201
|
Mycoprotein represents a bioavailable and insulinotropic non-animal-derived dietary protein source: a dose–response study. Br J Nutr 2017; 118:673-685. [DOI: 10.1017/s0007114517002409] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractThe anabolic potential of a dietary protein is determined by its ability to elicit postprandial rises in circulating essential amino acids and insulin. Minimal data exist regarding the bioavailability and insulinotropic effects of non-animal-derived protein sources. Mycoprotein is a sustainable and rich source of non-animal-derived dietary protein. We investigated the impact of mycoprotein ingestion, in a dose–response manner, on acute postprandial hyperaminoacidaemia and hyperinsulinaemia. In all, twelve healthy young men completed five experimental trials in a randomised, single-blind, cross-over design. During each trial, volunteers consumed a test drink containing either 20 g milk protein (MLK20) or a mass matched (not protein matched due to the fibre content) bolus of mycoprotein (20 g; MYC20), a protein matched bolus of mycoprotein (40 g; MYC40), 60 g (MYC60) or 80 g (MYC80) mycoprotein. Circulating amino acid, insulin and uric acid concentrations, and clinical chemistry profiles, were assessed in arterialised venous blood samples during a 4-h postprandial period. Mycoprotein ingestion resulted in slower but more sustained hyperinsulinaemia and hyperaminoacidaemia compared with milk when protein matched, with overall bioavailability equivalent between conditions (P>0·05). Increasing the dose of mycoprotein amplified these effects, with some evidence of a plateau at 60–80 g. Peak postprandial leucine concentrations were 201 (sem 24) (30 min), 118 (sem 10) (90 min), 150 (sem 14) (90 min), 173 (sem 23) (45 min) and 201 (sem 21 (90 min) µmol/l for MLK20, MYC20, MYC40, MYC60 and MYC80, respectively. Mycoprotein represents a bioavailable and insulinotropic dietary protein source. Consequently, mycoprotein may be a useful source of dietary protein to stimulate muscle protein synthesis rates.
Collapse
|
202
|
Dirks ML, Wall BT, van Loon LJC. Interventional strategies to combat muscle disuse atrophy in humans: focus on neuromuscular electrical stimulation and dietary protein. J Appl Physiol (1985) 2017; 125:850-861. [PMID: 28970205 DOI: 10.1152/japplphysiol.00985.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous situations, such as the recovery from illness or rehabilitation after injury, necessitate a period of muscle disuse in otherwise healthy individuals. Even a few days of immobilization or bed rest can lead to substantial loss of skeletal muscle tissue and compromise metabolic health. The decline in muscle mass is attributed largely to a decline in postabsorptive and postprandial muscle protein synthesis rates. Reintroduction of some level of muscle contraction by the application of neuromuscular electrical stimulation (NMES) can augment both postabsorptive and postprandial muscle protein synthesis rates and, as such, prevent or attenuate muscle loss during short-term disuse in various clinical populations. Whereas maintenance of habitual dietary protein consumption is a prerequisite for muscle mass maintenance, supplementing dietary protein above habitual intake levels does not prevent muscle loss during disuse in otherwise healthy humans. Combining the anabolic properties of physical activity (or surrogates) with appropriate nutritional support likely further increases the capacity to preserve skeletal muscle mass during a period of disuse. Therefore, effective interventional strategies to prevent or alleviate muscle disuse atrophy should include both exercise (mimetics) and appropriate nutritional support.
Collapse
Affiliation(s)
- Marlou L Dirks
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| | - Benjamin T Wall
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht , The Netherlands
| |
Collapse
|
203
|
Rossato LT, Nahas PC, de Branco FMS, Martins FM, Souza AP, Carneiro MAS, Orsatti FL, de Oliveira EP. Higher Protein Intake Does Not Improve Lean Mass Gain When Compared with RDA Recommendation in Postmenopausal Women Following Resistance Exercise Protocol: A Randomized Clinical Trial. Nutrients 2017; 9:nu9091007. [PMID: 28895933 PMCID: PMC5622767 DOI: 10.3390/nu9091007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to evaluate the effect of a higher protein intake on lean body mass (LBM) gain in postmenopausal women practicing resistance exercise and compare it to the Recommended Dietary Allowance (RDA) recommendation. Twenty-three postmenopausal women (63.2 ± 7.8 years) were randomized into two groups. The group with higher protein intake (n = 11) (HP) received a dietary plan with ~1.2 g·kg-1·day-1 of protein, while the normal protein (NP) group (n = 12) was instructed to ingest ~0.8 g·kg-1·day-1 of protein (RDA recommendation). Both groups performed the same resistance training protocol, 3 times a week, with progression of the number of sets (from 1 to 6 sets) and 8-12 repetitions. The intervention occurred over 10 weeks. Body composition evaluation was performed by dual-energy X-ray absorptiometry. The diet was evaluated by nine 24-h food recall summaries over the course of the study. During the intervention period, the HP group presented a higher protein (1.18 ± 0.3 vs. 0.87 ± 0.2 g·kg-1·day-1, p = 0.008) and leucine (6.0 ± 1.4 vs. 4.3 ± 0.9 g/day, p < 0.001) intake than the NP group, respectively. At the end of the intervention, there were increases in LBM both in HP (37.1 ± 6.2 to 38.4 ± 6.5 kg, p = 0.004) and in NP (37.6 ± 6.2 to 38.8 ± 6.4 kg, p < 0.001), with no differences between the groups (p = 0.572). In conclusion, increased protein intake did not promote higher LBM gain when compared to RDA recommendation in postmenopausal women performing resistance exercise during 10 weeks. This trial was registered at ClinicalTrials.gov as NCT03024125.
Collapse
Affiliation(s)
- Luana T Rossato
- School of Medicine, Federal University of Uberlandia (UFU), Av. Pará, n° 1720, Bloco 2U, Campus Umuarama, Uberlandia 38400-902, Minas Gerais, Brazil.
| | - Paula C Nahas
- School of Medicine, Federal University of Uberlandia (UFU), Av. Pará, n° 1720, Bloco 2U, Campus Umuarama, Uberlandia 38400-902, Minas Gerais, Brazil.
| | - Flávia M S de Branco
- School of Medicine, Federal University of Uberlandia (UFU), Av. Pará, n° 1720, Bloco 2U, Campus Umuarama, Uberlandia 38400-902, Minas Gerais, Brazil.
| | - Fernanda M Martins
- Exercise Biology Research Group (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba 38061-500, Minas Gerais, Brazil.
| | - Aletéia P Souza
- Exercise Biology Research Group (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba 38061-500, Minas Gerais, Brazil.
| | - Marcelo A S Carneiro
- Exercise Biology Research Group (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba 38061-500, Minas Gerais, Brazil.
| | - Fábio L Orsatti
- Exercise Biology Research Group (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba 38061-500, Minas Gerais, Brazil.
- Department of Sport Sciences, Federal University of Triangulo Mineiro (UFTM), Uberaba 38061-500, Minas Gerais, Brazil.
| | - Erick P de Oliveira
- School of Medicine, Federal University of Uberlandia (UFU), Av. Pará, n° 1720, Bloco 2U, Campus Umuarama, Uberlandia 38400-902, Minas Gerais, Brazil.
| |
Collapse
|
204
|
Smeuninx B, Mckendry J, Wilson D, Martin U, Breen L. Age-Related Anabolic Resistance of Myofibrillar Protein Synthesis Is Exacerbated in Obese Inactive Individuals. J Clin Endocrinol Metab 2017; 102:3535-3545. [PMID: 28911148 PMCID: PMC5587073 DOI: 10.1210/jc.2017-00869] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/27/2022]
Abstract
CONTEXT A diminished muscle anabolic response to protein nutrition may underpin age-associated muscle loss. OBJECTIVE To determine how chronological and biological aging influence myofibrillar protein synthesis (MyoPS). DESIGN Cross-sectional comparison. SETTING Clinical research facility. PARTICIPANTS Ten older lean [OL: 71.7 ± 6 years; body mass index (BMI) ≤25 kg ⋅ m-2], 7 older obese (OO: 69.1 ± 2 years; BMI ≥30 kg ⋅ m-2), and 18 young lean (YL) individuals (25.5 ± 4 years; BMI ≤25 kg ⋅ m-2). INTERVENTION Skeletal muscle biopsies obtained during a primed-continuous infusion of l-[ring-13C6]-phenylalanine. MAIN OUTCOME MEASURES Anthropometrics, insulin resistance, inflammatory markers, habitual diet, physical activity, MyoPS rates, and fiber-type characteristics. RESULTS Fat mass, insulin resistance, inflammation, and type II fiber intramyocellular lipid were greater, and daily step count lower, in OO compared with YL and OL. Postprandial MyoPS rates rose above postabsorptive values by ∼81% in YL (P < 0.001), ∼38% in OL (P = 0.002, not different from YL), and ∼9% in OO (P = 0.11). Delta change in postprandial MyoPS from postabsorptive values was greater in YL compared with OL (P = 0.032) and OO (P < 0.001). Absolute postprandial MyoPS rates and delta postprandial MyoPS change were associated with step count (r2 = 0.33; P = 0.015) and leg fat mass (r2 = 0.4; P = 0.006), respectively, in older individuals. Paradoxically, lean mass was similar between groups, and muscle fiber area was greater in OO vs OL (P = 0.002). CONCLUSION Age-related muscle anabolic resistance is exacerbated in obese inactive individuals, with no apparent detriment to muscle mass.
Collapse
Affiliation(s)
- Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - James Mckendry
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Daisy Wilson
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Una Martin
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
205
|
Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc Nutr Soc 2017; 77:20-31. [DOI: 10.1017/s002966511700194x] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The age-related loss of skeletal muscle mass and function is caused, at least in part, by a reduced muscle protein synthetic response to protein ingestion. The magnitude and duration of the postprandial muscle protein synthetic response to ingested protein is dependent on the quantity and quality of the protein consumed. This review characterises the anabolic properties of animal-derived and plant-based dietary protein sources in older adults. While approximately 60 % of dietary protein consumed worldwide is derived from plant sources, plant-based proteins generally exhibit lower digestibility, lower leucine content and deficiencies in certain essential amino acids such as lysine and methionine, which compromise the availability of a complete amino acid profile required for muscle protein synthesis. Based on currently available scientific evidence, animal-derived proteins may be considered more anabolic than plant-based protein sources. However, the production and consumption of animal-derived protein sources is associated with higher greenhouse gas emissions, while plant-based protein sources may be considered more environmentally sustainable. Theoretically, the lower anabolic capacity of plant-based proteins can be compensated for by ingesting a greater dose of protein or by combining various plant-based proteins to provide a more favourable amino acid profile. In addition, leucine co-ingestion can further augment the postprandial muscle protein synthetic response. Finally, prior exercise or n-3 fatty acid supplementation have been shown to sensitise skeletal muscle to the anabolic properties of dietary protein. Applying one or more of these strategies may support the maintenance of muscle mass with ageing when diets rich in plant-based protein are consumed.
Collapse
|
206
|
Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr 2017; 37:1121-1132. [PMID: 28927897 DOI: 10.1016/j.clnu.2017.08.016] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022]
Abstract
There is a growing body of evidence that links nutrition to muscle mass, strength and function in older adults, suggesting that it has an important role to play both in the prevention and management of sarcopenia. This review summarises the discussions of a working group [ESCEO working group meeting 8th September 2016] that met to review current evidence and to consider its implications for preventive and treatment strategies. The review points to the importance of 'healthier' dietary patterns that are adequate in quality in older age, to ensure sufficient intakes of protein, vitamin D, antioxidant nutrients and long-chain polyunsaturated fatty acids. In particular, there is substantial evidence to support the roles of dietary protein and physical activity as key anabolic stimuli for muscle protein synthesis. However, much of the evidence is observational and from high-income countries. Further high-quality trials, particularly from more diverse populations, are needed to enable an understanding of dose and duration effects of individual nutrients on function, to elucidate mechanistic links, and to define optimal profiles and patterns of nutrient intake for older adults.
Collapse
|
207
|
Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, Aragon AA, Devries MC, Banfield L, Krieger JW, Phillips SM. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med 2017; 52:376-384. [PMID: 28698222 PMCID: PMC5867436 DOI: 10.1136/bjsports-2017-097608] [Citation(s) in RCA: 597] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We performed a systematic review, meta-analysis and meta-regression to determine if dietary protein supplementation augments resistance exercise training (RET)-induced gains in muscle mass and strength. DATA SOURCES A systematic search of Medline, Embase, CINAHL and SportDiscus. ELIGIBILITY CRITERIA Only randomised controlled trials with RET ≥6 weeks in duration and dietary protein supplementation. DESIGN Random-effects meta-analyses and meta-regressions with four a priori determined covariates. Two-phase break point analysis was used to determine the relationship between total protein intake and changes in fat-free mass (FFM). RESULTS Data from 49 studies with 1863 participants showed that dietary protein supplementation significantly (all p<0.05) increased changes (means (95% CI)) in: strength-one-repetition-maximum (2.49 kg (0.64, 4.33)), FFM (0.30 kg (0.09, 0.52)) and muscle size-muscle fibre cross-sectional area (CSA; 310 µm2 (51, 570)) and mid-femur CSA (7.2 mm2 (0.20, 14.30)) during periods of prolonged RET. The impact of protein supplementation on gains in FFM was reduced with increasing age (-0.01 kg (-0.02,-0.00), p=0.002) and was more effective in resistance-trained individuals (0.75 kg (0.09, 1.40), p=0.03). Protein supplementation beyond total protein intakes of 1.62 g/kg/day resulted in no further RET-induced gains in FFM. SUMMARY/CONCLUSION Dietary protein supplementation significantly enhanced changes in muscle strength and size during prolonged RET in healthy adults. Increasing age reduces and training experience increases the efficacy of protein supplementation during RET. With protein supplementation, protein intakes at amounts greater than ~1.6 g/kg/day do not further contribute RET-induced gains in FFM.
Collapse
Affiliation(s)
- Robert W Morton
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Kevin T Murphy
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Sean R McKellar
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Brad J Schoenfeld
- Department of Health Sciences, Lehman College of CUNY, Bronx, New York, USA
| | | | - Eric Helms
- Sport Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| | - Alan A Aragon
- California State University, Northridge, California, USA
| | | | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, Canada
| | | | | |
Collapse
|
208
|
Wilson D, Jackson T, Sapey E, Lord JM. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Res Rev 2017; 36:1-10. [PMID: 28223244 DOI: 10.1016/j.arr.2017.01.006] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
Frailty is a common negative consequence of ageing. Sarcopenia, the syndrome of loss of muscle mass, quality and strength, is more common in older adults and has been considered a precursor syndrome or the physical manifestation of frailty. The pathophysiology of both syndromes is incompletely described with multiple causes, inter-relationships and complex pathways proposed. Age-associated changes to the immune system (both immunesenescence, the decline in immune function with ageing, and inflammageing, a state of chronic inflammation) have been suggested as contributors to sarcopenia and frailty but a direct causative role remains to be established. Frailty, sarcopenia and immunesenescence are commonly described in older adults but are not ubiquitous to ageing. There is evidence that all three conditions are reversible and all three appear to share common inflammatory drivers. It is unclear whether frailty, sarcopenia and immunesenescence are separate entities that co-occur due to coincidental or potentially confounding factors, or whether they are more intimately linked by the same underlying cellular mechanisms. This review explores these possibilities focusing on innate immunity, and in particular associations with neutrophil dysfunction, inflammation and known mechanisms described to date. Furthermore, we consider whether the age-related decline in immune cell function (such as neutrophil migration), increased inflammation and the dysregulation of the phosphoinositide 3-kinase (PI3K)-Akt pathway in neutrophils could contribute pathogenically to sarcopenia and frailty.
Collapse
|
209
|
Intramyocellular lipid content and lipogenic gene expression responses following a single bout of resistance type exercise differ between young and older men. Exp Gerontol 2017; 93:36-45. [PMID: 28385599 DOI: 10.1016/j.exger.2017.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/07/2017] [Accepted: 03/28/2017] [Indexed: 11/21/2022]
Abstract
The aim of this study was to examine the temporal relationship between intramyocellular lipid (IMCL) content and the expression of genes associated with IMCL turnover, fat metabolism, and inflammation during recovery from an acute bout of resistance type exercise in old versus young men. Seven healthy young (23±2years, 77.2±2.9kg) and seven healthy older (72±1years, 79.3±4.9kg) males performed a single bout of resistance exercise involving 6 sets of 10 repetitions of leg press and 6 sets of 10 repetitions of leg extension at 75% one-repetition maximum (1-RM). Muscle biopsy samples were obtained before and 12, 24 and 48h after the completion of exercise and analysed for IMCL content and the expression of 48 genes. The subjects refrained from further heavy physical exercise and consumed a standardized diet for the entire experimental period. The IMCL content was ~2-fold higher at baseline and 12h post-exercise in old compared with young individuals. However, no differences between groups were apparent after 48h of recovery. There was higher expression of genes involved in fatty acid synthesis (FASN and PPARγ) during the first 24h of recovery. Differential responses to exercise were observed between groups for a number of genes indicating increased inflammatory response (IL6, IkBalpha, CREB1) and impaired fat metabolism and TCA cycle (LPL, ACAT1, SUCLG1) in older compared with younger individuals. A singe bout of resistance type exercise leads to molecular changes in skeletal muscle favouring reduced lipid oxidation, increased lipogenesis, and exaggerated inflammation during post-exercise recovery in the older compared with younger individuals, which may be indicative of a blunted response of IMCL turnover with ageing.
Collapse
|
210
|
Snijders T, Nederveen JP, Joanisse S, Leenders M, Verdijk LB, van Loon LJC, Parise G. Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men. J Cachexia Sarcopenia Muscle 2017; 8:267-276. [PMID: 27897408 PMCID: PMC5377411 DOI: 10.1002/jcsm.12137] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Adequate muscle fibre perfusion is critical for the maintenance of muscle mass; it is essential in the rapid delivery of oxygen, nutrients and growth factors to the muscle, stimulating muscle fibre growth. Muscle fibre capillarization is known to decrease substantially with advancing age. However, whether (relative) low muscle fibre capillarization negatively impacts the muscle hypertrophic response following resistance exercise training in older adults is unknown. METHODS Twenty-two healthy older men (71 ± 1 years) performed 24 weeks of progressive resistance type exercise training. To assess the change in muscle fibre characteristics, percutaneous biopsies from the vastus lateralis muscle were taken before and following 12 and 24 weeks of the intervention programme. A comparison was made between participants who had a relatively low type II muscle fibre capillary-to-fibre perimeter exchange index (CFPE; LOW group) and high type II muscle fibre CFPE (HIGH group) at baseline. Type I and type II muscle fibre size, satellite cell, capillary content and distance between satellite cells to the nearest capillary were determined by immunohistochemistry. RESULTS Overall, type II muscle fibre size (from 5150 ± 234 to 6719 ± 446 µm2 , P < 0.05) and satellite cell content (from 0.058 ± 0.006 to 0.090 ± 0.010 satellite cells per muscle fibre, P < 0.05) had increased significantly in response to 24 weeks of resistance exercise training. However, these improvements where mainly driven by differences in baseline type II muscle fibre capillarization, whereas muscle fibre size (from 5170 ± 390 to 7133 ± 314 µm2 , P < 0.05) and satellite cell content (from 0.059 ± 0.009 to 0.102 ± 0.017 satellite cells per muscle fibre, P < 0.05) increased significantly in the HIGH group, no significant changes were observed in LOW group following exercise training. No significant changes in type I and type II muscle fibre capillarization were observed in response to 12 and 24 weeks of resistance exercise training in both the LOW and HIGH group. CONCLUSIONS Type II muscle fibre capillarization at baseline may be a critical factor for allowing muscle fibre hypertrophy to occur during prolonged resistance exercise training in older men.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Joshua P Nederveen
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Sophie Joanisse
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Marika Leenders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Gianni Parise
- Department of Kinesiology and Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
211
|
Gorissen SH, Horstman AM, Franssen R, Kouw IW, Wall BT, Burd NA, de Groot LC, van Loon LJ. Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial. Am J Clin Nutr 2017; 105:332-342. [PMID: 27903518 DOI: 10.3945/ajcn.115.129924] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 10/31/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high protein intake (HIGH PRO) on the postprandial muscle protein synthetic response. OBJECTIVE We assessed the impact of LOW PRO compared with HIGH PRO on basal and postprandial muscle protein synthesis rates after the ingestion of 25 g whey protein. DESIGN Twenty-four healthy, older men [age: 62 ± 1 y; body mass index (in kg/m2): 25.9 ± 0.4 (mean ± SEM)] participated in a parallel-group randomized trial in which they adapted to either a LOW PRO diet (0.7 g · kg-1 · d-1; n = 12) or a HIGH PRO diet (1.5 g · kg-1 · d-1; n = 12) for 14 d. On day 15, participants received primed continuous l-[ring-2H5]-phenylalanine and l-[1-13C]-leucine infusions and ingested 25 g intrinsically l-[1-13C]-phenylalanine- and l-[1-13C]-leucine-labeled whey protein. Muscle biopsies and blood samples were collected to assess muscle protein synthesis rates as well as dietary protein digestion and absorption kinetics. RESULTS Plasma leucine concentrations and exogenous phenylalanine appearance rates increased after protein ingestion (P < 0.01) with no differences between treatments (P > 0.05). Plasma exogenous phenylalanine availability over the 5-h postprandial period was greater after LOW PRO than after HIGH PRO (61% ± 1% compared with 56% ± 2%, respectively; P < 0.05). Muscle protein synthesis rates increased from 0.031% ± 0.004% compared with 0.039% ± 0.007%/h in the fasted state to 0.062% ± 0.005% compared with 0.057% ± 0.005%/h in the postprandial state after LOW PRO compared with HIGH PRO, respectively (P < 0.01), with no differences between treatments (P = 0.25). CONCLUSION Habituation to LOW PRO (0.7 g · kg-1 · d-1) compared with HIGH PRO (1.5 g · kg-1 · d-1) augments the postprandial availability of dietary protein-derived amino acids in the circulation and does not lower basal muscle protein synthesis rates or increase postprandial muscle protein synthesis rates after ingestion of 25 g protein in older men. This trial was registered at clinicaltrials.gov as NCT01986842.
Collapse
Affiliation(s)
- Stefan Hm Gorissen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Top Institute Food & Nutrition, Wageningen, Netherlands; and
| | - Astrid Mh Horstman
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Top Institute Food & Nutrition, Wageningen, Netherlands; and
| | - Rinske Franssen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Imre Wk Kouw
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Benjamin T Wall
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Nicholas A Burd
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Top Institute Food & Nutrition, Wageningen, Netherlands; and
| | - Lisette Cpgm de Groot
- Top Institute Food & Nutrition, Wageningen, Netherlands; and.,Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Luc Jc van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands; .,Top Institute Food & Nutrition, Wageningen, Netherlands; and
| |
Collapse
|
212
|
Phillips SM, Dickerson RN, Moore FA, Paddon-Jones D, Weijs PJM. Protein Turnover and Metabolism in the Elderly Intensive Care Unit Patient. Nutr Clin Pract 2017; 32:112S-120S. [PMID: 28388378 DOI: 10.1177/0884533616686719] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many intensive care unit (ICU) patients do not achieve target protein intakes particularly in the early days following admittance. This period of iatrogenic protein undernutrition contributes to a rapid loss of lean, in particular muscle, mass in the ICU. The loss of muscle in older (aged >60 years) patients in the ICU may be particularly rapid due to a perfect storm of increased catabolic factors, including systemic inflammation, disuse, protein malnutrition, and reduced anabolic stimuli. This loss of muscle mass has marked consequences. It is likely that the older patient is already experiencing muscle loss due to sarcopenia; however, the period of stay in the ICU represents a greatly accelerated period of muscle loss. Thus, on discharge, the older ICU patient is now on a steeper downward trajectory of muscle loss, more likely to have ICU-acquired muscle weakness, and at risk of becoming sarcopenic and/or frail. One practice that has been shown to have benefit during ICU stays is early ambulation and physical therapy (PT), and it is likely that both are potent stimuli to induce a sensitivity of protein anabolism. Thus, recommendations for the older ICU patient would be provision of at least 1.2-1.5 g protein/kg usual body weight/d, regular and early utilization of ambulation (if possible) and/or PT, and follow-up rehabilitation for the older discharged ICU patient that includes rehabilitation, physical activity, and higher habitual dietary protein to change the trajectory of ICU-mediated muscle mass loss and weakness.
Collapse
Affiliation(s)
- Stuart M Phillips
- 1 McMaster University, Department of Kinesiology, Hamilton, Ontario, Canada
| | - Roland N Dickerson
- 2 Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Frederick A Moore
- 3 Department of Surgery, Division of Acute Care Surgery, and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Douglas Paddon-Jones
- 4 Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas, USA
| | - Peter J M Weijs
- 5 Nutrition and Dietetics, Department of Internal Medicine, Department of Intensive Care Medicine, and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, The Netherlands.,6 Nutrition and Dietetics, Faculty of Sports and Nutrition, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| |
Collapse
|
213
|
Zempo H, Isobe M, Naito H. Link between blood flow and muscle protein metabolism in elderly adults. ACTA ACUST UNITED AC 2017. [DOI: 10.7600/jpfsm.6.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hirofumi Zempo
- Japan Society for the Promotion of Science
- Graduate School of Health and Sports Science, Juntendo University
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University
| |
Collapse
|
214
|
Papa EV, Dong X, Hassan M. Skeletal Muscle Function Deficits in the Elderly: Current Perspectives on Resistance Training. JOURNAL OF NATURE AND SCIENCE 2017; 3:e272. [PMID: 28191501 PMCID: PMC5303008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A variety of changes in skeletal muscle occur with aging. Sarcopenia is the age-associated loss of muscle mass and is one of the main contributors to musculoskeletal impairments in the elderly. Traditional definitions of sarcopenia focused on the size of human skeletal muscle. However, increasing evidence in older adults suggests that low muscle mass is associated with weakness, and weakness is strongly associated with function and disability. In recent years a global trend has shifted toward more encompassing definitions for the loss of muscle mass which include decreases in physical function. This review focuses on skeletal muscle function deficits in the elderly and how these age-associated deficits can be ameliorated by resistance training. We set forth evidence that skeletal muscle deficits arise from changes within the muscle, including reduced fiber size, decreased satellite cell and fiber numbers, and decreased expression of myosin heavy chain (MHC) isoform IIa. Finally, we provide recommendations for clinical geriatric practice regarding how resistance training can attenuate the increase in age-associated skeletal muscle function deficits. Practitioners should consider encouraging patients who are reluctant to exercise to move along a continuum of activity between "no acticity" on one end and "recommended daily amounts" on the other.
Collapse
Affiliation(s)
- Evan V. Papa
- Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Xiaoyang Dong
- Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University; Nanchang, Jiangxi Province, China
| | - Mahdi Hassan
- Department of Physical Therapy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
215
|
Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Phillips BE, Szewczyk NJ, Greenhaff PL, Smith K, Atherton PJ. Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans. J Physiol 2016; 594:7399-7417. [PMID: 27654940 PMCID: PMC5157077 DOI: 10.1113/jp272857] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/19/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Resistance exercise training (RET) is one of the most effective strategies for preventing declines in skeletal muscle mass and strength with age. Hypertrophic responses to RET with age are diminished compared to younger individuals. In response to 6 weeks RET, we found blunted hypertrophic responses with age are underpinned by chronic deficits in long-term muscle protein synthesis. We show this is likely to be the result of multifactorial deficits in anabolic hormones and blunted translational efficiency and capacity. These results provide great insight into age-related exercise adaptations and provide a platform on which to devise appropriate nutritional and exercise interventions on a longer term basis. ABSTRACT Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of 'anabolic resistance' in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1-RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2 O (70 atom%; thereafter 50 ml week-1 ), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography-pyrolysis-isotope ratio mass spectrometry. After RET, 1-RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P < 0.01), while MVC increased in Y (+21 ± 5%; P < 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET-induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P < 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While 'basal' longer term MPS was identical between Y and O (∼1.35 ± 0.1% day-1 ), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day-1 ; O: 1.49 ± 0.1% day-1 ). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c-MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl-1 (all P < 0.05). Anabolic resistance is thus multifactorial.
Collapse
Affiliation(s)
- Matthew S. Brook
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing ResearchClinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Daniel J. Wilkinson
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing ResearchClinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - William K. Mitchell
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing ResearchClinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
- Departments of SurgeryRoyal Derby HospitalDerbyUK
| | - Jonathan N. Lund
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing ResearchClinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
- Departments of SurgeryRoyal Derby HospitalDerbyUK
| | - Bethan E. Phillips
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing ResearchClinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Nathaniel J. Szewczyk
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing ResearchClinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Paul L. Greenhaff
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing ResearchClinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Kenneth Smith
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing ResearchClinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| | - Philip J. Atherton
- MRC‐ARUK Centre of Excellence for Musculoskeletal Ageing ResearchClinical, Metabolic and Molecular PhysiologyUniversity of NottinghamDerbyUK
| |
Collapse
|
216
|
Murphy CH, Saddler NI, Devries MC, McGlory C, Baker SK, Phillips SM. Leucine supplementation enhances integrative myofibrillar protein synthesis in free-living older men consuming lower- and higher-protein diets: a parallel-group crossover study. Am J Clin Nutr 2016; 104:1594-1606. [PMID: 27935521 DOI: 10.3945/ajcn.116.136424] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Leucine co-ingestion with lower-protein (LP)-containing meals may overcome the blunted muscle protein synthetic response to food intake in the elderly but may be effective only in individuals who consume LP diets. OBJECTIVE We examined the impact of leucine co-ingestion with mixed macronutrient meals on integrated 3-d rates of myofibrillar protein synthesis (MyoPS) in free-living older men who consumed higher protein (HP) (1.2 g · kg-1 · d-1) or LP (0.8 g · kg-1 · d-1) in rested and resistance exercise (REX) conditions. DESIGN In a crossover design, 20 healthy older men [aged 65-85 y] were randomly assigned to receive LP or HP diets while ingesting a placebo (days 0-2) and Leu supplement (5 g leucine/meal; days 3-5) with their 3 main daily meals. A bout of unilateral REX was performed during the placebo and Leu treatments. Ingested 2H2O and skeletal muscle biopsies were used to measure the 3-d integrated rate of MyoPS during the placebo and Leu treatments in the rested and REX legs. RESULTS Leucinemia was higher with Leu treatment than with placebo treatment (P < 0.001). MyoPS was similar in LP and HP during both treatments (P = 0.39) but was higher with Leu treatment than with placebo treatment in the rested (pooled mean ± SD: Leu, 1.57% ± 0.11%/d; placebo, 1.48% ± 0.08%/d; main effect of treatment: P < 0.001) and REX (pooled mean: Leu, 1.87% ± 0.09%/d; placebo, 1.71 ± 0.10%/d; main effect of treatment: P < 0.001) legs. CONCLUSIONS Leu co-ingestion with daily meals enhances integrated MyoPS in free-living older men in rested and REX conditions and is equally effective in older men who consume daily protein intakes greater than or equal to the RDA. This trial was registered at clinicaltrials.gov as NCT02371278.
Collapse
Affiliation(s)
| | | | | | | | - Steven K Baker
- Neurology, School of Medicine, McMaster University, Hamilton, Canada
| | | |
Collapse
|
217
|
Lancha AH, Zanella R, Tanabe SGO, Andriamihaja M, Blachier F. Dietary protein supplementation in the elderly for limiting muscle mass loss. Amino Acids 2016; 49:33-47. [PMID: 27807658 DOI: 10.1007/s00726-016-2355-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Supplementation with whey and other dietary protein, mainly associated with exercise training, has been proposed to be beneficial for the elderly to gain and maintain lean body mass and improve health parameters. The main objective of this review is to examine the evidence provided by the scientific literature indicating benefit from such supplementation and to define the likely best strategy of protein uptake for optimal objectified results in the elderly. Overall, it appears that an intake of approximately 0.4 g protein/kg BW per meal thus representing 1.2-1.6 g protein/kg BW/day may be recommended taking into account potential anabolic resistance. The losses of the skeletal muscle mass contribute to lower the capacity to perform activities in daily living, emphasizing that an optimal protein consumption may represent an important parameter to preserve independence and contribute to health status. However, it is worth noting that the maximal intake of protein with no adverse effect is not known, and that high levels of protein intake is associated with increased transfer of protein to the colon with potential deleterious effects. Thus, it is important to examine in each individual case the benefit that can be expected from supplementation with whey protein, taking into account the usual protein dietary intake.
Collapse
Affiliation(s)
- Antonio Herbert Lancha
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil.
| | - Rudyard Zanella
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil
| | - Stefan Gleissner Ohara Tanabe
- Laboratório de Nutrição e Metabolismo, Escola de Educação Física e Esporte da Universidade de São Paulo, EEFE-USP, R. Prof. Mello Moraes, 65, São Paulo, SP, CEP 05508-030, Brazil
| | - Mireille Andriamihaja
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | - Francois Blachier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France.
| |
Collapse
|
218
|
Moro T, Ebert SM, Adams CM, Rasmussen BB. Amino Acid Sensing in Skeletal Muscle. Trends Endocrinol Metab 2016; 27:796-806. [PMID: 27444066 PMCID: PMC5075248 DOI: 10.1016/j.tem.2016.06.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022]
Abstract
Aging impairs skeletal muscle protein synthesis, leading to muscle weakness and atrophy. However, the underlying molecular mechanisms remain poorly understood. Here, we review evidence that mammalian/mechanistic target of rapamycin complex 1 (mTORC1)-mediated and activating transcription factor 4 (ATF4)-mediated amino acid (AA) sensing pathways, triggered by impaired AA delivery to aged skeletal muscle, may play important roles in skeletal muscle aging. Interventions that alleviate age-related impairments in muscle protein synthesis, strength, and/or muscle mass appear to do so by reversing age-related changes in skeletal muscle AA delivery, mTORC1 activity, and/or ATF4 activity. An improved understanding of the mechanisms and roles of AA sensing pathways in skeletal muscle may lead to evidence-based strategies to attenuate sarcopenia.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott M Ebert
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Christopher M Adams
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
219
|
Shad BJ, Thompson JL, Breen L. Does the muscle protein synthetic response to exercise and amino acid-based nutrition diminish with advancing age? A systematic review. Am J Physiol Endocrinol Metab 2016; 311:E803-E817. [PMID: 27555299 DOI: 10.1152/ajpendo.00213.2016] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023]
Abstract
The precise role of age-related muscle anabolic resistance in the progression of sarcopenia and functional decline in older individuals is unclear. The present aim was to assess whether the muscle protein synthesis (MPS) response to acute exercise (endurance or resistance) and/or amino acid-based nutrition is attenuated in older compared with young individuals. A systematic review was conducted on studies that directly examined the influence of age on the MPS response to exercise and/or amino acid-based nutrition. Each study arm was synthesized and reported as providing sufficient or insufficient "evidence of age-related muscle anabolic resistance". Subsequently, three models were established to compare age-related differences in the MPS response to 1) exercise alone, 2) amino acid-based nutrition alone, or 3) the combination of exercise and amino acid-based nutrition. Following exercise alone, 8 of the 17 study arms provided sufficient evidence of age-related muscle anabolic resistance, while in response to amino acid-based nutrition alone, 8 of the 21 study arms provided sufficient evidence of age-related muscle anabolic resistance. When exercise and amino acid-based nutrition were combined, only 2 of the 10 study arms provided sufficient evidence of age-related muscle anabolic resistance. Our results highlight that optimization of exercise and amino acid-based nutrition is sufficient to induce a comparable MPS response between young and older individuals. However, the exercise volume completed and/or the amino acid/protein dose and leucine content must exceed a certain threshold to stimulate equivalent MPS rates in young and older adults, below which age-related muscle anabolic resistance may become apparent.
Collapse
Affiliation(s)
- Brandon J Shad
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and
| | - Janice L Thompson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, United Kingdom
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
220
|
VERDIJK LEXB, SNIJDERS TIM, HOLLOWAY TANYAM, VAN KRANENBURG JANNEAU, VAN LOON LUCJC. Resistance Training Increases Skeletal Muscle Capillarization in Healthy Older Men. Med Sci Sports Exerc 2016; 48:2157-2164. [DOI: 10.1249/mss.0000000000001019] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
221
|
Beals JW, Sukiennik RA, Nallabelli J, Emmons RS, van Vliet S, Young JR, Ulanov AV, Li Z, Paluska SA, De Lisio M, Burd NA. Anabolic sensitivity of postprandial muscle protein synthesis to the ingestion of a protein-dense food is reduced in overweight and obese young adults. Am J Clin Nutr 2016; 104:1014-1022. [PMID: 27604771 DOI: 10.3945/ajcn.116.130385] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Excess body fat diminishes muscle protein synthesis rates in response to hyperinsulinemic-hyperaminoacidemic clamps. However, muscle protein synthetic responses after the ingestion of a protein-dense food source across a range of body mass indexes (BMIs) have not been compared. OBJECTIVE We compared the myofibrillar protein synthetic response and underlying nutrient-sensing mechanisms after the ingestion of lean pork between obese, overweight, and healthy-weight adults. DESIGN Ten healthy-weight [HW; BMI (in kg/m2): 22.7 ± 0.4], 10 overweight (OW; BMI: 27.1 ± 0.5), and 10 obese (OB; BMI: 35.9 ± 1.3) adults received primed continuous l-[ring-13C6]phenylalanine infusions. Blood and muscle biopsy samples were collected before and after the ingestion of 170 g pork (36 g protein and 3 g fat) to assess skeletal muscle anabolic signaling, amino acid transporters [large neutral and small neutral amino acid transporters (LAT1, SNAT2) and CD98], and myofibrillar protein synthesis. RESULTS At baseline, OW and OB groups showed greater relative amounts of mammalian target of rapamycin complex 1 (mTORC1) protein than the HW group. Pork ingestion increased mTORC1 phosphorylation only in the HW group (P = 0.001). LAT1 and SNAT2 protein content increased during the postprandial period in all groups (time effect, P < 0.05). Basal myofibrillar protein synthetic responses were similar between groups (P = 0.43). However, myofibrillar protein synthetic responses (0-300 min) were greater in the HW group (1.6-fold; P = 0.005) after pork ingestion than in the OW and OB groups. CONCLUSIONS There is a diminished myofibrillar protein synthetic response to the ingestion of protein-dense food in overweight and obese adults compared with healthy-weight controls. These data indicate that impaired postprandial myofibrillar protein synthetic response may be an early defect with increasing fat mass, potentially dependent on altered anabolic signals, that reduces muscle sensitivity to food ingestion. This trial was registered at clinicaltrials.gov as NCT02613767.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhong Li
- Roy J Carver Biotechnology Center, and
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Michael De Lisio
- Division of Nutritional Sciences, Department of Kinesiology and Community Health
| | - Nicholas A Burd
- Division of Nutritional Sciences, Department of Kinesiology and Community Health,
| |
Collapse
|
222
|
Draganidis D, Karagounis LG, Athanailidis I, Chatzinikolaou A, Jamurtas AZ, Fatouros IG. Inflammaging and Skeletal Muscle: Can Protein Intake Make a Difference? J Nutr 2016; 146:1940-1952. [PMID: 27581584 DOI: 10.3945/jn.116.230912] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/18/2016] [Indexed: 01/04/2023] Open
Abstract
Inflammaging is the chronic low-grade inflammatory state present in the elderly, characterized by increased systemic concentrations of proinflammatory cytokines. It has been shown that inflammaging increases the risk of pathologic conditions and age-related diseases, and that it also has been associated with increased skeletal muscle wasting, strength loss, and functional impairments. Experimental evidence suggests that the increased concentrations of proinflammatory cytokines and primary tumor necrosis factor α observed in chronic inflammation lead to protein degradation through proteasome activation and reduced skeletal muscle protein synthesis (MPS) via protein kinase B/Akt downregulation. Dairy and soy proteins contain all the essential amino acids, demonstrate sufficient absorption kinetics, and include other bioactive peptides that may offer nutritional benefits, in addition to those of stimulating MPS. Whey protein has antioxidative effects, primarily because of its ability to enhance the availability of reduced glutathione and the activity of the endogenous antioxidative enzyme system. Soy protein and isoflavone-enriched soy protein, meanwhile, may counteract chronic inflammation through regulation of the nuclear transcription factor κB signaling pathway and cytokine production. Although evidence suggests that whey protein, soy protein, and isoflavone-enriched soy proteins may be promising nutritional interventions against the oxidative stress and chronic inflammation present in pathologic conditions and aging (inflammaging), there is a lack of information about the anabolic potential of dietary protein intake and protein supplementation in elderly people with increased systemic inflammation. The antioxidative and anti-inflammatory effects, as well as the anabolic potential of protein supplementation, should be further investigated in the future with well-designed clinical trials focusing on inflammaging and its associated skeletal muscle loss.
Collapse
Affiliation(s)
- Dimitrios Draganidis
- School of Physical Education and Sports Science, University of Thessaly, Trikala, Greece
| | - Leonidas G Karagounis
- School of Physical Education and Sports Science, University of Thessaly, Trikala, Greece; Department of Nutrition and Health Research, Nestle Research Centre, Lausanne, Switzerland
| | - Ioannis Athanailidis
- School of Physical Education and Sports Science, Democritus University of Thrace, Komotini, Greece
| | | | - Athanasios Z Jamurtas
- School of Physical Education and Sports Science, University of Thessaly, Trikala, Greece; Institute of Human Performance and Rehabilitation, Centre for Research and Technology-Thessaly, Trikala, Greece; and
| | - Ioannis G Fatouros
- School of Physical Education and Sports Science, University of Thessaly, Trikala, Greece;
| |
Collapse
|
223
|
Hunter SK, Pereira HM, Keenan KG. The aging neuromuscular system and motor performance. J Appl Physiol (1985) 2016; 121:982-995. [PMID: 27516536 PMCID: PMC5142309 DOI: 10.1152/japplphysiol.00475.2016] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Hugo M Pereira
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Kevin G Keenan
- Department of Kinesiology, College of Health Sciences, University of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
224
|
Kramer IF, Verdijk LB, Hamer HM, Verlaan S, Luiking YC, Kouw IWK, Senden JM, van Kranenburg J, Gijsen AP, Bierau J, Poeze M, van Loon LJC. Both basal and post-prandial muscle protein synthesis rates, following the ingestion of a leucine-enriched whey protein supplement, are not impaired in sarcopenic older males. Clin Nutr 2016; 36:1440-1449. [PMID: 27743615 DOI: 10.1016/j.clnu.2016.09.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/11/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Studying the muscle protein synthetic response to food intake in elderly is important, as it aids the development of interventions to combat sarcopenia. Although sarcopenic elderly are the target group for many of these nutritional interventions, no studies have assessed basal or post-prandial muscle protein synthesis rates in this population. OBJECTIVE To assess the basal and post-prandial muscle protein synthesis rates between healthy and sarcopenic older men. DESIGN A total of 15 healthy (69 ± 1 y) and 15 sarcopenic (81 ± 1 y) older men ingested a leucine-enriched whey protein nutritional supplement containing 21 g of protein, 9 g of carbohydrate, and 3 g of fat. Stable isotope methodology combined with frequent collection of blood and muscle samples was applied to assess basal and post-prandial muscle protein fractional synthetic rates. Handgrip strength, muscle mass, and gait speed were assessed to identify sarcopenia, according to international criteria. RESULTS Basal mixed muscle protein fractional synthetic rates (FSR) averaged 0.040 ± 0.005 and 0.032 ± 0.003%/h (mean ± SEM) in the sarcopenic and healthy group, respectively (P = 0.14). Following protein ingestion, FSR increased significantly to 0.055 ± 0.004 and 0.053 ± 0.004%/h in the post-prandial period in the sarcopenic (P = 0.003) and healthy groups (P < 0.001), respectively, with no differences between groups (P = 0.45). Furthermore, no differences were observed between groups in muscle protein synthesis rates during the early (0.058 ± 0.007 vs 0.060 ± 0.008%/h, sarcopenic vs healthy, respectively) and late (0.052 ± 0.004 vs 0.048 ± 0.003%/h) stages of the post-prandial period (P = 0.93 and P = 0.34, respectively). CONCLUSIONS Basal muscle protein synthesis rates are not lower in sarcopenic older men compared to healthy older men. The ingestion of 21 g of a leucine-enriched whey protein effectively increases muscle protein synthesis rates in both sarcopenic and healthy older men. Public trial registry number: NTR3047.
Collapse
Affiliation(s)
- Irene Fleur Kramer
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Surgery, Division of Trauma Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Henrike M Hamer
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sjors Verlaan
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Yvette C Luiking
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Imre W K Kouw
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Janneau van Kranenburg
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Annemarie P Gijsen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jörgen Bierau
- Laboratory of Biochemical Genetics, Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Martijn Poeze
- Department of Surgery, Division of Trauma Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
225
|
Is Cancer Cachexia Attributed to Impairments in Basal or Postprandial Muscle Protein Metabolism? Nutrients 2016; 8:nu8080499. [PMID: 27537909 PMCID: PMC4997412 DOI: 10.3390/nu8080499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/03/2016] [Accepted: 08/11/2016] [Indexed: 01/06/2023] Open
Abstract
Cachexia is a significant clinical problem associated with very poor quality of life, reduced treatment tolerance and outcomes, and a high mortality rate. Mechanistically, any sizeable loss of skeletal muscle mass must be underpinned by a structural imbalance between muscle protein synthesis and breakdown rates. Recent data indicate that the loss of muscle mass with aging is, at least partly, attributed to a blunted muscle protein synthetic response to protein feeding. Whether such anabolic resistance is also evident in conditions where cachexia is present remains to be addressed. Only few data are available on muscle protein synthesis and breakdown rates in vivo in cachectic cancer patients. When calculating the theoretical changes in basal or postprandial fractional muscle protein synthesis and breakdown rates that would be required to lose 5% of body weight within a six-month period, we can define the changes that would need to occur to explain the muscle mass loss observed in cachectic patients. If changes in both post-absorptive and postprandial muscle protein synthesis and breakdown rates contribute to the loss of muscle mass, it would take alterations as small as 1%–2% to induce a more than 5% decline in body weight. Therefore, when trying to define impairments in basal and/or postprandial muscle protein synthesis or breakdown rates using contemporary stable isotope methodology in cancer cachexia, we need to select large homogenous groups of cancer patients (>40 patients) to allow us to measure physiological and clinically relevant differences in muscle protein synthesis and/or breakdown rates. Insight into impairments in basal or postprandial muscle protein synthesis and breakdown rates in cancer cachexia is needed to design more targeted nutritional, pharmaceutical and/or physical activity interventions to preserve skeletal muscle mass and, as such, to reduce the risk of complications, improve quality of life, and lower mortality rates during the various stages of the disease.
Collapse
|
226
|
Translating novel insights from age-related loss of skeletal muscle mass and phenotypic flexibility into diet and lifestyle recommendations for the elderly. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
227
|
Mitchell WK, Wilkinson DJ, Phillips BE, Lund JN, Smith K, Atherton PJ. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition. Adv Nutr 2016; 7:828S-38S. [PMID: 27422520 PMCID: PMC4942869 DOI: 10.3945/an.115.011650] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies.
Collapse
Affiliation(s)
- W Kyle Mitchell
- Department of Surgery, Royal Derby Hospital, Derby, United Kingdom; and
| | - Daniel J Wilkinson
- Medical Research Council, Arthritis Research United Kingdom, Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Bethan E Phillips
- Medical Research Council, Arthritis Research United Kingdom, Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Jonathan N Lund
- Department of Surgery, Royal Derby Hospital, Derby, United Kingdom; and,,Medical Research Council, Arthritis Research United Kingdom, Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Kenneth Smith
- Medical Research Council, Arthritis Research United Kingdom, Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Philip J Atherton
- Medical Research Council, Arthritis Research United Kingdom, Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
228
|
Holwerda AM, Kouw IW, Trommelen J, Halson SL, Wodzig WK, Verdijk LB, van Loon LJ. Physical Activity Performed in the Evening Increases the Overnight Muscle Protein Synthetic Response to Presleep Protein Ingestion in Older Men. J Nutr 2016; 146:1307-14. [PMID: 27281811 DOI: 10.3945/jn.116.230086] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/29/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The age-related decline in skeletal muscle mass is partly attributed to anabolic resistance to food intake. Dietary protein ingestion before sleep could be used as a nutritional strategy to compensate for anabolic resistance. OBJECTIVE The present study assessed whether physical activity performed in the evening can augment the overnight muscle protein synthetic response to presleep protein ingestion in older men. METHODS In a parallel group design, 23 healthy older men (mean ± SEM age: 71 ± 1 y) were randomly assigned to ingest 40 g protein intrinsically labeled with l-[1-(13)C]-phenylalanine and l-[1-(13)C]-leucine before going to sleep with (PRO+EX) or without (PRO) performing physical activity earlier in the evening. Overnight protein digestion and absorption kinetics and myofibrillar protein synthesis rates were assessed by combining primed, continuous infusions of l-[ring-(2)H5]-phenylalanine, l-[1-(13)C]-leucine, and l-[ring-(2)H2]-tyrosine with the ingestion of intrinsically labeled casein protein. Muscle and blood samples were collected throughout overnight sleep. RESULTS Protein ingested before sleep was normally digested and absorbed, with 54% ± 2% of the protein-derived amino acids appearing in the circulation throughout overnight sleep. Overnight myofibrillar protein synthesis rates were 31% (0.058% ± 0.002%/h compared with 0.044% ± 0.003%/h; P < 0.01; based on l-[ring-(2)H5]-phenylalanine) and 27% (0.074% ± 0.004%/h compared with 0.058% ± 0.003%/h; P < 0.01; based on l-[1-(13)C]-leucine) higher in the PRO+EX than in the PRO treatment. More dietary protein-derived amino acids were incorporated into de novo myofibrillar protein during overnight sleep in PRO+EX than in PRO treatment (0.042 ± 0.002 compared with 0.033 ± 0.002 mole percent excess; P < 0.05). CONCLUSIONS Physical activity performed in the evening augments the overnight muscle protein synthetic response to presleep protein ingestion and allows more of the ingested protein-derived amino acids to be used for de novo muscle protein synthesis during overnight sleep in older men. This trial was registered at Nederlands Trial Register as NTR3885.
Collapse
Affiliation(s)
- Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism and Top Institute Food and Nutrition (TIFN), Wageningen, Netherlands; and
| | - Imre Wk Kouw
- NUTRIM School of Nutrition and Translational Research in Metabolism and Top Institute Food and Nutrition (TIFN), Wageningen, Netherlands; and
| | - Jorn Trommelen
- NUTRIM School of Nutrition and Translational Research in Metabolism and Top Institute Food and Nutrition (TIFN), Wageningen, Netherlands; and
| | - Shona L Halson
- AIS Physiology, Australian Institute of Sport, Belconnen, Australia
| | - Will Kwh Wodzig
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism and Top Institute Food and Nutrition (TIFN), Wageningen, Netherlands; and
| | - Luc Jc van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism and Top Institute Food and Nutrition (TIFN), Wageningen, Netherlands; and
| |
Collapse
|
229
|
Dirks ML, Wall BT, Kramer IF, Zorenc AH, Goessens JPB, Gijsen AP, van Loon LJC. A single session of neuromuscular electrical stimulation does not augment postprandial muscle protein accretion. Am J Physiol Endocrinol Metab 2016; 311:E278-85. [PMID: 27279248 DOI: 10.1152/ajpendo.00085.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/28/2016] [Indexed: 11/22/2022]
Abstract
The loss of muscle mass and strength that occurs with aging, termed sarcopenia, has been (at least partly) attributed to an impaired muscle protein synthetic response to food intake. Previously, we showed that neuromuscular electrical stimulation (NMES) can stimulate fasting muscle protein synthesis rates and prevent muscle atrophy during disuse. We hypothesized that NMES prior to protein ingestion would increase postprandial muscle protein accretion. Eighteen healthy elderly (69 ± 1 yr) males participated in this study. After a 70-min unilateral NMES protocol was performed, subjects ingested 20 g of intrinsically l-[1-(13)C]phenylalanine-labeled casein. Plasma samples and muscle biopsies were collected to assess postprandial mixed muscle and myofibrillar protein accretion as well as associated myocellular signaling during a 4-h postprandial period in both the control (CON) and stimulated (NMES) leg. Protein ingestion resulted in rapid increases in both plasma phenylalanine concentrations and l-[1-(13)C]phenylalanine enrichments, which remained elevated during the entire 4-h postprandial period (P < 0.05). Mixed-muscle protein-bound l-[1-(13)C]phenylalanine enrichments increased significantly over time following protein ingestion, with no differences between the CON (0.0164 ± 0.0019 MPE) and NMES (0.0164 ± 0.0019 MPE) leg (P > 0.05). In agreement, no differences were observed in the postprandial rise in myofibrillar protein bound l-[1-(13)C]phenylalanine enrichments between the CON and NMES legs (0.0115 ± 0.0014 vs. 0.0133 ± 0.0013 MPE, respectively, P > 0.05). Significant increases in mTOR and P70S6K phosphorylation status were observed in the NMES-stimulated leg only (P < 0.05). We conclude that a single session of NMES prior to food intake does not augment postprandial muscle protein accretion in healthy older men.
Collapse
Affiliation(s)
- Marlou L Dirks
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Benjamin T Wall
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Irene Fleur Kramer
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Antoine H Zorenc
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joy P B Goessens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Annemie P Gijsen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
230
|
Abstract
The purpose of an F1000 review is to reflect on the bigger picture, exploring controversies and new concepts as well as providing opinion as to what is limiting progress in a particular field. We reviewed about 200 titles published in 2015 that included reference to 'skeletal muscle, exercise, and ageing' with the aim of identifying key articles that help progress our understanding or research capacity while identifying methodological issues which represent, in our opinion, major barriers to progress. Loss of neuromuscular function with chronological age impacts on both health and quality of life. We prioritised articles that studied human skeletal muscle within the context of age or exercise and identified new molecular observations that may explain how muscle responds to exercise or age. An important aspect of this short review is perspective: providing a view on the likely 'size effect' of a potential mechanism on physiological capacity or ageing.
Collapse
Affiliation(s)
- James A Timmons
- Division of Genetics & Molecular Medicine, King's College London, London, UK
| | | |
Collapse
|
231
|
Shad BJ, Wallis G, van Loon LJC, Thompson JL. Exercise prescription for the older population: The interactions between physical activity, sedentary time, and adequate nutrition in maintaining musculoskeletal health. Maturitas 2016; 93:78-82. [PMID: 27338978 DOI: 10.1016/j.maturitas.2016.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
Abstract
Regular physical activity (PA) promotes musculoskeletal health in older adults. However, the majority of older individuals do not meet current PA guidelines and are also highly sedentary. Emerging evidence indicates that large amounts of sedentary time accelerate the loss of skeletal muscle mass (i.e., sarcopenia) and physical function with advancing age. However, current PA recommendations for sedentary time are non-specific (i.e., keep sedentary time to a minimum). Research indicates that physical inactivity and large amounts of sedentary time accelerate sarcopenic muscle loss by inducing skeletal muscle 'anabolic resistance'. These findings suggest a critical interaction between engaging in 'sufficient' levels of PA, minimising sedentary time, and consuming 'adequate' nutrition to promote optimal musculoskeletal health in older adults. However, current PA recommendations do not take into account the important role that nutrition plays in ensuring older adults can maximise the benefits from the PA in which they engage. The aim of this narrative review is: (1) to briefly summarise the evidence used to inform current public health recommendations for PA and sedentary time in older adults; and (2) to discuss the presence of 'anabolic resistance' in older adults, highlighting the importance of regular PA and minimising sedentary behaviour. It is imperative that the synergy between PA, minimising sedentary behaviour and adequate nutrition is integrated into future PA guidelines to promote optimal musculoskeletal health and metabolic responses in the growing ageing population.
Collapse
Affiliation(s)
- Brandon J Shad
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, United Kingdom
| | - Gareth Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, United Kingdom
| | - Luc J C van Loon
- Department of Human Biology and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Janice L Thompson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, United Kingdom.
| |
Collapse
|
232
|
Landi F, Calvani R, Tosato M, Martone AM, Ortolani E, Savera G, D'Angelo E, Sisto A, Marzetti E. Protein Intake and Muscle Health in Old Age: From Biological Plausibility to Clinical Evidence. Nutrients 2016; 8:E295. [PMID: 27187465 PMCID: PMC4882708 DOI: 10.3390/nu8050295] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 12/14/2022] Open
Abstract
The provision of sufficient amounts of dietary proteins is central to muscle health as it ensures the supply of essential amino acids and stimulates protein synthesis. Older persons, in particular, are at high risk of insufficient protein ingestion. Furthermore, the current recommended dietary allowance for protein (0.8 g/kg/day) might be inadequate for maintaining muscle health in older adults, probably as a consequence of "anabolic resistance" in aged muscle. Older individuals therefore need to ingest a greater quantity of protein to maintain muscle function. The quality of protein ingested is also essential to promoting muscle health. Given the role of leucine as the master dietary regulator of muscle protein turnover, the ingestion of protein sources enriched with this essential amino acid, or its metabolite β-hydroxy β-methylbutyrate, is thought to offer the greatest benefit in terms of preservation of muscle mass and function in old age.
Collapse
Affiliation(s)
- Francesco Landi
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, L.go F. Vito 8, Rome 00168, Italy.
| | - Riccardo Calvani
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, L.go F. Vito 8, Rome 00168, Italy.
| | - Matteo Tosato
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, L.go F. Vito 8, Rome 00168, Italy.
| | - Anna Maria Martone
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, L.go F. Vito 8, Rome 00168, Italy.
| | - Elena Ortolani
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, L.go F. Vito 8, Rome 00168, Italy.
| | - Giulia Savera
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, L.go F. Vito 8, Rome 00168, Italy.
| | - Emanuela D'Angelo
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, L.go F. Vito 8, Rome 00168, Italy.
| | - Alex Sisto
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, L.go F. Vito 8, Rome 00168, Italy.
| | - Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, L.go F. Vito 8, Rome 00168, Italy.
| |
Collapse
|
233
|
Abstract
Glutamine, reviewed extensively in the last century, is a key substrate for the splanchnic bed in the whole body and is a nutrient of particular interest in gastrointestinal research. A marked decrease in the plasma glutamine concentration has recently been observed in neonates and adults during acute illness and stress. Although some studies in newborns have shown parenteral and enteral supplementation with glutamine to be of benefit (by decreasing proteolysis and activating the immune system), clinical trials have not demonstrated prolonged advantages such as reductions in mortality or risk of infections in adults. In addition, glutamine is not able to combat the muscle wasting associated with disease or age-related sarcopenia. Oral glutamine supplementation initiated before advanced age in rats increases gut mass and improves the villus height of mucosa, thereby preventing the gut atrophy encountered in advanced age. Enterocytes from very old rats continuously metabolize glutamine into citrulline, which allowed, for the first time, the use of citrulline as a noninvasive marker of intestinal atrophy induced by advanced age.
Collapse
Affiliation(s)
- Dominique Meynial-Denis
- D. Meynial-Denis is with the Unit of Human Nutrition (UNH), French National Institute for Agricultural Research (INRA), Joint Research Unit (UMR) 1019, Center for Research in Human Nutrition (CRNH) Auvergne, Clermont-Ferrand, France.
| |
Collapse
|