the role of leguminous compost (LC), humic acids (HA), and phosphate-solubilizing bacteria (P-SB) in alleviating the stress effects of high soil CaCO3 content in Phaseolus vulgaris. Two pot trials for two consecutive seasons; fall 2019 and summer 2020 were implemented in an open greenhouse. A mixed three-way ANOVA, two independent factors (season and soil treatments) and one within factors (time) were used with four replicates. Residual maximum likelihood (REML) analysis was used for the mixed model of the studied traits. Inoculation of calcareous soil with P-SB (a 1:1 mixture of two Pseudomonas sp.; Ps. mallei and Ps. cepaceae) significantly exceeded LC, HA, or even LC+HA for the positive results obtained. P-SB facilitated nutrient solubility (e.g., N, K, Fe, and Mn), including conversion of insoluble phosphorous into a form available in the tested soil due to increased soil enzymatic activities (e.g., phosphatases and phytases). This mechanism, combined with a decrease in soil calcium carbonate content and an increase in cation exchange capacity (CEC) and organic matter (OM) content, increased the availability of various nutrients to plants, including P, in the soil, which contributed to the increased plant output. Adequate P content in plants led to a marked decrease in plant acid phosphatase activity under high content of CaCO3. The study concluded that the use of P-SB promotes biological activities, nutrient availability, and thus the productivity of calcareous soils, enabling Phaseolus vulgaris plants to withstand stress produced by high CaCO3 content through the development and/or adoption of potentially effective mechanisms. Strong highly significant interactions between the treatments and time were observed using the Wald’s statistics test, which indicates a positive correlation.
Collapse
|
249
|
Wang S, Walker R, Schicklberger M, Nico PS, Fox PM, Karaoz U, Chakraborty R, Brodie EL. Microbial Phosphorus Mobilization Strategies Across a Natural Nutrient Limitation Gradient and Evidence for Linkage With Iron Solubilization Traits. Front Microbiol 2021; 12:572212. [PMID: 34248859 PMCID: PMC8261140 DOI: 10.3389/fmicb.2021.572212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
Microorganisms have evolved several mechanisms to mobilize and mineralize occluded and insoluble phosphorus (P), thereby promoting plant growth in terrestrial ecosystems. However, the linkages between microbial P-solubilization traits and the preponderance of insoluble P in natural ecosystems are not well known. We tested the P solubilization traits of hundreds of culturable bacteria representative of the rhizosphere from a natural gradient where P concentration and bioavailability decline as soil becomes progressively more weathered. Aluminum, iron phosphate and organic P (phytate) were expected to dominate in more weathered soils. A defined cultivation medium with these chemical forms of P was used for isolation. A combination of soil chemical, spectroscopic analyses and 16S rRNA gene sequencing were used to understand the in situ ability for solubilization of these predominant forms of P. Locations with more occluded and organic P harbored the greatest abundance of P-mobilizing microorganisms, especially Burkholderiaceae (Caballeronia and Paraburkholderia spp.). Nearly all bacteria utilized aluminum phosphate, however fewer could subsist on iron phosphate (FePO4) or phytate. Microorganisms isolated from phytic acid were also most effective at solubilizing FePO4, suggesting that phytate solubilization may be linked to the ability to solubilize Fe. Significantly, we observed Fe to be co-located with P in organic patches in soil. Siderophore addition in lab experiments reinstated phytase mediated P-solubilization from Fe-phytate complexes. Taken together, these results indicate that metal-organic-P complex formation may limit enzymatic P solubilization from phytate in soil. Additionally, the linked traits of phytase and siderophore production were mostly restricted to specific clades within the Burkholderiaceae. We propose that Fe complexation of organic P (e.g., phytate) represents a major constraint on P turnover and availability in acidic soils, as only a limited subset of bacteria appear to possess the traits required to access this persistent pool of soil P.
Collapse
Affiliation(s)
- Shi Wang
- Ecology Department, Climate and Ecosystem Sciences Division, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Robert Walker
- Ecology Department, Climate and Ecosystem Sciences Division, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Marcus Schicklberger
- Ecology Department, Climate and Ecosystem Sciences Division, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter S Nico
- Energy Geosciences Division, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Patricia M Fox
- Energy Geosciences Division, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ulas Karaoz
- Ecology Department, Climate and Ecosystem Sciences Division, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Ecology Department, Climate and Ecosystem Sciences Division, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Eoin L Brodie
- Ecology Department, Climate and Ecosystem Sciences Division, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
250
|
Peña Venegas RA, Lee SJ, Thuita M, Mlay DP, Masso C, Vanlauwe B, Rodriguez A, Sanders IR. The Phosphate Inhibition Paradigm: Host and Fungal Genotypes Determine Arbuscular Mycorrhizal Fungal Colonization and Responsiveness to Inoculation in Cassava With Increasing Phosphorus Supply. FRONTIERS IN PLANT SCIENCE 2021; 12:693037. [PMID: 34239529 PMCID: PMC8258410 DOI: 10.3389/fpls.2021.693037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
A vast majority of terrestrial plants are dependent on arbuscular mycorrhizal fungi (AMF) for their nutrient acquisition. AMF act as an extension of the root system helping phosphate uptake. In agriculture, harnessing the symbiosis can potentially increase plant growth. Application of the AMF Rhizophagus irregularis has been demonstrated to increase the yields of various crops. However, there is a paradigm that AMF colonization of roots, as well as the plant benefits afforded by inoculation with AMF, decreases with increasing phosphorus (P) supply in the soil. The paradigm suggests that when fertilized with sufficient P, inoculation of crops would not be beneficial. However, the majority of experiments demonstrating the paradigm were conducted in sterile conditions without a background AMF or soil microbial community. Interestingly, intraspecific variation in R. irregularis can greatly alter the yield of cassava even at a full application of the recommended P dose. Cassava is a globally important crop, feeding 800 million people worldwide, and a crop that is highly dependent on AMF for P uptake. In this study, field trials were conducted at three locations in Kenya and Tanzania using different AMF and cassava varieties under different P fertilization levels to test if the paradigm occurs in tropical field conditions. We found that AMF colonization and inoculation responsiveness of cassava does not always decrease with an increased P supply as expected by the paradigm. The obtained results demonstrate that maximizing the inoculation responsiveness of cassava is not necessarily only in conditions of low P availability, but that this is dependent on cassava and fungal genotypes. Thus, the modeling of plant symbiosis with AMF under different P levels in nature should be considered with caution.
Collapse
Affiliation(s)
| | - Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Moses Thuita
- International Institute for Tropical Agriculture (IITA) Kenya, Nairobi, Kenya
| | | | - Cargele Masso
- International Institute for Tropical Agriculture (IITA) Cameroon, Yaoundé, Cameroon
| | - Bernard Vanlauwe
- International Institute for Tropical Agriculture (IITA) Kenya, Nairobi, Kenya
| | - Alia Rodriguez
- Department of Biology, National University of Colombia, Bogotá, Colombia
| | - Ian R. Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|