201
|
Toward a Better Understanding of Metal Nanoparticles, a Novel Strategy from Eucalyptus Plants. PLANTS 2021; 10:plants10050929. [PMID: 34066925 PMCID: PMC8148548 DOI: 10.3390/plants10050929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Nanotechnology is a promising tool that has opened the doors of improvement to the quality of human's lives through its potential in numerous technological aspects. Green chemistry of nanoscale materials (1-100 nm) is as an effective and sustainable strategy to manufacture homogeneous nanoparticles (NPs) with unique properties, thus making the synthesis of green NPs, especially metal nanoparticles (MNPs), the scientist's core theme. Researchers have tested different organisms to manufacture MNPs and the results of experiments confirmed that plants tend to be the ideal candidate amongst all entities and are suitable to synthesize a wide variety of MNPs. Natural and cultivated Eucalyptus forests are among woody plants used for landscape beautification and as forest products. The present review has been written to reflect the efficacious role of Eucalyptus in the synthesis of MNPs. To better understand this, the route of extracting MNPs from plants, in general, and Eucalyptus, in particular, are discussed. Furthermore, the crucial factors influencing the process of MNP synthesis from Eucalyptus as well as their characterization and recent applications are highlighted. Information gathered in this review is useful to build a basis for new prospective research ideas on how to exploit this woody species in the production of MNPs. Nevertheless, there is a necessity to feed the scientific field with further investigations on wider applications of Eucalyptus-derived MNPs.
Collapse
|
202
|
Spirescu VA, Chircov C, Grumezescu AM, Vasile BȘ, Andronescu E. Inorganic Nanoparticles and Composite Films for Antimicrobial Therapies. Int J Mol Sci 2021; 22:4595. [PMID: 33925617 PMCID: PMC8123905 DOI: 10.3390/ijms22094595] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
The development of drug-resistant microorganisms has become a critical issue for modern medicine and drug discovery and development with severe socio-economic and ecological implications. Since standard and conventional treatment options are generally inefficient, leading to infection persistence and spreading, novel strategies are fundamentally necessary in order to avoid serious global health problems. In this regard, both metal and metal oxide nanoparticles (NPs) demonstrated increased effectiveness as nanobiocides due to intrinsic antimicrobial properties and as nanocarriers for antimicrobial drugs. Among them, gold, silver, copper, zinc oxide, titanium oxide, magnesium oxide, and iron oxide NPs are the most preferred, owing to their proven antimicrobial mechanisms and bio/cytocompatibility. Furthermore, inorganic NPs can be incorporated or attached to organic/inorganic films, thus broadening their application within implant or catheter coatings and wound dressings. In this context, this paper aims to provide an up-to-date overview of the most recent studies investigating inorganic NPs and their integration into composite films designed for antimicrobial therapies.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| |
Collapse
|
203
|
Carata E, Tenuzzo BA, Mariano S, Setini A, Fidaleo M, Dini L. RETRACTED ARTICLE: Genotoxicity and alteration of the Gene Regulatory Network expression during Paracentrotus lividus development in the presence of carbon nanoparticles. Toxicol Res 2021; 38:257. [PMID: 35415079 PMCID: PMC8960529 DOI: 10.1007/s43188-020-00081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 10/25/2022] Open
|
204
|
García-Sánchez S, Gala M, Žoldák G. Nanoimpact in Plants: Lessons from the Transcriptome. PLANTS 2021; 10:plants10040751. [PMID: 33921390 PMCID: PMC8068866 DOI: 10.3390/plants10040751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Transcriptomics studies are available to evaluate the potential toxicity of nanomaterials in plants, and many highlight their effect on stress-responsive genes. However, a comparative analysis of overall expression changes suggests a low impact on the transcriptome. Environmental challenges like pathogens, saline, or drought stress induce stronger transcriptional responses than nanoparticles. Clearly, plants did not have the chance to evolve specific gene regulation in response to novel nanomaterials; but they use common regulatory circuits with other stress responses. A shared effect with abiotic stress is the inhibition of genes for root development and pathogen response. Other works are reviewed here, which also converge on these results.
Collapse
Affiliation(s)
- Susana García-Sánchez
- Center for Interdisciplinary Biosciences, Technology, and Innovation Park P.J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
- Correspondence: (S.G.-S.); (G.Ž.)
| | - Michal Gala
- Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenna 5, 040 01 Košice, Slovakia;
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology, and Innovation Park P.J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
- Correspondence: (S.G.-S.); (G.Ž.)
| |
Collapse
|
205
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
206
|
Mehrabi K, Kaegi R, Günther D, Gundlach-Graham A. Emerging investigator series: automated single-nanoparticle quantification and classification: a holistic study of particles into and out of wastewater treatment plants in Switzerland. ENVIRONMENTAL SCIENCE. NANO 2021; 8:1211-1225. [PMID: 34046179 PMCID: PMC8136323 DOI: 10.1039/d0en01066a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/22/2021] [Indexed: 05/23/2023]
Abstract
Single particle inductively coupled plasma time-of-flight mass spectrometry (sp-ICP-TOFMS), in combination with online microdroplet calibration, allows for the determination of particle number concentrations (PNCs) and the amount (i.e. mass) of ICP-MS-accessible elements in individual particles. Because sp-ICP-TOFMS analyses of environmental samples produce rich datasets composed of both single-metal nanoparticles (smNPs) and many types of multi-metal NPs (mmNPs), interpretation of these data is well suited to automated analysis schemes. Here, we present a new data analysis approach that includes: 1. automatic particle detection and elemental mass determinations based on online microdroplet calibration, 2. correction of false (randomly occurring) multi-metal associations caused by measurement of coincident but distinct NPs, and 3. unsupervised clustering analysis of mmNPs to identify unique classes of NPs based on their element compositions. To demonstrate the potential of our approach, we analyzed water samples collected from the influent and effluent of five wastewater treatment plants (WWTPs) across Switzerland. We determined elemental masses in individual NPs, as well as PNCs, to estimate the NP removal efficiencies of the individual WWTPs. From WWTP samples collected at two points in time, we found an average of 90% and 94% removal efficiencies of single-metal and multi-metal NPs, respectively. Between 5% to 27% of detected NPs were multi-metal; the most abundant particle types were those rich in Ce-La, Fe-Al, Ti-Zr, and Zn-Cu. Through hierarchical clustering, we identified NP classes conserved across all WWTPs, as well as particle types that are unique to one or a few WWTPs. These uniquely occurring particle types may represent point sources of anthropogenic NPs. We describe the utility of clustering analysis of mmNPs for identifying natural, geogenic NPs, and also for the discovery of new, potentially anthropogenic, NP targets.
Collapse
Affiliation(s)
- Kamyar Mehrabi
- Department of Chemistry and Applied Biosciences, ETH Zurich Switzerland
| | - Ralf Kaegi
- Department of Process Engineering, Eawag Dübendorf Switzerland
| | - Detlef Günther
- Department of Chemistry and Applied Biosciences, ETH Zurich Switzerland
| | | |
Collapse
|
207
|
Robinson JR, Isikhuemhen OS, Anike FN. Fungal-Metal Interactions: A Review of Toxicity and Homeostasis. J Fungi (Basel) 2021; 7:225. [PMID: 33803838 PMCID: PMC8003315 DOI: 10.3390/jof7030225] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metal nanoparticles used as antifungals have increased the occurrence of fungal-metal interactions. However, there is a lack of knowledge about how these interactions cause genomic and physiological changes, which can produce fungal superbugs. Despite interest in these interactions, there is limited understanding of resistance mechanisms in most fungi studied until now. We highlight the current knowledge of fungal homeostasis of zinc, copper, iron, manganese, and silver to comprehensively examine associated mechanisms of resistance. Such mechanisms have been widely studied in Saccharomyces cerevisiae, but limited reports exist in filamentous fungi, though they are frequently the subject of nanoparticle biosynthesis and targets of antifungal metals. In most cases, microarray analyses uncovered resistance mechanisms as a response to metal exposure. In yeast, metal resistance is mainly due to the down-regulation of metal ion importers, utilization of metallothionein and metallothionein-like structures, and ion sequestration to the vacuole. In contrast, metal resistance in filamentous fungi heavily relies upon cellular ion export. However, there are instances of resistance that utilized vacuole sequestration, ion metallothionein, and chelator binding, deleting a metal ion importer, and ion storage in hyphal cell walls. In general, resistance to zinc, copper, iron, and manganese is extensively reported in yeast and partially known in filamentous fungi; and silver resistance lacks comprehensive understanding in both.
Collapse
Affiliation(s)
| | - Omoanghe S. Isikhuemhen
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (J.R.R.); (F.N.A.)
| | | |
Collapse
|
208
|
Scola S, Blasco J, Campana O. "Nanosize effect" in the metal-handling strategy of the bivalve Scrobicularia plana exposed to CuO nanoparticles and copper ions in whole-sediment toxicity tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143886. [PMID: 33340740 DOI: 10.1016/j.scitotenv.2020.143886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
To date, the occurrence, fate and toxicity of metal-based NPs in the environment is under investigated. Their unique physicochemical, biological and optical properties, responsible for their advantageous application, make them intrinsically different from their bulk counterpart, raising the issue of their potential toxic specificity or "nanosize effect". The aim of this study was to investigate copper bioaccumulation, subcellular distribution and toxic effect in the marine benthic species Scrobicularia plana exposed to two forms of sediment-associated copper, as nanoparticles (CuO NPs) and as soluble ions (CuCl2). Results showed that the exposure to different copper forms activated specific organism's metal handling strategies. Clams bioaccumulated soluble copper at higher concentrations than those exposed to sediment spiked with CuO NPs. Moreover, CuO NPs exposure elicited a stronger detoxification response mediated by a prompt mobilization of CuO NPs to metal-containing granules as well as a delayed induction of MT-like proteins, which conversely, sequestered soluble copper since the beginning of the exposure at levels significantly different from the control. Eventually, exposure to high concentrations of either copper form led to the same acute toxic effect (100% mortality) but the outcome was delayed in bivalves exposed to CuO NPs suggesting that the mechanisms underlying toxicity were copper form-specific. Indeed, while most of soluble copper was associated to the mitochondrial fraction suggesting an impairment of the ATP synthesis capacity at mitochondrial level, CuO NPs toxicity was most likely caused by the oxidative stress mediated by their bioaccumulation in the enzymatic and mitochondrial metabolically available fractions.
Collapse
Affiliation(s)
- Silvia Scola
- Departamento de Ecología y Gestión Costera - Instituto sde Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Julián Blasco
- Departamento de Ecología y Gestión Costera - Instituto sde Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Olivia Campana
- Universidad de Cádiz, INMAR, Campus Rio San Pedro, 11510 Puerto Real, Spain.
| |
Collapse
|
209
|
Malakar A, Kanel SR, Ray C, Snow DD, Nadagouda MN. Nanomaterials in the environment, human exposure pathway, and health effects: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143470. [PMID: 33248790 DOI: 10.1016/j.scitotenv.2020.143470] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
Nanomaterials (NMs), both natural and synthetic, are produced, transformed, and exported into our environment daily. Natural NMs annual flux to the environment is around 97% of the total and is significantly higher than synthetic NMs. However, synthetic NMs are considered to have a detrimental effect on the environment. The extensive usage of synthetic NMs in different fields, including chemical, engineering, electronics, and medicine, makes them susceptible to be discharged into the atmosphere, various water sources, soil, and landfill waste. As ever-larger quantities of NMs end up in our environment and start interacting with the biota, it is crucial to understand their behavior under various environmental conditions, their exposure pathway, and their health effects on human beings. This review paper comprises a large portion of the latest research on NMs and the environment. The article describes the natural and synthetic NMs, covering both incidental and engineered NMs and their behavior in the natural environment. The review includes a brief discussion on sampling strategies and various analytical tools to study NMs in complex environmental matrices. The interaction of NMs in natural environments and their pathway to human exposure has been summarized. The potential of NMs to impact human health has been elaborated. The nanotoxicological effect of NMs based on their inherent properties concerning to human health is also reviewed. The knowledge gaps and future research needs on NMs are reported. The findings in this paper will be a resource for researchers working on NMs all over the world to understand better the challenges associated with NMs in the natural environment and their human health effects.
Collapse
Affiliation(s)
- Arindam Malakar
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA
| | - Sushil R Kanel
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA; Department of Chemistry, Wright State University, Dayton, OH 45435, USA.
| | - Chittaranjan Ray
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-0844, USA
| | - Daniel D Snow
- School of Natural Resources and Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 202 Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, USA
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
| |
Collapse
|
210
|
Borase HP, Muley AB, Patil SV, Singhal RS. Enzymatic response of Moina macrocopa to different sized zinc oxide particles: An aquatic metal toxicology study. ENVIRONMENTAL RESEARCH 2021; 194:110609. [PMID: 33340502 DOI: 10.1016/j.envres.2020.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/10/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Zinc oxide particles (ZnOPs) of both nanometer and sub-micron sizes are important components of high demand consumer products such as sunscreen, paint, textile, food packaging, and agriculture. Their ultimate discharge in the aquatic ecosystem is nearly unavoidable. For sustainable use of ZnOPs, there is an urgent need to assess its ecotoxicity using ecological indicator organisms. Moina macrocopa, an important component of the aquatic ecosystem is one such less explored indicator organism. In the present investigation, ZnOPs of two different sizes (250 ± 20 and 500 ± 50 nm) were selected for risk assessment as most of the previous reports were based on the use of 10-100 nm ZnOPs. ZnOPs of 500 nm were more lethal than that of 250 nm size, with respective LC50 of 0.0092 ± 0.0012 and 0.0337 ± 0.0133 mg/L against M. macrocopa after 48 h of exposure. We further used a sublethal concentration of 500 nm (0.00336 mg/L) and 250 nm (0.00092 mg/L) ZnOPs followed by measurement of enzymatic biomarkers of toxicity (acetylcholinesterase, digestive enzymes, antioxidant enzymes). A size-dependent variation in enzymatic response to 250 and 500 nm ZnOPs was seen. Exposure to ZnOPs inhibited acetylcholinesterase and digestive enzymes (trypsin, amylase), and elevated antioxidant enzymes (catalase, glutathione S-transferase) levels. The exposure also decreased the superoxide dismutase activity and increased that of β-galactosidase. Microscopic investigation revealed the accumulation of ZnOPs in the digestive tract of M. macrocopa that possibly disrupts enzyme activities. The present study will contribute to establishing regulatory policy on the maximum permissible limit of ZnOPs in different water bodies.
Collapse
Affiliation(s)
- Hemant P Borase
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, 400019, Maharashtra, India; C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli, 394350, Gujarat, India.
| | - Abhijeet B Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, 400019, Maharashtra, India
| | - Satish V Patil
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, Maharashtra, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, 400019, Maharashtra, India
| |
Collapse
|
211
|
Responses of Medicinal and Aromatic Plants to Engineered Nanoparticles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041813] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medicinal and aromatic plants have been used by mankind since ancient times. This is primarily due to their healing effects associated with their specific secondary metabolites (some of which are also used as drugs in modern medicine), or their structures, served as a basis for the development of new effective synthetic drugs. One way to increase the production of these secondary metabolites is to use nanoparticles that act as elicitors. However, depending on the specific particle size, composition, concentration, and route of application, nanoparticles may have several other benefits on medicinal and aromatic plants (e.g., increased plant growth, improved photosynthesis, and overall performance). On the other hand, particularly at applications of high concentrations, they are able to damage plants mechanically, adversely affect morphological and biochemical characteristics of plants, and show cytotoxic and genotoxic effects. This paper provides a comprehensive overview of the beneficial and adverse effects of metal-, metalloid-, and carbon-based nanoparticles on the germination, growth, and biochemical characteristics of a wide range of medicinal and aromatic plants, including the corresponding mechanisms of action. The positive impact of nanopriming and application of nanosized fertilizers on medicinal and aromatic plants is emphasized. Special attention is paid to the effects of various nanoparticles on the production of valuable secondary metabolites in these plants cultivated in hydroponic systems, soil, hairy root, or in vitro cultures. The beneficial impact of nanoparticles on the alleviation of abiotic stresses in medicinal and aromatic plants is also discussed.
Collapse
|
212
|
Auguste M, Mayall C, Barbero F, Hočevar M, Alberti S, Grassi G, Puntes VF, Drobne D, Canesi L. Functional and Morphological Changes Induced in Mytilus Hemocytes by Selected Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:470. [PMID: 33673220 PMCID: PMC7918069 DOI: 10.3390/nano11020470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
Nanoparticles (NPs) show various properties depending on their composition, size, and surface coating, which shape their interactions with biological systems. In particular, NPs have been shown to interact with immune cells, that represent a sensitive surveillance system of external and internal stimuli. In this light, in vitro models represent useful tools for investigating nano-bio-interactions in immune cells of different organisms, including invertebrates. In this work, the effects of selected types of NPs with different core composition, size and functionalization (custom-made PVP-AuNP and commercial nanopolystyrenes PS-NH2 and PS-COOH) were investigated in the hemocytes of the marine bivalve Mytilus galloprovincialis. The role of exposure medium was evaluated using either artificial seawater (ASW) or hemolymph serum (HS). Hemocyte morphology was investigated by scanning electron microscopy (SEM) and different functional parameters (lysosomal membrane stability, phagocytosis, and lysozyme release) were evaluated. The results show distinct morphological and functional changes induced in mussel hemocytes depending on the NP type and exposure medium. Mussel hemocytes may represent a powerful alternative in vitro model for a rapid pre-screening strategy for NPs, whose utilization will contribute to the understanding of the possible impact of environmental exposure to NPs in marine invertebrates.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Environmental, Earth, and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy;
| | - Craig Mayall
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (D.D.)
| | - Francesco Barbero
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain; (F.B.); (V.F.P.)
| | - Matej Hočevar
- Institute of Metals and Technology (IMT), 1000 Ljubljana, Slovenia;
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry, University of Genoa, 16136 Genoa, Italy;
| | - Giacomo Grassi
- Department of Physical, Earth, and Environmental Sciences, University of Siena, 53100 Siena, Italy;
| | - Victor F. Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain; (F.B.); (V.F.P.)
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (C.M.); (D.D.)
| | - Laura Canesi
- Department of Environmental, Earth, and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy;
| |
Collapse
|
213
|
Soares EV, Soares HMVM. Harmful effects of metal(loid) oxide nanoparticles. Appl Microbiol Biotechnol 2021; 105:1379-1394. [PMID: 33521847 PMCID: PMC7847763 DOI: 10.1007/s00253-021-11124-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The incorporation of nanomaterials (NMs), including metal(loid) oxide (MOx) nanoparticles (NPs), in the most diversified consumer products, has grown enormously in recent decades. Consequently, the contact between humans and these materials increased, as well as their presence in the environment. This fact has raised concerns and uncertainties about the possible risks of NMs to human health and the adverse effects on the environment. These concerns underline the need and importance of assessing its nanosecurity. The present review focuses on the main mechanisms underlying the MOx NPs toxicity, illustrated with different biological models: release of toxic ions, cellular uptake of NPs, oxidative stress, shading effect on photosynthetic microorganisms, physical restrain and damage of cell wall. Additionally, the biological models used to evaluate the potential hazardous of nanomaterials are briefly presented, with particular emphasis on the yeast Saccharomyces cerevisiae, as an alternative model in nanotoxicology. An overview containing recent scientific advances on cellular responses (toxic symptoms exhibited by yeasts) resulting from the interaction with MOx NPs (inhibition of cell proliferation, cell wall damage, alteration of function and morphology of organelles, presence of oxidative stress bio-indicators, gene expression changes, genotoxicity and cell dead) is critically presented. The elucidation of the toxic modes of action of MOx NPs in yeast cells can be very useful in providing additional clues about the impact of NPs on the physiology and metabolism of the eukaryotic cell. Current and future trends of MOx NPs toxicity, regarding their possible impacts on the environment and human health, are discussed. KEY POINTS: • The potential hazardous effects of MOx NPs are critically reviewed. • An overview of the main mechanisms associated with MOx NPs toxicity is presented. • Scientific advances about yeast cell responses to MOx NPs are updated and discussed.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory-CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Helena M V M Soares
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, rua Dr Roberto Frias, s/n, 4200-465, Porto, Portugal
| |
Collapse
|
214
|
de Medeiros AMZ, Khan LU, da Silva GH, Ospina CA, Alves OL, de Castro VL, Martinez DST. Graphene oxide-silver nanoparticle hybrid material: an integrated nanosafety study in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111776. [PMID: 33341698 DOI: 10.1016/j.ecoenv.2020.111776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 05/24/2023]
Abstract
This work reports an integrated nanosafety study including the synthesis and characterization of the graphene oxide-silver nanoparticle hybrid material (GO-AgNPs) and its nano-ecotoxicity evaluation in the zebrafish embryo model. The influences of natural organic matter (NOM) and a chorion embryo membrane were considered in this study, looking towards more environmentally realistic scenarios and standardized nanotoxicity testing. The nanohybrid was successfully synthesized using the NaBH4 aqueous method, and AgNPs (~ 5.8 nm) were evenly distributed over the GO surface. GO-AgNPs showed a dose-response acute toxicity: the LC50 was 1.5 mg L-1 for chorionated embryos. The removal of chorion, however, increased this toxic effect by 50%. Furthermore, the presence of NOM mitigated mortality, and LC50 for GO-AgNPs changed respectively from 2.3 to 1.2 mg L-1 for chorionated and de-chorionated embryos. Raman spectroscopy confirmed the ingestion of GO by embryos; but without displaying acute toxicity up to 100 mg L-1, indicating that the silver drove toxicity down. Additionally, it was observed that silver nanoparticle dissolution has a minimal effect on these observed toxicity results. Finally, understanding the influence of chorion membranes and NOM is a critical step towards the standardization of testing for zebrafish embryo toxicity in safety assessments and regulatory issues.
Collapse
Affiliation(s)
- Aline M Z de Medeiros
- Brazilian Nanotechnology National Laboratoy (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo State, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo State, Brazil; Brazilian Agricultural Research Corporation (Embrapa Environment), Jaguariúna, São Paulo State, Brazil
| | - Latif U Khan
- Brazilian Nanotechnology National Laboratoy (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo State, Brazil
| | - Gabriela H da Silva
- Brazilian Nanotechnology National Laboratoy (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo State, Brazil
| | - Carlos A Ospina
- Brazilian Nanotechnology National Laboratoy (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo State, Brazil
| | - Oswaldo L Alves
- Laboratory of Solid State Chemistry (LQES) and NanoBioss Laboratory, University of Campinas (Unicamp), Campinas, São Paulo State, Brazil
| | - Vera Lúcia de Castro
- Brazilian Agricultural Research Corporation (Embrapa Environment), Jaguariúna, São Paulo State, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratoy (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo State, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo State, Brazil; Laboratory of Solid State Chemistry (LQES) and NanoBioss Laboratory, University of Campinas (Unicamp), Campinas, São Paulo State, Brazil.
| |
Collapse
|
215
|
Tripathi D, Rai KK, Pandey-Rai S. Impact of green synthesized WcAgNPs on in-vitro plant regeneration and withanolides production by inducing key biosynthetic genes in Withania coagulans. PLANT CELL REPORTS 2021; 40:283-299. [PMID: 33151379 DOI: 10.1007/s00299-020-02630-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Withania coagulans (L.) Dunal bio-synthesized silver nanoparticles (WcAgNPs) worked as an abiotic elicitor or auto-catalyst that enhanced root regeneration and withanolides production in in-vitro regenerated W. coagulans. Rapid development in the production / consumption of silver nanoparticles (AgNPs) raised serious concern over its effects on the growth of natural plant community. The knowledge related to impact of AgNPs on plant growth and biocompatibility is increasing day by day, but comprehensive mechanism and gaps regarding their impacts on plant health have yet to be addressed. In the present study, we investigated the impact of Withania coagulans biosynthesized AgNPs (WcAgNPs) on in-vitro plant growth and withanolides production. Obtained results showed that the low concentrations of WcAgNPs significantly induced the plant growth by regulating oxidative stress via anti-oxidative defense system. Physiological, morphology and anatomical features also reflected healthy plant growth under low WcAgNPs exposure. While higher concentrations of WcAgNPs have a negative impact on W. coagulans plant growth due to induced lipid peroxidation, ROS accumulation, and root cell death. At lower concentrations, WcAgNPs have shown a positive effect on in-planta withanolides biosynthesis stimulating withanolide A and withaferin A up to 11.15-22.8-fold, respectively. Furthermore, the expression of withanolides biosynthetic genes were also quantified upon WcAgNPs exposure and terpenes biosynthetic genes showed over-expression. Thus, the present study concludes that the lower concentrations of WcAgNPs positively induced plant growth via improved root organogenesis and also have potential to act as an elicitor for withanolides production.
Collapse
Affiliation(s)
- Deepika Tripathi
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Krishna Kumar Rai
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Shashi Pandey-Rai
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
216
|
Kheirallah DAM, El-Samad LM, Abdel-Moneim AM. DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141743. [PMID: 32891989 DOI: 10.1016/j.scitotenv.2020.141743] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Nickel oxide nanoparticles (NiO-NPs) have extensively used in industrial and consumer products. The present study conducted to gain more knowledge about the safe use of NiO-NPs and also to understand their impact on the environment and biological systems. Herein, we examined the genotoxic and ultra-structural effects of a sublethal dose of NiO-NPs (0.03 mg/g) on the ovarian tissues of the ground beetle, Blaps polycresta. The mean diameter of NiO-NPs was 24.49 ± 3.88 nm, as obtained through transmission electron microscopy (TEM). In terms of DNA damage levels, the frequency of micronucleus (MN) formation was highly significant in the NiO-NPs treated group versus the controls. Besides, NiO-NPs treatment resulted in a significant increase in the tail length of comets. Further, electron microscopy revealed a progressive increase in chromatin condensation of the ovarian nurse and follicular cells, in addition to the accumulation of lysosomes and endo-lysosomes in their cytoplasm. In conclusion, NiO-NPs are capable of gaining access to the ovary of B. polycresta and causing DNA damage and a high degree of cellular toxicity in the ovarian cells. The present study highlights, for the first time, the adverse effects of these NPs to female gonads of insects and raised the concern of its genotoxic potential. It would be of interest to investigate NiO-NPs mediated intracellular ROS generation in future studies.
Collapse
|
217
|
Fate of Biodegradable Engineered Nanoparticles Used in Veterinary Medicine as Delivery Systems from a One Health Perspective. Molecules 2021; 26:molecules26030523. [PMID: 33498295 PMCID: PMC7863917 DOI: 10.3390/molecules26030523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
The field of veterinary medicine needs new solutions to address the current challenges of antibiotic resistance and the need for increased animal production. In response, a multitude of delivery systems have been developed in the last 20 years in the form of engineered nanoparticles (ENPs), a subclass of which are polymeric, biodegradable ENPs, that are biocompatible and biodegradable (pbENPs). These platforms have been developed to deliver cargo, such as antibiotics, vaccines, and hormones, and in general, have been shown to be beneficial in many regards, particularly when comparing the efficacy of the delivered drugs to that of the conventional drug applications. However, the fate of pbENPs developed for veterinary applications is poorly understood. pbENPs undergo biotransformation as they are transferred from one ecosystem to another, and these transformations greatly affect their impact on health and the environment. This review addresses nanoparticle fate and impact on animals, the environment, and humans from a One Health perspective.
Collapse
|
218
|
Mahana A, Guliy OI, Mehta SK. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111662. [PMID: 33396172 DOI: 10.1016/j.ecoenv.2020.111662] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Metal nanoparticles (MNPs) are employed in a variety of medical and non-medical applications. Over the past two decades, there has been substantial research on the impact of metallic nanoparticles on algae and cyanobacteria, which are at the base of aquatic food webs. In this review, the current status of our understanding of mechanisms of uptake and toxicity of MNPs and metal ions released from MNPs after dissolution in the surrounding environment were discussed. Also, the trophic transfer of MNPs in aquatic food webs was analyzed in this review. Approximately all metallic nanoparticles cause toxicity in algae. Predominantly, MNPs are less toxic compared to their corresponding metal ions. There is a sufficient evidence for the trophic transfer of MNPs in aquatic food webs. Internalization of MNPs is indisputable in algae, however, mechanisms of their transmembrane transport are inadequately known. Most of the toxicity studies are carried out with solitary species of MNPs under laboratory conditions rarely found in natural ecosystems. Oxidative stress is the primary toxicity mechanism of MNPs, however, oxidative stress seems a general response predictable to other abiotic stresses. MNP-specific toxicity in an algal cell is yet unknown. Lastly, the mechanism of MNP internalization, toxicity, and excretion in algae needs to be understood carefully for the risk assessment of MNPs to aquatic biota.
Collapse
Affiliation(s)
- Abhijeet Mahana
- Laboratory of Algal Biology, Department of Botany, Mizoram University, Aizawl 796004, India
| | - Olga I Guliy
- Leading Researcher Microbial Physiology Lab., Institute of Biochemistry & Physiology of Plants & Microorganisms, Russian Academy of Sciences, Entuziastov av., 13, 410049 Saratov, Russia
| | - Surya Kant Mehta
- Laboratory of Algal Biology, Department of Botany, Mizoram University, Aizawl 796004, India.
| |
Collapse
|
219
|
Koba-Ucun O, Ölmez Hanci T, Arslan-Alaton I, Arefi-Oskoui S, Khataee A, Kobya M, Orooji Y. Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment. Molecules 2021; 26:E395. [PMID: 33451084 PMCID: PMC7828569 DOI: 10.3390/molecules26020395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium Vibrio fischeri, the freshwater microalga Pseudokirchneriella subcapitata, the freshwater crustacean Daphnia magna, and the duckweed Spirodela polyrhiza. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.
Collapse
Affiliation(s)
- Olga Koba-Ucun
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; (O.K.-U.); (T.Ö.H.)
| | - Tuğba Ölmez Hanci
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; (O.K.-U.); (T.Ö.H.)
| | - Idil Arslan-Alaton
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; (O.K.-U.); (T.Ö.H.)
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran;
- Department of Environmental Engineering, Gebze Technical University, 41400 Kocaeli, Gebze, Turkey;
| | - Mehmet Kobya
- Department of Environmental Engineering, Gebze Technical University, 41400 Kocaeli, Gebze, Turkey;
- Department of Environmental Engineering, Kyrgyz-Turkish Manas University, Bishkek 720038, Kyrgyzstan
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
220
|
Domi B, Bhorkar K, Rumbo C, Sygellou L, Yannopoulos SN, Barros R, Quesada R, Tamayo-Ramos JA. Assessment of Physico-Chemical and Toxicological Properties of Commercial 2D Boron Nitride Nanopowder and Nanoplatelets. Int J Mol Sci 2021; 22:E567. [PMID: 33430016 PMCID: PMC7827597 DOI: 10.3390/ijms22020567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Boron nitride (BN) nanomaterials have been increasingly explored for potential applications in chemistry and biology fields (e.g., biomedical, pharmaceutical, and energy industries) due to their unique physico-chemical properties. However, their safe utilization requires a profound knowledge on their potential toxicological and environmental impact. To date, BN nanoparticles have been considered to have a high biocompatibility degree, but in some cases, contradictory results on their potential toxicity have been reported. Therefore, in the present study, we assessed two commercial 2D BN samples, namely BN-nanopowder (BN-PW) and BN-nanoplatelet (BN-PL), with the objective to identify whether distinct physico-chemical features may have an influence on the biological responses of exposed cellular models. Morphological, structural, and composition analyses showed that the most remarkable difference between both commercial samples was the diameter of their disk-like shape, which was of 200-300 nm for BN-PL and 100-150 nm for BN-PW. Their potential toxicity was investigated using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus Saccharomycescerevisiae, as human and environmental eukaryotic models respectively, employing in vitro assays. In both cases, cellular viability assays and reactive oxygen species (ROS) determinations where performed. The impact of the selected nanomaterials in the viability of both unicellular models was very low, with only a slight reduction of S. cerevisiae colony forming units being observed after a long exposure period (24 h) to high concentrations (800 mg/L) of both nanomaterials. Similarly, BN-PW and BN-PL showed a low capacity to induce the formation of reactive oxygen species in the studied conditions. Even at the highest concentration and exposure times, no major cytotoxicity indicators were observed in human cells and yeast. The results obtained in the present study provide novel insights into the safety of 2D BN nanomaterials, indicating no significant differences in the toxicological potential of similar commercial products with a distinct lateral size, which showed to be safe products in the concentrations and exposure conditions tested.
Collapse
Affiliation(s)
- Brixhilda Domi
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Kapil Bhorkar
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
- CNRS, ISCR-UMR 6226, University of Rennes, F-35000 Rennes, France
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Labrini Sygellou
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
| | - Spyros N. Yannopoulos
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
| | - Rocio Barros
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain;
| | - Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| |
Collapse
|
221
|
Juárez-Maldonado A, Tortella G, Rubilar O, Fincheira P, Benavides-Mendoza A. Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants. J Adv Res 2021; 31:113-126. [PMID: 34194836 PMCID: PMC8240115 DOI: 10.1016/j.jare.2020.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 01/02/2023] Open
Abstract
Background Biostimulation and toxicity constitute the continuous response spectrum of a biological organism against physicochemical or biological factors. Among the environmental agents capable of inducing biostimulation or toxicity are nanomaterials. On the < 100 nm scale, nanomaterials impose both physical effects resulting from the core’s and corona’s surface properties, and chemical effects related to the core’s composition and the corona’s functional groups. Aim of Review The purpose of this review is to describe the impact of nanomaterials on microorganisms and plants, considering two of the most studied physical and chemical properties: size and concentration. Key Scientific Concepts of Review Using a graphical analysis, the presence of a continuous biostimulation-toxicity spectrum is shown considering different biological responses. In microorganisms, the results showed high susceptibility to nanomaterials. Simultaneously, in plants, a hormetic response was found related to nanomaterials concentration and, in a few cases, a positive response in the smaller nanomaterials when these were applied at a higher level. With the above, it is concluded that: (1) microorganisms are more susceptible to nanomaterials than plants, (2) practically all nanomaterials seem to induce responses from biostimulation to toxicity in plants, and (3) the kind of response observed will depend in a complex way on the nanomateriaĺs physical and chemical characteristics, of the biological species with which they interact, and of the form and route of application and on the nature of the medium -soil, soil pore water, and biological surfaces- where the interaction occurs.
Collapse
Affiliation(s)
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Adalberto Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
- Corresponding author.
| |
Collapse
|
222
|
Liu X, Wang J, Huang YW. Quantifying the effect of nano-TiO 2 on the toxicity of lead on C. dubia using a two-compartment modeling approach. CHEMOSPHERE 2021; 263:127958. [PMID: 32835977 DOI: 10.1016/j.chemosphere.2020.127958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Nanoparticles (NPs) can significantly influence toxicity imposed by toxic metals. However, this impact has not been quantified. In this research, we investigated the effect of nano-TiO2 on lead (Pb) accumulation and the resultant toxicity using water flea Ceriodaphnia dubia (C. dubia) as the testing organism. We used a two-compartment modeling approach, which included a two-compartment accumulation model and a toxicodynamic model, on the basis of Pb body tissue accumulation, to quantify the impact of nano-TiO2 on Pb toxicity. The effect of algae on the combined toxicity of Pb and nano-TiO2 was also quantified. The two-compartment accumulation model could well quantify Pb accumulation kinetics in two-compartments of C. dubia, the gut and the rest of the body tissue in the presence of nano-TiO2. Modeling results suggested that the gut quickly accumulates Pb through active uptake from the mouth, but the rest of the body tissue slowly accumulates Pb from the gut. The predicted Pb distribution within C. dubia was verified by depuration modeling results from an independent depuration test. The survivorship of C. dubia as a function of Pb accumulated in the body tissue and exposure time can be well described using a toxicodynamic model. The effects of algae on Pb accumulation in different compartments of C. dubia and the toxicity in the presence of nano-TiO2 were also well described using the two-compartment modeling approach. Therefore, the novel two-compartment modeling approach provides a useful tool for assessing the effect of NPs on aquatic ecosystems where toxic metals are present.
Collapse
Affiliation(s)
- Xuesong Liu
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, United States
| | - Jianmin Wang
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, United States; The Center for Research in Energy and Environment (CREE), Missouri University of Science and Technology, Rolla, MO, 65409, United States.
| | - Yue-Wern Huang
- The Center for Research in Energy and Environment (CREE), Missouri University of Science and Technology, Rolla, MO, 65409, United States; Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, 65409, United States
| |
Collapse
|
223
|
Lu T, Zhang Q, Zhang Z, Hu B, Chen J, Chen J, Qian H. Pollutant toxicology with respect to microalgae and cyanobacteria. J Environ Sci (China) 2021; 99:175-186. [PMID: 33183695 DOI: 10.1016/j.jes.2020.06.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/11/2023]
Abstract
Microalgae and cyanobacteria are fundamental components of aquatic ecosystems. Pollution in aquatic environment is a worldwide problem. Toxicological research on microalgae and cyanobacteria can help to establish a solid foundation for aquatic ecotoxicological assessments. Algae and cyanobacteria occupy a large proportion of the biomass in aquatic environments; thus, their toxicological responses have been investigated extensively. However, the depth of toxic mechanisms and breadth of toxicological investigations need to be improved. While existing pollutants are being discharged into the environment daily, new ones are also being produced continuously. As a result, the phenomenon of water pollution has become unprecedentedly complex. In this review, we summarize the latest findings on five kinds of aquatic pollutants, namely, metals, nanomaterials, pesticides, pharmaceutical and personal care products (PPCPs), and persistent organic pollutants (POPs). Further, we present information on emerging pollutants such as graphene, microplastics, and ionic liquids. Efforts in studying the toxicological effects of pollutants on microalgae and cyanobacteria must be increased in order to better predict the potential risks posed by these materials to aquatic ecosystems as well as human health.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
224
|
Narouei FH, Kirk KA, Andreescu S. Electrochemical Quantification of Lead Adsorption on TiO
2
Nanoparticles. ELECTROANAL 2021. [DOI: 10.1002/elan.202060152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Kevin A. Kirk
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| |
Collapse
|
225
|
Wheeler RM, Lower SK. A meta-analysis framework to assess the role of units in describing nanoparticle toxicity. NANOIMPACT 2021; 21:100277. [PMID: 35559769 DOI: 10.1016/j.impact.2020.100277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 06/15/2023]
Abstract
Despite ample research on nanoparticles, their environmental toxicity is still debatable. The lack of consensus is due in part to the challenge of comparing studies because of variability in parameters like test organism, test medium, and duration of experiment. However, the unit used to compare the toxicology of nanoparticles is one variable that experimentalists can control. Traditionally, mass per volume is the most common unit used to make comparisons, but there is growing evidence that alternative units such as surface area per volume or particles per volume may provide a better and more mechanistic measure of toxicity. Herein, we propose and test a meta-analytic framework to study the effect of units on nanotoxicology using data from the NanoE-Tox database, a freely available database containing 1518 toxicology values from 224 published articles of which 42 records met our basic inclusion criteria. These data were augmented with more recent data published over the past five years as archived by the Web of Science citation index. An additional 27 records from 1676 papers met the inclusion criteria and were also included in the analysis. The meta-analysis framework measures the degree of heterogeneity for each of three units (grams/L, particles/L, surface area/L) grouped by the type of test organism, particle chemistry, and manner in which a nanoparticle's size was measured (e.g., nominal particle size reported by the manufacturer vs. measurement of size for particles suspended in the liquid medium used in a subsequent toxicity experiment). The result of the meta-analysis reveals that surface area per volume reduces the heterogeneity in the Ag crustacean subgroup when nanoparticle size was measured in the test medium, and the ZnO crustacean subgroup when nanoparticle size was measured out the test medium and may therefore be a more appropriate estimate of the toxicity of soluble nanoparticles. No subgroups in our analysis showed a reduction in heterogeneity for particles per volume in either soluble or insoluble nanoparticles. The lack of conclusion on insoluble nanoparticles was not due to a limitation of our meta-analysis but rather highlights a critical deficiency in the primary literature. The majority of published studies fail to report common measures of error that are essential for further analysis (i.e. error of the measured nanoparticle size and/or interoperable error of the measured half-maximal concentration of the toxic endpoint). If future nanotoxicity studies report such error, as they should, then the framework of our meta-analysis could be used more broadly to provide a simple, statistically rigorous way to assess the role of units on the toxicity of nanoparticles.
Collapse
Affiliation(s)
- Robert M Wheeler
- The Ohio State University, Columbus, OH 43210, United States of America.
| | - Steven K Lower
- The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
226
|
Barros D, Pradhan A, Pascoal C, Cássio F. Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115913. [PMID: 33143973 DOI: 10.1016/j.envpol.2020.115913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (AgNPs) are among the major groups of contaminants of emerging concern for aquatic ecosystems. The massive application of AgNPs relies on the antimicrobial properties of Ag, raising concerns about their potential risk to ecologically important freshwater microbes and the processes they drive. Moreover, it is still uncertain whether the effects of AgNPs are driven by the same mechanisms underlying those of Ag ions (Ag+). We employed transcriptomics to better understand AgNP toxicity and disentangle the role of Ag+ in the overall toxicity towards aquatic fungi. To that end, the worldwide-distributed aquatic fungus Articulospora tetracladia, that plays a central role in organic matter turnover in freshwaters, was selected and exposed for 3 days to citrate-coated AgNPs (∼20 nm) and Ag+ at concentrations inhibiting 20% of growth (EC20). Responses revealed 258 up- and 162 down-regulated genes upon exposure to AgNPs and 448 up- and 84 down-regulated genes under exposure to Ag+. Different gene expression patterns were found after exposure to each silver form, suggesting distinct mechanisms of action. Gene ontology (GO) analyses showed that the major cellular targets likely affected by both silver forms were the biological membranes. GO-based biological processes indicated that AgNPs up-regulated the genes involved in transport, nucleobase metabolism and energy production, but down-regulated those associated with redox and carbohydrate metabolism. Ag+ up-regulated the genes involved in carbohydrate and steroid metabolism, whereas genes involved in localization and transport were down-regulated. Our results showed, for the first time, distinct profiles of gene expression in aquatic fungi exposed to AgNPs and Ag+, supporting different modes of toxicity of each silver form. Also, our results suggest that Ag+ had a negligible role in the toxicity induced by AgNPs. Finally, our study highlights the power of transcriptomics in portraying the stress induced by different silver forms in organisms.
Collapse
Affiliation(s)
- Diana Barros
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
| | - Fernanda Cássio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
227
|
Biological, Physical and Chemical Properties of Nanosilver Particles Collected from Soil in Asir, Saudi Arabia. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-04833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
228
|
Jung F, Thurn M, Krollik K, Gao GF, Hering I, Eilebrecht E, Emara Y, Weiler M, Günday-Türeli N, Türeli E, Parnham MJ, Wacker MG. Predicting the environmental emissions arising from conventional and nanotechnology-related pharmaceutical drug products. ENVIRONMENTAL RESEARCH 2021; 192:110219. [PMID: 32980299 DOI: 10.1016/j.envres.2020.110219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Today, environmental pollution with pharmaceutical drugs and their metabolites poses a major threat to the aquatic ecosystems. Active substances such as fenofibrate, are processed to pharmaceutical drug formulations before they are degraded by the human body and released into the wastewater. Compared to the conventional product Lipidil® 200, the pharmaceutical product Lipidil 145 One® and Ecocaps take advantage of nanotechnology to improve uptake and bioavailability of the drug in humans. In the present approach, a combination of in vitro drug release studies and physiologically-based biopharmaceutics modeling was applied to calculate the emission of three formulations of fenofibrate (Lipidil® 200, Lipidil 145 One®, Ecocaps) into the environment. Special attention was paid to the metabolized and non-metabolized fractions and their individual toxicity, as well as to the emission of nanomaterials. The fish embryo toxicity test revealed a lower aquatic toxicity for the metabolite fenofibric acid and therefore an improved toxicity profile. When using the microparticle formulation Lipidil® 200, an amount of 126 mg of non-metabolized fenofibrate was emitted to the environment. Less than 0.05% of the particles were in the lower nanosize range. For the nanotechnology-related product Lipidil 145 One®, the total drug emission was reduced by 27.5% with a nanomaterial fraction of approximately 0.5%. In comparison, the formulation prototype Ecocaps reduced the emission of fenofibrate by 42.5% without any nanomaterials entering the environment. In a streamlined life cycle assessment, the lowered dose in combination with a lowered drug-to-metabolite ratio observed for Ecocaps led to a reduction of the full life cycle impacts of fenofibrate with a reduction of 18% reduction in the global warming potential, 61% in ecotoxicity, and 15% in human toxicity. The integrated environmental assessment framework highlights the outstanding potential of advanced modeling technologies to determine environmental impacts of pharmaceuticals during early drug development using preclinical in vitro data.
Collapse
Affiliation(s)
- Fabian Jung
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt, Main, Germany
| | - Manuela Thurn
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Katharina Krollik
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt, Main, Germany
| | - Ge Fiona Gao
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt, Main, Germany
| | - Indra Hering
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Applied Ecology, Auf dem Aberg 1, 57392, Schmallenberg, Germany; Goethe University, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt, Main, Germany
| | - Elke Eilebrecht
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Applied Ecology, Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Yasmine Emara
- Department of Environmental Technology, Technical University Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Marc Weiler
- MyBiotech GmbH, Industriestraße 1b, 66802, Überherrn, Germany
| | | | - Emre Türeli
- MyBiotech GmbH, Industriestraße 1b, 66802, Überherrn, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore.
| |
Collapse
|
229
|
Wang F, Li K, Shi Z. Phosphorus fertilization and mycorrhizal colonization change silver nanoparticle impacts on maize. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:118-129. [PMID: 33141388 DOI: 10.1007/s10646-020-02298-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 05/09/2023]
Abstract
Environmental risks of silver (Ag) nanoparticles (NPs) have aroused considerable concern, however, their ecotoxicity in soil-plant systems has yet not been well elaborated, particularly in agroecosystems with various fertility levels and soil biota. The aims of the present study were to determine AgNPs impacts on maize as influenced by mycorrhizal inoculation and P fertilization. A greenhouse pot experiment was conducted determine the effects of mycorrhizal inoculation with Rhizophagus intraradices and P fertilization (0, 20, and 50 P mg/kg soil, as Ca(H2PO4)2) on plant growth, Ag accumulation and physiological responses of maize exposed to AgNPs (1 mg/kg), or an equivalent Ag+. Overall, AgNPs and Ag+ did not significantly affect plant biomass and acquisition of mineral nutrients, activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), chlorophyll contents and photosystem (PS) II photochemical efficiency. In most cases, AgNPs and Ag+ caused similar Ag accumulation in plant tissues. P fertilization significantly increased Ag bioavailability and plant Ag accumulation, but only promoted the growth and P uptake of nonmycorrhizal plants. AM inoculation produced positive impacts on plant biomass, nutritional and physiological responses, but slightly affected extractable Ag in soil and Ag accumulation in plants. Mycorrhizal responses in plant growth and P uptake were more pronounced in the treatments without P but with Ag. By and large, AgNPs exhibited similar phytoavailability, phytoaccumulation and low phytotoxicity compared to Ag+, but higher fungitoxicity (i.e., lower root colonization). In conclusion, both AM inoculation and P fertilization can improve plant performance in the soil exposed to Ag, but P increases environmental risk of Ag. Our results indicate a beneficial role of arbuscular mycorrhizal fungi but a dual role of P in soil-plant systems exposed to AgNPs or Ag+.
Collapse
Affiliation(s)
- Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Ke Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China.
- Henan Engineering Research Center for Rural Human Settlement, Luoyang, 471023, China.
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, 471023, China.
| |
Collapse
|
230
|
Pan X. Mutagenicity Evaluation of Nanoparticles by the Ames Assay. Methods Mol Biol 2021; 2326:275-285. [PMID: 34097276 DOI: 10.1007/978-1-0716-1514-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Ames assay is a classic and robust method for identifying and evaluating chemical mutagens that reverse the mutations of Salmonella typhimurium and/or Escherichia coli bacteria strains with amino acid synthesis defects. It is also called the bacterial reverse mutation assay. Ames assay has been widely used for detecting genetic toxicity of many chemicals and gained increased applications in risk assessment of emerging environmental pollutants such as nanomaterials. In this chapter, we presented a detailed step-by-step method using the Ames assay to detect potential mutagenicity of metal oxide nanoparticles. The strategy to use the liver S9 fraction for bioactivation and a preincubation procedure is recommended. This method is easy to use to test genetic toxicity of other environmental contaminants and new chemicals.
Collapse
Affiliation(s)
- Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
231
|
Garcés M, Cáceres L, Chiappetta D, Magnani N, Evelson P. Current understanding of nanoparticle toxicity mechanisms and interactions with biological systems. NEW J CHEM 2021. [DOI: 10.1039/d1nj01415c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanotechnology is an emerging science involving the manipulation of matter on the nanometer scale.
Collapse
Affiliation(s)
- Mariana Garcés
- Universidad de Buenos Aires
- Facultad de Farmacia y Bioquímica
- Departamento de Ciencias Químicas
- Cátedra de Química General e Inorgánica
- Buenos Aires
| | - Lourdes Cáceres
- Universidad de Buenos Aires
- Facultad de Farmacia y Bioquímica
- Departamento de Ciencias Químicas
- Cátedra de Química General e Inorgánica
- Buenos Aires
| | - Diego Chiappetta
- Universidad de Buenos Aires
- Facultad de Farmacia y Bioquímica
- Cátedra de Tecnología Farmacéutica I
- Buenos Aires
- Argentina
| | - Natalia Magnani
- Universidad de Buenos Aires
- Facultad de Farmacia y Bioquímica
- Departamento de Ciencias Químicas
- Cátedra de Química General e Inorgánica
- Buenos Aires
| | - Pablo Evelson
- Universidad de Buenos Aires
- Facultad de Farmacia y Bioquímica
- Departamento de Ciencias Químicas
- Cátedra de Química General e Inorgánica
- Buenos Aires
| |
Collapse
|
232
|
Das L, Das P, Bhowal A, Bhattachariee C. Treatment of malachite green dye containing solution using bio-degradable Sodium alginate/NaOH treated activated sugarcane baggsse charcoal beads: Batch, optimization using response surface methodology and continuous fixed bed column study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111272. [PMID: 32871466 DOI: 10.1016/j.jenvman.2020.111272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, carbonized material was produced using sodium hydroxide treated Sugar cane bagasse (SB), and synthesized materials ware used to prepare Sodium Alginate/SBAC composite beads which were further used as an adsorbent to remove malachite green dye (MG) present in water. Physiochemical characteristics of composite beads were analyzed using FTIR, SEM, TGA, and BET. Adsorption equilibrium data showed excellent fit to the Freundlich model (R2 = 0.994) than to the Langmuir model (R2 = 0.925). Adsorption kinetics study indicated that the MG removal process would be better described by the pseudo-second-order kinetic model. The thermodynamic study suggested the spontaneous and endothermic nature of MG adsorption. By using response surface methodology, the optimum conditions for MG adsorption on composite beads were found to be 115.43 min, 0.3 g/L and pH 8 for contact time, adsorbent mass, and pH respectively and MG adsorption efficiency was 97.88%. The fixed-bed column data were evaluated using several kinetic models and among them, Thomas model showed the best agreement with investigation results. These results revealed that synthesized composite beads have a high affinity toward MG and it could be reasonable, eco-friendly adsorbent for dye removal from wastewater.
Collapse
Affiliation(s)
- Lopamudra Das
- School of Advanced Studies on Industrial Pollution Control Engineering, Jadavpur University, Kolkata, India
| | - Papita Das
- School of Advanced Studies on Industrial Pollution Control Engineering, Jadavpur University, Kolkata, India; Department of Chemical Engineering, Jadavpur University, Kolkata, India.
| | - Avijit Bhowal
- School of Advanced Studies on Industrial Pollution Control Engineering, Jadavpur University, Kolkata, India; Department of Chemical Engineering, Jadavpur University, Kolkata, India
| | | |
Collapse
|
233
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|
234
|
Munir T, Latif M, Mahmood A, Malik A, Shafiq F. Influence of IP-injected ZnO-nanoparticles in Catla catla fish: hematological and serological profile. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2453-2461. [PMID: 32725284 DOI: 10.1007/s00210-020-01955-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022]
Abstract
This study reports an effort to synthesize biocompatible zinc oxide nanoparticles using sol-gel method and its influence on hematological and serological profile of Catla catla fish. Hexagonal wurtzite structure and crystallite size of ZnO-NPs was identified by using XRD in the range of 19 to 20 nm. Moreover, the irregular and non-uniform surface of these NPs was found using SEM. The different stretched and vibrational mode (ZnO, OH, CO, and H-O-H) was identified by using FTIR analysis. UV-visible spectroscopy confirmed absorbance of the blue shift in the range 340 nm. Bioassay of ZnO-NPs on Catla catla was performed and nano ZnO was given through intraperitoneal injections at 0, 25, 50, 75, and 100 μg/g body weight doses. Analysis of fish blood samples indicated an increase in WBCs and leukocytes while the differential effect on monocytes. On the other hand in response to varying ZnO concentrations, an increase in RBCs, hemoglobin, and HCT was evident. Serum analysis revealed an increase in urea concentration while a reduction in creatinine, ALT, and AST. In an overall assessment, nano-ZnO supplementation at 25 to 100 μg/g body weight differentially affected hematological and serum biochemical profile of thaila fish. Graphical abstract.
Collapse
Affiliation(s)
- Tariq Munir
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Muhammad Latif
- Department of Zoology, Division of Science and Technology, University of Education Lahore, Lahore, Pakistan.
| | - Arslan Mahmood
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan
| | - Fahad Shafiq
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore, Pakistan
| |
Collapse
|
235
|
Perrier F, Bertucci A, Pierron F, Feurtet-Mazel A, Simon O, Klopp C, Candaudap F, Pokrovski O, Etcheverria B, Mornet S, Baudrimont M. Transfer and Transcriptomic Profiling in Liver and Brain of European Eels (Anguilla anguilla) After Diet-borne Exposure to Gold Nanoparticles. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2450-2461. [PMID: 32833228 DOI: 10.1002/etc.4858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
A nanometric revolution is underway, promising technical innovations in a wide range of applications and leading to a potential boost in environmental discharges. The propensity of nanoparticles (NPs) to be transferred throughout trophic chains and to generate toxicity was mainly assessed in primary consumers, whereas a lack of knowledge for higher trophic levels persists. The present study focused on a predatory fish, the European eel (Anguilla anguilla) exposed to gold NPs (AuNPs; 10 nm, polyethylene glycol-coated) for 21 d at 3 concentration levels in food: 0 (NP0), 1 (NP1), and 10 (NP10) mg Au kg-1 . Transfer was assessed by Au quantification in eel tissues, and transcriptomic responses in the liver and brain were revealed by a high-throughput RNA-sequencing approach. Eels fed at NP10 presented an erratic feeding behavior, whereas Au quantification only indicated transfer to intestine and kidney of NP1-exposed eels. Sequencing of RNA was performed in NP0 and NP1 eels. A total of 258 genes and 156 genes were significantly differentially transcribed in response to AuNP trophic exposure in the liver and brain, respectively. Enrichment analysis highlighted modifications in the immune system-related processes in the liver. In addition, results pointed out a shared response of both organs regarding 13 genes, most of them being involved in immune functions. This finding may shed light on the mode of action and toxicity of AuNPs in fish. Environ Toxicol Chem 2020;39:2450-2461. © 2020 SETAC.
Collapse
Affiliation(s)
- Fanny Perrier
- Université de Bordeaux, CNRS, UMR EPOC 5805, Arcachon, France
| | | | - Fabien Pierron
- Université de Bordeaux, CNRS, UMR EPOC 5805, Arcachon, France
| | | | - Olivier Simon
- LECO, IRSN, PSE ENV, SRTE, Cadarache, Saint-Paul-lez-Durance Cedex, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet-Tolosan, France
| | | | - Oleg Pokrovski
- Université de Toulouse, CNRS, GET, UMR, 5563, Toulouse, France
| | | | - Stéphane Mornet
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR, 5026, Pessac, France
| | | |
Collapse
|
236
|
Montes de Oca-Vásquez G, Solano-Campos F, Vega-Baudrit JR, López-Mondéjar R, Vera A, Moreno JL, Bastida F. Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140919. [PMID: 32711321 DOI: 10.1016/j.scitotenv.2020.140919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Increased utilization of silver nanoparticles (AgNPs) can result in an accumulation of these particles in the environment. The potential detrimental effects of AgNPs in soil may be associated with the low fertility of soils in semiarid regions that are usually subjected to restoration through the application of organic amendments. Microbial communities are responsible for fundamental processes related to soil fertility, yet the potential impacts of low and realistic AgNPs concentrations on soil microorganisms are still unknown. We studied the effects of realistic citrate-stabilized AgNPs concentrations (0.015 and 1.5 μg kg-1) at two exposure times (7 and 30 days) on a sandy clay loam Mediterranean soil unamended (SU) and amended with compost (SA). We assessed soil microbial biomass (microbial fatty acids), soil enzyme activities (urease, β-glucosidase, and alkaline phosphatase), and composition of the microbial community (bacterial 16S rRNA gene and fungal ITS2 sequencing) in a microcosm experiment. In the SA, the two concentrations of AgNPs significantly decreased the bacterial biomass after 7 days of incubation. At 30 days of incubation, only a significant decrease in the Gram+ was observed at the highest AgNPs concentration. In contrast, in the SU, there was a significant increase in bacterial biomass after 30 days of incubation at the lowest AgNPs concentration. Overall, we found that fungal biomass was more resistant to AgNPs than bacterial biomass, in both SA and SU. Further, the AgNPs changed the composition of the soil bacterial community in SA, the relative abundance of some bacterial taxa in SA and SU, and fungal richness in SU at 30 days of incubation. However, AgNPs did not affect the activity of extracellular enzymes. This study demonstrates that the exposure time and organic amendments modulate the effects of realistic concentrations of AgNPs in the biomass and composition of the microbial community of a Mediterranean soil.
Collapse
Affiliation(s)
- Gabriela Montes de Oca-Vásquez
- National Nanotechnology Laboratory, National Center for High Technology, 10109 Pavas, San José, Costa Rica; Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional, Universidad Estatal a Distancia, Costa Rica.
| | - Frank Solano-Campos
- School of Biological Sciences, Universidad Nacional, Campus Omar Dengo, 86-3000 Heredia, Costa Rica
| | - José R Vega-Baudrit
- National Nanotechnology Laboratory, National Center for High Technology, 10109 Pavas, San José, Costa Rica; Laboratory of Polymer Science and Technology, School of Chemistry, Universidad Nacional, Campus Omar Dengo, 86-3000 Heredia, Costa Rica
| | - Rubén López-Mondéjar
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, Praha 4 14220, Czech Republic
| | - Alfonso Vera
- CEBAS-CSIC. Department of Soil and Water Conservation. Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - José L Moreno
- CEBAS-CSIC. Department of Soil and Water Conservation. Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Felipe Bastida
- CEBAS-CSIC. Department of Soil and Water Conservation. Campus Universitario de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
237
|
Silva S, Ribeiro TP, Santos C, Pinto DCGA, Silva AMS. TiO 2 nanoparticles induced sugar impairments and metabolic pathway shift towards amino acid metabolism in wheat. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122982. [PMID: 32534391 DOI: 10.1016/j.jhazmat.2020.122982] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/06/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
TiO2-nanoparticles (TiO2-NP) have the potential to impair plant development. Nevertheless, the metabolic processes behind the physiological responses to TiO2-NP are still far from being fully understood. In this study, Triticum aestivum plants were exposed for 21 days to different concentrations (0; 5; 50; 150 mg L-1) of TiO2-NP (P25). After treatment, the metabolite profiles of roots and leaves were analysed. The content of >70 % of the identified metabolites changed in response to P25 and the impact on metabolic pathways increased with TiO2-NP dose, with leaves showing higher alterations. Roots up-regulated monosaccharides, azelaic acid, and γ-aminobutanoic acid and triggered the tyrosine metabolism, whereas leaves up-regulated the metabolisms of reserve sugars and tocopherol, and the phenylalanine and tryptophan pathways. Both organs (mainly leaves) up-regulated the aspartate family pathway together with serine, alanine and valine metabolisms and the glycerolipids' biosynthesis. In addition, the citrate and glyoxylate metabolisms were down-regulated in both organs (highest dose). Sugar biosynthesis breakdown, due to photosynthetic disturbances, shifted the cell metabolism to use amino acids as an alternative energy source, and both ROS and sugars worked as signalling molecules activating organ dependent antioxidant responses. Concluding, these NP-pollutants severely impact multiple crop metabolic pathways and may ultimately compromise plant performance.
Collapse
Affiliation(s)
- Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tiago P Ribeiro
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, LAQV-REQUIMTE, University of Porto, Rua Do Campo Alegre 4169-007, Porto, Portugal.
| | - Diana C G A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
238
|
Skiba E, Pietrzak M, Gapińska M, Wolf WM. Metal Homeostasis and Gas Exchange Dynamics in Pisum sativum L. Exposed to Cerium Oxide Nanoparticles. Int J Mol Sci 2020; 21:E8497. [PMID: 33187383 PMCID: PMC7696629 DOI: 10.3390/ijms21228497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Cerium dioxide nanoparticles are pollutants of emerging concern. They are rarely immobilized in the environment. This study extends our work on Pisum sativum L. as a model plant, cultivated worldwide, and is well suited for investigating additive interactions induced by nanoceria. Hydroponic cultivation, which prompts accurate plant growth control and three levels of CeO2 supplementation, were applied, namely, 100, 200, and 500 mg (Ce)/L. Phytotoxicity was estimated by fresh weights and photosynthesis parameters. Additionally, Ce, Cu, Zn, Mn, Fe, Ca, and Mg contents were analyzed by high-resolution continuum source atomic absorption and inductively coupled plasma optical emission techniques. Analysis of variance has proved that CeO2 nanoparticles affected metals uptake. In the roots, it decreased for Cu, Zn, Mn, Fe, and Mg, while a reversed process was observed for Ca. The latter is absorbed more intensively, but translocation to above-ground parts is hampered. At the same time, nanoparticulate CeO2 reduced Cu, Zn, Mn, Fe, and Ca accumulation in pea shoots. The lowest Ce concentration boosted the photosynthesis rate, while the remaining treatments did not induce significant changes. Plant growth stimulation was observed only for the 100 mg/L. To our knowledge, this is the first study that demonstrates the effect of nanoceria on photosynthesis-related parameters in peas.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| | - Magdalena Gapińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (M.P.); (W.M.W.)
| |
Collapse
|
239
|
Evariste L, Flahaut E, Baratange C, Barret M, Mouchet F, Pinelli E, Galibert AM, Soula B, Gauthier L. Ecotoxicological assessment of commercial boron nitride nanotubes toward Xenopus laevis tadpoles and host-associated gut microbiota. Nanotoxicology 2020; 15:35-51. [PMID: 33171057 DOI: 10.1080/17435390.2020.1839137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite the growing interest for boron nitride nanotubes (BNNT) due to their unique properties, data on the evaluation of the environmental risk potential of this emerging engineered nanomaterial are currently lacking. Therefore, the ecotoxicity of a commercial form of BNNT (containing tubes, hexagonal-boron nitride, and boron) was assessed in vivo toward larvae of the amphibian Xenopus laevis. Following the exposure, multiple endpoints were measured in the tadpoles as well as in bacterial communities associated to the host gut. Exposure to BNNT led to boron accumulation in host tissues and was not associated to genotoxic effects. However, the growth of the tadpoles increased due to BNNT exposure. This parameter was associated to remodeling of gut microbiome, benefiting to taxa from the phylum Bacteroidetes. Changes in relative abundance of this phylum were positively correlated to larval growth. The obtained results support the finding that BNNT are biocompatible as indicated by the absence of toxic effect from the tested nanomaterials. In addition, byproducts, especially free boron present in the tested product, were overall beneficial for the metabolism of the tadpoles.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Clément Baratange
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Florence Mouchet
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Anne Marie Galibert
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Brigitte Soula
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Laury Gauthier
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
240
|
Genevière AM, Derelle E, Escande ML, Grimsley N, Klopp C, Ménager C, Michel A, Moreau H. Responses to iron oxide and zinc oxide nanoparticles in echinoderm embryos and microalgae: uptake, growth, morphology, and transcriptomic analysis. Nanotoxicology 2020; 14:1342-1361. [PMID: 33078975 DOI: 10.1080/17435390.2020.1827074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We investigated the toxicity of Iron oxide and Zinc oxide engineered nanoparticles (ENPs) on Paracentrotus lividus sea urchin embryos and three species of microalgae. Morphological responses, internalization, and potential impacts of Fe2O3 and ZnO ENPs on physiology and metabolism were assessed. Both types of ENPs affected P. lividus larval development, but ZnO ENPs had a much stronger effect. While growth of the alga Micromonas commoda was severely impaired by both ENPs, Ostreococcus tauri or Nannochloris sp. were unaffected. Transmission electron microscopy showed the internalization of ENPs in sea urchin embryonic cells while only nanoparticle interaction with external membranes was evidenced in microalgae, suggesting that marine organisms react in diverse ways to ENPs. Transcriptome-wide analysis in P. lividus and M. commoda showed that many different physiological pathways were affected, some of which were common to both species, giving insights about the mechanisms underpinning toxic responses.
Collapse
Affiliation(s)
- Anne-Marie Genevière
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Evelyne Derelle
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France.,Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzane, France
| | - Marie-Line Escande
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Christophe Klopp
- INRA, Plateforme Bioinformatique Toulouse, Midi Pyrenees UBIA, Castanet Tolosan, France
| | - Christine Ménager
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, Paris, France
| | - Aude Michel
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, Paris, France
| | - Hervé Moreau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| |
Collapse
|
241
|
Adamec V, Köbölová K, Urbánek M, Čabanová K, Bencko V, Tuček M. The presence of fine and ultrafine particulate matter in the work environment. Cent Eur J Public Health 2020; 28 Suppl:S31-S36. [PMID: 33069178 DOI: 10.21101/cejph.a6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/01/2020] [Indexed: 11/15/2022]
Abstract
This study presents the results of pilot measurement, where the exposure of fine and ultrafine particulate matter was monitored. The measurement was performed in welding workplace, where these particles are produced unintentionally. The measurement consisted of collecting information and measuring the concentration of particles in the workplace, where data collection was focused only on inhalation exposure. During welding, primarily 300 nm size particles are produced, and their concentration is strongly influenced by the welding material, type of welding and suction. The particles are amorphous in terms of morphology and contain manganese, iron and silicon, which can cause neurodegenerative diseases. Furthermore, the results indicate the importance of monitoring oral exposure.
Collapse
Affiliation(s)
- Vladimír Adamec
- Institute of Forensic Engineering, Brno University of Technology, Brno, Czech Republic
| | - Klaudia Köbölová
- Institute of Forensic Engineering, Brno University of Technology, Brno, Czech Republic
| | - Michal Urbánek
- Institute of Forensic Engineering, Brno University of Technology, Brno, Czech Republic
| | - Kristina Čabanová
- Faculty of Mining and Geology, VSB-Technical University of Ostrava, Ostrava, Czech Republic.,Centre of Advanced and Innovative Technologies, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Bencko
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Milan Tuček
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
242
|
Metreveli G, David J, Schneider R, Kurtz S, Schaumann GE. Morphology, structure, and composition of sulfidized silver nanoparticles and their aggregation dynamics in river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139989. [PMID: 32535467 DOI: 10.1016/j.scitotenv.2020.139989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
The sulfidized form represents an environmentally relevant transformation state of silver nanoparticles (Ag-NPs) released into natural systems via wastewater route. However, the detailed characterization of sulfidized silver nanoparticles (S-Ag-NPs) is missing and their colloidal stability in aquatic systems is only insufficiently studied. The aim of this study was to systematically evaluate the surface properties, morphology, structure, composition, as well as aggregation dynamics of S-Ag-NPs in synthetic and natural river water. The S-Ag-NPs were prepared by sulfidation of citrate-coated silver nanoparticles (Cit-Ag-NPs). The sulfidation of Ag-NPs was accompanied by the formation of fiber-like Ag2S nano-bridges, Ag0-Ag2S core-shell structures, and hollow regions. In contrast to the published literature, the nano-bridges were thinner (2-9 nm) and longer (up to 60 nm), they formed at higher S2-/Ag molar ratio (2.041), and the formation of the core-shell structures was observed even in the absence of natural organic matter (NOM). Furthermore, we observed selective sulfidation of nanoparticles which can induce the hot spots for the release of toxic Ag+ ions. The critical coagulation concentration (CCC) of Ca2+ determined for S-Ag-NPs in reconstituted river water was 2.47 ± 0.23 mmol/L and thus higher than the CCC obtained for Cit-Ag-NPs in our earlier study revealing higher colloidal stability of S-Ag-NPs. In natural river water, S-Ag-NPs were also colloidally more stable compared to the Cit-Ag-NPs. Furthermore, the stabilizing effect of NOM was much higher for S-Ag-NPs than for Cit-Ag-NPs. For S-Ag-NPs stabilized by a low amount of citrate, we expect longer residence times in the water phase of rivers and thus higher risk for aquatic organisms. In contrast to this, the pristine Cit-Ag-NPs are expected to be accumulated faster in the sediments representing higher risk for benthic organisms. This study contributes to better understanding of environmental fate and effects of Ag-NPs released via wastewater route.
Collapse
Affiliation(s)
- George Metreveli
- iES Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany.
| | - Jan David
- iES Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany.
| | - Reinhard Schneider
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology (KIT), Engesserstraße 7, 76131 Karlsruhe, Germany.
| | - Sandra Kurtz
- iES Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany.
| | - Gabriele E Schaumann
- iES Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany.
| |
Collapse
|
243
|
Valério A, Sárria MP, Rodriguez-Lorenzo L, Hotza D, Espiña B, Gómez González SY. Are TiO 2 nanoparticles safe for photocatalysis in aqueous media? NANOSCALE ADVANCES 2020; 2:4951-4960. [PMID: 36132922 PMCID: PMC9419467 DOI: 10.1039/d0na00584c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/14/2020] [Indexed: 06/14/2023]
Abstract
Although environmental and toxicity concerns are inherently linked, catalysis using photoactive nanoparticles and their hazardous potential are usually addressed independently. A toxicological assessment under the application framework is particularly important, given the pristine nanoparticles tend to change characteristics during several processes used to incorporate them into products. Herein, an efficient TiO2-functionalized macroporous structure was developed using widely adopted immobilization procedures. The relationships between photocatalysis, catalyst release and associated potential environmental hazards were assessed using zebrafish embryonic development as a proxy. Immobilized nanoparticles demonstrated the safest approach to the environment, as the process eliminates remnant additives while preventing the release of nanoparticles. However, as acute sublethal effects were recorded in zebrafish embryos at different stages of development, a completely safe release of TiO2 nanoparticles into the aquatic environment cannot be advocated.
Collapse
Affiliation(s)
- Alexsandra Valério
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC) 88010-970 Florianopolis Brazil
| | - Marisa P Sárria
- International Iberian Nanotechnology Laboratory (INL) 4715-330 Braga Portugal
| | | | - Dachamir Hotza
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC) 88010-970 Florianopolis Brazil
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL) 4715-330 Braga Portugal
| | - Sergio Yesid Gómez González
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC) 88010-970 Florianopolis Brazil
| |
Collapse
|
244
|
Zhang J, Shen L, Xiang Q, Ling J, Zhou C, Hu J, Chen L. Proteomics reveals surface electrical property-dependent toxic mechanisms of silver nanoparticles in Chlorella vulgaris. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114743. [PMID: 32534322 DOI: 10.1016/j.envpol.2020.114743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (AgNPs) are known to exert adverse effects on both humans and aquatic organisms; however, the toxic mechanisms underlying these effects remain unclear. In this study, we investigated the toxic mechanisms of various AgNPs with different surface electrical properties in the freshwater algae Chlorella vulgaris using an advanced proteomics approach with Data-Independent Acquisition. Citrate-coated AgNPs (Cit-AgNPs) and polyethyleneimine-coated AgNPs (PEI-AgNPs) were selected as representatives of negatively and positively charged nanoparticles, respectively. Our results demonstrated that the AgNPs exhibited surface electrical property-dependent effects on the proteomic profile of C. vulgaris. In particular, the negatively charged Cit-AgNPs specifically regulated mitochondrial function-related proteins, resulting in the disruption of several associated metabolic pathways, such as those related to energy metabolism, oxidative phosphorylation, and amino acid synthesis. In contrast, the positively charged PEI-AgNPs primarily targeted ribosome function-related proteins and interrupted pathways of protein synthesis and DNA genetic information transmission. In addition, Ag+ ions released from the AgNPs had a significant influence on protein regulation and the induction of cellular stress. Collectively, our findings provide new insight into the surface electrical property-dependent proteomic effects of AgNPs on C. vulgaris and should improve our understanding of the toxic mechanisms of AgNPs in freshwater algae.
Collapse
Affiliation(s)
- Jilai Zhang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Lin Shen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Qianqian Xiang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jian Ling
- College of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Chuanhua Zhou
- College of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jinming Hu
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Liqiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
245
|
Johnson CR, Tran MN, Michelitsch LM, Abraham S, Hu J, Gray KA, Hartmann EM. Nano-enabled, antimicrobial toothbrushes - How physical and chemical properties relate to antibacterial capabilities. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122445. [PMID: 32298860 DOI: 10.1016/j.jhazmat.2020.122445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 05/06/2023]
Abstract
Over the past two decades, Ag and Zn nanoparticles have been integrated into various consumer products as a biocide. While some nano-enabled consumer products have been shown to have antibacterial properties, their antibacterial efficacy as well as the human and environmental health outcomes are not fully known. In this study, we examine a nanoparticle-enabled product that also serves as a conduit for human exposure to bacteria: toothbrushes. We utilize a combination of chemical analyses, laboratory experiments, and microscopy to characterize the nano-enabled toothbrush bristles. Our analysis showed the majority of measured Ag and Zn particles ranged from approximately 50 to 100 nm in size and were located on the surface and within bristles. During simulated brushing, antimicrobial bristles released both Ag and Zn, the majority of which was released in particulate form. While our results demonstrate that antimicrobial bristles have enhanced bactericidal properties compared to control samples, we also show that the surface topography influences nanoparticle retention, microbial adhesion, and bactericidal activity. We thus conclude that Ag or Zn content alone is insufficient to predict antimicrobial properties, which are further governed by the bioavailability of Ag or Zn at the bristle surface.
Collapse
Affiliation(s)
- Clayton R Johnson
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States.
| | - Mia Nhu Tran
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States
| | - Lisa-Marie Michelitsch
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States
| | - Simi Abraham
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States
| | - Jinglin Hu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States
| | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, United States.
| |
Collapse
|
246
|
Dziewięcka M, Flasz B, Rost-Roszkowska M, Kędziorski A, Kochanowicz A, Augustyniak M. Graphene oxide as a new anthropogenic stress factor - multigenerational study at the molecular, cellular, individual and population level of Acheta domesticus. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122775. [PMID: 32361302 DOI: 10.1016/j.jhazmat.2020.122775] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 05/14/2023]
Abstract
Although interest in transgenerational phenomena is constantly growing, little is known about the long-term toxicity of nanoparticles. In this study we investigate the multigenerational effects of graphene oxide (GO) which was given to Acheta domesticus in low doses (0.2, 2 and 20 μg·g-1 of food) for three subsequent generations. We assessed the influence of GO nanoparticles in many contexts, basing on parameters which represented different levels of biological organization: activity of antioxidant enzymes, level of apoptosis, DNA damage, histological analysis, hatching abilities, body mass and body length of insects, as well as their survival rate. The results have shown that exposing insects to nanoparticles over an extended period of time causes surprising intergenerational effects, based on significant differences in the life cycle and reproductive processes, which are not always dose-dependent. The second generation of insects appeared as the most unstable among the parameters that were studied, and did not match trends and patterns in the first and third generation categories. An increase of DNA damage was observed, but only in the third generation. This reduction of genome stability can be perceived as an essential element of adaptation, leading to an increase of genotype variants, which then undergo selection.
Collapse
Affiliation(s)
- Marta Dziewięcka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland.
| | - Barbara Flasz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Andrzej Kędziorski
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Anna Kochanowicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| |
Collapse
|
247
|
Adeel M, Tingting J, Hussain T, He X, Ahmad MA, Irshad MK, Shakoor N, Zhang P, Changjian X, Hao Y, Zhiyong Z, Javed R, Rui Y. Bioaccumulation of ytterbium oxide nanoparticles insinuate oxidative stress, inflammatory, and pathological lesions in ICR mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32944-32953. [PMID: 32524406 DOI: 10.1007/s11356-020-09565-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
With the rapid development in nanoscience and nanotechnology, rare earth oxide nanomaterials (REO-NMs) have been increasingly used due to their unique physical and chemical characteristics. Despite the increasing applications of REO NPs, scarce information is available on their detrimental effects. In the current study, we investigate the toxic effect of ytterbium oxide nanoparticles (Yb2O3 NPs) in mouse model by using various techniques including inductively coupled plasma mass spectrometry (ICP-MS) analysis over 30 days of exposure. Furthermore, we elucidated lung lavage fluid of mice for biochemical and cytological analysis, and lung tissues for histopathology to interpret the NP side effects. We observed a significant concentration of Yb2O3 NPs accumulated in the lung, liver, kidney, and heart tissues. Similarly, increased bioaccumulation of Yb content was found in the olfactory bulb compared to other reigns of brain. The cytological analysis of bronchoalveolar lavage fluid (BALF) revealed a significant elevation in the percentage of neutrophils and lymphocytes. Biochemical analysis showed an instilled Yb2O3 NPs, showing signs of oxidative damage through up-regulation of 60-87% of MDA while down-regulation of 20-40% of GSH-PX and GSH content. The toxicity pattern was more evident from histopathological observations. These interpretations provide enough evidence of bioaccumulation of Yb2O3 NPs in mice tissues. Overall, our findings reveal that acute exposure of Yb2O3 NPs through intranasal inhalation may cause toxicity via oxidative stress, which leads to a chronic inflammatory response. Graphical abstract Graphical illustrations of experimental findings.
Collapse
Affiliation(s)
- Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jin Tingting
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao He
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Muhammad Arslan Ahmad
- Key Lab of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, People's Republic of China
- Department of Tissue Engineering, China Medical University, Shenyang, 110122, People's Republic of China
| | - Muhammad Kashif Irshad
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Xie Changjian
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhang Zhiyong
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
248
|
Paramo LA, Feregrino-Pérez AA, Guevara R, Mendoza S, Esquivel K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1654. [PMID: 32842495 PMCID: PMC7558820 DOI: 10.3390/nano10091654] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
Nanotechnology is a tool that in the last decade has demonstrated multiple applications in several sectors, including agroindustry. There has been an advance in the development of nanoparticulated systems to be used as fertilizers, pesticides, herbicides, sensors, and quality stimulants, among other applications. The nanoencapsulation process not only protects the active ingredient but also can affect the diffusion, interaction, and activity. It is important to evaluate the negative aspects of the use of nanoparticles (NPs) in agriculture. Given the high impact of the nanoparticulated systems in the agro-industrial field, this review aims to address the effects of various nanomaterials on the morphology, metabolomics, and genetic modification of several crops.
Collapse
Affiliation(s)
- Luis A. Paramo
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Ana A. Feregrino-Pérez
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Ramón Guevara
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Sandra Mendoza
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, Chemistry Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico;
| | - Karen Esquivel
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| |
Collapse
|
249
|
Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020; 25:E3731. [PMID: 32824172 PMCID: PMC7464532 DOI: 10.3390/molecules25163731] [Citation(s) in RCA: 519] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles (NPs) are particles within the size range from 1 to 1000 nm and can be loaded with active compounds entrapped within or surface-adsorbed onto the polymeric core. The term "nanoparticle" stands for both nanocapsules and nanospheres, which are distinguished by the morphological structure. Polymeric NPs have shown great potential for targeted delivery of drugs for the treatment of several diseases. In this review, we discuss the most commonly used methods for the production and characterization of polymeric NPs, the association efficiency of the active compound to the polymeric core, and the in vitro release mechanisms. As the safety of nanoparticles is a high priority, we also discuss the toxicology and ecotoxicology of nanoparticles to humans and to the environment.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Filipa Carreiró
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Ana M. Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Andreia Neves
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - Bárbara Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
| | - D. Nagasamy Venkatesh
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643 001, Tamil Nadu, India;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60–355 Poznań, Poland;
| | - Amélia M. Silva
- Department of Biology and Environment, University of Tras-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (F.C.); (A.M.O.); (A.N.); (B.P.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
250
|
Skiba E, Michlewska S, Pietrzak M, Wolf WM. Additive interactions of nanoparticulate ZnO with copper, manganese and iron in Pisum sativum L., a hydroponic study. Sci Rep 2020; 10:13574. [PMID: 32782343 PMCID: PMC7421903 DOI: 10.1038/s41598-020-70303-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Widespread occurrence of ZnO nanoparticles in environment follows the growing number of applications either in technology or agriculture. The impact of five forms of nanoparticulate ZnO on copper, manganese and iron uptake by Pisum sativum L. cultivated in Hoagland solutions was investigated. Plants were collected after twelve days of zinc administration. Effect of bulk ZnO has also been studied. Initial zinc concentration was 100 mg L-1. Nanoparticles were characterized by the Transmission Electron Microscopy, Dynamic Light Scattering and Zeta potential measurements. Metal contents were analyzed using the Atomic Absorption Spectrometry with flame atomization for samples digested in a microwave closed system. Analysis of variance indicated that zinc species at either molecular or nanoscale levels altered Cu, Mn and Fe uptake and their further transport in pea plants. In particular, significant reduction of Mn and Fe combined with the Cu increase was observed. Additive interactions originated by nanoparticles affect the heavy metals uptake and indicate pollutants migration pathways in plants. Unfortunately, regulations for the plant cultivation were formulated when anthropogenic nanoparticles were not in common use. They underestimate complexity of metals interactions in either plant or habitat. Our results indicate that these additive interactions cannot be neglected and deserve further investigations.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland.
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| |
Collapse
|