201
|
Boy N, Mühlhausen C, Maier EM, Heringer J, Assmann B, Burgard P, Dixon M, Fleissner S, Greenberg CR, Harting I, Hoffmann GF, Karall D, Koeller DM, Krawinkel MB, Okun JG, Opladen T, Posset R, Sahm K, Zschocke J, Kölker S. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 2017; 40:75-101. [PMID: 27853989 DOI: 10.1007/s10545-016-9999-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
Glutaric aciduria type I (GA-I; synonym, glutaric acidemia type I) is a rare inherited metabolic disease caused by deficiency of glutaryl-CoA dehydrogenase located in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. The enzymatic defect results in elevated concentrations of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutaryl carnitine in body tissues, which can be reliably detected by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Most untreated individuals with GA-I experience acute encephalopathic crises during the first 6 years of life that are triggered by infectious diseases, febrile reaction to vaccinations, and surgery. These crises result in striatal injury and consequent dystonic movement disorder; thus, significant mortality and morbidity results. In some patients, neurologic disease may also develop without clinically apparent crises at any age. Neonatal screening for GA-I us being used in a growing number of countries worldwide and is cost effective. Metabolic treatment, consisting of low lysine diet, carnitine supplementation, and intensified emergency treatment during catabolism, is effective treatment and improves neurologic outcome in those individuals diagnosed early; treatment after symptom onset, however, is less effective. Dietary treatment is relaxed after age 6 years and should be supervised by specialized metabolic centers. The major aim of this second revision of proposed recommendations is to re-evaluate the previous recommendations (Kölker et al. J Inherit Metab Dis 30:5-22, 2007b; J Inherit Metab Dis 34:677-694, 2011) and add new research findings, relevant clinical aspects, and the perspective of affected individuals.
Collapse
Affiliation(s)
- Nikolas Boy
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Chris Mühlhausen
- University Children's Hospital, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Jana Heringer
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Birgit Assmann
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Peter Burgard
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Sandra Fleissner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, University of Munich Medical Centre, Munich, Germany
| | - Cheryl R Greenberg
- Department of Pediatrics, Children's Hospital Health Sciences Centre and University of Manitoba, Winnipeg, MB, R3A 1R9, Canada
- Department of Biochemistry and Medical Genetics, Children's Hospital Health Sciences Centre and University of Manitoba, Winnipeg, MB, R3A 1R9, Canada
| | - Inga Harting
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Daniela Karall
- Clinic for Paediatrics I, Inherited Metabolic Disorders, Medical, University of Innsbruck, Innsbruck, Austria
| | - David M Koeller
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Michael B Krawinkel
- Justus Liebig University Giessen, Institute of Nutritional Science, Giessen, Germany
| | - Jürgen G Okun
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Thomas Opladen
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Roland Posset
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Katja Sahm
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Kölker
- Centre for Child and Adolescent Medicine, Department of General Paediatrics, Division of Neuropaediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
202
|
Oshima H, Shiga T, Niwa SI, Enomoto H, Ugawa Y, Yabe H. Alteration of Duration Mismatch Negativity Induced by Transcranial Magnetic Stimulation Over the Left Parietal Lobe. Clin EEG Neurosci 2017; 48:11-19. [PMID: 26873935 DOI: 10.1177/1550059416630483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 11/17/2022]
Abstract
Mismatch negativity (MMN) is generated by a comparison between an incoming sound and the memory trace of preceding sounds stored in sensory memory without any attention to the sound. N100 (N1) is associated with the afferent response to sound onset and reflects early analysis of stimulus characteristics. MMN generators are present in the temporal and frontal lobe, and N1 generators are present in the temporal lobe. The parietal lobe is involved in MMN generation elicited by a change in duration. The anatomical network connecting these areas, lateralization, and the effect of the side of ear stimulation on MMN remain unknown. Thus, we studied the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) over the left parietal lobe on MMN and N1 in 10 healthy subjects. Low-frequency rTMS over the left parietal lobe decreased the amplitude of MMN following right ear sound stimulation, but the amplitude was unaffected with left ear sound stimulation. We observed no significant changes in the amplitude of N1 or the latency of MMN or N1. These results suggest that low-frequency rTMS over the left parietal lobe modulates the detection of early auditory changes in duration in healthy subjects. Stimulation that is contralateral to the side of the ear experiencing sound may affect the generation of duration MMN more than ipsilateral stimulation.
Collapse
Affiliation(s)
- Hirokazu Oshima
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Tetsuya Shiga
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Shin-Ichi Niwa
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Enomoto
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
203
|
Carter AR, McAvoy MP, Siegel JS, Hong X, Astafiev SV, Rengachary J, Zinn K, Metcalf NV, Shulman GL, Corbetta M. Differential white matter involvement associated with distinct visuospatial deficits after right hemisphere stroke. Cortex 2016; 88:81-97. [PMID: 28081452 DOI: 10.1016/j.cortex.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/07/2016] [Accepted: 12/08/2016] [Indexed: 02/05/2023]
Abstract
Visuospatial attention depends on the integration of multiple processes, and people with right hemisphere lesions after a stroke may exhibit severe or no visuospatial deficits. The anatomy of core components of visuospatial attention is an area of intense interest. Here we examine the relationship between the disruption of core components of attention and lesion distribution in a heterogeneous group (N = 70) of patients with right hemisphere strokes regardless of the presence of clinical neglect. Deficits of lateralized spatial orienting, measured as the difference in reaction times for responding to visual targets in the contralesional or ipsilesional visual field, and deficits in re-orienting attention, as measured by the difference in reaction times for invalidly versus validly cued targets, were measured using a computerized spatial orienting task. Both measures were related through logistic regression and a novel ridge regression method to anatomical damage measured with magnetic resonance imaging. While many regions were common to both deficit maps, a deficit in lateralized spatial orienting was more associated with lesions in the white matter underlying the posterior parietal cortex, and middle and inferior frontal gyri. A deficit in re-orienting of attention toward unattended locations was associated with lesions in the white matter of the posterior parietal cortex, insular cortex and less so with white matter involvement of the anterior frontal lobe. An hodological analysis also supports this partial dissociation between the white matter tracts that are damaged in lateralized spatial biases versus impaired re-orienting. Our results underscore that the integrity of fronto-parietal white matter tracts is crucial for visuospatial attention and that different attention components are mediated by partially distinct neuronal substrates.
Collapse
Affiliation(s)
- Alex R Carter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Mark P McAvoy
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Siegel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Hong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Serguei V Astafiev
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer Rengachary
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristi Zinn
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas V Metcalf
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gordon L Shulman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maurizio Corbetta
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
204
|
Jung NY, Han CE, Kim HJ, Yoo SW, Kim HJ, Kim EJ, Na DL, Lockhart SN, Jagust WJ, Seong JK, Seo SW. Tract-Specific Correlates of Neuropsychological Deficits in Patients with Subcortical Vascular Cognitive Impairment. J Alzheimers Dis 2016; 50:1125-35. [PMID: 26836179 DOI: 10.3233/jad-150841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The white matter tract-specific correlates of neuropsychological deficits are not fully established in patients with subcortical vascular cognitive impairment (SVCI), where white matter tract damage may be a critical factor in cognitive impairment. The purpose of this study is to investigate the tract-specific correlates of neuropsychological deficits in SVCI patients using tract-specific statistical analysis (TSSA). We prospectively recruited 114 SVCI patients, and 55 age-, gender-, and education-matched individuals with normal cognition (NC). All participants underwent diffusion weighted imaging and neuropsychological testing. We classified tractography results into fourteen major fiber tracts and analyzed group comparison and correlation with cognitive impairments. Relative to NC subjects, SVCI patients showed decreased fractional anisotropy values in bilateral anterior-thalamic radiation, cingulum, superior-longitudinal fasciculus, uncinate fasciculus, corticospinal tract, and left inferior-longitudinal fasciculus. Focal disruptions in specific tracts were associated with specific cognitive impairments. Our findings suggest that disconnection of specific white matter tracts, especially those neighboring and providing connections between gray matter regions important to certain cognitive functions, may contribute to specific cognitive impairments in SVCI.
Collapse
Affiliation(s)
- Na-Yeon Jung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Cheol E Han
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Wook Yoo
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Hee-Jong Kim
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Samuel N Lockhart
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea.,Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
205
|
Fiori S, Guzzetta A, Mitra J, Pannek K, Pasquariello R, Cipriani P, Tosetti M, Cioni G, Rose SE, Chilosi A. Neuroanatomical correlates of childhood apraxia of speech: A connectomic approach. NEUROIMAGE-CLINICAL 2016; 12:894-901. [PMID: 27882295 PMCID: PMC5114583 DOI: 10.1016/j.nicl.2016.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/16/2022]
Abstract
Childhood apraxia of speech (CAS) is a paediatric speech sound disorder in which precision and consistency of speech movements are impaired. Most children with idiopathic CAS have normal structural brain MRI. We hypothesize that children with CAS have altered structural connectivity in speech/language networks compared to controls and that these altered connections are related to functional speech/language measures. Whole brain probabilistic tractography, using constrained spherical deconvolution, was performed for connectome generation in 17 children with CAS and 10 age-matched controls. Fractional anisotropy (FA) was used as a measure of connectivity and the connections with altered FA between CAS and controls were identified. Further, the relationship between altered FA and speech/language scores was determined. Three intra-hemispheric/interhemispheric subnetworks showed reduction of FA in CAS compared to controls, including left inferior (opercular part) and superior (dorsolateral, medial and orbital part) frontal gyrus, left superior and middle temporal gyrus and left post-central gyrus (subnetwork 1); right supplementary motor area, left middle and inferior (orbital part) frontal gyrus, left precuneus and cuneus, right superior occipital gyrus and right cerebellum (subnetwork 2); right angular gyrus, right superior temporal gyrus and right inferior occipital gyrus (subnetwork 3). Reduced FA of some connections correlated with diadochokinesis, oromotor skills, expressive grammar and poor lexical production in CAS. These findings provide evidence of structural connectivity anomalies in children with CAS across specific brain regions involved in speech/language function. We propose altered connectivity as a possible epiphenomenon of complex pathogenic mechanisms in CAS which need further investigation. Connectivity anomalies are present in children with Childhood Apraxia of Speech. Connectivity anomalies include brain regions involved in speech/language function. Altered connectivity correlates with a measure of speech/language dysfunction.
Collapse
Affiliation(s)
- Simona Fiori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Corresponding author at: Department of Developmental Neuroscience, Stella Maris Foundation, Viale del Tirreno 331, 56128 Pisa, Italy.Department of Developmental NeuroscienceStella Maris FoundationViale del Tirreno 331Pisa56128Italy
| | - Andrea Guzzetta
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Jhimli Mitra
- CSIRO, Commonwealth Scientific and Industrial Research Organization, Centre for Computational Informatics, Brisbane, Australia
| | - Kerstin Pannek
- Department of Computing, Imperial College London, London, United Kingdom
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Paola Cipriani
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Michela Tosetti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stephen E Rose
- CSIRO, Commonwealth Scientific and Industrial Research Organization, Centre for Computational Informatics, Brisbane, Australia
| | - Anna Chilosi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
206
|
Current Perspective of Stem Cell Therapy in Neurodegenerative and Metabolic Diseases. Mol Neurobiol 2016; 54:7276-7296. [PMID: 27815831 DOI: 10.1007/s12035-016-0217-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases have been an unsolved riddle for quite a while; to date, there are no proper and effective curative treatments and only palliative and symptomatic treatments are available to treat these illnesses. The absence of therapeutic treatments for neurodegenerative ailments has huge economic hit and strain on the society. Pharmacotherapies and various surgical procedures like deep brain stimulation are being given to the patient, but they are only effective for the symptoms and not for the diseases. This paper reviews the recent studies and development of stem cell therapy for neurodegenerative disorders. Stem cell-based treatment is a promising new way to deal with neurodegenerative diseases. Stem cell transplantation can advance useful recuperation by delivering trophic elements that impel survival and recovery of host neurons in animal models and patients with neurodegenerative maladies. Several mechanisms, for example, substitution of lost cells, cell combination, release of neurotrophic factor, proliferation of endogenous stem cell, and transdifferentiation, may clarify positive remedial results. With the current advancements in the stem cell therapies, a new hope for the cure has come out since they have potential to be a cure for the same. This review compiles stem cell therapy recent conceptions in neurodegenerative and neurometabolic diseases and updates in this field. Graphical Absract ᅟ.
Collapse
|
207
|
Sone J, Mori K, Inagaki T, Katsumata R, Takagi S, Yokoi S, Araki K, Kato T, Nakamura T, Koike H, Takashima H, Hashiguchi A, Kohno Y, Kurashige T, Kuriyama M, Takiyama Y, Tsuchiya M, Kitagawa N, Kawamoto M, Yoshimura H, Suto Y, Nakayasu H, Uehara N, Sugiyama H, Takahashi M, Kokubun N, Konno T, Katsuno M, Tanaka F, Iwasaki Y, Yoshida M, Sobue G. Clinicopathological features of adult-onset neuronal intranuclear inclusion disease. Brain 2016; 139:3170-3186. [PMID: 27797808 PMCID: PMC5382941 DOI: 10.1093/brain/aww249] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/30/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a slowly progressive neurodegenerative disease characterized by eosinophilic hyaline intranuclear inclusions in the central and peripheral nervous system, and also in the visceral organs. NIID has been considered to be a heterogeneous disease because of the highly variable clinical manifestations, and ante-mortem diagnosis has been difficult. However, since we reported the usefulness of skin biopsy for the diagnosis of NIID, the number of NIID diagnoses has increased, in particular adult-onset NIID. In this study, we studied 57 cases of adult-onset NIID and described their clinical and pathological features. We analysed both NIID cases diagnosed by post-mortem dissection and by ante-mortem skin biopsy based on the presence of characteristic eosinophilic, hyaline and ubiquitin-positive intanuclear inclusion: 38 sporadic cases and 19 familial cases, from six families. In the sporadic NIID cases with onset age from 51 to 76, dementia was the most prominent initial symptom (94.7%) as designated 'dementia dominant group', followed by miosis, ataxia and unconsciousness. Muscle weakness and sensory disturbance were also observed. It was observed that, in familial NIID cases with onset age less than 40 years, muscle weakness was seen most frequently (100%), as designated 'limb weakness group', followed by sensory disturbance, miosis, bladder dysfunction, and dementia. In familial cases with more than 40 years of onset age, dementia was most prominent (100%). Elevated cerebrospinal fluid protein and abnormal nerve conduction were frequently observed in both sporadic and familial NIID cases. Head magnetic resonance imaging showed high intensity signal in corticomedullary junction in diffusion-weighted image in both sporadic and familial NIID cases, a strong clue to the diagnosis. All of the dementia dominant cases presented with this type of leukoencephalopathy on head magnetic resonance imaging. Both sporadic and familial NIID cases presented with a decline in Mini-Mental State Examination and Frontal Assessment Battery scores. Based on these clinicopathological features, we proposed a diagnosis flow chart of adult-onset NIID. Our study suggested that the prevalence rate of adult-onset NIID may be higher than previously thought, and that NIID may be underdiagnosed. We should take NIID into account for differential diagnosis of leukoencephalopathy and neuropathy.
Collapse
Affiliation(s)
- Jun Sone
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,2 Department of Therapeutics for Intractable Neurological Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keiko Mori
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,3 Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Mie, Japan
| | - Tomonori Inagaki
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ryu Katsumata
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinnosuke Takagi
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Yokoi
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kunihiko Araki
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiyasu Kato
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomohiko Nakamura
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruki Koike
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshi Takashima
- 4 Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- 4 Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yutaka Kohno
- 5 Department of Neurology, Ibaraki Prefectural University of Health Sciences, Ami, Ibaraki, Japan
| | - Takashi Kurashige
- 6 Department of Neurology, National Hospital Organization Kure Medical Centre, Kure, Hiroshima, Japan
| | - Masaru Kuriyama
- 7 Department of Neurology, Ota Memorial Hospital, Fukuyama, Hiroshima, Japan
| | - Yoshihisa Takiyama
- 8 Department of Neurology, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Mai Tsuchiya
- 8 Department of Neurology, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Naoyuki Kitagawa
- 9 Department of Neurology, Kosei Chuo General Hospital, Tokyo, Japan
| | - Michi Kawamoto
- 10 Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Hajime Yoshimura
- 10 Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Yutaka Suto
- 11 Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Hiroyuki Nakayasu
- 11 Department of Neurology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Naoko Uehara
- 12 Department of Neurology, National Hospital Organization Utano Hospital, Kyoto, Japan
| | - Hiroshi Sugiyama
- 12 Department of Neurology, National Hospital Organization Utano Hospital, Kyoto, Japan
| | - Makoto Takahashi
- 13 Department of Neurology, Kanto Central Hospital, Tokyo, Japan
| | - Norito Kokubun
- 14 Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Takuya Konno
- 15 Department of Neurology, Nagaoka Red Cross Hospital, Nagaoka, Niigata, Japan
| | - Masahisa Katsuno
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Fumiaki Tanaka
- 16 Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yasushi Iwasaki
- 17 Department of Neuropathology, Institute for Medical Sciences of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Mari Yoshida
- 17 Department of Neuropathology, Institute for Medical Sciences of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Gen Sobue
- 1 Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan .,18 Brain and Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
208
|
Jenkins LM, Barba A, Campbell M, Lamar M, Shankman SA, Leow AD, Ajilore O, Langenecker SA. Shared white matter alterations across emotional disorders: A voxel-based meta-analysis of fractional anisotropy. NEUROIMAGE-CLINICAL 2016; 12:1022-1034. [PMID: 27995068 PMCID: PMC5153602 DOI: 10.1016/j.nicl.2016.09.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 02/02/2023]
Abstract
Background White matter (WM) integrity may represent a shared biomarker for emotional disorders (ED). Aims: To identify transdiagnostic biomarkers of reduced WM by meta-analysis of findings across multiple EDs. Method Web of Science was searched systematically for studies of whole brain analysis of fractional anisotropy (FA) in adults with major depressive disorder, bipolar disorder, social anxiety disorder, obsessive-compulsive disorder or posttraumatic stress disorder compared with a healthy control (HC) group. Peak MNI coordinates were extracted from 37 studies of voxel-based analysis (892 HC and 962 with ED) and meta-analyzed using seed-based d Mapping (SDM) Version 4.31. Separate meta-analyses were also conducted for each disorder. Results In the transdiagnostic meta-analysis, reduced FA was identified in ED studies compared to HCs in the left inferior fronto-occipital fasciculus, forceps minor, uncinate fasciculus, anterior thalamic radiation, superior corona radiata, bilateral superior longitudinal fasciculi, and cerebellum. Disorder-specific meta-analyses revealed the OCD group had the most similarities in reduced FA to other EDs, with every cluster of reduced FA overlapping with at least one other diagnosis. The PTSD group was the most distinct, with no clusters of reduced FA overlapping with any other diagnosis. The BD group were the only disorder to show increased FA in any region, and showed a more bilateral pattern of WM changes, compared to the other groups which tended to demonstrate a left lateralized pattern of FA reductions. Conclusions Distinct diagnostic categories of ED show commonalities in WM tracts with reduced FA when compared to HC, which links brain networks involved in cognitive and affective processing. This meta-analysis facilitates an increased understanding of the biological markers that are shared by these ED. A meta-analysis of FA in MDD, bipolar, social anxiety disorder, OCD and PTSD Reduced FA in left superior longitudinal and inferior fronto-occipital fasciculi Distinct diagnostic categories show commonalities of white matter changes. Differences among diagnostic categories also found, PTSD most distinct White matter integrity may be a shared biomarker for emotional disorders.
Collapse
Affiliation(s)
| | - Alyssa Barba
- The University of Illinois at Chicago, Department of Psychiatry
| | | | - Melissa Lamar
- The University of Illinois at Chicago, Department of Psychiatry
| | | | - Alex D Leow
- The University of Illinois at Chicago, Department of Psychiatry
| | - Olusola Ajilore
- The University of Illinois at Chicago, Department of Psychiatry
| | | |
Collapse
|
209
|
Cui J, Ng LJ, Volman V. Callosal dysfunction explains injury sequelae in a computational network model of axonal injury. J Neurophysiol 2016; 116:2892-2908. [PMID: 27683891 DOI: 10.1152/jn.00603.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) often results in neurobehavioral aberrations such as impaired attention and increased reaction time. Diffusion imaging and postmortem analysis studies suggest that mTBI primarily affects myelinated axons in white matter tracts. In particular, corpus callosum, mediating interhemispheric information exchange, has been shown to be affected in mTBI. Yet little is known about the mechanisms linking the injury of myelinated callosal axons to the neurobehavioral sequelae of mTBI. To address this issue, we devised and studied a large, biologically plausible neuronal network model of cortical tissue. Importantly, the model architecture incorporated intra- and interhemispheric organization, including myelinated callosal axons and distance-dependent axonal conduction delays. In the resting state, the intact model network exhibited several salient features, including alpha-band (8-12 Hz) collective activity with low-frequency irregular spiking of individual neurons. The network model of callosal injury captured several clinical observations, including 1) "slowing down" of the network rhythms, manifested as an increased resting-state theta-to-alpha power ratio, 2) reduced response to attention-like network stimulation, manifested as a reduced spectral power of collective activity, and 3) increased population response time in response to stimulation. Importantly, these changes were positively correlated with injury severity, supporting proposals to use neurobehavioral indices as biomarkers for determining the severity of injury. Our modeling effort helps to understand the role played by the injury of callosal myelinated axons in defining the neurobehavioral sequelae of mTBI.
Collapse
Affiliation(s)
- Jianxia Cui
- L-3 Applied Technologies, Inc., San Diego, California
| | - Laurel J Ng
- L-3 Applied Technologies, Inc., San Diego, California
| | | |
Collapse
|
210
|
The role of white matter in personality traits and affective processing in bipolar disorder. J Psychiatr Res 2016; 80:64-72. [PMID: 27302871 PMCID: PMC7083163 DOI: 10.1016/j.jpsychires.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is characterized by affective processing bias and variations in personality traits. It is still unknown whether these features are linked to the same structural brain alterations. The aim of this study was to investigate relationships between specific personality traits, white matter (WM) properties, and affective processing in BD and HC. METHODS 24 healthy controls (HC) and 38 adults with BDI (HC: 29.47 ± 2.23 years, 15 females; BDI: 32.44 ± 1.84 years, 20 females) completed clinical scales and the Big Five Inventory. They were also administered the Affective Go/No-Go (AGN) and the Rapid Visual Processing (RVP) tasks of the Cambridge Neuropsychological Test Automated Battery. Diffusion Tensor Imaging (DTI) assessed the microstructure of WM tracts. RESULTS In BDI measures of WM properties were reduced across all major brain white matter tracts. As expected, individuals with BDI reported greater neuroticism, lower agreeableness and conscientiousness, and made a greater number of errors in response to affective stimuli in the AGN task compared to HC. High neuroticism scores were associated with faster AGN latency, and overall reduced AGN accuracy in both HC and BDI. Elevated FA values were associated with reduced neuroticism and increased cognitive processing in HC but not in BDI. CONCLUSIONS Our findings showed important potential links between personality, affective processing and WM integrity in BD. In the future therapeutic interventions for BD using brain stimulation protocols might benefit from the use of DTI to target pathways underlying abnormal affective processing.
Collapse
|
211
|
Koolschijn PCMP, Caan MWA, Teeuw J, Olabarriaga SD, Geurts HM. Age-related differences in autism: The case of white matter microstructure. Hum Brain Mapp 2016; 38:82-96. [PMID: 27511627 DOI: 10.1002/hbm.23345] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 11/09/2022] Open
Abstract
Autism spectrum disorder (ASD) is typified as a brain connectivity disorder in which white matter abnormalities are already present early on in life. However, it is unknown if and to which extent these abnormalities are hard-wired in (older) adults with ASD and how this interacts with age-related white matter changes as observed in typical aging. The aim of this first cross-sectional study in mid- and late-aged adults with ASD was to characterize white matter microstructure and its relationship with age. We utilized diffusion tensor imaging with head motion control in 48 adults with ASD and 48 age-matched controls (30-74 years), who also completed a Flanker task. Intra-individual variability of reaction times (IIVRT) measures based on performance on the Flanker interference task were used to assess IIVRT-white matter microstructure associations. We observed primarily higher mean and radial diffusivity in white matter microstructure in ASD, particularly in long-range fibers, which persisted after taking head motion into account. Importantly, group-by-age interactions revealed higher age-related mean and radial diffusivity in ASD, in projection and association fiber tracts. Subtle dissociations were observed in IIVRT-white matter microstructure relations between groups, with the IIVRT-white matter association pattern in ASD resembling observations in cognitive aging. The observed white matter microstructure differences are lending support to the structural underconnectivity hypothesis in ASD. These reductions seem to have behavioral percussions given the atypical relationship with IIVRT. Taken together, the current results may indicate different age-related patterns of white matter microstructure in adults with ASD. Hum Brain Mapp 38:82-96, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- P Cédric M P Koolschijn
- Dutch Autism & ADHD Research Center, Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Matthan W A Caan
- Department of Radiology, Brain Imaging Center, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jalmar Teeuw
- Department of Radiology, Brain Imaging Center, Academic Medical Center, University of Amsterdam, The Netherlands.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sílvia D Olabarriaga
- Department of Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Hilde M Geurts
- Dutch Autism & ADHD Research Center, Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands.,Dr Leo Kannerhuis, The Netherlands
| |
Collapse
|
212
|
Filley CM, Fields RD. White matter and cognition: making the connection. J Neurophysiol 2016; 116:2093-2104. [PMID: 27512019 DOI: 10.1152/jn.00221.2016] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022] Open
Abstract
Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society.
Collapse
Affiliation(s)
- Christopher M Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado School of Medicine, Aurora, Colorado; .,Denver Department of Veterans Affairs Medical Center, Denver, Colorado; and
| | - R Douglas Fields
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
213
|
Robertson EE, Hall DA, McAsey AR, O'Keefe JA. Fragile X-associated tremor/ataxia syndrome: phenotypic comparisons with other movement disorders. Clin Neuropsychol 2016; 30:849-900. [PMID: 27414076 PMCID: PMC7336900 DOI: 10.1080/13854046.2016.1202239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/12/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The purpose of this paper is to review the typical cognitive and motor impairments seen in fragile X-associated tremor/ataxia syndrome (FXTAS), essential tremor (ET), Parkinson disease (PD), spinocerebellar ataxias (SCAs), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) in order to enhance diagnosis of FXTAS patients. METHODS We compared the cognitive and motor phenotypes of FXTAS with each of these other movement disorders. Relevant neuropathological and neuroimaging findings are also reviewed. Finally, we describe the differences in age of onset, disease severity, progression rates, and average lifespan in FXTAS compared to ET, PD, SCAs, MSA, and PSP. We conclude with a flow chart algorithm to guide the clinician in the differential diagnosis of FXTAS. RESULTS By comparing the cognitive and motor phenotypes of FXTAS with the phenotypes of ET, PD, SCAs, MSA, and PSP we have clarified potential symptom overlap while elucidating factors that make these disorders unique from one another. In summary, the clinician should consider a FXTAS diagnosis and testing for the Fragile X mental retardation 1 (FMR1) gene premutation if a patient over the age of 50 (1) presents with cerebellar ataxia and/or intention tremor with mild parkinsonism, (2) has the middle cerebellar peduncle (MCP) sign, global cerebellar and cerebral atrophy, and/or subcortical white matter lesions on MRI, or (3) has a family history of fragile X related disorders, intellectual disability, autism, premature ovarian failure and has neurological signs consistent with FXTAS. Peripheral neuropathy, executive function deficits, anxiety, or depression are supportive of the diagnosis. CONCLUSIONS Distinct profiles in the cognitive and motor domains between these movement disorders may guide practitioners in the differential diagnosis process and ultimately lead to better medical management of FXTAS patients.
Collapse
Affiliation(s)
- Erin E Robertson
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Deborah A Hall
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| | - Andrew R McAsey
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Joan A O'Keefe
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| |
Collapse
|
214
|
Poggi G, Boretius S, Möbius W, Moschny N, Baudewig J, Ruhwedel T, Hassouna I, Wieser GL, Werner HB, Goebbels S, Nave KA, Ehrenreich H. Cortical network dysfunction caused by a subtle defect of myelination. Glia 2016; 64:2025-40. [PMID: 27470661 PMCID: PMC5129527 DOI: 10.1002/glia.23039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Subtle white matter abnormalities have emerged as a hallmark of brain alterations in magnetic resonance imaging or upon autopsy of mentally ill subjects. However, it is unknown whether such reduction of white matter and myelin contributes to any disease‐relevant phenotype or simply constitutes an epiphenomenon, possibly even treatment‐related. Here, we have re‐analyzed Mbp heterozygous mice, the unaffected parental strain of shiverer, a classical neurological mutant. Between 2 and 20 months of age, Mbp+/‐ versus Mbp+/+ littermates were deeply phenotyped by combining extensive behavioral/cognitive testing with MRI, 1H‐MR spectroscopy, electron microscopy, and molecular techniques. Surprisingly, Mbp‐dependent myelination was significantly reduced in the prefrontal cortex. We also noticed a mild but progressive hypomyelination of the prefrontal corpus callosum and low‐grade inflammation. While most behavioral functions were preserved, Mbp+/‐ mice exhibited defects of sensorimotor gating, as evidenced by reduced prepulse‐inhibition, and a late‐onset catatonia phenotype. Thus, subtle but primary abnormalities of CNS myelin can be the cause of a persistent cortical network dysfunction including catatonia, features typical of neuropsychiatric conditions. GLIA 2016;64:2025–2040
Collapse
Affiliation(s)
- Giulia Poggi
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen
| | - Susann Boretius
- Department of Radiology and Neuroradiology, Christian-Albrechts-University, Kiel.,Department of Functional Imaging, German Primate Center, Leibniz Institute of Primate Research, Göttingen
| | - Wiebke Möbius
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Nicole Moschny
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen
| | - Jürgen Baudewig
- Department of Radiology and Neuroradiology, Christian-Albrechts-University, Kiel.,Department of Functional Imaging, German Primate Center, Leibniz Institute of Primate Research, Göttingen
| | - Torben Ruhwedel
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Imam Hassouna
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen
| | - Georg L Wieser
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Hauke B Werner
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Sandra Goebbels
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Klaus-Armin Nave
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
215
|
Price CC, Tanner JJ, Schmalfuss IM, Brumback B, Heilman KM, Libon DJ. Dissociating Statistically-Determined Alzheimer's Disease/Vascular Dementia Neuropsychological Syndromes Using White and Gray Neuroradiological Parameters. J Alzheimers Dis 2016; 48:833-47. [PMID: 26402109 DOI: 10.3233/jad-150407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND There is remarkable heterogeneity in clinical Alzheimer's disease (AD) or vascular dementia (VaD). OBJECTIVES 1) To statistically examine neuropsychological data to determine dementia subgroups for individuals clinically diagnosed with AD or VaD and then 2) examine group differences in specific gray/white matter regions of interest. METHODS A k-means cluster analysis requested a 3-group solution from neuropsychological data acquired from individuals diagnosed clinically with AD/VaD. MRI measures of hippocampal, caudate, ventricular, subcortical lacunar infarction, whole brain volume, and leukoaraiosis (LA) were analyzed. Three regions of LA volumes were quantified and these included the periventricular (5 mm around the ventricles), infracortical (5 mm beneath the gray matter), and deep (between periventricular and infracortical) regions. RESULTS Cluster analysis sorted AD/VaD patients into single domain amnestic (n = 41), single-domain dysexecutive (n = 26), and multi-domain (n = 26) phenotypes. Multi-domain patients exhibited worst performance on language tests; however, multi-domain patients were equally impaired on memory tests when compared to amnestic patients. Statistically-determined groups dissociated using neuroradiological parameters: amnestic and multi-domain groups presented with smaller hippocampal volume while the dysexecutive group presented with greater deep, periventricular, and whole brain LA. Neither caudate nor lacunae volume differed by group. Caudate nucleus volume negatively correlated with total LA in the dysexecutive and multi-domain groups. CONCLUSIONS There are at least three distinct subtypes embedded within patients diagnosed clinically with AD/VaD spectrum dementia. We encourage future research to assess a) the neuroradiological substrates underlying statistically-determined AD/VaD spectrum dementia and b) how statistical modeling can be integrated into existing diagnostic criteria.
Collapse
Affiliation(s)
- Catherine C Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Jared J Tanner
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Ilona M Schmalfuss
- Department of Radiology, University of Florida, Gainesville, Florida, USA.,Department of Radiology, North Florida/South Georgia Veteran Administration, Gainesville, Florida, USA
| | - Babette Brumback
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Kenneth M Heilman
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - David J Libon
- Drexel Neuroscience Institute, Drexel University, College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
216
|
Klöppel S, Peter J, Ludl A, Pilatus A, Maier S, Mader I, Heimbach B, Frings L, Egger K, Dukart J, Schroeter ML, Perneczky R, Häussermann P, Vach W, Urbach H, Teipel S, Hüll M, Abdulkadir A. Applying Automated MR-Based Diagnostic Methods to the Memory Clinic: A Prospective Study. J Alzheimers Dis 2016; 47:939-54. [PMID: 26401773 PMCID: PMC4923764 DOI: 10.3233/jad-150334] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several studies have demonstrated that fully automated pattern recognition methods applied to structural magnetic resonance imaging (MRI) aid in the diagnosis of dementia, but these conclusions are based on highly preselected samples that significantly differ from that seen in a dementia clinic. At a single dementia clinic, we evaluated the ability of a linear support vector machine trained with completely unrelated data to differentiate between Alzheimer’s disease (AD), frontotemporal dementia (FTD), Lewy body dementia, and healthy aging based on 3D-T1 weighted MRI data sets. Furthermore, we predicted progression to AD in subjects with mild cognitive impairment (MCI) at baseline and automatically quantified white matter hyperintensities from FLAIR-images. Separating additionally recruited healthy elderly from those with dementia was accurate with an area under the curve (AUC) of 0.97 (according to Fig. 4). Multi-class separation of patients with either AD or FTD from other included groups was good on the training set (AUC > 0.9) but substantially less accurate (AUC = 0.76 for AD, AUC = 0.78 for FTD) on 134 cases from the local clinic. Longitudinal data from 28 cases with MCI at baseline and appropriate follow-up data were available. The computer tool discriminated progressive from stable MCI with AUC = 0.73, compared to AUC = 0.80 for the training set. A relatively low accuracy by clinicians (AUC = 0.81) illustrates the difficulties of predicting conversion in this heterogeneous cohort. This first application of a MRI-based pattern recognition method to a routine sample demonstrates feasibility, but also illustrates that automated multi-class differential diagnoses have to be the focus of future methodological developments and application studies
Collapse
Affiliation(s)
- Stefan Klöppel
- Center of Geriatrics and Gerontology Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Freiburg Brain Imaging, University Medical Center Freiburg, Germany.,Departments of Psychiatry and Psychotherapy, Section of Gerontopsychiatry and Neuropsychology, University Medical Center Freiburg, Freiburg, Germany.,Department of Neurology, University Medical Center Freiburg, Freiburg, Germany
| | - Jessica Peter
- Freiburg Brain Imaging, University Medical Center Freiburg, Germany.,Departments of Psychiatry and Psychotherapy, Section of Gerontopsychiatry and Neuropsychology, University Medical Center Freiburg, Freiburg, Germany.,Department of Neurology, University Medical Center Freiburg, Freiburg, Germany
| | - Anna Ludl
- Center of Geriatrics and Gerontology Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Anne Pilatus
- Center of Geriatrics and Gerontology Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Sabrina Maier
- Center of Geriatrics and Gerontology Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Irina Mader
- Department of Neuroradiology, University Medical Center Freiburg, Freiburg, Germany
| | - Bernhard Heimbach
- Center of Geriatrics and Gerontology Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Lars Frings
- Center of Geriatrics and Gerontology Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, University Medical Center Freiburg, Freiburg, Germany
| | - Juergen Dukart
- F. Hoffmann-La Roche, pRED, Pharma Research and Early Development, DTA Neuroscience, Basel, Switzerland.,Max Planck Institute for Human Cognitive and Brain Sciences & Clinic for Cognitive Neurology, University of Leipzig, and German Consortium for Frontotemporal Lobar Degeneration, Ulm, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences & Clinic for Cognitive Neurology, University of Leipzig, and German Consortium for Frontotemporal Lobar Degeneration, Ulm, Germany
| | - Robert Perneczky
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College of Science, Technology and Medicine London, United Kingdom.,Cognitive Impairment and Dementia Services, Lakeside Mental Health Unit, West London Mental Health NHS Trust, London, UK.,Departments of Psychiatry and Psychotherapy, Technical University München, Germany
| | | | - Werner Vach
- Center for Medical Biometry and Medical Informatics, University of Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, University Medical Center Freiburg, Freiburg, Germany
| | - Stefan Teipel
- Departments of Psychosomatic Medicine, University of Rostock, and German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Michael Hüll
- Center of Geriatrics and Gerontology Freiburg, University Medical Center Freiburg, Freiburg, Germany.,Clinics for Geronto- and Neuropsychiatry, ZfP Emmendingen, Emmendingen, Germany
| | - Ahmed Abdulkadir
- Freiburg Brain Imaging, University Medical Center Freiburg, Germany.,Department of Computer Science and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Germany
| | | |
Collapse
|
217
|
Grigsby J. The fragile X mental retardation 1 gene (FMR1): historical perspective, phenotypes, mechanism, pathology, and epidemiology. Clin Neuropsychol 2016; 30:815-33. [PMID: 27356167 DOI: 10.1080/13854046.2016.1184652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To provide an historical perspective and overview of the phenotypes, mechanism, pathology, and epidemiology of the fragile X-associated tremor/ataxia syndrome (FXTAS) for neuropsychologists. METHODS Selective review of the literature on FXTAS. RESULTS FXTAS is an X-linked neurodegenerative disorder of late onset. One of several phenotypes associated with different mutations of the fragile X mental retardation 1 gene (FMR1), FXTAS involves progressive action tremor, gait ataxia, and impaired executive functioning, among other features. It affects carriers of the FMR1 premutation, which may expand when passed from a mother to her children, in which case it is likely to cause fragile X syndrome (FXS), the most common inherited developmental disability. CONCLUSION This review briefly summarizes current knowledge of the mechanisms, epidemiology, and mode of transmission of FXTAS and FXS, as well as the neuropsychological, neurologic, neuropsychiatric, neuropathologic, and neuroradiologic phenotypes of FXTAS. Because it was only recently identified, FXTAS is not well known to most practitioners, and it remains largely misdiagnosed, despite the fact that its prevalence may be relatively high.
Collapse
Affiliation(s)
- Jim Grigsby
- a Departments of Psychology and Medicine , University of Colorado Denver , Denver , CO , USA
| |
Collapse
|
218
|
van Dalen JW, Mutsaerts HJMM, Nederveen AJ, Vrenken H, Steenwijk MD, Caan MWA, Majoie CBLM, van Gool WA, Richard E. White Matter Hyperintensity Volume and Cerebral Perfusion in Older Individuals with Hypertension Using Arterial Spin-Labeling. AJNR Am J Neuroradiol 2016; 37:1824-1830. [PMID: 27282862 DOI: 10.3174/ajnr.a4828] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/31/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE White matter hyperintensities of presumed vascular origin in elderly patients with hypertension may be part of a general cerebral perfusion deficit, involving not only the white matter hyperintensities but also the surrounding normal-appearing white matter and gray matter. We aimed to study the relation between white matter hyperintensity volume and CBF and assess whether white matter hyperintensities are related to a general perfusion deficit. MATERIALS AND METHODS In 185 participants of the Prevention of Dementia by Intensive Vascular Care trial between 72 and 80 years of age with systolic hypertension, white matter hyperintensity volume and CBF were derived from 3D FLAIR and arterial spin-labeling MR imaging, respectively. We compared white matter hyperintensity CBF, normal-appearing white matter CBF, and GM CBF across quartiles of white matter hyperintensity volume and assessed the continuous relation between these CBF estimates and white matter hyperintensity volume by using linear regression. RESULTS Mean white matter hyperintensity CBF was markedly lower in higher quartiles of white matter hyperintensity volume, and white matter hyperintensity volume and white matter hyperintensity CBF were negatively related (standardized β = -0.248, P = .001) in linear regression. We found no difference in normal-appearing white matter or GM CBF across quartiles of white matter hyperintensity volume or any relation between white matter hyperintensity volume and normal-appearing white matter CBF (standardized β = -0.065, P = .643) or GM CBF (standardized β = -0.035, P = .382) in linear regression. CONCLUSIONS Higher white matter hyperintensity volume in elderly individuals with hypertension was associated with lower perfusion within white matter hyperintensities, but not with lower perfusion in the surrounding normal-appearing white matter or GM. These findings suggest that white matter hyperintensities in elderly individuals with hypertension relate to local microvascular alterations rather than a general cerebral perfusion deficit.
Collapse
Affiliation(s)
- J W van Dalen
- From the Departments of Neurology (J.W.v.D., W.A.v.G., E.R.)
| | - H J M M Mutsaerts
- Radiology (H.J.M.M.M., A.J.N., M.W.A.C., C.B.L.M.M.), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A J Nederveen
- Radiology (H.J.M.M.M., A.J.N., M.W.A.C., C.B.L.M.M.), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - H Vrenken
- Departments of Radiology and Nuclear Medicine (H.V., M.D.S.).,Physics and Medical Technology (H.V.), Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - M D Steenwijk
- Departments of Radiology and Nuclear Medicine (H.V., M.D.S.)
| | - M W A Caan
- Radiology (H.J.M.M.M., A.J.N., M.W.A.C., C.B.L.M.M.), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - C B L M Majoie
- Radiology (H.J.M.M.M., A.J.N., M.W.A.C., C.B.L.M.M.), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - W A van Gool
- From the Departments of Neurology (J.W.v.D., W.A.v.G., E.R.)
| | - E Richard
- From the Departments of Neurology (J.W.v.D., W.A.v.G., E.R.).,Department of Neurology (E.R.), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
219
|
|
220
|
Wong A, Wang D, Black SE, Nyenhuis DL, Shi L, Chu WCW, Xiong YY, Au L, Lau A, Chan AYY, Wong LKS, Mok V. Volumetric magnetic resonance imaging correlates of the National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment neuropsychology protocols. J Clin Exp Neuropsychol 2016; 37:1004-12. [PMID: 26332179 DOI: 10.1080/13803395.2015.1038983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Vascular cognitive impairment (VCI) refers to the entire spectrum of cognitive dysfunction attributable to vascular changes in the brain. The objective of this study is to evaluate magnetic resonance imaging (MRI) correlates of performance on the National Institute of Neurological Disorders and Stroke-Canadian Stroke Network (NINDS-CSN) VCI neuropsychology protocols. METHOD Fifty ischemic stroke patients and 50 normal elderly persons completed the VCI protocols and MRI. Relationships between the four cognitive domains (executive/activation, language, visuospatial, and memory) and three protocol (60-, 30-, and 5-min) summary scores with MRI measures of volumes of white matter hyperintensities (WMH) and global brain and hippocampal atrophy were assessed using linear regression. RESULTS All cognitive domain scores were associated with WMH volume and, with the exception of language domain, with global atrophy. Additional relationships were found between executive/activation and language domains with left hippocampal volume, visuospatial domain with right hippocampal volume, and memory domain with bilateral hippocampal volumes. All protocol summary scores showed comparable relationships with WMH and hippocampal volumes, with additional relationships found between the 60- and 30-min protocols with global brain volume. CONCLUSIONS Performance on the NINDS-CSN VCI protocols reflects underlying volumetric brain changes implicated in cognitive dysfunctions in VCI.
Collapse
Affiliation(s)
- Adrian Wong
- a Department of Medicine and Therapeutics , Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Correa DD, Wang Y, West JD, Peck KK, Root JC, Baser RE, Thaler HT, Shore TB, Jakubowski A, Saykin AJ, Relkin N. Prospective assessment of white matter integrity in adult stem cell transplant recipients. Brain Imaging Behav 2016; 10:486-96. [PMID: 26153467 PMCID: PMC4706509 DOI: 10.1007/s11682-015-9423-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) is often used in the treatment of hematologic disorders. Although it can be curative, the pre-transplant conditioning regimen can be associated with neurotoxicity. In this prospective study, we examined white matter (WM) integrity with diffusion tensor imaging (DTI) and neuropsychological functioning before and one year after HSCT in twenty-two patients with hematologic disorders and ten healthy controls evaluated at similar intervals. Eighteen patients received conditioning treatment with high-dose (HD) chemotherapy, and four had full dose total body irradiation (fTBI) and HD chemotherapy prior to undergoing an allogeneic or autologous HSCT. The results showed a significant decrease in mean diffusivity (MD) and axial diffusivity (AD) in diffuse WM regions one year after HSCT (p-corrected <0.05) in the patient group compared to healthy controls. At baseline, patients treated with allogeneic HSCT had higher MD and AD in the left hemisphere WM than autologous HSCT patients (p-corrected <0.05). One year post-transplant, patients treated with allogeneic HSCT had lower fractional anisotropy (FA) and higher radial diffusivity (RD) in the right hemisphere and left frontal WM compared to patients treated with autologous HSCT (p-corrected <0.05).There were modest but significant correlations between MD values and cognitive test scores, and these were greatest for timed tests and in projection tracts. Patients showed a trend toward a decline in working memory, and had lower cognitive test scores than healthy controls at the one-year assessment. The findings suggest a relatively diffuse pattern of alterations in WM integrity in adult survivors of HSCT.
Collapse
Affiliation(s)
- D D Correa
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Y Wang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J D West
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K K Peck
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, Brooklyn, NY, USA
| | - J C Root
- Department of Psychiatry & Behavioral Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - R E Baser
- Department of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - H T Thaler
- Department of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - T B Shore
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - A Jakubowski
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - A J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Relkin
- Department ofNeurology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
222
|
van Bloemendaal L, Ijzerman RG, Ten Kulve JS, Barkhof F, Diamant M, Veltman DJ, van Duinkerken E. Alterations in white matter volume and integrity in obesity and type 2 diabetes. Metab Brain Dis 2016; 31:621-9. [PMID: 26815786 PMCID: PMC4863900 DOI: 10.1007/s11011-016-9792-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/08/2016] [Indexed: 11/28/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by obesity, hyperglycemia and insulin resistance. Both T2DM and obesity are associated with cerebral complications, including an increased risk of cognitive impairment and dementia, however the underlying mechanisms are largely unknown. In the current study, we aimed to determine the relative contributions of obesity and the presence of T2DM to altered white matter structure. We used diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) to measure white matter integrity and volume in obese T2DM patients without micro- or macrovascular complications, age- gender- and BMI-matched normoglycemic obese subjects and age- and gender-matched normoglycemic lean subjects. We found that obese T2DM patients compared with lean subjects had lower axial diffusivity (in the right corticospinal tract, right inferior fronto-occipital tract, right superior longitudinal fasciculus and right forceps major) and reduced white matter volume (in the right inferior parietal lobe and the left external capsule region). In normoglycemic obese compared with lean subjects axial diffusivity as well as white matter volume tended to be reduced, whereas there were no significant differences between normoglycemic obese subjects and T2DM patients. Decreased white matter integrity and volume were univariately related to higher age, being male, higher BMI, HbA1C and fasting glucose and insulin levels. However, multivariate analyses demonstrated that only BMI was independently related to white matter integrity, and age, gender and BMI to white matter volume loss. Our data indicate that obese T2DM patients have reduced white matter integrity and volume, but that this is largely explained by BMI, rather than T2DM per se.
Collapse
Affiliation(s)
- Liselotte van Bloemendaal
- Diabetes Center / Department of Internal Medicine, VU University Medical Center, PO BOX 7057, 1007 MB, Amsterdam, The Netherlands.
| | - Richard G Ijzerman
- Diabetes Center / Department of Internal Medicine, VU University Medical Center, PO BOX 7057, 1007 MB, Amsterdam, The Netherlands
| | - Jennifer S Ten Kulve
- Diabetes Center / Department of Internal Medicine, VU University Medical Center, PO BOX 7057, 1007 MB, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands
| | - Michaela Diamant
- Diabetes Center / Department of Internal Medicine, VU University Medical Center, PO BOX 7057, 1007 MB, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands
| | - Eelco van Duinkerken
- Diabetes Center / Department of Internal Medicine, VU University Medical Center, PO BOX 7057, 1007 MB, Amsterdam, The Netherlands
- Department of Medical Psychology, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands
- Department of Psychology, Pontifícia Universidade Católica (PUC-Rio), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
223
|
Broche-Pérez Y, Herrera Jiménez L, Omar-Martínez E. Bases neurales de la toma de decisiones. Neurologia 2016; 31:319-25. [DOI: 10.1016/j.nrl.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/18/2014] [Accepted: 03/05/2015] [Indexed: 10/23/2022] Open
|
224
|
Wu W, Cui L, Fu Y, Tian Q, Liu L, Zhang X, Du N, Chen Y, Qiu Z, Song Y, Shi FD, Xue R. Sleep and Cognitive Abnormalities in Acute Minor Thalamic Infarction. Neurosci Bull 2016; 32:341-8. [PMID: 27237578 DOI: 10.1007/s12264-016-0036-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/25/2016] [Indexed: 01/14/2023] Open
Abstract
In order to characterize sleep and the cognitive patterns in patients with acute minor thalamic infarction (AMTI), we enrolled 27 patients with AMTI and 12 matched healthy individuals. Questionnaires about sleep and cognition as well as polysomnography (PSG) were performed on days 14 and 90 post-stroke. Compared to healthy controls, in patients with AMTI, hyposomnia was more prevalent; sleep architecture was disrupted as indicated by decreased sleep efficiency, increased sleep latency, and decreased non-rapid eye movement sleep stages 2 and 3; more sleep-related breathing disorders occurred; and cognitive functions were worse, especially memory. While sleep apnea and long-delay memory recovered to a large extent in the patients, other sleep and cognitive function deficit often persisted. Patients with AMTI are at an increased risk for hyposomnia, sleep structure disturbance, sleep apnea, and memory deficits. Although these abnormalities improved over time, the slow and incomplete improvement suggest that early management should be considered in these patients.
Collapse
Affiliation(s)
- Wei Wu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Linyang Cui
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Fu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qianqian Tian
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lei Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ning Du
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying Chen
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhijun Qiu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yijun Song
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Rong Xue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
225
|
Chen Q, Chen X, He X, Wang L, Wang K, Qiu B. Aberrant structural and functional connectivity in the salience network and central executive network circuit in schizophrenia. Neurosci Lett 2016; 627:178-84. [PMID: 27233217 DOI: 10.1016/j.neulet.2016.05.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 12/27/2022]
Abstract
Consistent structural and functional abnormities have been detected in the salience network (SN) and the central-executive network (CEN) in schizophrenia. SN, known for its critical role in switching CEN and default-mode network (DMN) during cognitively demanding tasks, is proved to show aberrant regulation on the interaction between DMN and CEN in schizophrenia. However, it has not been elucidated whether there is a direct alteration of structural and functional connectivity between SN and CEN. 22 schizophrenia patients and 21 healthy controls were recruited for functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) in present study. The results show that schizophrenia patients had lower fractional anisotropy (FA) in right inferior long fasciculus (ILF), left inferior fronto-occipital fasciculus (IFOF) and callosal body than healthy controls. Significantly reduced functional connectivity was also found between right fronto-insular cortex (rFIC) and right posterior parietal cortex (rPPC). FA in right ILF was positively correlated with the functional connectivity of rFIC-rPPC. Therefore, we proposed a disruption of structural and functional connectivity and a positive anatomo-functional relationship in SN-CEN circuit, which might account for a core feature of schizophrenia.
Collapse
Affiliation(s)
- Quan Chen
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xingui Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022,China
| | - Xiaoxuan He
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lu Wang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022,China.
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China; Anhui Computer Application Institute of Traditional Chinese Medicine, Hefei, Anhui 230038, China.
| |
Collapse
|
226
|
Solso S, Xu R, Proudfoot J, Hagler DJ, Campbell K, Venkatraman V, Barnes CC, Ahrens-Barbeau C, Pierce K, Dale A, Eyler L, Courchesne E. Diffusion Tensor Imaging Provides Evidence of Possible Axonal Overconnectivity in Frontal Lobes in Autism Spectrum Disorder Toddlers. Biol Psychiatry 2016; 79:676-84. [PMID: 26300272 PMCID: PMC4699869 DOI: 10.1016/j.biopsych.2015.06.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Theories of brain abnormality in autism spectrum disorder (ASD) have focused on underconnectivity as an explanation for social, language, and behavioral deficits but are based mainly on studies of older autistic children and adults. METHODS In 94 ASD and typical toddlers ages 1 to 4 years, we examined the microstructure (indexed by fractional anisotropy) and volume of axon pathways using in vivo diffusion tensor imaging of fronto-frontal, fronto-temporal, fronto-striatal, and fronto-amygdala axon pathways, as well as posterior contrast tracts. Differences between ASD and typical toddlers in the nature of the relationship of age to these measures were tested. RESULTS Frontal tracts in ASD toddlers displayed abnormal age-related changes with greater fractional anisotropy and volume than normal at younger ages but an overall slower than typical apparent rate of continued development across the span of years. Posterior cortical contrast tracts had few significant abnormalities. CONCLUSIONS Frontal fiber tracts displayed deviant early development and age-related changes that could underlie impaired brain functioning and impact social and communication behaviors in ASD.
Collapse
Affiliation(s)
- Stephanie Solso
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Ronghui Xu
- CTRI, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - James Proudfoot
- CTRI, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Donald J. Hagler
- Department of Radiology, Multimodal Imaging Laboratory, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Kathleen Campbell
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Vijay Venkatraman
- Department of Radiology, Multimodal Imaging Laboratory, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Cynthia Carter Barnes
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Clelia Ahrens-Barbeau
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Karen Pierce
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Anders Dale
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093,Department of Radiology, Multimodal Imaging Laboratory, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Lisa Eyler
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla, CA 92093,Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093,Desert-Pacific Mental Illness Research, Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA 92161
| | - Eric Courchesne
- Department of Neuroscience, School of Medicine, University of California San Diego, La Jolla.
| |
Collapse
|
227
|
Kim YJ, Kwon HK, Lee JM, Cho H, Kim HJ, Park HK, Jung NY, San Lee J, Lee J, Jang YK, Kim ST, Lee KH, Choe YS, Kim YJ, Na DL, Seo SW. Gray and white matter changes linking cerebral small vessel disease to gait disturbances. Neurology 2016; 86:1199-207. [PMID: 26935893 DOI: 10.1212/wnl.0000000000002516] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/06/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the topographic changes of white matter (WM) integrity and cortical thickness related to gait disturbances and determine whether these neural correlates mediate the association between cerebral small vessel disease (CSVD) and gait disturbances. METHODS A total of 129 patients with subcortical vascular cognitive impairment were included. CSVD severity was quantified as global and regional WM hyperintensities (WMH) volume and lacune and microbleed numbers. Amyloid burdens were assessed using Pittsburgh compound B (PiB)-PET scanning. Gait score was measured using a standardized scale. WM integrity was assessed by applying tract-based spatial statistics. Cortical thickness was measured using surface-based methods. Path analysis for gait score was performed using regional CSVD markers as predictors and fractional anisotropy (FA) and cortical thickness as mediators. RESULTS Periventricular WMH (PWMH) volume was associated with gait score, regardless of other CSVD. PiB retention ratio was not associated with gait score. Gait score was correlated with FA in the frontal and parietal WM and bilateral corpus callosum and with cortical thinning in the bilateral frontal and lateral temporo-parieto-occipital regions. Path analysis for gait score showed that PWMH contributed to gait disturbances with the mediation of mean FA or cortical thickness. CONCLUSIONS Our findings suggest that WMH-related cortical thinning as well as disrupted integrity of periventricular WM is linked to gait disturbances.
Collapse
Affiliation(s)
- Yeo Jin Kim
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Hun Ki Kwon
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Jong Min Lee
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Hanna Cho
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Hee Jin Kim
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Hee Kyung Park
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Na-Yeon Jung
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Jin San Lee
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Juyoun Lee
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Young Kyoung Jang
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Sung Tae Kim
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Kyung Han Lee
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Yearn Seong Choe
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Yun Joong Kim
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Duk L Na
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea
| | - Sang Won Seo
- From the Department of Neurology (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), Neuroscience Center (Y.J.K., H.J.K., N.-Y.J., J.S.L., J.L., Y.K.J., D.L.N., S.W.S.), and Nuclear Medicine (K.H.L., Y.S.C.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Department of Biomedical Engineering (H.K.K., J.M.L.), Hanyang University; Department of Neurology (H.C.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.K.P.), Inje University Ilsan Paik Hospital, Goyang; and Radiology (S.T.K.) and Department of Neurology (Y.J.K.), Hallym University, Gangwon-do,Korea.
| |
Collapse
|
228
|
Altered tract-specific white matter microstructure is related to poorer cognitive performance: The Rotterdam Study. Neurobiol Aging 2016; 39:108-17. [PMID: 26923407 DOI: 10.1016/j.neurobiolaging.2015.11.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 01/23/2023]
|
229
|
Stouten-Kemperman MM, de Ruiter MB, Koppelmans V, Boogerd W, Reneman L, Schagen SB. Neurotoxicity in breast cancer survivors ≥10 years post-treatment is dependent on treatment type. Brain Imaging Behav 2016; 9:275-84. [PMID: 24858488 DOI: 10.1007/s11682-014-9305-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adjuvant chemotherapy (CT) for breast cancer (BC) is associated with very late side-effects on brain function and structure. However, little is known about neurotoxicity of specific treatment regimens. To compare neurotoxicity profiles after different treatment strategies, we used neurocognitive testing and multimodality MRI in BC survivors randomized to high-dose (HI), conventional-dose (CON-) CT or radiotherapy (RT) only and a healthy control (HC) group. BC survivors who received CON-CT (n = 20) and HC (n = 20) were assessed using a neurocognitive test battery and multimodality MRI including 3D-T1, Diffusion Tensor Imaging (DTI) and 1H-MR spectroscopy (1H-MRS) to measure various aspects of cerebral white (WM) and gray matter (GM). Data were compared to previously assessed groups of BC survivors who received HI-CT (n = 17) and RT-only (n = 15). Testing took place on average 11.5 years post-CT. 3D-T1 showed focal GM volume reductions both for HI-CT and CON-CT compared to RT-only (p < .004). DTI-derived mean diffusivity and 1H-MRS derived N-acetyl aspartate showed WM injury specific to HI-CT but not CON-CT (p < .05). Residual effects were revealed in the RT-only group compared to HC on MRI and neurocognitive measurements (p < .05). Ten years after adjuvant CT for BC lower cerebral GM volume was found in HI as well as CON-CT BC survivors whereas injury to WM is restricted to HI-CT. This might indicate that WM brain changes after BC treatment may show more pronounced (partial) recovery than GM. Furthermore, our results suggest residual neurotoxicity in the RT-only group, which warrants further investigation.
Collapse
Affiliation(s)
- Myrle M Stouten-Kemperman
- Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
230
|
Ten Brink AF, Biesbroek JM, Kuijf HJ, Van der Stigchel S, Oort Q, Visser-Meily JMA, Nijboer TCW. The right hemisphere is dominant in organization of visual search-A study in stroke patients. Behav Brain Res 2016; 304:71-9. [PMID: 26876010 DOI: 10.1016/j.bbr.2016.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/14/2016] [Accepted: 02/04/2016] [Indexed: 11/18/2022]
Abstract
Cancellation tasks are widely used for diagnosis of lateralized attentional deficits in stroke patients. A disorganized fashion of target cancellation has been hypothesized to reflect disturbed spatial exploration. In the current study we aimed to examine which lesion locations result in disorganized visual search during cancellation tasks, in order to determine which brain areas are involved in search organization. A computerized shape cancellation task was administered in 78 stroke patients. As an index for search organization, the amount of intersections of paths between consecutive crossed targets was computed (i.e., intersections rate). This measure is known to accurately depict disorganized visual search in a stroke population. Ischemic lesions were delineated on CT or MRI images. Assumption-free voxel-based lesion-symptom mapping and region of interest-based analyses were used to determine the grey and white matter anatomical correlates of the intersections rate as a continuous measure. The right lateral occipital cortex, superior parietal lobule, postcentral gyrus, superior temporal gyrus, middle temporal gyrus, supramarginal gyrus, inferior longitudinal fasciculus, first branch of the superior longitudinal fasciculus (SLF I), and the inferior fronto-occipital fasciculus, were related to search organization. To conclude, a clear right hemispheric dominance for search organization was revealed. Further, the correlates of disorganized search overlap with regions that have previously been associated with conjunctive search and spatial working memory. This suggests that disorganized visual search is caused by disturbed spatial processes, rather than deficits in high level executive function or planning, which would be expected to be more related to frontal regions.
Collapse
Affiliation(s)
- Antonia F Ten Brink
- Brain Center Rudolf Magnus and Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
| | - J Matthijs Biesbroek
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Van der Stigchel
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Quirien Oort
- Brain Center Rudolf Magnus and Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
| | - Johanna M A Visser-Meily
- Brain Center Rudolf Magnus and Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
| | - Tanja C W Nijboer
- Brain Center Rudolf Magnus and Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands; Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
231
|
Barha CK, Nagamatsu LS, Liu-Ambrose T. Basics of neuroanatomy and neurophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2016; 138:53-68. [PMID: 27637952 DOI: 10.1016/b978-0-12-802973-2.00004-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This chapter presents an overview of the anatomy and functioning of the central nervous system. We begin the discussion by first examining the cellular basis of neural transmission. Then we present a brief description of the brain's white and gray matter and associated diseases, including a discussion of white-matter lesions. Finally, we place this information into context by discussing how the central nervous system integrates complex information to guide key functional systems, including the visual, auditory, chemosensory, somatic, limbic, motor, and autonomic systems. Where appropriate, we have supplied information pertaining to pathologic and functional outcomes of damage to the central nervous system. Also included is a brief description of important tools and methods used in the study of neuroanatomy and neurophysiology. Overall, this chapter provides a basic review of the concepts required to understand and interpret the clinical disorders and related material presented in the subsequent chapters of this book.
Collapse
Affiliation(s)
- C K Barha
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine and Djavad Mowafaghian Centre for Brain Health, University of British Columbia Vancouver, BC, Canada
| | - L S Nagamatsu
- Exercise, Mobility and Brain Health Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - T Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of Medicine and Djavad Mowafaghian Centre for Brain Health, University of British Columbia Vancouver, BC, Canada; Brain Research Centre, University of British Columbia Vancouver, BC, Canada.
| |
Collapse
|
232
|
Greater Insula White Matter Fiber Connectivity in Women Recovered from Anorexia Nervosa. Neuropsychopharmacology 2016; 41:498-507. [PMID: 26076832 PMCID: PMC5130125 DOI: 10.1038/npp.2015.172] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023]
Abstract
Anorexia nervosa is a severe psychiatric disorder associated with reduced drive to eat. Altered taste-reward circuit white matter fiber organization in anorexia nervosa after recovery could indicate a biological marker that alters the normal motivation to eat. Women recovered from restricting-type anorexia (Recovered AN, n = 24, age = 30.3 ± 8.1 years) and healthy controls (n = 24, age = 27.4 ± 6.3 years) underwent diffusion weighted imaging of the brain. Probabilistic tractography analyses calculated brain white matter connectivity (streamlines) as an estimate of fiber connections in taste-reward-related white matter tracts, and microstructural integrity (fractional anisotropy, FA) was assessed using tract-based spatial statistics. Recovered AN showed significantly (range P<0.05-0.001, Bonferroni corrected) greater white matter connectivity between bilateral insula regions and ventral striatum, left insula and middle orbitofrontal cortex (OFC), and right insula projecting to gyrus rectus and medial OFC. Duration of illness predicted connectivity of tracts projecting from the insula to ventral striatum and OFC. Microstructural integrity was lower in Recovered AN in most insula white matter tracts, as was whole-brain FA in parts of the anterior corona radiata, external capsule, and cerebellum (P<0.05, family-wise error-corrected). This study indicates higher structural white matter connectivity, an estimate of fibers connections, in anorexia after recovery in tracts that connect taste-reward processing regions. Greater connectivity together with less-fiber integrity could indicate altered neural activity between those regions, which could interfere with normal food-reward circuit function. Correlations between connectivity and illness duration suggest that connectivity could be a marker for illness severity. Whether greater connectivity can predict prognosis of the disorder requires further study.
Collapse
|
233
|
Boy N, Heringer J, Haege G, Glahn EM, Hoffmann GF, Garbade SF, Kölker S, Burgard P. A cross-sectional controlled developmental study of neuropsychological functions in patients with glutaric aciduria type I. Orphanet J Rare Dis 2015; 10:163. [PMID: 26693825 PMCID: PMC4689061 DOI: 10.1186/s13023-015-0379-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/14/2015] [Indexed: 01/26/2023] Open
Abstract
Background Glutaric aciduria type I (GA-I) is an inherited metabolic disease due to deficiency of glutaryl-CoA dehydrogenase (GCDH). Cognitive functions are generally thought to be spared, but have not yet been studied in detail. Methods Thirty patients detected by newborn screening (n = 13), high-risk screening (n = 3) or targeted metabolic testing (n = 14) were studied for simple reaction time (SRT), continuous performance (CP), visual working memory (VWM), visual-motor coordination (Tracking) and visual search (VS). Dystonia (n = 13 patients) was categorized using the Barry-Albright-Dystonia Scale (BADS). Patients were compared with 196 healthy controls. Developmental functions of cognitive performances were analysed using a negative exponential function model. Results BADS scores correlated with speed tests but not with tests measuring stability or higher cognitive functions without time constraints. Developmental functions of GA-I patients significantly differed from controls for SRT and VS but not for VWM and showed obvious trends for CP and Tracking. Dystonic patients were slower in SRT and CP but reached their asymptote of performance similar to asymptomatic patients and controls in all tests. Asymptomatic patients did not differ from controls, except showing significantly better results in Tracking and a trend for slower reactions in visual search. Data across all age groups of patients and controls fitted well to a model of negative exponential development. Conclusions Dystonic patients predominantly showed motor speed impairment, whereas performance improved with higher cognitive load. Patients without motor symptoms did not differ from controls. Developmental functions of cognitive performances were similar in patients and controls. Performance in tests with higher cognitive demand might be preserved in GA-I, even in patients with striatal degeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0379-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikolas Boy
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Jana Heringer
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Gisela Haege
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Esther M Glahn
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Georg F Hoffmann
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Sven F Garbade
- Faculty of Applied Psychology, SRH University of Applied Sciences, D-69123, Heidelberg, Germany.
| | - Stefan Kölker
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Peter Burgard
- Department of General Paediatrics, Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| |
Collapse
|
234
|
Occupation and the risk of chronic toxic leukoencephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:73-91. [PMID: 26563784 DOI: 10.1016/b978-0-444-62627-1.00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among the hundreds of environmental insults capable of inducing nervous system injury, a small number can produce clinically significant damage to the brain white matter. The use of magnetic resonance imaging (MRI) in affected individuals has greatly illuminated this previously obscure area of neurotoxicology. Toxic leukoencephalopathy has acute and chronic forms, in both of which cognitive dysfunction is the major clinical manifestation. Chronic toxic leukoencephalopathy (CTL) has been most thoroughly described in individuals with intense and prolonged exposure to leukotoxins, but the consequences of lesser degrees of exposure are not well understood. Rare cases of CTL have been reported in workers exposed to culpable leukotoxins, but study of this syndrome is hindered by many confounds such as uncertain level of toxin exposure, the presence of multiple toxins, vague dose-response relationship, comorbid medical or neurologic disorders, psychiatric illness, and legal issues. The risk of CTL in workers is low, although it is not possible to determine quantitative risk estimates. More knowledge can be expected with the application of advanced MRI techniques to the assessment of workers who may have been exposed to known or potential leukotoxins. Preventive measures for avoiding workplace CTL will be informed by clinical assessment involving the use of advanced neuroimaging and neuropsychologic evaluation in combination with accurate measurement of leukotoxin exposure.
Collapse
|
235
|
Monnig MA, Yeo RA, Tonigan JS, McCrady BS, Thoma RJ, Sabbineni A, Hutchison KE. Associations of White Matter Microstructure with Clinical and Demographic Characteristics in Heavy Drinkers. PLoS One 2015; 10:e0142042. [PMID: 26529515 PMCID: PMC4631485 DOI: 10.1371/journal.pone.0142042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022] Open
Abstract
Damage to the brain’s white matter is a signature injury of alcohol use disorders (AUDs), yet understanding of risks associated with clinical and demographic characteristics is incomplete. This study investigated alcohol problem severity, recent drinking behavior, and demographic factors in relation to white matter microstructure in heavy drinkers. Magnetic resonance imaging (MRI) scans, including diffusion tensor imaging (DTI), were collected from 324 participants (mean age = 30.9 ± 9.1 years; 30% female) who reported five or more heavy drinking episodes in the past 30 days. Drinking history and alcohol problem severity were assessed. A common white matter factor was created from fractional anisotropy (FA) values of five white matter tracts: body of corpus callosum, fornix, external capsule, superior longitudinal fasciculus, and cingulate gyrus. Previous research has implicated these tracts in heavy drinking. Structural equation modeling (SEM) analyses tested the hypothesis that, after controlling for duration of alcohol exposure, clinical and behavioral measures of alcohol use severity would be associated with lower white matter factor scores. Potential interactions with smoking status, gender, age, treatment-seeking status, and depression or anxiety symptoms also were tested. Controlling for number of years drinking, greater alcohol problem severity and recent drinking frequency were significantly associated with lower white matter factor scores. The effect of drinking frequency differed significantly for men and women, such that higher drinking frequency was linked to lower white matter factor scores in women but not in men. In conclusion, alcohol problem severity was a significant predictor of lower white matter FA in heavy drinkers, after controlling for duration of alcohol exposure. In addition, more frequent drinking contributed to lower FA in women but not men, suggesting gender-specific vulnerability to alcohol neurotoxicity.
Collapse
Affiliation(s)
- Mollie A. Monnig
- Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| | - Ronald A. Yeo
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - J. Scott Tonigan
- Center on Alcoholism, Substance Abuse, and Addictions, Albuquerque, New Mexico, United States of America
| | - Barbara S. McCrady
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Center on Alcoholism, Substance Abuse, and Addictions, Albuquerque, New Mexico, United States of America
| | - Robert J. Thoma
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Amithrupa Sabbineni
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Kent E. Hutchison
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
236
|
Chechlacz M, Mantini D, Gillebert CR, Humphreys GW. Asymmetrical white matter networks for attending to global versus local features. Cortex 2015; 72:54-64. [PMID: 25727548 PMCID: PMC4643681 DOI: 10.1016/j.cortex.2015.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/11/2014] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
Abstract
The ability to draw objects is a complex process depending on an array of cognitive mechanisms including routines for spatial coding, attention and the processing of both local and global features. Previous studies using both neuropsychological and neuroimaging data have reported hemispheric asymmetries in attending to local versus global features linked to a variety of cortical loci. However, it has not been examined to date whether such asymmetries exist at the level of white matter pathways sub-serving global/local attention. The current study provides a comprehensive analysis of brain-behaviour relationships in the processing of local versus global features based on data from a large cohort of sub-acute stroke patients (n = 248) and behavioural measures from a complex figure copy task. The data analysis used newly developed methods for automated delineation of stroke lesions combined with track-wise lesion deficits procedures. We found (i) that reproduction of local features in figure copying was supported by a neural network confined to the left hemisphere, consisting of cortical loci within parietal, occipital and insular lobes and interconnected by the inferior-fronto-occipital fasciculus (IFOF), and (ii) that global feature processing was associated with a right hemisphere network interconnected by the third branch of the superior longitudinal fasciculus and the long segment of the perisylvian network. The data support the argument that asymmetrical white matter disconnections within long-range association pathways predict poor complex figure drawing resulting from deficits in hierarchical representation. We conclude that hemispheric asymmetries in attending to local versus global features exist on the level of both cortical loci and the supporting white matter pathways.
Collapse
Affiliation(s)
| | - Dante Mantini
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Glyn W Humphreys
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
237
|
Rosenzweig S, Carmichael ST. The axon-glia unit in white matter stroke: mechanisms of damage and recovery. Brain Res 2015; 1623:123-34. [PMID: 25704204 PMCID: PMC4545468 DOI: 10.1016/j.brainres.2015.02.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/10/2015] [Indexed: 01/07/2023]
Abstract
Approximately one quarter of all strokes in humans occur in white matter, and the progressive nature of white matter lesions often results in severe physical and mental disability. Unlike cortical grey matter stroke, the pathology of white matter stroke revolves around disrupted connectivity and injured axons and glial cells, rather than neuronal cell bodies. Consequently, the mechanisms behind ischemic damage to white matter elements, the regenerative responses of glial cells and their signaling pathways, all differ significantly from those in grey matter. Development of effective therapies for white matter stroke would require an enhanced understanding of the complex cellular and molecular interactions within the white matter, leading to the identification of new therapeutic targets. This review will address the unique properties of the axon-glia unit during white matter stroke, describe the challenging process of promoting effective white matter repair, and discuss recently-identified signaling pathways which may hold potential targets for repair in this disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Shira Rosenzweig
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
238
|
Kamali A, Sair HI, Blitz AM, Riascos RF, Mirbagheri S, Keser Z, Hasan KM. Revealing the ventral amygdalofugal pathway of the human limbic system using high spatial resolution diffusion tensor tractography. Brain Struct Funct 2015; 221:3561-9. [PMID: 26454651 DOI: 10.1007/s00429-015-1119-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/23/2015] [Indexed: 11/28/2022]
Abstract
The amygdala is known to have a role in core processes regulated by the limbic system such as motivation, memory, emotion, social behavior, self-awareness as well as certain primitive instincts. Several functional studies have investigated some of these brain tasks of the human limbic system. However, the underlying neuronal fiber connectivity of the amygdalo-diencephalon, as part of the limbic system, has not been delineated separately by prior diffusion-weighted imaging studies. The ability to trace the underlying fiber connections individually will be helpful in understanding the neurophysiology of these tracts in different functions. To date, few diffusion-weighted studies have focused on the amygdala, yet the fine connections of the amygdala, hypothalamus, septum or other adjacent limbic structures have yet to be elucidated by diffusion-weighted tractography studies. We therefore aimed to further investigate these fine neuronal connections using fiber tractography and high spatial resolution diffusion tensor imaging on 3T on 15 healthy right-handed male human subjects (age range 24-37 years). The ventral amygdalofugal pathway, anterior commissure and stria terminalis are the three main efferent pathways of the amygdala. We delineated the detailed trajectories of the ventral amygdalofugal tract, anterior commissure and their connections bilaterally in 15 normal adult human brains. Using a high-resolution diffusion tensor tractography technique, for the first time, we were able to demonstrate the trajectory of amygdalofugal tract and its connections to the hypothalamic and septal nuclei. We further revealed, for the first time, the close relationship of the amygdalofugal tract and anterior commissure with the fornix, stria terminalis and uncinate fasciculus bilaterally in 15 healthy adult human brains.
Collapse
Affiliation(s)
- Arash Kamali
- Division of Neuroradiology, Department of Diagnostic Radiology, Johns Hopkins University, 600 N. Wolfe St. Phipps B112B, Baltimore, MD, 21287, USA.
| | - Haris I Sair
- Division of Neuroradiology, Department of Diagnostic Radiology, Johns Hopkins University, 600 N. Wolfe St. Phipps B112B, Baltimore, MD, 21287, USA
| | - Ari M Blitz
- Division of Neuroradiology, Department of Diagnostic Radiology, Johns Hopkins University, 600 N. Wolfe St. Phipps B112B, Baltimore, MD, 21287, USA
| | - Roy F Riascos
- Departments of Diagnostic Radiology, University of Texas at Houston, Houston, TX, USA
| | - Saeedeh Mirbagheri
- Division of Neuroradiology, Department of Diagnostic Radiology, Johns Hopkins University, 600 N. Wolfe St. Phipps B112B, Baltimore, MD, 21287, USA
| | - Zafer Keser
- UTHealth Department of Physical Medicine and Rehabilitation, TIRR NeuroRecovery Research Center, Houston, USA
| | - Khader M Hasan
- Departments of Diagnostic Radiology, University of Texas at Houston, Houston, TX, USA
| |
Collapse
|
239
|
Humphreys GW, Chechlacz M. A Neural Decomposition of Visual Search Using Voxel-based Morphometry. J Cogn Neurosci 2015; 27:1854-69. [DOI: 10.1162/jocn_a_00828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The ability to search efficiently for visual targets among distractors can break down after a variety of brain lesions, but the specific processes affected by the lesions are unclear. We examined search over space (conjunction search) and over time plus space (preview search) in a consecutive series of patients with acquired brain lesions. We also assessed performance on standard neuropsychological measures of visuospatial short-term memory (Corsi Block), sustained attention and memory updating (the contrast between forward and backward digit span), and visual neglect. Voxel-based morphometry analyses revealed regions in the occipital (middle occipital gyrus), posterior parietal (angular gyrus), and temporal cortices (superior and middle temporal gyri extending to the insula), along with underlying white matter pathways, associated with poor search. Going beyond standard voxel-based morphometry analyses, we then report correlation measures of structural damage in these regions and the independent neuropsychological measures of other cognitive functions. We find distinct patterns of correlation in areas linked to poor search, suggesting that the areas play functionally different roles in search. We conclude that neuropsychological disorders of search can be linked to necessary and distinct cognitive functions, according to the site of lesion.
Collapse
|
240
|
Lei W, Li N, Deng W, Li M, Huang C, Ma X, Wang Q, Guo W, Li Y, Jiang L, Zhou Y, Hu X, McAlonan GM, Li T. White matter alterations in first episode treatment-naïve patients with deficit schizophrenia: a combined VBM and DTI study. Sci Rep 2015; 5:12994. [PMID: 26257373 PMCID: PMC4530339 DOI: 10.1038/srep12994] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/06/2015] [Indexed: 02/05/2023] Open
Abstract
Categorizing ‘deficit schizophrenia’ (DS) as distinct from ‘non-deficit’ schizophrenia (NDS) may help reduce heterogeneity within schizophrenia. However, it is unknown if DS has a discrete white matter signature. Here we used MRI to compare white matter volume (voxel-based morphometry) and microstructural integrity (fractional anisotropy, FA) in first-episode treatment-naïve patients with DS and NDS and their unaffected relatives to control groups of similar age. We found that white matter disruption was prominent in DS compared to controls; the DS group had lower volumes in the cerebellum, bilateral extra-nuclear and bilateral frontoparietal regions, and lower FA in the body of corpus callosum, posterior superior longitudinal fasciculus and uncinate fasciculus. The DS group also had lower volume in bilateral extra-nuclear regions compared to NDS, and the volume of these clusters was negatively correlated with deficit symptom ratings. NDS patients however, had no significant volume alterations and limited disruption of microstructural integrity compared to controls. Finally, first-degree relatives of those with DS shared volume abnormalities in right extra-nuclear white matter. Thus, white matter pathology in schizophrenia is most evident in the deficit condition, and lower extra-nuclear white matter volumes in both DS patients and their relatives may represent a brain structural ‘endophenotype’ for DS.
Collapse
Affiliation(s)
- Wei Lei
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Na Li
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Wei Deng
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Mingli Li
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Chaohua Huang
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Xiaohong Ma
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Qiang Wang
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Wanjun Guo
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Yinfei Li
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Lijun Jiang
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Yi Zhou
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan autonomous Region, Branch Hospital of West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Xun Hu
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| | - Grainne Mary McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Tao Li
- The Mental Health Center &Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China
| |
Collapse
|
241
|
White matter alterations in first episode treatment-naïve patients with deficit schizophrenia: a combined VBM and DTI study. Sci Rep 2015. [PMID: 26257373 DOI: 10.1038/srep12994.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Categorizing 'deficit schizophrenia' (DS) as distinct from 'non-deficit' schizophrenia (NDS) may help reduce heterogeneity within schizophrenia. However, it is unknown if DS has a discrete white matter signature. Here we used MRI to compare white matter volume (voxel-based morphometry) and microstructural integrity (fractional anisotropy, FA) in first-episode treatment-naïve patients with DS and NDS and their unaffected relatives to control groups of similar age. We found that white matter disruption was prominent in DS compared to controls; the DS group had lower volumes in the cerebellum, bilateral extra-nuclear and bilateral frontoparietal regions, and lower FA in the body of corpus callosum, posterior superior longitudinal fasciculus and uncinate fasciculus. The DS group also had lower volume in bilateral extra-nuclear regions compared to NDS, and the volume of these clusters was negatively correlated with deficit symptom ratings. NDS patients however, had no significant volume alterations and limited disruption of microstructural integrity compared to controls. Finally, first-degree relatives of those with DS shared volume abnormalities in right extra-nuclear white matter. Thus, white matter pathology in schizophrenia is most evident in the deficit condition, and lower extra-nuclear white matter volumes in both DS patients and their relatives may represent a brain structural 'endophenotype' for DS.
Collapse
|
242
|
Serra-de-Oliveira N, Boilesen SN, Prado de França Carvalho C, LeSueur-Maluf L, Zollner RDL, Spadari RC, Medalha CC, Monteiro de Castro G. Behavioural changes observed in demyelination model shares similarities with white matter abnormalities in humans. Behav Brain Res 2015; 287:265-75. [DOI: 10.1016/j.bbr.2015.03.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 11/30/2022]
|
243
|
Yao S, Song J, Gao L, Yan Y, Huang C, Ding H, Huang H, He Y, Sun R, Xu G. Thalamocortical Sensorimotor Circuit Damage Associated with Disorders of Consciousness for Diffuse Axonal Injury Patients. J Neurol Sci 2015; 356:168-74. [PMID: 26165776 DOI: 10.1016/j.jns.2015.06.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
The relationship of structural and functional brain damage and disorders of consciousness (DOC) for diffuse axonal injury (DAI) is still not fully explored. We employed diffusion tensor imaging (DTI) and resting-state fMRI (RS-fMRI) to examine the changes of resting activations and white matter (WM) integrity for DAI with DOC. WM damages were observed in the body and genu of the corpus callosum, right external capsule (EC) and superior corona radiate (SCR), left superior cerebellar peduncle (SCP) and posterior thalamic radiation (PTR). The RS-fMRI revealed augmented amplitude of low-frequency fluctuation (ALFF) in the anterior cingulate cortex, hippocampus, insula, amygdala and putamen, and reduced ALFF in the precuneus, thalamus, pre-central and post-central gyri. Correlation analysis identified positive associations between the Glasgow Coma Scale (GCS) and activation of the precuneus and between GCS and DTI measurements in the left PTR and SCP, but a negative correlation was found between GCS and activation of the thalamus. Cross modality association analyses indicated that activations of the amygdala and postcentral gyrus were correlated with DTI measurements of the right EC and left PTR respectively. These results implicate that the WM damages in thalamocortical sensorimotor circuit and aberrant brain activity responding to self-awareness and sensation are critical factors to DOC, which expand the current understanding of the neural mechanisms underlying DAI.
Collapse
Affiliation(s)
- Shun Yao
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Jian Song
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Lichen Gao
- Department of Radiology, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Yan Yan
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Cheng Huang
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Huichao Ding
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - He Huang
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Yuanzhi He
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Ronghui Sun
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China
| | - Guozheng Xu
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan 430070, China.
| |
Collapse
|
244
|
Filley CM. White matter disease and cognitive impairment in FMR1 premutation carriers. Neurology 2015; 20:158-73. [PMID: 20352350 DOI: 10.1007/s11065-010-9127-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/16/2010] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This cross-sectional, observational study examined the role of white matter involvement in the cognitive impairment of individuals with the fragile X mental retardation 1 (FMR1) premutation. METHODS Eight asymptomatic premutation carriers, 5 participants with fragile X tremor/ataxia syndrome (FXTAS), and 7 noncarrier controls were studied. The mean age of the asymptomatic premutation carriers, participants with FXTAS, and noncarrier controls was 60, 71, and 67 years, respectively. Magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) were used to examine the middle cerebellar peduncles (MCP) and the genu and splenium of the corpus callosum in relation to executive function and processing speed. MRS measures were N-acetyl aspartate/creatine (NAA/Cr) and choline/creatine, and fractional anisotropy (FA) was used for DTI. Executive function was assessed with the Behavioral Dyscontrol Scale and the Controlled Oral Word Association Test (COWAT), and processing speed with the Symbol Digit Modalities Test. RESULTS Among all 13 FMR1 premutation carriers, significant correlations were found between N-acetyl aspartate/creatine and choline/creatine in the MCP and COWAT scores, and between FA in the genu and performance on the Behavioral Dyscontrol Scale, COWAT, and Symbol Digit Modalities Test; a correlation was also found between FA in the splenium and COWAT performance. In all regions studied, participants with FXTAS had the lowest mean FA. CONCLUSION Microstructural white matter disease as determined by MRS and DTI correlated with executive dysfunction and slowed processing speed in these FMR1 premutation carriers. Neuroimaging abnormalities in the genu and MCP suggest that disruption of white matter within frontocerebellar networks has an important role in the cognitive impairment associated with the FMR1 premutation.
Collapse
Affiliation(s)
- Christopher M Filley
- Behavioral Neurology Section, University of Colorado Denver School of Medicine, Denver, CO, USA.
| |
Collapse
|
245
|
Diffusivity of the uncinate fasciculus in heroin users relates to their levels of anxiety. Transl Psychiatry 2015; 5:e554. [PMID: 25918991 PMCID: PMC4462611 DOI: 10.1038/tp.2015.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/11/2015] [Accepted: 03/01/2015] [Indexed: 01/19/2023] Open
Abstract
Heroin use is closely associated with emotional dysregulation, which may explain its high comorbidity with disorders such as anxiety and depression. However, the understanding of the neurobiological etiology of the association between heroin use and emotional dysregulation is limited. Previous studies have suggested an impact of heroin on diffusivity in white matter involving the emotional regulatory system, but the specificity of this finding remains to be determined. Therefore, this study investigated the association between heroin use and diffusivity of white matter tracts in heroin users and examined whether the tracts were associated with their elevated anxiety and depression levels. A sample of 26 right-handed male abstinent heroin users (25 to 42 years of age) and 32 matched healthy controls (19 to 55 years of age) was recruited for this study. Diffusion tensor imaging data were collected, and their levels of anxiety and depression were assessed using the Hospital Anxiety and Depression Scale. Our findings indicated that heroin users exhibited higher levels of anxiety and depression, but the heroin use-associated left uncinate fasciculus was only related to their anxiety level, suggesting that association between heroin and anxiety has an incremental organic basis but that for depression could be a threshold issue. This finding improves our understanding of heroin addiction and its comorbid affective disorder and facilitates future therapeutic development.
Collapse
|
246
|
Hernando KA, Szaflarski JP, Ver Hoef LW, Lee S, Allendorfer JB. Uncinate fasciculus connectivity in patients with psychogenic nonepileptic seizures: A preliminary diffusion tensor tractography study. Epilepsy Behav 2015; 45:68-73. [PMID: 25868002 DOI: 10.1016/j.yebeh.2015.02.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 11/26/2022]
Abstract
The amygdala, hippocampus, and medial prefrontal cortex are limbic brain regions connected by the uncinate fasciculus (UF) and implicated in emotion regulation. The aim of this study was to assess the connectivity characteristics of the UF in patients with psychogenic nonepileptic seizures (PNES) and matched healthy controls. We hypothesized that white matter connectivity of the UF in patients with PNES would differ from that in healthy controls. Eight patients with PNES and eight age- and sex-matched healthy controls underwent 3T MRI and 32-direction diffusion tensor imaging (DTI). Computation of DTI indices including fractional anisotropy (FA) and diffusion tensor tractography was performed. Two regions of interest were defined to manually trace the UF in each hemisphere for each subject. Fractional anisotropy and the number of reconstructed streamlines for the left and right hemispheres of the UF and the degree of asymmetry for each measure were compared between groups. Correlations between UF measures and clinical variables were also performed. Patients with PNES exhibited a significantly greater number of UF streamlines in the right hemisphere tract than in the left hemisphere (p=0.031), with such difference not observed in controls (p=0.81). This was reflected in a significant group difference in the asymmetry index (AI) for the number of streamlines, with more rightward asymmetry in patients with PNES (p=0.021). Average FA of the UF was similar between groups and between hemispheres for each group (all p>0.05). Age at illness onset was correlated with the AI for FA (r=-0.87; p=0.0045). Previously observed differences in emotion processing between controls and patients with PNES may be related to the differences in the rightward asymmetry in the number of UF streamlines in patients with PNES. Age at PNES onset appears to also have a role in the FA asymmetry of the UF. This is the first study to investigate the structural connectivity in these regions involved in emotional regulation in patients with PNES; further research is necessary to clarify the complex relationships between clinical measures and DTI characteristics.
Collapse
Affiliation(s)
- Kathleen A Hernando
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Lawrence W Ver Hoef
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Seongtaek Lee
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
247
|
Eng GK, Sim K, Chen SHA. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review. Neurosci Biobehav Rev 2015; 52:233-57. [PMID: 25766413 DOI: 10.1016/j.neubiorev.2015.03.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 01/04/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating disorder. However, existing neuroimaging findings involving executive function and structural abnormalities in OCD have been mixed. Here we conducted meta-analyses to investigate differences in OCD samples and controls in: Study 1 - grey matter structure; Study 2 - executive function task-related activations during (i) response inhibition, (ii) interference, and (iii) switching tasks; and Study 3 - white matter diffusivity. Results showed grey matter differences in the frontal, striatal, thalamus, parietal and cerebellar regions; task domain-specific neural differences in similar regions; and abnormal diffusivity in major white matter regions in OCD samples compared to controls. Our results reported concurrence of abnormal white matter diffusivity with corresponding abnormalities in grey matter and task-related functional activations. Our findings suggested the involvement of other brain regions not included in the cortico-striato-thalamo-cortical network, such as the cerebellum and parietal cortex, and questioned the involvement of the orbitofrontal region in OCD pathophysiology. Future research is needed to clarify the roles of these brain regions in the disorder.
Collapse
Affiliation(s)
- Goi Khia Eng
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, 14 Nanyang Drive, Singapore 637332, Singapore
| | - Kang Sim
- Department of General Psychiatry, Institute of Mental Health, 10 Buangkok View, Singapore 539747, Singapore
| | - Shen-Hsing Annabel Chen
- Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, 14 Nanyang Drive, Singapore 637332, Singapore; Centre for Research and Development in Learning, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
248
|
Bauer IE, Ouyang A, Mwangi B, Sanches M, Zunta-Soares GB, Keefe RSE, Huang H, Soares JC. Reduced white matter integrity and verbal fluency impairment in young adults with bipolar disorder: a diffusion tensor imaging study. J Psychiatr Res 2015; 62:115-22. [PMID: 25684152 PMCID: PMC4355300 DOI: 10.1016/j.jpsychires.2015.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Clinical evidence shows that bipolar disorder (BD) is characterized by white matter (WM) microstructural abnormalities. However, little is known about the biological mechanisms associated with these abnormalities and their relationship with cognitive functioning. METHODS 49 adult BD patients ((M±SD): 29.27 ± 7.92 years; 17 males, 32 females; 34 BD-I, 10 BD-II, and 5 BD-NOS) and 28 age-matched normal subjects ((M±SD): 29.19 ± 7.35 years; 10 males and 18 females) underwent diffusion tensor imaging (DTI) imaging. DTI metrics were computed using whole-brain tract-based spatial statistics (TBSS) as part of the FMRIB Software Library. Measures of WM coherence (fractional anisotropy - FA) and axonal structure (mean, axial and radial diffusivity - MD, AD and RD) were employed to characterize the microstructural alterations in the limbic, commissural, association and projection fiber tracts. All participants performed the Brief Assessment of Cognition for Affective disorders (BAC-A). RESULTS BD patients performed poorly on verbal fluency tasks and exhibited large clusters of altered FA, RD and MD values within the retrolenticular part of the internal capsule, the superior and anterior corona radiata, and the corpus callosum. Increased FA values in the left IFOF and the forceps minor correlated positively with verbal fluency scores. Altered RD parameters in the corticospinal tract and the forceps minor were associated with reduced visuomotor abilities. CONCLUSIONS The reported verbal fluency deficits and FA, RD and MD alterations in WM structures are potential cognitive and neural markers of BD. Abnormal RD values may be associated with progressive demyelination.
Collapse
Affiliation(s)
- Isabelle E Bauer
- University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 77054 Houston, TX, United States.
| | - Austin Ouyang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Benson Mwangi
- University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 77054 Houston, TX, United States
| | - Marsal Sanches
- University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 77054 Houston, TX, United States
| | - Giovana B Zunta-Soares
- University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 77054 Houston, TX, United States
| | - Richard S E Keefe
- Division of Medical Psychology, Duke University, Medical Centre, 27710 Durham, NC, United States
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania PA, United States
| | - Jair C Soares
- University of Texas Health Science Center at Houston, Department of Psychiatry and Behavioral Sciences, 77054 Houston, TX, United States
| |
Collapse
|
249
|
Optimization of magnetization-prepared 3-dimensional fluid attenuated inversion recovery imaging for lesion detection at 7 T. Invest Radiol 2014; 49:290-8. [PMID: 24566291 DOI: 10.1097/rli.0000000000000041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to optimize the 3-dimensional (3D) fluid attenuated inversion recovery (FLAIR) pulse sequence for isotropic high-spatial-resolution imaging of white matter (WM) and cortical lesions at 7 T. MATERIALS AND METHODS We added a magnetization-prepared (MP) FLAIR module to a Cube 3D fast spin echo sequence and optimized the refocusing flip angle train using extended phase graph simulations, taking into account image contrast, specific absorption rate (SAR), and signal-to-noise ratio (SNR) as well as T1/T2 values of the different species of interest (WM, grey matter, lesions) at 7 T. We also effected improved preparation homogeneity at 7 T by redesigning the refocusing pulse used in the MP segments. Two sets of refocusing flip angle trains-(a) an SNR-optimal and (b) a contrast-optimal set-were derived and used to scan 7 patients with Alzheimer disease/cognitive impairment and 7 patients with multiple sclerosis. Conventional constant refocusing flip MP-FLAIR images were also acquired for comparison. Lesion SNR, contrast, and lesion count were compared between the 2 optimized and the standard FLAIR sequences. RESULTS Whole brain coverage with 0.8 mm isotropic spatial resolution in ∼5-minute scan times was achieved using the optimized 3D FLAIR sequences at clinically acceptable SAR levels. The SNR efficiency of the SNR-optimal sequence was significantly better than that of conventional constant refocusing flip MP-FLAIR sequence, whereas the scan time was reduced more than 2-fold (∼5 vs >10 minutes). The contrast efficiency of the contrast-optimal sequence was comparable with that of the constant refocusing flip sequence. Lesion load ascertained by lesion counting was not significantly different among the sequences. CONCLUSION Magnetization-prepared FLAIR-Cube with refocusing flip angle trains optimized for SNR and contrast can be used to characterize WM and cortical lesions at 7 T with 0.8 mm isotropic resolution in short scan times and without SAR penalty.
Collapse
|
250
|
Jung WB, Mun CW, Kim YH, Park JM, Lee BD, Lee YM, Moon E, Jeong HJ, Chung YI. Cortical atrophy, reduced integrity of white matter and cognitive impairment in subcortical vascular dementia of Binswanger type. Psychiatry Clin Neurosci 2014; 68:821-832. [PMID: 24773562 DOI: 10.1111/pcn.12196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/19/2014] [Accepted: 04/23/2014] [Indexed: 02/02/2023]
Abstract
AIMS An association between white matter hyperintensities (WMH) and cognitive dysfunction has long been recognized. However, subjects with identically appearing WMH on magnetic resonance imaging present with a wide variance in cognitive function ranging from normal cognition to dementia. The aim of this study was to compare cortical atrophy and integrity of white matter of patients with subcortical vascular dementia of Binswanger type (SVaD-BT) with those of the normal cognition group with WMH (ncWMH). METHODS Eleven patients with SVaD-BT and 11 age-, sex-, education- and grade of WMH-matched ncWMH underwent magnetic resonance imaging, including 3-D volumetric images for cortical atrophy and diffusion tensor imaging for integrity of white matter. RESULTS Compared to ncWMH, SVaD-BT patients showed cortical atrophies in frontal (i.e. frontal pole, precentral gyrus and frontal medial cortex) and occipital areas (i.e. lingual gyrus) followed by atrophies in temporal (i.e. fusiform cortex and middle temporal gyrus) areas. Along with cortical atrophies, reduced integrity with low fractional anisotropy and high mean diffusivity values in genu and splenium of the corpus callosum were detected in SVaD-BT patients. CONCLUSIONS Our findings suggest that cognitive decline from ncWMH to SVaD-BT may be associated with cortical atrophy and reduced integrity of white matter.
Collapse
Affiliation(s)
- Won-Beom Jung
- Department of Biomedical Engineering and FIRST, Inje University, Gimhae, Korea
| | - Chi-Woong Mun
- Department of Biomedical Engineering and FIRST, Inje University, Gimhae, Korea
| | - Young-Hoon Kim
- Department of Psychiatry, Medical School, Haeundae Paik Hospital, Inje University, Busan, Korea
| | - Je Min Park
- Department of Psychiatry, Pusan National University Hospital, Busan, Korea.,Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Byung Dae Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, Korea.,Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Young Min Lee
- Department of Psychiatry, Pusan National University Hospital, Busan, Korea.,Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eunsoo Moon
- Department of Psychiatry, Pusan National University Hospital, Busan, Korea.,Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hee Jeong Jeong
- Department of Psychiatry, Pusan National University Hospital, Busan, Korea.,Medical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Young In Chung
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|